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Abstract We introduce a generalized framework for sampling and reconstruction in
separable Hilbert spaces. Specifically, we establish that it is always possible to stably
reconstruct a vector in an arbitrary Riesz basis from sufficiently many of its samples
in any other Riesz basis. This framework can be viewed as an extension of the well-
known consistent reconstruction technique (Eldar et al.). However, whilst the latter
imposes stringent assumptions on the reconstruction basis, and may in practice be
unstable, our framework allows for recovery in any (Riesz) basis in a manner that is
completely stable.

Whilst the classical Shannon Sampling Theorem is a special case of our theorem,
this framework allows us to exploit additional information about the approximated
vector (or, in this case, function), for example sparsity or regularity, to design a recon-
struction basis that is better suited. Examples are presented illustrating this procedure.

Keywords Sampling theory · Stable reconstruction · Shannon sampling theorem ·
Infinite matrices · Hilbert space · Wavelets
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1 Introduction

The Shannon Sampling Theorem, or the Nyquist–Shannon Sampling Theorem as it
is also called (we will refer to it as the NS-Sampling Theorem throughout the paper),
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is a mainstay in modern signal processing and has become one of the most important
theorems in mathematics of information [32]. The list of applications of the theorem
is long, and ranges from Magnetic Resonance Imaging (MRI) to sound engineer-
ing. We will in this paper address the question on whether or not the NS-Sampling
Theorem can be improved. In particular, given the same set of information, can one
design a reconstruction of a function that would be better than that provided by the
NS-Sampling Theorem? The answer to such a question will obviously depend on the
type of functions considered. However, suppose that we have some extra informa-
tion about the functions to be reconstructed. One may, for example, have information
about a basis that is particularly suited for such functions. Could this information be
used to improve the reconstruction given by the NS-Sampling Theorem, even if it is
based on the same sampling procedure? Although such a question has been posed
before, and numerous extensions of the NS-Sampling Theorem have been developed
[7, 8, 15, 16, 33], the generalization we introduce in this paper is, to the best of our
knowledge, a novel approach for this problem.

The well known NS-Sampling Theorem [24, 26, 29, 30, 34] states that if

f = F g, g ∈ L2(R),

where F is the Fourier transform and supp(g) ⊂ [−T ,T ] for some T > 0, then both
f and g can be reconstructed from point samples of f . In particular, if ε ≤ 1

2T
then

f (t) =
∞∑

k=−∞
f (kε)sinc

(
t + kε

ε

)
L2 and unif. convergence,

g(·) = ε

∞∑

k=−∞
f (kε)e2π iεk· L2 convergence.

The quantity 1
2T

, which is the largest value of ε such that the theorem holds, is often
referred to as the Nyquist rate [29]. In practice, when trying to reconstruct f or g,
one will most likely not be able to access the infinite amount of information required,
namely, {f (kε)}k∈Z. Moreover, even if we had access to all samples, we are limited
by both processing power and storage to taking only a finite number. Thus, a more
realistic scenario is that one will be given a finite number of samples {f (kε)}|k|≤N ,
for some N < ∞, and seek to reconstruct f from these samples. The question is
therefore: are the approximations

fN(·) =
N∑

k=−N

f (kε)sinc

( · + kε

ε

)
, gN(·) = ε

N∑

k=−N

f (kε)e2π iεk·

optimal for f and g given the information {f (kε)}|k|≤N ? To formalize this question
consider the following. For N ∈ N and ε > 0, let

�N,ε = {
ξ ∈ C

2N+1 : ξ = {
f (kε)

}
|k|≤N

, f ∈ L2(R) ∩ C(R)
}
, (1.1)
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(C(R) denotes the set of continuous functions on R). Define the mappings (with a
slight abuse of notation)

�N,ε,1 : �N,ε → L2(R), �N,ε,2 : �N,ε → L2(R),

�N,ε,1(f ) =
N∑

k=−N

f (kε)sinc

( · + kε

ε

)
, �N,ε,2(f ) = ε

N∑

k=−N

f (kε)e2π iεk·.

(1.2)

The question is, given a class of functions � ⊂ L2(R), could there exist mappings
�N,ε,1 : �N,ε → L2(R) and �N,ε,2 : �N,ε → L2(R) such that

∥∥�N,ε,1(f ) − f
∥∥

L∞(R)
<
∥∥�N,ε,1(f ) − f

∥∥
L∞(R)

∀f,f = F g,g ∈ �,

∥∥�N,ε,2(f ) − g
∥∥

L2(R)
<
∥∥�N,ε,2(f ) − g

∥∥
L2(R)

∀f,f = F g,g ∈ �.

As we will see later, the answer to this question may very well be yes, and the problem
is therefore to find such mappings �N,ε,1 and �N,ε,2.

As motivation for this work, consider the following reconstruction problem. Let g

be defined by

g(t) =

⎧
⎪⎨

⎪⎩

1 t ∈ [0,1/2)

−1 t ∈ [1/2,1]
0 t ∈ R \ [0,1].

This is the well-known Haar wavelet. Due to the discontinuity, there is no way one
can exactly reconstruct this function with only finitely many function samples if one
insists on using the mapping �N,ε,2. We have visualized the reconstruction of g using
�N,ε,2 in Fig. 1. In addition to g not being reconstructed exactly, the approximation
�N,ε,2(g) is polluted by oscillations near the discontinuities of g. Such oscillations
are indicative of the well-known Gibbs phenomenon in recovering discontinuous sig-
nals from samples of their Fourier transforms [23]. This phenomenon is a major hur-
dle in many applications, including image and signal processing. Its resolution has,
and continues to be, the subject of significant inquiry [31].

Fig. 1 The figure shows �N,ε,2(f ) for f = F g, N = 500 and ε = 0.5 (left) as well as g (right)
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It is tempting to think, however, that one could construct a mapping �N,ε,2 that
would yield a better result. Suppose for a moment that we do not know g, but we do
have some extra information. In particular, suppose that we know that g ∈ �, where

� =
{

h ∈ L2(R) : h =
M∑

k=1

βkψk

}
, (1.3)

for some finite number M and where {ψk} are the Haar wavelets on the interval [0,1].
Could we, based on the extra knowledge of �, construct mappings �N,ε,1 : �N,ε →
L2(R) and �N,ε,2 : �N,ε → L2(R) such that

sup
{∥∥�N,ε,1(f ) − f

∥∥
L∞(R)

: g ∈ �,f = F g
}

< sup
{∥∥�N,ε,1(f ) − f

∥∥
L∞(R)

: g ∈ �,f = F g
}
,

sup
{∥∥�N,ε,2(f ) − g

∥∥
L2(R)

: g ∈ �,f = F g
}

< sup
{∥∥�N,ε,2(f ) − g

∥∥
L2(R)

: g ∈ �,f = F g
}
.

Indeed, this is the case, and a consequence of our framework is that it is possible to
find �N,ε,1 and �N,ε,2 such that

sup
{∥∥�N,ε,1(f ) − f

∥∥
L∞(R)

: g ∈ �,f = F g
}= 0,

sup
{∥∥�N,ε,2(f ) − g

∥∥
L2(R)

: g ∈ �,f = F g
}= 0,

provided N is sufficiently large. In other words, one gets perfect reconstruction.
Moreover, the reconstruction is done in a completely stable way.

The main tool for this task is a generalization of the NS-Sampling Theorem that
allows reconstructions in arbitrary bases. Having said this, whilst the Shannon Sam-
pling Theorem is our most frequent example, the framework we develop addresses the
more abstract problem of recovering a vector (belonging to some separable Hilbert
space H) given a finite number of its samples with respect any Riesz basis of H.

1.1 Organization of the Paper

We have organized the paper as follows. In Sect. 2 we introduce notation and idea of
finite sections of infinite matrices, a concept that will be crucial throughout the paper.
In Sect. 3 we discuss existing literature on this topic, including the work of Eldar
et al. [13, 14, 33]. The main theorem is presented and proved in Sect. 4, where we
also show the connection to the classical NS-Sampling Theorem. The error bounds in
the generalized sampling theorem involve several important constants, which can be
estimated numerically. We therefore devote Sect. 5 to discussions on how to compute
crucial constants and functions that are useful for providing error estimates. Finally,
in Sect. 6 we provide several examples to support the generalized sampling theorem
and to justify our approach.
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2 Background and Notation

Let i denote the imaginary unit. Define the Fourier transform F by

(F f )(y) =
∫

Rd

f (x)e−2π ix·y dx, f ∈ L1(
R

d
)
,

where, for vectors x, y ∈ R
d , x · y = x1y1 + · · ·+ xdyd . Aside from the Hilbert space

L2(Rd), we now introduce two other important Hilbert spaces: namely,

l2(N) =
{
α = {α1, α2, . . .} :

∑

k∈N

∣∣α2
k

∣∣< ∞
}

and

l2(Z) =
{
β = {. . . β−1, β0, β1 . . .} :

∑

k∈Z

∣∣β2
k

∣∣< ∞
}
,

with their obvious inner products. We will also consider abstract Hilbert spaces. In
this case we will use the notation H. Note that {ej }j∈N and {ej }j∈Z will always de-
note the natural bases for l2(N) and l2(Z) respectively. We may also use the notation
H for both l2(N) and l2(Z) (the meaning will be clear from the context). Throughout
the paper, the symbol ⊗ will denote the standard tensor product on Hilbert spaces.

