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Abstract We prove that the spheres centered at origin are sets of injectivity for cer-
tain weighted twisted spherical means on C

n. We also prove an analogue of Helga-
son’s support theorem for weighted Euclidean and twisted spherical means.
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1 Introduction

In this article, we show that the spheres SR(o) = {z ∈ Cn : |z| = R} are sets of in-
jectivity for the weighted twisted spherical means (WTSM) for a suitable class of
functions on C

n. The weights here are spherical harmonics on S2n−1. In general, the
question of sets of injectivity for the twisted spherical means (TSM) with real ana-
lytic weight is still open. We would like to refer to [7], for some results on the sets of
injectivity for the spherical means with real analytic weights in the Euclidean setup.

Our main result, Theorem 1.3 is a natural generalization of a result by Thangavelu
et al. [9], where it has been proved that the spheres SR(o)’s are sets of injectivity for
the TSM on C

n. The twisted spherical mean arises in the study of spherical mean
on the Heisenberg group H

n = C
n × R. These result can also be interpreted for

the weighted spherical means on the Heisenberg group. The set S = {(z, t) : |z| =
R, t ∈ R} ⊂ H

n is a set of injectivity for the weighted spherical means on H
n defined

by (1.3).
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In a fundamental result, Helgason proved a support theorem for continuous func-
tion having vanishing spherical means over a family of spheres, sitting in the exterior
of a ball. That is, if f is a continuous function on R

n, (n ≥ 2) such that |x|kf (x)

is bounded for each non-negative integer k, then f is supported in ball Br(o) if and
only if f ∗ μs(x) = 0,∀x ∈ R

n and ∀s > |x| + r , (see [6]). In a recent work [8],
Thangavelu and Narayanan prove a support theorem, for the TSM for certain sub-
space of Schwartz class functions on C

n. In our previous work [13], we have given
an exact analogue of Helgason’s support theorem for the TSM on C

n (n ≥ 2). For
n = 1, we have proved a surprisingly stronger result where we do not need any de-
cay condition. This result has no analogue in the Euclidean set up. In Theorem 1.4,
we generalize our idea of support theorem for the TSM to the WTSM. At the end,
we revisit Euclidean spherical means and prove Theorem 1.5, which is an analogue
of Helgason’s support theorem for the weighted spherical means. For some results
on support theorem with real analytic weight, in non-Euclidean set up, we refer to
Quinto’s works [10–12].

Let μr be the normalized surface measure on sphere Sr(x). Let F ⊆ L1
loc(R

n).
We say that S ⊆ R

n is a set of injectivity for the spherical means for F if for f ∈ F
with f ∗ μr(x) = 0, ∀r > 0 and ∀x ∈ S, implies f = 0 a.e.

The results on sets of injectivity differ in the choice of sets and the class of func-
tions considered. The following result by Agranovsky et al. [1] partially describe the
sets of injectivity in R

n. The boundary of bounded domain in R
n (n ≥ 2) is set of in-

jectivity for the spherical means on Lp(Rn), 1 ≤ p ≤ 2n
n−1 . For p > 2n

n−1 , unit sphere

Sn−1 is an example of non-injectivity set in R
n.

The range for p in the above result is optimal. That can be seen as follows. For
λ > 0, define the radial function ϕλ on R

n by

ϕλ(x) = cn(λ|x|)− n
2 +1Jn

2 −1(λ|x|),

where Jn
2 −1 is the Bessel function of order n

2 − 1 and cn is the constant such that
ϕλ(o) = 1. Then the spherical means of ϕλ satisfy the relation

ϕλ ∗ μr(x) = ϕλ(r)ϕλ(x).