The concept of infinite matrices will be quite crucial to what follows, and also
finite sections of such matrices. We will consider infinite matrices as operators from
both l2(N) to l2(Z) and l2(N) to l2(N). The set of bounded operators from a Hilbert
space H1 to a Hilbert space H2 will be denoted by B(H1, H2). As infinite matri-
ces are unsuitable for computations we must reduce any infinite matrix to a more
tractable finite-dimensional object. The standard means in which to do this is via
finite sections. In particular, let

U =

⎛

⎜⎜⎜⎜⎜⎜⎝

...
...

...
...

u−1,1 u−1,2 u−1,3 . . .

u0,1 u0,2 u0,3 . . .

u1,1 u1,2 u1,3 . . .
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟⎠
, U ∈ B

(
l2(N), l2(Z)

)
.

For n ∈ N, define Pn to be the projection onto span{e1, . . . , en} and, for odd m ∈ N, let
P̃m be the projection onto span{e− m−1

2
, . . . , em−1

2
}. Then P̃mUPn may be interpreted

as
⎛

⎜⎜⎝

u− m−1
2 ,1 . . . u− m−1

2 ,n

...
...

...

um−1
2 ,1 . . . um−1

2 ,n

⎞

⎟⎟⎠ ,

an m × n section of U . Finally, the spectrum of any operator T ∈ B(H) will be
denoted by σ(T ).
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3 Connection to Earlier Work

The idea of reconstructing signals in arbitrary bases is certainly not new and this topic
has been subject to extensive investigations in the last several decades. The papers by
Unser and Aldroubi [7, 33] have been very influential and these ideas have been
generalized to arbitrary Hilbert spaces by Eldar [13, 14]. The abstract framework
introduced by Eldar is very powerful because of its general nature. Our framework is
based on similar generalizations, yet it incorporates several key distinctions, resulting
in a number of advantages.

Before introducing this framework, let us first review some of the key concepts of
[14]. Let H be a separable Hilbert space and let f ∈ H be an element we would like
to reconstruct from some measurements. Suppose that we are given linearly indepen-
dent sampling vectors {sk}k∈N that span a subspace S ⊂ H and form a Riesz basis,
and assume that we can access the sampled inner products ck = 〈sk, f 〉, k = 1,2 . . ..
Suppose also that we are given linearly independent reconstruction vectors {wk}k∈N

that span a subspace W ⊂ H and also form a Riesz basis. The task is to obtain a
reconstruction f̃ ∈ W based on the sampling data {ck}k∈N. The natural choice, as
suggested in [14], is

f̃ = W
(
S∗W

)−1
S∗f, (3.1)

where the so-called synthesis operators S,W : l2(N) → H are defined by

Sx = x1s1 + x2s2 + · · · , Wy = y1w1 + y2w2 + · · · ,

and their adjoints S∗,W ∗ : H → l2(N) are easily seen to be

S∗g = {〈s1, g〉, 〈s2, g〉, . . .}, W ∗h = {〈w1, h〉, 〈w2, h〉 . . .
}
.

Note that S∗W will be invertible if and only if

H = W ⊕ S ⊥.

Equation (3.1) gives a very convenient and intuitive abstract formulation of the recon-
struction. However, in practice we will never have the luxury of being able to acquire
nor process the infinite amount of samples 〈sk, f 〉, k = 1,2 . . ., needed to construct
f̃ . An important question to ask is therefore:

What if we are given only the first m ∈ N samples 〈sk, f 〉, k = 1, . . . ,m? In this
case we cannot use (3.1). Thus, the question is, what can we do?

Fortunately, there is a simple finite-dimensional analogue to the infinite dimensional
ideas discussed above. Suppose that we are given m ∈ N linearly independent sam-
pling vectors {s1, . . . , sm} that span a subspace Sm ⊂ H, and assume that we can ac-
cess the sampled inner products ck = 〈sk, f 〉, k = 1, . . . ,m. Suppose also that we are
given linearly independent reconstruction vectors {w1, . . . ,wm} that span a subspace
Wm ⊂ H. The task is to construct an approximation f̃ ∈ Wm to f based on the sam-
ples {ck}mk=1. In particular, we are interested in finding coefficients {dk}mk=1 (that are
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computed from the samples {ck}mk=1) such that f̃ =∑m
k=1 dkwk . The reconstruction

suggested in [12] is

f̃ =
m∑

k=1

dkwk = Wm

(
S∗

mWm

)−1
S∗

mf, (3.2)

where the operators Sm,Wm : C
m → H are defined by

Smx = x1s1 + · · · + xmsm, Wmy = y1w1 + · · · + ymwm, (3.3)

and their adjoints S∗,W ∗ : H → C
m are easily seen to be

S∗
mg = {〈s1, g〉, . . . , 〈sm,g〉}, W ∗

mh = {〈w1, h〉, . . . , 〈wm,h〉}.
From this it is clear that we can express S∗

mWm : C
m → C

m as the matrix
⎛

⎜⎝
〈s1,w1〉 . . . 〈s1,wm〉

...
...

...

〈sm,w1〉 . . . 〈sm,wm〉

⎞

⎟⎠ . (3.4)

Also, S∗
mWm is invertible if and only if and ([12, Prop. 3])

Wm ∩ S ⊥
m = {0}. (3.5)

Thus, to construct f̃ one simply solves a linear system of equations. The error can
now conveniently be bounded from above and below by

‖f − PWm
f ‖ ≤ ‖f − f̃ ‖ ≤ 1

cos(θWmSm
)
‖f − PWm

f ‖,

where PWm
is the projection onto Wm,

cos(θWmSm
) = inf

{‖PSm
g‖ : g ∈ Wm,‖g‖ = 1

}
,

is the cosine of the angles between the subspaces Sm and Wm and PSm
is the projec-

tion onto Sm [12].
Note that if f ∈ Wm, then f̃ = f exactly—a feature known as perfect recovery.

Another facet of this framework is so-called consistency: the samples 〈sj , f̃ 〉, j =
1, . . . ,m, of the approximation f̃ are identical to those of the original function f

(indeed, f̃ , as given by (3.2), can be equivalently defined as the unique element in
Wm that is consistent with f ).

Returning to this issue at hand, there are now several important questions to ask:

(i) What if Wm ∩ S ⊥
m �= {0} so that S∗

mWm is not invertible? It is very easy to con-
struct theoretical examples such that S∗

mWm is not invertible. Moreover, as we
will see below, such situations may very well occur in applications. In fact,
Wm ∩ S ⊥

m = {0} is a rather strict condition. If we have that Wm ∩ S ⊥
m �= {0} does

that mean that is impossible to construct an approximation f̃ from the samples
S∗

mf ?
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(ii) What if ‖(S∗
mWm)−1‖ is large? The stability of the method must clearly depend

on the quantity ‖(S∗
mWm)−1‖. Thus, even if (S∗

mWm)−1 exists, one may not be
able to use the method in practice as there will likely be increased sensitivity to
both round-off error and noise.

Our framework is specifically designed to tackle these issues. But before we present
our idea, let us consider some examples where the issues in (i) and (ii) will be present.

Example 3.1 As for (i), the simplest example is to let H = l2(Z) and {ej }j∈Z be
the natural basis (ej is the infinite sequence with 1 in its j -th coordinate and zeros
elsewhere). For m ∈ N, let the sampling vectors {sk}mk=−m and the reconstruction
vectors {wk}mk=−m be defined by sk = ek and wk = ek+1. Then, clearly, Wm ∩ S ⊥

m =
span{em+1}.

Example 3.2 For an example of more practical interest, consider the following. For
0 < ε ≤ 1 let H = L2([0,1/ε]), and, for odd m ∈ N, define the sampling vectors

{sε,k}(m−1)/2
k=−(m−1)/2, sε,k = e−2π iεk·χ[0,1/ε],

(this is exactly the type of measurement vector that will be used if one models Mag-
netic Resonance Imaging) and let the reconstruction vectors {wk}mk=1 denote the m

first Haar wavelets on [0,1] (including the constant function, w1 = χ[0,1]). Let Sε,m

and Wm be as in (3.3), according to the sampling and reconstruction vectors just de-
fined. A plot of ‖(S∗

ε,mWm)−1‖ as a function of m and ε is given in Fig. 2. As we ob-
serve, for ε = 1 only certain values of m yield stable reconstruction, whereas for the
other values of ε the quantity ‖(S∗

ε,mWm)−1‖ grows exponentially with m, making the
problem severely ill-conditioned. Further computations suggest that ‖(S∗

ε,mWm)−1‖
increases exponentially with m not just for these values of ε, but for all 0 < ε < 1.

Example 3.3 Another example can be made by replacing the Haar wavelet basis with
the basis consisting of Legendre polynomials (orthogonal polynomials on [−1,1]
with respect to the Euclidean inner product).