This shows that if λR is zero of Bessel function Jn
2 −1 then ϕλ ∗ μr(x) = 0 on sphere

SR(o) and for all r > 0. Since ϕλ ∈ Lp(Rn) if and only if p > 2n/(n − 1), it follows
that spheres are not sets of injectivity for spherical means for Lp for p > 2n/(n− 1).
In a recent result of Narayanan et al. [7], it has been shown that the boundary of a
bounded domain in R

n is a set of injectivity for the weighted spherical means for
Lp(Rn), with 1 ≤ p ≤ 2n

n−1 .
Next, we come up with twisted spherical means which arises in the study of spher-

ical means on Heisenberg group. The group Hn as a manifold, is Cn × R with the
group law

(z, t)(w, s) =
(

z + w, t + s + 1

2
Im(z.w̄)

)
, z,w ∈ C

n and t, s ∈ R.
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The spherical means of a function f in L1(Hn) are defined by

f ∗ μs(z, t) =
∫

|w|=s

f ((z, t)(−w,0)) dμs(w). (1.1)

Thus the spherical means can be thought of as convolution operators. An impor-
tant technique in many problems on H

n is to take partial Fourier transform in the
t-variable to reduce matters to C

n. This technique works very well with convolution
operator on Hn and we will make use of it to analyze spherical means on Hn. Let

f λ(z) =
∫

R

f (z, t)eiλt dt

be the inverse Fourier transform of f in the t-variable. Then a simple calculation
shows that

(f ∗ μs)
λ(z) =

∫ ∞

−∞
f ∗ μs(z, t)e

iλt dt

=
∫

|w|=s

f λ(z − w)e
iλ
2 Im(z.w̄) dμs(w)

= f λ ×λ μs(z),

where μs is now being thought of as normalized surface measure on the sphere
Ss(o) = {z ∈ C

n : |z| = s} in C
n. Thus the spherical mean f ∗ μs on the Heisen-

berg group can be studied using the λ-twisted spherical mean f λ ×λ μs on C
n. For

λ 
= 0, a further scaling argument shows that it is enough to study these means for the
case of λ = 1.

Let F ⊆ L1
loc(C

n). We say S ⊆ C
n is a set of injectivity for twisted spherical

means for F if for f ∈ F with f × μr(z) = 0,∀r > 0 and ∀z ∈ S, implies f = 0 a.e.
on Cn.

As in the Euclidean case, it would be natural to ask if the boundaries of bounded
domains in C

n continue to be sets of injectivity for Lp spaces for the twisted spherical
means. However, this is no longer true as can be seen by considering the Laguerre

functions ϕn−1
k , k ∈ Z+, given by ϕn−1

k (z) = Ln−1
k ( 1

2 |z|2)e− 1
4 |z|2 , where Ln−1

k ’s are
the Laguerre polynomials of degree k and type n − 1. These functions satisfy the
functional relations

ϕn−1
k × μr(z) = k!(n − 1)!

(n + k − 1)!ϕ
n−1
k (r)ϕn−1

k (z), k ∈ Z+. (1.2)

For k = 0, ϕn−1
0 (z) = e− 1

4 |z|2 , which is never zero. Otherwise, if 1
2R2 is a zero

of Ln−1
k for k = 1,2, . . . , then ϕn−1

k × μr(z) = 0 on sphere SR(o) for all r > 0.
Since ϕn−1

k are in Schwartz class, it follows that spheres, and hence boundaries of
bounded domains are not sets of injectivity for Lp(Cn) for any p ,1 ≤ p ≤ ∞. As

e
1
4 |z|2ϕn−1

k , k = 1,2, . . . , does not belong to Lp(Cn) for 1 ≤ p ≤ ∞, it would be
interesting to know if boundaries of bounded domains in C

n are sets of injectivity for
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the class of functions f such that f (z)e
1
4 |z|2 ∈ Lp(Cn) for some p,1 ≤ p ≤ ∞. In [2]

the authors answer this for a yet smaller function space. The boundary of a bounded

domain in C
n is set of injectivity for function f with f (z)e( 1

4 +ε)|z|2 ∈ Lp(Cn) for
some ε > 0 and 1 ≤ p ≤ ∞. In the light of the above discussion an optimal result
would be proving this result for ε = 0. This in general is an open problem, but in
the special case of Γ = S2n−1, the result has been established by Narayanan and
Thangavelu [9].

Theorem 1.1 [9] Let f be a function on C
n such that e

1
4 |z|2f (z) ∈ Lp(Cn), for

1 ≤ p ≤ ∞. If f × μr(z) = 0 on sphere SR(o) and for all r > 0, then f = 0 a.e.
on C

n.

Remark 1.2 For η ∈ C
n, define the left twisted translate by

τηf (ξ) = f (ξ − η)e
i
2 Im(η.ξ̄ ).