In Fig. 3 we plot the quantity ‖(S∗
ε,mWm)−1‖. Unlike in the previous example,

this quantity now grows exponentially and monotonically in m. Whilst this not only

Fig. 2 This figure shows log10 ‖(S∗
ε,mWm)−1‖ as a function of m and ε for m = 1,2, . . . ,100. The left

plot corresponds to ε = 1, whereas the right plot corresponds to ε = 7/8 (circles), ε = 1/2 (crosses) and
ε = 1/8 (diamonds)



J Fourier Anal Appl

Fig. 3 The left figure shows log10 ‖(S∗
ε,mWm)−1‖ as a function of m for m = 2,4, . . . ,50

and ε = 1, 7
8 , 1

2 , 1
8 (squares, circles, crosses and diamonds respectively). The right figure shows

log10 ‖f −PWm
f ‖ (squares) and log10 ‖f − f̃ ‖ (circles) for m = 2,4,6, . . . ,100, where f (x) = 1

1+16x2

makes the method highly susceptible to round-off error and noise, it can also prevent
convergence of the approximation f̃ (as m → ∞). In essence, for convergence to oc-
cur, the error ‖f −PWm

f ‖ must decay more rapidly than the quantity ‖(S∗
ε,mWm)−1‖

grows. Whenever this is not the case, convergence is not assured. To illustrate this
shortcoming, in Fig. 3 we also plot the error ‖f − f̃ ‖, where f (x) = 1

1+16x2 . The

complex singularity at x = ± 1
4 i limits the convergence rate of ‖f − PWm

f ‖ suffi-
ciently so that f̃ does not converge to f . Note that this effect is well documented as
occurring in a related reconstruction problem, where a function defined on [−1,1]
is interpolated at m equidistant pointwise samples by a polynomial of degree m − 1.
This is the famous Runge phenomenon. The problem considered above (reconstruc-
tion from m Fourier samples) can be viewed as a continuous analogue of this phe-
nomenon.

Actually, the phenomenon illustrated in Examples 3.2 and 3.3 is not hard to explain
if one looks at the problem from an operator-theoretical point of view. This is the topic
of the next section.

3.1 Connections to the Finite Section Method

To illustrate the idea, let {sk}k∈N and {wk}k∈N be two sequences of linearly indepen-
dent elements in a Hilbert space H. Define the infinite matrix U by

U =

⎛

⎜⎜⎜⎝

u11 u12 u13 . . .

u21 u22 u23 . . .

u31 u32 u33 . . .
...

...
...

. . .

⎞

⎟⎟⎟⎠ , uij = 〈si ,wj 〉. (3.6)

Thus, by (3.4) the operator S∗
mWm is simply the m × m finite section of U . In partic-

ular

S∗
mWm = PmUPm|Pml2(N),

where PmUPm|Pml2(N) denotes the restriction of the operator PmUPm to the range of
Pm (i.e. the m × m finite section of U ). The finite section method has been studied
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extensively over the last several decades [9, 18, 19, 27]. It is well known that even
if U is invertible then PmUPm|Pml2(N) may never be invertible for any m. In fact
one must have rather strict conditions on U for PmUPm|Pml2(N) to be invertible with
uniformly bounded inverse (such as positive self-adjointness, for example [27]). In
addition, even if U : l2(N) → l2(N) is invertible and PmUPm|Pml2(N) is invertible for
all m ∈ N, it may be the case that, if

x = U−1y, x, y ∈ l2(N), xm = (PmUPm|Pml2(N))
−1Pmy,

then

xm � x, m → ∞.

Suppose that {sk}k∈N and {wk}k∈N are two Riesz bases for closed subspaces S and
W of a separable Hilbert space H. Define the operators S,W : l2(N) → H by

Sx = x1s1 + x2s2 + · · · , Wy = y1w1 + y2w2 + · · · . (3.7)

Suppose now that (S∗W)−1 exists. For m ∈ N, let the spaces Sm, Wm and operators
Sm,Wm : C

m → H be defined as in Sect. 3 according to the vectors {sk}mk=1 and
{wk}mk=1 respectively. As seen in the previous section, the following scenarios may
well arise:

(i) W ∩ S ⊥ = {0}, yet

Wm ∩ S ⊥
m �= {0}, ∀m ∈ N.

(ii) ‖(S∗W)−1‖ < ∞ and the inverse (S∗
mWm)−1 exists for all m ∈ N, but

∥∥(S∗
mWm

)−1∥∥−→ ∞, m → ∞.

(iii) (S∗
mWm)−1 exists for all m ∈ N, however

Wm

(
S∗

mWm

)−1
S∗

mf � f, m → ∞,

for some f ∈ W .

Thus, in order for us to have a completely general sampling theorem we must try
to extend the framework described in this section in order to overcome the obstacles
listed above.

4 The New Approach

4.1 The Idea

One would like to have a completely general sampling theory that can be described
as follows:
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(i) We have a signal f ∈ H and a Riesz basis {wk}k∈N that spans some closed sub-
space W ⊂ H, and

f =
∞∑

k=1

βkwk, βk ∈ C.

So f ∈ W (we may also typically have some information on the decay rate of
the βks, however, this is not crucial for our theory).

(ii) We have sampling vectors {sk}k∈N that form a Riesz basis for a closed subspace
S ⊂ H, (note that we may not have the luxury of choosing such sampling vectors
as they may be specified by some particular model, as is the case in MRI) and
we can access the sampling values {〈sk, f 〉}k∈N.

Goal Reconstruct the best possible approximation f̃ ∈ W based on the finite subset
{〈sk, f 〉}mk=1 of the sampling information {〈sk, f 〉}k∈N.

We could have chosen m vectors {w1, . . . ,wm} and defined the operators Sm and
Wm as in (3.3) (from {w1, . . . ,wm} and {s1, . . . , sm}) and let f̃ be defined by (3.2).
However, this may be impossible as S∗

mWm may not be invertible (or the inverse may
have a very large norm), as discussed in Examples 3.2 and 3.3.

To deal with these issues we will launch an abstract sampling theorem that extends
the ideas discussed above. To do so, we first notice that, since {sj } and {wj } are Riesz
bases, there exist constants A,B,C,D > 0 such that

A
∑

k∈N

|αk|2 ≤
∥∥∥∥
∑

k∈N

αkwk

∥∥∥∥
2

≤ B
∑

k∈N

|αk|2

(4.1)

C
∑

k∈N

|αk|2 ≤
∥∥∥∥
∑

k∈N

αksk

∥∥∥∥
2

≤ D
∑

k∈N

|αk|2, ∀ {α1, α2, . . .} ∈ l2(N).

Now let U be defined as in (3.6). Instead of dealing with PmUPm|Pml2(N) = S∗
mWm

we propose to choose n ∈ N and compute the solution {β̃1, . . . , β̃n} of the following
equation:

A

⎛

⎜⎜⎜⎝

β̃1

β̃2
...

β̃n

⎞

⎟⎟⎟⎠= PnU
∗Pm

⎛

⎜⎜⎜⎝

〈s1, f 〉
〈s2, f 〉

...

〈sm,f 〉

⎞

⎟⎟⎟⎠ , A = PnU
∗PmUPn|Pn H, (4.2)

provided a solution exists (later we will provide estimates on the size of n,m for (4.2)
to have a unique solution). Finally we let

f̃ =
n∑

k=1

β̃kwk. (4.3)

Note that, for n = m this is equivalent to (3.2), and thus we have simply extended the
framework discussed in Sect. 3. However, for m > n this is no longer the case. As
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we later establish, allowing m to range independently of n is the key to the advantage
possessed by this framework.

Before doing so, however, we first mention that the framework proposed above
differs from that discussed previously in that it is inconsistent. Unlike (3.2), the sam-
ples 〈sj , f̃ 〉 do not coincide with those of the function f . Yet, as we shall now see, by
dropping the requirement of consistency, we obtain a reconstruction which circum-
vents the aforementioned issues associated with (3.2).

4.2 The Abstract Sampling Theorem

The task is now to analyze the model in (4.2) by both establishing existence of f̃ and
providing error bounds for ‖f − f̃ ‖. We have

Theorem 4.1 Let H be a separable Hilbert space and S, W ⊂ H be closed sub-
spaces such that W ∩ S ⊥ = {0}. Suppose that {sk}k∈N and {wk}k∈N are Riesz bases
for S and W respectively with constants A,B,C,D > 0. Suppose that

f =
∑

k∈N

βkwk, β = {β1, β2, . . . , } ∈ l2(N). (4.4)

Let n ∈ N. Then there is an M ∈ N (in particular M = min{k : 0 /∈ σ(PnU
∗PkUPn

|Pn H)}) such that, for all m ≥ M , the solution {β̃1, . . . , β̃n} to (4.2) is unique. Also, if
f̃ is as in (4.3), then

‖f − f̃ ‖H ≤ √
B(1 + Kn,m)

∥∥P ⊥
n β

∥∥
l2(N)

, (4.5)

where

Kn,m = ∥∥(PnU
∗PmUPn|Pn H

)−1
PnU

∗PmUP ⊥
n

∥∥. (4.6)

The theorem has an immediate corollary that is useful for estimating the error. We
have

Corollary 4.2 With the same assumptions as in Theorem 4.1 and fixed n ∈ N,

∥∥(PnU
∗PmUPn|Pn H

)−1∥∥−→ ∥∥(PnU
∗UPn|Pn H

)−1∥∥≤ ∥∥(U∗U
)−1∥∥≤ 1

AC
,

m → ∞. (4.7)

In addition, if U is an isometry (in particular, when {wk}k∈N, {sk}k∈N are orthonor-
mal) then it follows that

Kn,m −→ 0, m → ∞.
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Proof of Theorem 4.1 Let U be as in as in (3.6). Then (4.4) yields the following
infinite system of equations:

⎛

⎜⎜⎜⎝

〈s1, f 〉
〈s2, f 〉
〈s3, f 〉

...

⎞

⎟⎟⎟⎠=

⎛

⎜⎜⎜⎝

u11 u12 u13 . . .

u21 u22 u23 . . .

u31 u32 u33 . . .
...

...
...

. . .

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

β1
β2
β3
...

⎞

⎟⎟⎟⎠ . (4.8)

Note that U must be a bounded operator. Indeed, let S and W be as in (3.7). Since

〈
S∗Wej , ei

〉= 〈si ,wj 〉, i, j ∈ N,

it follows that U = S∗W . However, from (4.1) we find that both W and S are bounded
as mappings from l2(N) onto W and S respectively, with ‖W‖ ≤ √

B , ‖S‖ ≤ √
D,

thus yielding our claim. Note also that, by the assumption that W ∩ S ⊥ = {0}, (4.8)
has a unique solution. Indeed, since W ∩ S ⊥ = {0} and by the fact that {sk}k∈N and
{wk}k∈N are Riesz bases, it follows that inf‖x‖=1 ‖S∗Wx‖ �= 0. Hence U must be
injective.

Now let ηf = {〈s1, f 〉, 〈s1, f 〉, . . .}. Then (4.8) gives us that

PnU
∗Pmηf = PnU

∗PmU
(
Pn + P ⊥

n

)
β. (4.9)

Suppose for a moment that we can show that there exists an M > 0 such that
PnU

∗PmUPn|Pn H is invertible for all m ≥ M . Hence, we may appeal to (4.9),
whence

(
PnU

∗PmUPn|Pn H
)−1

PnU
∗Pmηf = Pnβ+(PnU

∗PmUPn|Pn H
)−1

PnU
∗PmUP ⊥

n β,

(4.10)
and therefore, by (4.9) and (4.1),
∥∥∥∥∥f −

n∑

k=1

β̃kwk

∥∥∥∥∥
H

≤ √
B
∥∥(PnU

∗PmUPn|Pn H
)−1

PnU
∗Pmηf − β

∥∥
l2(N)

= √
B
∥∥(P ⊥

n − (
PnU

∗PmUPn|Pn H
)−1

PnU
∗PmUP ⊥

n

)
β
∥∥

l2(N)

≤ √
B(1 + Kn,m)

∥∥P ⊥
n β

∥∥
l2(N)

,

where

Kn,m = ∥∥(PnU
∗PmUPn|Pn H

)−1
PnU

∗PmUP ⊥
n

∥∥.

Thus, (4.5) is established, provided we can show the following claim:

Claim There exists an M > 0 such that PnU
∗PmUPn|Pn H is invertible for all

m ≥ M . Moreover,

∥∥(PnU
∗PmUPn|Pn H

)−1∥∥−→ ∥∥(PnU
∗UPn|Pn H

)−1∥∥≤ ∥∥(U∗U
)−1∥∥, m → ∞.
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To prove the claim, we first need to show that PnU
∗UPn|Pnl2(N) is invertible

for all n ∈ N. To see this, let � : B(l2(N)) → C denote the numerical range. Note
that U∗U is self-adjoint and invertible. The latter implies that there is a neigh-
borhood ω around zero such that σ(U∗U) ∩ ω = ∅ and the former implies that
the numerical range �(U∗U) ∩ ω = ∅. Now the spectrum σ(PnU

∗UPn|Pnl2(N)) ⊂
�(PnU

∗UPn|Pnl2(N)) ⊂ �(U∗U). Thus,

σ
(
PnU

∗UPn|Pnl2(N)

)∩ ω = ∅, ∀n ∈ N,

and therefore, PnU
∗UPn|Pnl2(N) is always invertible. Now, make the following two

observations

PnU
∗PmUPn =

m∑

j=1

(Pnξj ) ⊗ (Pnξ̄j ), ξj = U∗ej ,

(4.11)

PnU
∗UPn =

∞∑

j=1

(Pnξj ) ⊗ (Pnξ̄j ),

where the last series converges at least strongly (it converges in norm, but that is a
part of the proof). The first is obvious. The second observation follows from the fact
that PmU → U strongly as m → ∞. Note that

‖Pnξj‖2 = 〈Pnξj ,Pnξj 〉 = 〈
UPnU

∗ej , ej

〉
.

However, U∗PnU must be trace class since ran(Pn) is finite-dimensional. Thus, by
(4.2) we find that

∥∥PnU
∗PmUPn − PnU

∗UPn

∥∥ ≤
∞∑

j=m+1

∥∥(Pnξj ) ⊗ (Pnξ̄j )
∥∥

≤
∞∑

j=m+1

〈
UPnU

∗ej , ej

〉−→ 0, m → ∞.

(4.12)

Hence, the claim follows (the fact that ‖(PnU
∗UPn|Pn H)−1‖ ≤ ‖(U∗U)−1‖ is clear

from the observation that U∗U is self-adjoint), and we are done. �

Proof of Corollary 4.2 Note that the claim in the proof of Theorem 4.1 yields the first
part of (4.7), and the second part follows from the fact that U = S∗W (where S,W

are also defined in the proof of Theorem 4.1) and (4.1). Thus, we are now left with
the task of showing that Kn,m → 0 as m → ∞ when U is an isometry. Note that the
assertion will follow, by (4.6), if we can show that

∥∥PnU
∗PmUP ⊥

n

∥∥−→ 0, m −→ ∞.

However, this is straightforward, since a simple calculation yields
∥∥PnU

∗PmUP ⊥
n

∥∥≤ ‖U‖(∥∥PnU
∗PmUPn − PnU

∗UPn

∥∥)1/2
, (4.13)



J Fourier Anal Appl

which tends to zero by (4.12). To see why (4.13) is true, we start by using the fact
that U is an isometry we have that

∥∥PnU
∗P ⊥

m UPn

∥∥= ∥∥PnU
∗PmUPn − PnU

∗UPn

∥∥,

and therefore
∥∥P ⊥

m UPn

∥∥≤ (∥∥PnU
∗PmUPn − PnU

∗UPn

∥∥)1/2
. (4.14)

And, by again using the property that U is an isometry we have that
∥∥PnU

∗PmUP ⊥
n

∥∥ = sup
‖ξ‖≤1,‖η‖≤1

∣∣〈PnU
∗PmUP ⊥

n ξ, η
〉∣∣

= sup
‖ξ‖≤1,‖η‖≤1

∣∣〈PnU
∗P ⊥

m UP ⊥
n ξ, η

〉∣∣

= sup
‖ξ‖≤1,‖η‖≤1

∣∣〈UP ⊥
n ξ,P ⊥

m UPnη
〉∣∣≤ ‖U‖∥∥P ⊥

m UPn

∥∥.

Hence, (4.13) follows from (4.14). �

Remark 4.3 Note that the trained eye of an operator theorist will immediately spot
that the claim in the proof of Theorem 4.1 and Corollary 4.2 follows (with an easy
reference to known convergence properties of finite rank operators in the strong op-
erator topology) without the computations done in our exposition. However, we feel
that the exposition illustrates ways of estimating bounds for

∥∥(PnU
∗PmUPn|Pn H

)−1∥∥,
∥∥PnU

∗PmUP ⊥
n

∥∥,

which are crucial in order to obtain a bound for Kn,m. This is demonstrated in Sect. 5.

Remark 4.4 Note that S∗W (and hence also U ) is invertible if and only if H = W ⊕
S ⊥, which is equivalent to W ∩ S ⊥ = {0} and W ⊥ ∩ S = {0}. This requirement is
quite strong as we may very well have that W �= H and S = H (e.g. Example 3.2
when ε < 1). In this case we obviously have that W ⊥ ∩ S �= {0}. However, as we saw
in Theorem 4.1, as long as we have f ∈ W we only need injectivity of U , which is
guaranteed when W ∩ S ⊥ = {0}.

If one wants to write our framework in the language used in Sect. 3, it is easy to
see that our reconstruction can be written as

f̃ = Wn

(
W ∗

n SmS∗
mWn

)−1
W ∗

n SmS∗
mf, (4.15)

where the operators Sm : C
m → H and Wn : C

n → H are defined as in (3.3), and Sm

and Wn corresponds to the spaces

Sm = span{s1, . . . , sm}, Wn = span{w1, . . . ,wn}, (4.16)

where {wk}k∈N and {sk}k∈N are as in Theorem 4.1. In particular, we get the following
corollary:
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Corollary 4.5 Let H be a separable Hilbert space and S, W ⊂ H be closed sub-
spaces such that W ∩ S ⊥ = {0}. Suppose that {sk}k∈N and {wk}k∈N are Riesz bases
for S and W respectively. Then, for each n ∈ N there is an M ∈ N such that, for all
m ≥ M , the mapping W ∗

n SmS∗
mWn : C

n → C
n is invertible (with Sm and Wn defined

as above). Moreover, if f̃ is as in (4.15), then

∥∥P ⊥
Wn

f
∥∥

H ≤ ‖f − f̃ ‖H ≤ (1 + Kn,m)
∥∥P ⊥

Wn
f
∥∥

H,

where PWn
is the orthogonal projection onto Wn, and

Kn,m = ∥∥Wn

(
W ∗

n SmS∗
mWn

)−1
W ∗

n SmS∗
mP ⊥

Wn

∥∥.