Then τη(f × μr) = τηf × μr . Since the function space considered as in the above
Theorem 1.1 is not twisted translation invariant, it follows that a sphere centered off
origin is not set of injectivity for the TSM on C

n.

Our aim is to consider some special weighted twisted spherical means and prove
that Theorem 1.1 can be extended for those means. For this, let Z+ denote the set of
all non negative-integers. For s, t ∈ Z+, let Ps,t denote the space of all polynomials
P in z and z̄ of the form

P(z) =
∑
|α|=s

∑
|β|=t

cαβzαz̄β .

Let Hs,t = {P ∈ Ps,t : �P = 0}, where � is the standard Laplacian on C
n. Let

{P ∈ P
j
s,t : 1 ≤ j ≤ d(s, t) = dimHs,t } be an orthonormal basis of Hs,t and dνr,j =

P
j
stdμr . Then dνr,j is a signed measure on the sphere Sr(o) in C

n. As similar to (1.1),
we can define the weighted spherical means of a function f ∈ L1(Hn) by

f ∗ νr,j (z, t) =
∫

|w|=r

f ((z, t)(−w,0)) P
j
st (w)dμr(w). (1.3)

By taking the inverse Fourier transform in t variable at λ = 1, we can write

f × νr,j (z) =
∫

Sr (o)

f (z − w)e
i
2 Im(z.w̄)P

j
st (w)dμr(w).

We call f × νr,j the weighted twisted spherical mean (WTSM) of function f ∈
Lloc(C

n). We prove the following result for the injectivity of the WTSM.

Theorem 1.3 Let f be a function on C
n such that e

1
4 |z|2f (z) ∈ Lp(Cn), 1 ≤ p < ∞.

If f × νr,j (z) = 0 on sphere SR(o), ∀r > 0 and ∀j,1 ≤ j ≤ d(s, t), then f = 0 a.e.
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For p = ∞, Theorem 1.3 does not hold as can be seen in Remark 2.4. Further, we
prove a support theorem for the weighted twisted spherical means.

Theorem 1.4 Let f be a smooth function on C
n such that for each non-negative

integer k, |z|k|f (z)| ≤ Ck e− 1
4 |z|2 . Let f × νr,j (z) = 0, for all z ∈ C

n and r > |z|+B

and for all j,1 ≤ j ≤ d(s, t). Then f = 0, whenever |z| > B .

In the end, we revisit Euclidean spherical means and prove the support Theorem
1.5 for the weighted spherical means. For k ∈ Z

+, let Pk denote the space of all
homogeneous polynomials P of degree k. Let Hk = {P ∈ Pk : �P = 0}. The ele-
ments of Hk are called the solid spherical harmonics of degree k. Let {Pkj : 1 ≤ j ≤
dk = dimHk} be an orthonormal basis for Hk . Define the weighted spherical mean of
function f ∈ L1

loc(R
n) by

f ∗ μk
r,j (x) =

∫
Sr (o)

f (x + y)Pkj (y) dμr(y).

Theorem 1.5 Let f be a smooth function on R
n such that |x|mf (x) is bounded for

each m ∈ Z+. Let f ∗ μk
r,j (x) = 0, for all x ∈ R

n, r > |x| + B and for all j,1 ≤ j ≤
dk . Then f = 0 whenever |x| > B .

2 Preliminaries

We need the following basic facts from the theory of bigraded spherical harmonics
(see [15], p. 62 for details). We shall use the notation K = U(n) and M = U(n − 1).
Then S2n−1 ∼= K/M under the map kM → k.en, k ∈ U(n) and en = (0, . . . ,1) ∈ Cn.
Let K̂M denote the set of all equivalence classes of irreducible unitary representations
of K , which have a nonzero M-fixed vector. It is known that for each representation
in K̂M has a unique nonzero M-fixed vector, up to a scalar multiple.

For a δ ∈ K̂M , which is realized on Vδ , let {e1, . . . , ed(δ)} be an orthonormal basis
of Vδ with e1 as the M-fixed vector. Let tδij (k) = 〈ei, δ(k)ej 〉, k ∈ K and 〈, 〉 stand

for the innerproduct on Vδ . By Peter-Weyl theorem, it follows that {√d(δ)tδj1 : 1 ≤
j ≤ d(δ), δ ∈ K̂M} is an orthonormal basis of L2(K/M) (see [15], p. 14 for details).
Define Y δ

j (ω) = √
d(δ)tδj1(k), where ω = k.en ∈ S2n−1, k ∈ K . It then follows that

{Y δ
j : 1 ≤ j ≤ d(δ), δ ∈ K̂M, } forms an orthonormal basis for L2(S2n−1).