Moreover, when {sk} and {wk} are orthonormal bases, then, for fixed n, Cn,m → 0 as
m → ∞.

Proof The fact that W ∗
n SmS∗

mWn : C
n → C

n is invertible for large m follows from
the observation that W ∩ S ⊥ = {0} and the proof of Theorem 4.1, by noting that
S∗

mWn = PmUPn, where U is as in Theorem 4.1. Now observe that

W ∗
n SmS∗

mf = W ∗
n SmS∗

m

(
PWn

f + P ⊥
Wn

f
)

= W ∗
n SmS∗

mWn

(
W ∗

n Wn

)−1
W ∗

n f + W ∗
n SmS∗

mP ⊥
Wn

f. (4.17)

Note also that W ∗
n Wn : C

n → C
n is clearly invertible, since {wk}nk=1 are linearly

independent. Now (4.17) yields

Wn

(
W ∗

n SmS∗
mWn

)−1
W ∗

n SmS∗
mf = PWn

f + Wn

(
W ∗

n SmS∗
mWn

)−1
W ∗

n SmS∗
mP ⊥

Wn
f.

Thus,

‖f − f̃ ‖H ≤ ∥∥P ⊥
Wn

− Wn

(
W ∗

n SmS∗
mWn

)−1
W ∗

n SmS∗
mP ⊥

Wn

∥∥
H
∥∥P ⊥

Wn
f
∥∥

H,

which gives the first part of the corollary. The second part follows from similar rea-
soning as in the proof of Corollary 4.2. �

Remark 4.6 The framework explained in Sect. 3 is equivalent to using the finite sec-
tion method. Although this may work for certain bases, it will not in general (as
Example 3.2 shows). Computing with infinite matrices can be a challenge since the
qualities of any finite section may be very different from the original infinite matrix.
The use of uneven sections (as we do in this paper) of infinite matrices seems to be
the best way to combat these problems. This approach stems from [20] where the
technique was used to solve a long standing open problem in computational spec-
tral theory. The reader may consult [17, 21] for other examples of uneven section
techniques.

When compared to the method of Eldar et al., the framework presented here has a
number of important advantages:
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(i) It allows reconstructions in arbitrary bases and does not need extra assumptions
as in (3.5).

(ii) The conditions on m (as a function of n) for PnU
∗PmUPn|Pn H to be invertible

(such that we have a unique solution) can be numerically computed. Moreover,
bounds on the constant Kn,m can also be computed efficiently. This is the topic
in Sect. 5.

(iii) It is numerically stable: the matrix A = PnU
∗PmUPn|Pn H has bounded inverse

(Corollary 4.2) for all n and m sufficiently large.
(iv) The approximation f̃ is quasi-optimal (in n). It converges at the same rate as the

tail ‖P ⊥
n β‖l2(N), in contrast to (3.2) which converges more slowly whenever the

parameter 1
cos(θWmSm)

grows with n = m.

As mentioned, this method is inconsistent. However, since {sj } is a Riesz basis, we
deduce that

m∑

j=1

∣∣〈sj , f − f̃ 〉∣∣2 ≤ c‖f − f̃ ‖2,

for some constant c > 0. Hence, the departure from consistency (i.e. the left-hand
side) is bounded by a constant multiple of the approximation error, and thus can also
be bounded by ‖P ⊥

n β‖l2(N).

4.3 The Generalized (Nyquist–Shannon) Sampling Theorem

In this section, we apply the abstract sampling theorem (Theorem 4.1) to the classical
sampling problem of recovering a function from samples of its Fourier transform.
As we shall see, when considered in this way, the corresponding theorem, which
we call the generalized (Nyquist–Shannon) Sampling Theorem, extends the classical
Shannon theorem (which is a special case) by allow reconstructions in arbitrary bases.

Proposition 4.7 Let F denote the Fourier transform on L2(Rd). Suppose that
{ϕj }j∈N is a Riesz basis with constants A,B (as in (4.1)) for a subspace W ⊂ L2(Rd)

such that there exists a T > 0 with supp(ϕj ) ⊂ [−T ,T ]d for all j ∈ N. For ε > 0, let
ρ : N → (εZ)d be a bijection. Define the infinite matrix

U =

⎛

⎜⎜⎜⎝

u11 u12 u13 . . .

u21 u22 u23 . . .

u31 u32 u33 . . .
...

...
...

. . .

⎞

⎟⎟⎟⎠ , uij = (F ϕj )
(
ρ(i)

)
.

Then, for ε ≤ 1
2T

, we have that U : l2(N) → l2(N) is bounded and invertible on its

range with ‖U‖ ≤ √
ε−dB and ‖(U∗U)−1‖ ≤ εdA−1 . Moreover, if {ϕj }j∈N is an

orthonormal set, then εd/2U is an isometry.
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Theorem 4.8 (The Generalized Sampling Theorem) With the same setup as in
Proposition 4.7, set

f = F g, g =
∞∑

j=1

βjϕj ∈ L2(
R

d
)
,

and let Pn denote the projection onto span{e1, . . . , en}. Then, for every n ∈ N there is
an M ∈ N such that, for all m ≥ M , the solution to

A

⎛

⎜⎜⎜⎝

β̃1

β̃2
...

β̃n

⎞

⎟⎟⎟⎠= PnU
∗Pm

⎛

⎜⎜⎜⎝

f (ρ(1))

f (ρ(2))
...

f (ρ(m))

⎞

⎟⎟⎟⎠ , A = PnU
∗PmUPn|Pn H,

is unique. Also, if

g̃ =
n∑

j=1

β̃j ϕj , f̃ =
n∑

j=1

β̃j F ϕj ,

then

‖g − g̃‖L2(Rd ) ≤ √
B(1 + Kn,m)‖P ⊥

n β‖l2(N), β = {β1, β2, . . .}, (4.18)

and

‖f − f̃ ‖L∞(Rd ) ≤ (2T )d/2
√

B(1 + Kn,m)‖P ⊥
n β‖l2(N), (4.19)

where Kn,m is given by (4.6) and satisfies (4.7). Moreover, when {ϕj }j∈N is an or-
thonormal set, we have

Kn,m −→ 0, m → ∞,

for fixed n.

Proof of Proposition 4.7 Note that

uij =
∫

Rd

ϕj (x)e−2π iρ(i)·x dx =
∫

[−T ,T ]d
ϕj (x)e−2π iρ(i)·x dx.

Since ρ : N → (εZ)N is a bijection, it follows that the functions
{x �→ εd/2e−2π iρ(i)·x}i∈N form an orthonormal basis for L2([−(2ε)−1, (2ε)−1]d) ⊃
L2([−T ,T ]d). Let

〈·, ·〉 = 〈·, ·〉L2([−(2ε)−1,(2ε)−1]d ),

denote a new inner product on L2([−(2ε)−1, (2ε)−1]d). Thus, we are now in the
setting of Theorem 4.1 and Corollary 4.2 with C = D = εd . It follows by Theorem
4.1 and Corollary 4.2 that U is bounded and invertible on its range with ‖U‖ ≤√

ε−dB and ‖(U∗U)−1‖ ≤ εdA−1. Also, εd/2U is an isometry whenever A = B = 1,
in particular when {ϕk}k∈N is an orthonormal set. �
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Proof of Theorem 4.8 Note that (4.18) now automatically follows from Theorem 4.1.
To get (4.19) we simply observe that, by the definition of the Fourier transform and
using the Cauchy–Schwarz inequality,

sup
x∈Rd

∣∣∣∣∣f (x) −
n∑

j=1

β̃j F ϕj (x)

∣∣∣∣∣ ≤
∫

[−T ,T ]d

∣∣∣∣∣g(y) −
n∑

j=1

β̃j ϕj (y)

∣∣∣∣∣dy

≤ (2T )d/2

∥∥∥∥∥g −
n∑

j=1

β̃j ϕj

∥∥∥∥∥
L2(Rd )

≤ (2T )d/2
√

B(1 + Kn,m)
∥∥P ⊥

n β
∥∥

l2(N)
,

where the last inequality follows from the already established (4.18). Hence we are
done with the first part of the theorem. To see that Kn,m → 0 as m → ∞ when
{ϕj }j∈N is an orthonormal set, we observe that orthonormality yields A = B = 1 and
hence (since we already have established the values of C and D) εd/2U must be an
isometry. The convergence to zero now follows from Theorem 4.1. �

Note that the bijection ρ : N → (εZ)d is only important when d > 1 to obtain
an operator U : l2(N) → l2(N). However, when d = 1, there is nothing preventing
us from avoiding ρ and forming an operator U : l2(N) → l2(Z) instead. The idea
follows below. Let F denote the Fourier transform on L2(R), and let f = F g for
some g ∈ L2(R). Suppose that {ϕj }j∈N is a Riesz basis for a closed subspace in
L2(R) with constants A,B > 0, such that there is a T > 0 with supp(ϕj ) ⊂ [−T ,T ]
for all j ∈ N. For ε > 0, let

Û =

⎛

⎜⎜⎜⎜⎜⎜⎝

...
...

...
...

u−1,1 u−1,2 u−1,3 . . .

u0,1 u0,2 u0,3 . . .

u1,1 u1,2 u1,3 . . .
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟⎠
, ui,j = (F ϕj )(iε). (4.20)

Thus, as argued in the proof of Theorem 4.8, Û ∈ B(l2(N), l2(Z)), provided ε ≤ 1
2T

.
Next, let Pn ∈ B(l2(N)) and, for odd m, P̃m ∈ B(l2(Z)) be the projections onto

span{e1, . . . , en}, span{e− m−1
2

, . . . , em−1
2

}

respectively. Define {β̃1, . . . , β̃n} by (this is understood to be for sufficiently large m)

Â

⎛

⎜⎜⎜⎜⎜⎝

β̃1

β̃2

β̃3
...

β̃n

⎞

⎟⎟⎟⎟⎟⎠
= PnÛ

∗Pm

⎛

⎜⎜⎜⎜⎜⎜⎝

f (−m−1
2 )

...

f (0)
...

f (m−1
2 )

⎞

⎟⎟⎟⎟⎟⎟⎠
, Â = PnÛ

∗PmÛPn|Pn H. (4.21)
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By exactly the same arguments as in the proof of Theorem 4.8, it follows that, if
g =∑∞

j=1 βjϕj , g̃ =∑n
j=1 β̃j ϕj , f = F g and f̃ =∑n

j=1 β̃j F ϕj , then

‖g − g̃‖L2(R) ≤ √
B(1 + Kn,m)‖P ⊥

n β‖l2(N), β = {β1, β2, . . .},
‖f − f̃ ‖L∞(R) ≤ √

2T
√

B(1 + Kn,m)‖P ⊥
n β‖l2(N),

(4.22)

where Kn,m is as in (4.6).

Remark 4.9 Note that (as the proof of the next corollary will show) the classical
NS-Sampling Theorem is just a special case of Theorem 4.8.

Corollary 4.10 Suppose that f = F g and supp(g) ⊂ [−T ,T ]. Then, for 0 < ε ≤ 1
2T

we have that

g(·) = ε

∞∑

k=−∞
f (kε)e2π iεk· L2 convergence.

f (t) =
∞∑

k=−∞
f (kε)sinc

(
t + kε

ε

)
L2 and unif. convergence.

Proof Define the basis {ϕj }j∈N for L2([−(2ε)−1, (2ε)−1]) by

ϕ1(x) = √
εχ[− 1

2ε
, 1

2ε
](x), ϕ2(x) = √

εe2π iεxχ[− 1
2ε

, 1
2ε

](x),

ϕ3(x) = √
εe2π iε(−1)xχ[− 1

2ε
, 1

2ε
](x),

ϕ4(x) = √
εe2π iε2xχ[− 1

2ε
, 1

2ε
](x),

ϕ5(x) = √
εe2π iε(−2)xχ[− 1

2ε
, 1

2ε
](x),

ϕ6(x) = √
εe2π iε3xχ[− 1

2ε
, 1

2ε
](x) etc.

Letting Û = {uk,l}k∈Z,l∈N, where uk,l = (F ϕl)(kε), an easy computation shows that

Û =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
...

...
...

...
...

0 0 0 0 1√
ε

. . .

0 0 1√
ε

0 0 . . .

1√
ε

0 0 0 0 . . .

0 1√
ε

0 0 0 . . .

0 0 0 1√
ε

0 . . .

...
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By choosing m = n in (4.21), we find that β̃1 = √
εf (0), β̃2 = √

εf (ε), β̃3 =√
εf (−ε), etc and that Kn,m = 0 in (4.22). The corollary then follows from (4.22). �
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Remark 4.11 Returning to the general case, recall the definition of �N,ε from (1.1),
the mappings �N,ε,1, �N,ε,2 from (1.2) and � from (1.3). Define �N,ε,1 : �N,ε →
L2(R) and �N,ε,2 : �N,ε → L2(R) by

�N,ε,1(f ) =
N∑

j=1

β̃j F ϕj (·), �N,ε,2(f ) =
N∑

j=1

β̃j ϕj (·),

where β̃ = {β̃1, . . . , β̃N } is the solution to (4.21) with N = m. Then, for n > M (recall
M from the definition of � (1.3)), and

m = m(γ ) = min
{
k ∈ N : ∥∥(PnÛ

∗PkÛPn|Pn H
)−1∥∥≤ εγ

}
, γ > 1,

it follows that
∥∥�N,ε,1(f ) − f

∥∥
L∞(R)

= 0 <
∥∥�N,ε,1(f ) − f

∥∥
L∞(R)

∀f,f = F g,g ∈ �,

∥∥�N,ε,2(f ) − g
∥∥

L2(R)
= 0 <

∥∥�N,ε,2(f ) − g
∥∥

L2(R)
∀f,f = F g,g ∈ �.

Hence, under the aforementioned assumptions on m and n, both f and g are recov-
ered exactly by this method, provided g ∈ �. Moreover, the reconstruction is done in
a stable manner, where the stability depends only on the parameter γ .

To complete this section, let us sum up several of the key features of Theorem 4.8.
First, whenever m is sufficiently large, the error incurred by g̃ is directly related to the
properties of g with respect to the reconstruction basis. In particular, as noted above, g
is reconstructed exactly under certain conditions. Second, for fixed n, by increasing m

we can get arbitrarily close to the best approximation to g in the reconstruction basis
whenever the reconstruction vectors are orthonormal (i.e. we get arbitrary close to
the projection onto the first n elements in the reconstruction basis). Thus, provided an
appropriate basis is known, this procedure allows for near-optimal recovery (getting
the projection onto the first n elements in the reconstruction basis would of course
be optimal). The main question that remains, however, is how to guarantee that the
conditions of Theorem 4.8 are satisfied. This is the topic of the next section.

5 Norm Bounds

5.1 Determining m

Recall that the constant Kn,m in the error bound in Theorem 4.1 (recall also U from
the same theorem) is given by

Kn,m = ∥∥(PnU
∗PmUPn|Pn H

)−1
PnU

∗PmUP ⊥
n

∥∥.

It is therefore of utmost importance to estimate Kn,m. This can be done numerically.
Note that we already have established bounds on ‖U‖ depending on the Riesz con-
stants in (4.1) and since we obviously have that

Kn,m ≤ ∥∥(PnU
∗PmUPn|Pn H

)−1∥∥‖U‖2,

we only require an estimate for the quantity ‖(PnU
∗PmUPn|Pn H)−1‖.
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Recall also from Theorem 4.1 that, if U is an isometry up to a constant, then
Kn,m → 0 as m → ∞. In the rest of this section we will assume that U has this
quality. In this case we are interested in the following problem: given n ∈ N, θ ∈ R+,
what is the smallest m ∈ N such that Kn,m ≤ θ? More formally, we wish to estimate
the function � : U (l2(N)) × N × R+ → N,

�(U,n, θ) = min
{
m ∈ N : ∥∥(PnU

∗PmUPn|Pn H
)−1

PnU
∗PmUP ⊥

n

∥∥≤ θ
}
, (5.1)

where

U
(
l2(N)

)= {
U ∈ B

(
l2(N)

) : U∗U = cI, c ∈ R+
}
.

Note that � is well defined for all θ ∈ R+, since we have established that Kn,m → 0
as m → ∞.

5.2 Computing Upper and Lower Bounds on Kn,m

The fact that UP ⊥
n has infinite rank makes the computation of Kn,m a challenge.

However, we may compute approximations from above and below. For M ∈ N, define

Kn,m,M = ∥∥(PnU
∗PmUPn|Pn H

)−1
PnU

∗PmUP ⊥
n PM

∥∥,

K̃n,m = ∥∥(PnU
∗PmUPn|Pn H

)−1
PnU

∗Pm

∥∥.

Then, for L ≥ M ,

Kn,m,M = sup
ξ∈PM H,‖ξ‖=1

∥∥(PnU
∗PmUPn|Pn H

)−1
PnU

∗PmUP ⊥
n PMξ

∥∥

≤ sup
ξ∈PL H,‖ξ‖=1

∥∥(PnU
∗PmUPn|Pn H

)−1
PnU

∗PmUP ⊥
n PLξ

∥∥

≤ sup
ξ∈H,‖ξ‖=1

∥∥(PnU
∗PmUPn|Pn H

)−1
PnU

∗PmUP ⊥
n ξ
∥∥= Kn,m.

Clearly, Kn,m ≤ ‖U‖K̃n,m and, since PMξ → ξ as M → ∞ for all ξ ∈ H, and by the
reasoning above, it follows that

Kn,m,M ≤ Kn,m ≤ ‖U‖K̃n,m, Kn,m,M ↗ Kn,m, M → ∞.