For our purpose, we need a concrete realization of the representations in K̂M ,
which can be done in the following way. See [14], p. 253, for details.

For p,q ∈ Z+, let Pp,q denote the space of all polynomials P in z and z̄ of the
form

P(z) =
∑

|α|=p

∑
|β|=q

cαβzαz̄β .

Let Hp,q = {P ∈ Pp,q : �P = 0}. The elements of Hp,q are called the bigraded solid
harmonics on C

n. The group K acts on Hp,q in a natural way. It is easy to see that
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the space Hp,q is K-invariant. Let πp,q denote the corresponding representation of
K on Hp,q . Then representations in K̂M can be identified, up to unitary equivalence,
with the collection {πp,q : p,q ∈ Z+}.

Define the bigraded spherical harmonic by Y
p,q
j (ω) = √

d(p,q)t
p,q

j1 (k). Then

{Yp,q
j : 1 ≤ j ≤ d(p,q) and p,q ∈ Z+} forms an orthonormal basis for L2(S2n−1).

Therefore for a continuous function f on C
n, writing z = ρ ω, where ρ > 0 and

ω ∈ S2n−1, we can expand the function f in terms of spherical harmonics as

f (ρω) =
∑

p,q≥0

d(p,q)∑
j=1

a
p,q
j (ρ)Y

p,q
j (ω). (2.1)

The functions a
p,q
j are called the spherical harmonic coefficients of the function f .

The (p, q)th spherical harmonic projection, Πp,q(f ) of the function f is then defined
as

Πp,q(f )(ρ,ω) =
d(p,q)∑
j=1

a
p,q
j (ρ)Y

p,q
j (ω). (2.2)

We will replace the spherical harmonic Y
p,q
j (ω) on the sphere by the solid har-

monic P
p,q
j (z) = |z|p+qY

p,q
j ( z

|z| ) on C
n and accordingly for a function f . Define

ã
p,q
j (ρ) = ρ−(p+q)a

p,q
j (ρ), where a

p,q
j are defined by (2.1). We shall continue to

call the functions ã
p,q
j the spherical harmonic coefficients of f .

In the proof of Theorem 1.3, we also need an expansion of functions on C
n in

terms of Laguerre functions ϕn−1
k ’s. Let f ∈ L2(Cn). Then the special Hermite ex-

pansion for f is given by

f (z) = (2π)−n
∞∑

k=0

f × ϕn−1
k (z). (2.3)

For radial functions, this expansion further simplifies as can be seen from the follow-
ing lemma.

Lemma 2.1 [15] Let f be a radial function in L2(Cn). Then

f =
∞∑

k=0

Bn
k

〈
f,ϕn−1

k

〉
ϕn−1

k , where Bn
k = k!(n − 1)!

(n + k − 1)! .

We would also need the following Hecke-Bochner identities for the spectral pro-
jections f × ϕn−1

k (see [15], p. 70).

Lemma 2.2 [15] Let ãP ∈ L2(Cn), where ã is radial and P ∈ Hp,q . Then

(ãP ) × ϕn−1
k (z) = (2π)−nP (z) ã × ϕ

n+p+q−1
k−p (z),

if k ≥ p and 0 otherwise. The convolution in the right hand side is on the space
C

n+p+q .
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Using the Hecke-Bochner identities, a weighted functional equation for spherical
function ϕn−1

k has been proved in [15], p. 98.

Lemma 2.3 [15] For z ∈ C
n, let P ∈ Hp,q and dνr = P dμr . Then

ϕn−1
k × νr(z) = (2π)−nC(n,p, q)r2(p+q)ϕ

n+p+q−1
k−q (r)P (z)ϕ

n+p+q−1
k−q (z),

if k ≥ q and 0 otherwise.