Note that

(
PnU

∗PmUPn|Pn H
)−1

PnU
∗PmUP ⊥

n PM : PM H → PnH

has finite rank. Therefore we may easily compute Kn,m,M . In Fig. 4 we have com-
puted Kn,m,M for different values of n,m,M . Note the rapid convergence in both
examples.
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Fig. 4 The figure shows Kn,m,M for n = 75, m = 350 and M = n + 1, . . . ,6000 (left) and Kn,m,M for
n = 100, m = 400 and M = n + 1, . . . ,6000 (right) for the Haar wavelets on [0,1]

5.3 Wavelet Bases

Whilst in the general case �(U,n, θ) must be computed numerically, in certain cases
we are able to derive explicit analytical bounds for this quantity. As an example,
we now describe how to obtain bounds for bases consisting of compactly supported
wavelets. Wavelets and their various generalizations present an extremely efficient
means in which to represent functions (i.e. signals) [10, 11, 28]. Given their long list
of applications, the development of wavelet-based reconstruction methods using the
framework of this paper is naturally a topic of utmost importance.

Let us review the basic wavelet approach on how to create orthonormal sub-
sets {ϕk}k∈N ⊂ L2(R) with the property that L2([0, a]) ⊂ cl(span{ϕk}k∈N) for some
a > 0. Suppose that we are given a mother wavelet ψ and a scaling function φ such
that supp(ψ) = supp(φ) = [0, a] for some a ≥ 1. The most obvious approach is to
consider the following collection of functions:

�a = {
φk,ψj,k : j ∈ Z+, k ∈ Z, supp(φk)

o ∩ [0, a] �= ∅, supp(ψj,k)
o ∩ [0, a] �= ∅},

where

φk = φ(· − k), ψj,k = 2
j
2 ψ
(
2j · −k

)
.

(The notation Ko denotes the interior of a set K ⊂ R.) Then we will have that

L2([0, a])⊂ cl
(
span{ϕ : ϕ ∈ �a}

)⊂ L2[−T ,T ],
where T > 0 is such that [−T ,T ] contains the support of all functions in �a . How-
ever, the inclusions may be proper (but not always, as is the case with the Haar
wavelet.) It is easy to see that

ψj,k /∈ �a ⇐⇒ a + k

2j
≤ 0, a ≤ k

2j
,

φk /∈ �a ⇐⇒ a + k ≤ 0, a ≤ k.

Hence we get that

�a = {
φk : |k| = 0, . . . , �a�−1

}∪{ψj,k : j ∈ Z+, k ∈ Z,−�a�+1 ≤ k ≤ 2j�a�−1
}
,

and we will order �a as follows:

φ,φ1, . . . , φ�a�−1, φ−1, . . . , φ−�a�+1,ψ0,0,ψ0,1, . . . ,ψ0,�a�−1,ψ0,−1, . . . ,
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ψ0,−�a�+1,ψ1,0, . . .}. (5.2)

We will in this section be concerned with compactly supported wavelets and scaling
functions satisfying

∣∣F φ(w)
∣∣≤ C

|w|p ,
∣∣F ψ(w)

∣∣≤ C

|w|p , ω ∈ R \ {0}, (5.3)

for some

C > 0, p ∈ N.

Before we state and prove bounds on �(U,n, θ) in this setting, let us for convenience
recall the result from the proof of Theorem 4.1. In particular, we have that

∥∥PnU
∗PmUPn − PnU

∗UPn

∥∥≤
∞∑

j=m+1

〈
UPnU

∗ej , ej

〉
, m → ∞. (5.4)

Theorem 5.1 Suppose that {ϕl}l∈N is a collection of functions as in (5.2) such that
supp(ϕl) ⊂ [−T ,T ] for all l ∈ N and some T > 0. Let U be defined as in Proposition
4.7 with 0 < ε ≤ 1

2T
and let the bijection ρ : N → εZ defined by ρ(1) = 0, ρ(2) =

ε,ρ(3) = −ε,ρ(4) = 2ε, . . .. For θ > 0, n ∈ N define �(U,n, θ) as in (5.1). Then, if
φ,ψ satisfy (5.3), we have that

�(U,n, θ) ≤
(

4ε1−2p�a�C2

f (θ)

) 1
2p−1

(
1 +

(
4pn2p − 1

4p − 1

)) 1
2p−1 = O

(
n

2p
2p−1

)
,

n → ∞,

where f (θ) = (
√

1 + 4θ2 − 1)2/(4θ2).

Proof To estimate �(U,n, θ) we will determine bounds on

�(U,n, θ) = min
{
m ∈ N : ∥∥(PnU

∗PmUPn|Pn H
)−1∥∥∥∥PnU

∗PmUP ⊥
n

∥∥≤ θ
}
.

Note that if r < 1 and ‖PnU
∗PmUPn − PnU

∗UPn‖ ≤ r , then

∥∥(PnU
∗PmUPn|Pn H

)−1∥∥≤ ε/(1 − εr)

(recall that U∗U = ε−1I and that ε ≤ 1). Also, recall (4.13), so that

∥∥(PnU
∗PmUPn|Pn H

)−1∥∥∥∥PnU
∗PmUP ⊥

n

∥∥≤ θ,

when r and m are chosen such that
√

εr

1 − εr
≤ θ,

∥∥PnU
∗PmUPn − PnU

∗UPn

∥∥≤ r,

(note that ‖U‖ = 1/
√

ε). In particular, it follows that
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�(U,n, θ) ≤ min
{
m : ∥∥PnU

∗PmUPn −PnU
∗UPn

∥∥≤ ε−1(√1 + 4θ2 −1
)2

/
(
4θ2)}.

(5.5)
To get bounds on �(U,n, θ) we will proceed as follows. Since φ,ψ have compact
support, it follows that F φ, F ψ are bounded. Moreover, by assumption, we have that

∣∣F φ(w)
∣∣≤ C

|w|p ,
∣∣F ψ(w)

∣∣≤ C

|w|p , ω ∈ R \ {0}.

And hence, since

F ψj,k(w) = e−2π i2−j kw2
−j
2 F ψ

(
2−jw

)
,

we get that

∣∣F ψj,k(w)
∣∣≤ 2

−j
2

C

|2−jw|p , ω ∈ R. (5.6)

By the definition of U it follows that

∞∑

j=m+1

〈
UPnU

∗ej , ej

〉=
∞∑

s=m+1

n∑

t=1

∣∣F ϕt

(
ρ(s)

)∣∣2.

And also, by (5.6) and (5.2) we have, for s > 0,

n∑

t=1

∣∣F ϕt

(
ρ(s)

)∣∣2 ≤ 2�a�∣∣F φ
(
ρ(s)

)∣∣2 +
�log2(n)�∑

j=0

2j �a�−1∑

k=−�a�+1

∣∣F ψj,k

(
ρ(s)

)∣∣2

≤ 2�a�C2

|ρ(s)|2p
+

�log2(n)�∑

j=0

2j �a�−1∑

k=−�a�+1

2−j C2

|2−2j ρ(s)2|p

= 2�a�
(

C2

|ρ(s)|2p
+

�log2(n)�∑

j=0

C2

|2−2j ρ(s)2|p
)

≤ 2�a�C2

|ρ(s)|2p

(
1 + 4pn2p − 1

4p − 1

)
,

thus we get that

∞∑

s=m+1

n∑

t=1

∣∣F ϕt

(
ρ(s)

)∣∣2 ≤ 2�a�C2
(

1 + 4pn2p − 1

4p − 1

) ∞∑

s=m+1

1

|ρ(s)|2p

≤ 2ε−2p2�a�C2
(

1 + 4pn2p − 1

4p − 1

) ∞∑

s=m+1

1

s2p

≤ 4ε−2p�a�C2

m2p−1

(
1 + 4pn2p − 1

4p − 1

)
. (5.7)
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Therefore, by using (5.4) we have just proved that

∥∥PnU
∗PmUPn − PnU

∗UPn

∥∥≤ 4ε−2p�a�C2

m2p−1

(
1 + 4pn2p − 1

4p − 1

)
,

and by inserting this bound into (5.5) we obtain

�(U,n, θ) ≤
(

4ε1−2p�a�C2

f (θ)

) 1
2p−1

(
1 +

(
4pn2p − 1

4p − 1

)) 1
2p−1

,

which obviously yields the asserted bound on �(U,n, θ). �

The theorem has an obvious corollary for smooth compactly supported wavelets.

Corollary 5.2 Suppose that we have the same setup as in Theorem 5.1, and suppose
also that φ,ψ ∈ Cp(R) for some p ∈ N. Then

�(U,n, θ) = O
(
n

2p
2p−1

)
, n → ∞.

5.4 A Pleasant Surprise

Note that if ψ is the Haar wavelet and φ = χ[0,1] we have that

∣∣F φ(w)
∣∣≤ 2

|w| ,
∣∣F ψ(w)

∣∣≤ 2

|w| , ω ∈ R.