Remark 2.4 From Lemma 2.3, it can be seen that Theorem 1.3 does not hold for
p = ∞. For instance, take P ∈ H0,1 and let dν = P dμr . Then ϕn−1

0 × ν(z) = 0,

where ϕn−1
0 (z) = e− 1

4 |z|2 .

3 Injectivity of the Weighted Twisted Spherical Means

In this section, we prove that the spheres are sets of injectivity for the weighted
twisted spherical means on C

n. Let

flm(z) = d(s, t)

∫
U(n)

f (σ−1z)t
s,t
lm (σ ) dσ (3.1)

for 1 ≤ l,m ≤ d(s, t).

Lemma 3.1 Let f be a continuous function on C
n. Suppose f × νr,j (z) = 0 on

sphere SR(o), for all j, 1 ≤ j ≤ d(p,q) and for all r > 0. Then flm × νr,j (z) = 0,
on SR(o), whenever 1 ≤ l,m ≤ d(s, t), 1 ≤ j ≤ d(p,q) and r > 0.

Proof We have

flm×νr,j (z) = d(s, t)

∫
Sr (o)

∫
U(n)

f (σ−1(z−w))e
i
2 Im(z.w̄)t

s,t
lm (σ )P

j
s,t (w)dσ dμr(w).

Since the space Hp,q is U(n)-invariant, the function P
j
s,t (σ

−1w) is linear combina-
tion of polynomials in Hp,q . By hypothesis, it follows that

∫
U(n)

t
s,t
lm (σ )

∫
Sr (o)

f (σ−1z − w)e
i
2 Im(σ−1z.w̄)P

j

1 (σw)dμr(w)dσ = 0.

�

Remark 3.2 In view of Lemma 3.1, it is enough to work with the function of type
f (z) = ã(|z|)Ps,t (z) and measure dνr = z

p

1 z̄
q

2 dμr for the proof of Theorem 1.3. We
therefore drop the index j and write P1(z) = z

p

1 z̄
q

2 and dνr = P1 dμr .

We need the following result of Filaseta and Lam [4], about the irreducibility of
Laguerre polynomials. Define the Laguerre polynomials by
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Lα
k (x) =

k∑
i=0

(−1)i
(

α + k

k − i

)
xi

i! ,

where k ∈ Z+ and α ∈ C.

Theorem 3.3 ([4]) Let α be a rational number, which is not a negative integer. Then
for all but finitely many k ∈ Z+, the polynomial Lα

k (x) is irreducible over the ratio-
nals.

Using Theorem 3.3, we obtain the following corollary about the zeros of Laguerre
polynomials.

Corollary 3.4 Let k ∈ Z+. Then for all but finitely many k, the Laguerre polynomials
Ln−1

k (x)’s have distinct zeros over the reals.

Proof By Theorem 3.3, there exists ko ∈ Z+ such that Ln−1
k ’s are irreducible over

Q whenever k ≥ ko. Therefore, we can find polynomials P1,P2 ∈ Q[x] such that
P1L

n−1
k1

+P2L
n−1
k2

= 1, over Q with k1, k2 ≥ ko. Since this identity continues to hold

on R, it follows that Ln−1
k1

and Ln−1
k2

have no common zero over R. �

In the proof of Theorem 1.3, we use the following right invariant differential op-
erators for twisted convolution:

Ãj = ∂

∂zj

+ 1

4
z̄j and Ã∗

j = ∂

∂z̄j

− 1

4
zj ; j = 1,2, . . . , n.

In addition, we have the left invariant differential operators

Z̃j = ∂

∂zj

− 1

4
z̄j and Z̃∗

j = ∂

∂z̄j

+ 1

4
zj ; j = 1,2, . . . , n

for twisted convolution. Let P be a non-commutative homogeneous harmonic poly-
nomial on C

n with expression

P(z) =
∑

|α|=p

∑
|β|=q

cαβzαz̄β .

Using the result of Geller ([5], Proposition 2.7) about Weyl correspondence of the
spherical harmonics, the operator analogue of P(z), accordingly the left and right
invariant vector fields can be expressed as

P(Z̃) =
∑

|α|=p

∑
|β|=q

cαβZ̃∗α
Z̃β and P(Ã) =

∑
|α|=p

∑
|β|=q

cαβÃ∗α
Ãβ .

In order to prove Theorem 1.3, We need to prove the following lemma.
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Lemma 3.5 For P1(z) = z
p

1 z̄
q

2 ∈ Hp,q we have

P1
(
Ã

)
ϕn−1

k (z) = P̄1
(
Z̃

)
ϕn−1

k (z) = (−2)−p−qP1(z)ϕ
n+p+q−1
k−q (z), (3.2)

if k ≥ q and 0 otherwise.

Proof We have

Ã∗
1ϕ

n−1
k (z) =

(
∂

∂z̄1
− 1

4
z1

)
ϕn−1

k (z).

For z ∈ C
n, let z.z̄ = 2t . By chain rule ∂

∂z̄1
= 1

2z1
∂
∂t

. Therefore,

Ã∗
1ϕ

n−1
k (z) =

(
1

2
z1

∂

∂t
− 1

4
z1

)(
Ln−1

k (t)e− 1
2 t

)

= 1

2
z1

(
∂

∂t
Ln−1

k (t) − 1

2
Ln−1

k (t) − 1

2
Ln−1

k (t)

)
e− 1

2 t .

The Laguerre polynomials satisfy

d

dx
Ln

k(x) = −Ln+1
k−1(x) and Ln+1

k−1(x) + Ln
k(x) = Ln+1

k (x). (3.3)

Thus we have Ã∗
1ϕ

n−1
k (z) = − 1

2z1ϕ
n
k (z). Similarly

Ã2ϕ
n−1
k (z) =

(
1

2
z̄2

∂

∂t
+ 1

4
z̄2

)(
Ln−1

k (t)e− 1
2 t

)

= 1

2
z̄2

(
∂

∂t
Ln−1

k (t) − 1

2
Ln−1

k (t) + 1

2
Ln−1

k (t)

)
e− 1

2 t

= −1

2
z̄2ϕ

n
k−1(z).

Therefore,

Ã∗
1Ã2ϕ

n−1
k (z) = 2−2z1z̄2ϕ

n+1
k−1 (z).

Since the operators Ã∗
1 and Ã2 commute with each other, we can conclude that

Ã∗
1
p
Ã

q

2ϕn−1
k (z) = (−2)−p−q z

p

1 z̄
q

2 ϕn+1
k−q (z).

A similar computation shows that

Z̃∗
1
p
Z̃

q

2 ϕn−1
k (z) = (−2)−p−q z

p

1 z̄
q

2 ϕn+1
k−p(z). �

Remark 3.6 Using the result of Geller ([5], Lemma 2.4), the identity (3.2) can be
generalized for any P ∈ Hp,q . The complete proof of this identity requires some of
the preliminaries about Weyl correspondence of spherical harmonic from the work of
Geller [5] and will be presented elsewhere.
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Lemma 3.7 For ρ > 0, write D̃ = ∂
∂ρ

− 1
2ρ and D̃∗ = ∂

∂ρ
+ 1

2ρ. Then 1
ρ
D̃ϕn−1

k (ρ) =
ϕn

k (ρ) and 1
ρ
D̃∗ϕn−1

k (ρ) = ϕn
k−1(ρ).

Proof Let ρ2 = 2t , then ∂
∂ρ

= ρ ∂
∂t

. Therefore,

D̃ϕn−1
k (ρ) = ρ

(
∂

∂t
− 1

2

)(
Ln−1

k (t)e− 1
2 t

)

= ρ

(
∂

∂t
Ln−1

k (t) − 1

2
Ln−1

k (t) − 1

2
Ln−1

k (t)

)
e− 1

2 t .

Using (3.3), we have 1
ρ
D̃ϕn−1

k (ρ) = ϕn
k (ρ). Similarly,

D̃∗ϕn−1
k (ρ) = ρ

(
∂

∂t
+ 1

2

)(
Ln−1

k (t)e− 1
2 t

)

= ρ

(
∂

∂t
Ln−1

k (t) − 1

2
Ln−1

k (t) + 1

2
Ln−1

k (t)

)
e− 1

2 t .

Therefore 1
ρ
D̃∗ϕn−1

k (ρ) = ϕn
k−1(ρ). �

Suppose f be a function on C
n such that e

1
4 |z|2f (z) ∈ Lp(Cn), for 1 ≤ p < ∞.