Thus, if we used the Haar wavelets on [0,1] as in Theorem 5.1 and used the technique
in the proof of Theorem 5.1 we would get that

min
{
m : ∥∥PnU

∗PmUPn − PnU
∗UPn

∥∥= ε−1(√1 + 4θ2 − 1
)2

/
(
4θ2)}= O

(
n2),

n → ∞. (5.8)

It is tempting to check numerically whether this bound is sharp or not. Let us de-
note the quantity in (5.8) by �̃(U,n, θ), and observe that this can easily be computed
numerically. Figure 5 shows �̃(U,n, θ) for θ = 1,2, where U is defined as in Propo-
sition 4.7 with ε = 0.5. Note that the numerical computation actually shows that

�̃(U,n, θ) = O(n), (5.9)

which is indeed a very pleasant surprise. In fact, due to the ‘staircase growth shown in
Fig. 5, the growth is actually better than what (5.9) suggests. The question is whether
this is a particular quality of the Haar wavelet, or that one can expect similar behavior
of other types of wavelets. The answer to this question will be the topic of future
work.

Note that Fig. 5 is interpreted as follows: provided m ≥ 4.9n, for example, we can
expect this method to reconstruct g to within an error of size (1 + θ)‖P �

n β‖, where
θ = 1 in this case. In other words, the error is only two times greater than the best
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Fig. 5 The figure shows sections of the graphs of �̃(U, ·,1) (left) and �̃(U, ·,2) (right) together with the
functions (in black) x �→ 4.9x (left) and x �→ 4.55x. In this case U is formed by using the Haar wavelets
on [0,1]

Fig. 6 The quantity ‖(εÂ)−1‖
against n = 2,4, . . . ,360

approximation to g from the finite-dimensional space consisting of the first n Haar
wavelets.

Having described how to determine conditions which guarantee existence of a re-
construction, in the next section we apply this approach to a number of example prob-
lems. First, however, it is instructive to confirm that these conditions do indeed guar-
antee stability of the reconstruction procedure. In Fig. 6 we plot ‖(εÂ)−1‖ against
n (for ε = 0.5), where Â is formed via (4.21) using Haar wavelets with parameter
m = �4.9n�. As we observe, the quantity remains bounded, indicating stability. Note
the stark contrast to the severe instability documented in Fig. 2.

6 Examples

In this final section, we consider the application of the generalized sampling theorem
to several examples.

6.1 Reconstruction from the Fourier Transform

In this example we consider the following problem. Let f ∈ L2(R) be such that

f = F g, supp(g) ⊂ [−T ,T ].
We assume that we can access point samples of f , however, it is not f that is of
interest to us, but rather g. This is a common problem in applications, in particular
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MRI. The NS Sampling Theorem assures us that we can recover g from point samples
of f as follows:

g = ε

∞∑

n=−∞
f (nε) e2π inε·, ε = 1

2T
,

where the series converges in L2 norm. Note that the speed of convergence depends
on how well g can be approximated by the functions e2π inε·, n ∈ Z. Suppose now that
we consider the function

g(t) = cos(2πt)χ[0.5,1](t).

In this case, due to the discontinuity, forming

gN = ε

N∑

n=−N

f (nε) e2π inε·, ε = 1

2
, N ∈ N, (6.1)

may be less than ideal, since the convergence gN → g as N → ∞ may be slow.
This is, of course, not an issue if we can access all the samples {f (nε)}n∈Z. How-

ever, such an assumption is infeasible in applications. Moreover, even if we had ac-
cess to all samples, we are limited by both processing power and storage to taking
only a finite number.

Suppose that we have a more realistic scenario: namely, we are given the finite
collection of samples

ηf = {
f (−Nε),f

(
(−N + 1)ε

)
, . . . , f

(
(N − 1)ε

)
, f (Nε)

}
, (6.2)

with N = 900 and ε = 1
2 . The task is now as follows: construct the best possible

approximation to g based on the vector ηf . We can naturally form gN as in (6.1). This
approximation can be visualized in the diagrams in Fig. 7. Note the rather unpleasant

Fig. 7 The upper figures show gN (left), g̃n,m (middle) and g (right) on the interval [0,1]. The lower
figures show gN (left), g̃n,m (middle) and g (right) on the interval [0.47,0.57]
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Gibbs oscillations that occur, as discussed previously. The problem is simply that the
set {e2π inε·}n∈Z is not a good basis to express g in. Another basis to use may be the
Haar wavelets {ψj } on [0,1] (we do not claim that this is the optimal basis, but at least
one that may better capture the discontinuity of g). In particular, we may express g as

g =
∞∑

j=1

βjψj , β = {β1, β2, . . .} ∈ l2(N).

We will now use the technique suggested in Theorem 4.8 to construct a better approx-
imation to g based on exactly the same input information: namely, ηf in (6.2). Let Û

be defined as in (4.20) with ε = 1/2 and let n = 500 and m = 1801. In this case

∥∥(PnÛ
∗PmÛPn|Pn H

)−1∥∥ ≤ 0.6169,

∥∥(PnÛ
∗PmÛPn|Pn H

)−1
PnÛ

∗Pm

∥∥ ≤ 0.7854.

Define β̃ = {β̃1, . . . , β̃n} by (4.21), and let g̃n,m = ∑n
j=1 β̃jψj . The function g̃n,m

is visualized in Fig. 7. Although, the construction of gN and g̃n,m required exactly
the same amount of samples of f , it is clear from Fig. 7 that g̃n,m is favorable. In
particular, approximating g by g̃n,m gives roughly four digits of accuracy. Moreover,
had both n and m been increased, this value would have decreased. In contrast, the
approximation gN does not converge uniformly to g on [0,1].
6.2 Reconstruction from Point Samples

In this example we consider the following problem. Let f ∈ L2(R) such that

f = F g, g(x) =
K∑

j=1

αjψj (x) + sin(2πx)χ[0.3,0.6](x),

for K = 400, where {ψj } are Haar wavelets on [0,1], and {αj }Kj=1 are some arbi-
trarily chosen real coefficients in [0,10]. A section of the graph of f is displayed in
Fig. 8. The NS Sampling Theorem yields that

f (t) =
∞∑

k=−∞
f

(
k

2

)
sinc(2t − k),

where the series converges uniformly. Suppose that we can access the following
pointwise samples of f :

ηf = {
f (−Nε),f

(
(−N + 1)ε

)
, . . . , f

(
(N − 1)ε

)
, f (Nε)

}
,

with ε = 1
2 and N = 600. The task is to reconstruct an approximation to f from the

samples ηf in the best possible way. We may of course form

fN(t) =
N∑

k=−N

f

(
k

2

)
sinc(2t − k), N = 600.
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Fig. 8 The figure shows Re(f ) (left) and Im(f ) (right) on the interval [−5000,5000]

Fig. 9 The figure shows the error |f − fN | (left) and |f − f̃ | (right) on the interval [−5000,5000]

However, as Fig. 9 shows, this approximation is clearly less than ideal as f (t) is
approximated poorly for large t . It is therefore tempting to try the reconstruction
based on Theorem 4.8 and the Haar wavelets on [0,1] (one may of course try a
different basis). In particular, let

f̃ =
n∑

j=1

β̃j F ψj , n = 500,

where

Âβ̃ = PnÛ
∗Pmηf , Â = PnÛ

∗PmÛPn|Pn H,

with m = 2N + 1 = 1201 and Û is defined in (4.20) with ε = 1/2. A section of the
errors |f − fN | and |f − f̃ | is shown in Fig. 9. In this case we have

∥∥(PnÛ
∗PmÛPn|Pn H

)−1∥∥ ≤ 0.9022,

∥∥(PnÛ
∗PmÛPn|Pn H

)−1
PnÛ

∗Pm

∥∥ ≤ 0.9498.

In particular, the reconstruction f̃ is very stable. Figure 9 displays how our alter-
native reconstruction is favorable especially for large t . Note that with the same
amount of sampling information the improvement is roughly by a factor of ten thou-
sand.
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7 Concluding Remarks

The framework presented in this paper has been studied via the examples of Haar
wavelets and Legendre polynomials. Whilst the general theory is now well developed,
there remain many questions to answer within these examples. In particular,

(i) What is the required scaling of m (in comparison to n) when the reconstruction
basis consists of Legendre polynomials, and how well does the resulting method
compare with more well-established approaches for overcoming the Gibbs phe-
nomenon in Fourier series? Whilst there have been some previous investigations
into this particular approach [22, 25], we feel that the framework presented in
this paper, in particular the estimates proved in Theorem 4.1, are well suited for
understanding this problem. We are currently investigating this possibility, and
will present our results in future papers (see [2–5]).

(ii) Whilst Haar wavelets have formed been the principal example in this paper, there
is no need to restrict to this case. Indeed, Theorem 5.1 provides a first insight
into using more sophisticated wavelet bases for reconstruction. Haar wavelets
are extremely simple to work with, however the use of other wavelets presents a
number of issues. In particular, it is first necessary to devise a means to compute
the entries of the matrix U in a more general setting.

In addition, within the case of the Haar wavelet, there remains at least one
open problem. The computations in Sect. 5.1 suggest that n �→ �(U,n, θ) is
bounded by a linear function in this case, meaning that Theorem 5.1 is overly
pessimistic. This must be proven. Moreover, it remains to be seen whether a
similar phenomenon holds for other wavelet bases.

(iii) The theory in this paper has concentrated on linear reconstruction techniques
with full sampling. A natural question is whether one can apply non-linear tech-
niques from compressed sensing to allow for subsampling. Note that, due to
the infinite dimensionality of the problems considered here, the standard finite-
dimensional techniques are not sufficient (see [1, 6]).
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valuable discussions and input.
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