Let ϕε be a smooth, radial compactly supported approximate identity on C
n. Then

f × ϕε ∈ L1 ∩ L∞(Cn) and in particular f × ϕε ∈ L2(Cn). Let dνr = P dμr . Sup-
pose f × νr(z) = 0,∀r > 0. Then by polar decomposition f × Pϕ

n+p+q−1
k−q (z) = 0,

∀k ≥ q . Since ϕε is radial, we can write

f × ϕε × νr(z) =
∑
k≥0

Bn
k

〈
ϕε,ϕ

n−1
k

〉
f × ϕn−1

k × νr(z).

By Lemma 2.3, it follows that f × ϕε × νr(z) = 0,∀k ≥ q . Thus without loss of
generality, we can assume f ∈ L2(Cn). Hence to prove the Theorem 1.3, in view of
Lemma 3.1, it is enough to prove the following result.

Proposition 3.8 Let Ps,t ∈ Hs,t and f = ãPs,t ∈ L2(Cn) be a smooth function such

that e
1
4 |z|2f (z) ∈ Lp(Cn), for 1 ≤ p < ∞. If f × νr(z) = 0 on SR(o) and for all

r > 0, then f = 0 a.e.

Proof We have

f = (2π)−n
∑
k≥0

f × ϕn−1
k .

Therefore ∑
k≥0

f × (ϕn−1
k × P1μr)(z) = 0,
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whenever z ∈ SR(o) and r > 0. By Lemma 2.3, we get

∑
k≥q

C(n,p, q)ϕ
n+p+q−1
k−q (r)f × P1ϕ

n+p+q−1
k−q (z) = 0,

for |z| = R and for all r > 0. As the functions {ϕn+p+q−1
k−q (r) : k ≥ q} form an or-

thonormal basis for L2(R+, r2(n+p+q)−1 dr), the above implies that

f × P1ϕ
n+p+q−1
k−q (z) = 0, ∀k ≥ q and |z| = R.

From Lemma 3.5, P1(Ã)ϕn−1
k (z) = (−2)−p−qP1(z)ϕ

n+p+q−1
k−q (z), moreover P1(Ã)

is right invariant, therefore it follows that

P1
(
Ã

)(
ãPs,t × ϕn−1

k

)
(z) = 0, ∀k ≥ q and |z| = R.

Using Hecke-Bochner identity (Lemma 2.2), we get

〈
ã, ϕn+s+t−1

k−s

〉
P1

(
Ã

)
Ps,tϕ

n+s+t−1
k−s (z) = 0, ∀k ≥ max(q, s) and |z| = R.

If Ã∗
1
p
Ã2

q
(Ps,tϕ

n+s+t−1
k−s )(R) = 0 for some k ≥ max(q, s), then by a computation

similar as done for Z∗
j f in [13], pp. 2516–2517, we have

Ã∗
1
p
Ã2

q−1
[

1

2ρ
D̃∗ϕγ−1

k−s Ps+1,t +
{(

1

2(γ − 1)
ρD̃∗ + 1

)
ϕ

γ−1
k−s

}
∂Ps,t

∂z̄2

]
= 0,

for |z| = R and γ = n + s + t . Since {Ps,t |S2n−1 : s, t ≥ 0} form an orthonormal
basis for L2(S2n−1). An inductive process then gives the coefficient of highest degree
polynomial Pp+s,q+t as

(
1

ρ
D̃

)p (
1

ρ
D̃∗

)q

ϕ
γ−1
k−s (R) = 0.

Using Lemma 3.7, the above equation implies that ϕ
γ+p+q−1
k−s−q (R) = 0. In view of

Corollary 3.4, without loss of generality, we can assume, the Laguerre polynomials
L

γ+p+q−1
k−s−q have distinct zeros. Hence L

γ+p+q−1
k−s−q ( 1

2R2) can vanish for at most one

value say k0 ≥ s + q of k ≥ max(q, s). Therefore 〈ã, ϕ
γ−1
k−s 〉 = 0, for k ≥ max(q, s),

except for k 
= k0. Hence ã(ρ) is finite linear combination of ϕ
γ−1
k−s ’s. As ã satisfies

the same decay condition as f , it follows that ã = 0. This completes the proof. �

Remark 3.9 In the proof of Theorem 1.3, we have used the fact that the WTSM
f × νr,j vanishes for each j : 1 ≤ j ≤ d(s, t). It would be an interesting question to
consider a single weight or, in general, a real analytic weight, which we leave open
for the time being.
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4 Support Theorems for the Weighted Spherical Means

In this section, we prove Theorem 1.4, which is an analogue of the author’s support
theorem ([13], Theorem 1.2) for the TSM to the WTSM on C

n. Our previous result
([13], Theorem 1.2) is a special case of Theorem 1.4, for p = q = 0. We would like
to quote support theorem for the case n = 1. In the end, we would revisit Euclidean
spherical means and indicate a corresponding support theorem for weighted spherical
means.

We need the following result from [13]. Let ZB,∞ be a class of continuous func-
tions on Ann(B,∞) = {z ∈ C

n : B < |z| < ∞} such that f ×μr(z) = 0 for all z ∈ C
n

and r > |z| + B .

Theorem 4.1 [13] A necessary and sufficient condition for f ∈ ZB,∞(Cn) is that for
all p,q ∈ Z+, 1 ≤ j ≤ d(p,q), the spherical harmonic coefficients ã

p,q
j of f satisfy

the following conditions:

(1) For p = 0, q = 0 and r < ρ < R, ã0(ρ) = 0.
(2) For p,q ≥ 1 and r < ρ < R, there exists ci, dk ∈ C such that

ã
p,q
j (ρ) =

p∑
i=1

cie
1
4 ρ2

ρ−2(n+p+q−i) +
q∑

k=1

dke
− 1

4 ρ2
ρ−2(n+p+q−k).

(3) For q = 0 and p ≥ 1 or p = 0 and q ≥ 1 and r < ρ < R, there exists ci, dk ∈ C

such that

ã
p,0
j (ρ) =

p∑
i=1

cie
1
4 ρ2

ρ−2(n+p−i), ã
0,q
j (ρ) =

q∑
k=1

dke
− 1

4 ρ2
ρ−2(n+q−k).

Since the Heisenberg group Hn is non-commutative, the twisted spherical means
f × μr and μr × f are not equal, in general. Using this fact, we have proved the
following support theorem which do not require any decay condition.

Theorem 4.2 ([13]) Let f be a continuous function on C. Then f is supported in
|z| ≤ B if and only if f × μr = μr × f = 0 for s > B + |z| and ∀z ∈ C.

We shall need the following lemmas in the proof of Theorem 1.4.

Lemma 4.3 Let dν
p,q
ρ = P1 dμρ . Let f be a smooth function on C

n such that f ×
ν

p,q
ρ (z) = 0, for all z ∈ C

n and for all ρ > |z| + B . Then P1(Z̃)f × μρ(z) = 0, for
all z ∈ C

n and for all ρ > |z| + B . Equivalently, P1(Z̃)f ∈ ZB,∞(Cn).

Proof We first prove

Z̃∗
1f × νp−1,q

ρ (z) = 0, z ∈ C
n for ρ > |z| + B. (4.1)

Let ∂w̄1 = 2 ∂
∂w̄1

= ∂
∂ξ1

+ i ∂
∂η1

, w1 = ξ1 + iη1. Then

∫
Ann(r,ρ)

∂w̄1

(
f (z − w)e

i
2 Im(z.w̄)w

p−1
1 w̄2

q
)

dw
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=
∫

|w|=ρ

f (z − w)e
i
2 Im(z.w̄)w

p−1
1 w̄2

q w1

ρ
dμρ(w)

−
∫

|w|=r

f (z − w)e− i
2 Im(z.w̄)w

p−1
1 w̄2

q w1

r
dμr(w) = 0.

Thus we have the following equation

∫
Ann(r,ρ)

∂w̄1

(
f (z − w)e

i
2 Im(z.w̄)w

p−1
1 w̄2

q
)

dw = 0.

Rewriting this equation in the polar form, we get

∫ ρ

s=r

∫
|w|=s

∂w̄1

(
f (z − w)e

i
2 Im(z.w̄)w

p−1
1 w̄2

q
)

dμs(w) s2n−1ds = 0.

Differentiating the above equation with respect to ρ, we have

∫
|w|=ρ

∂w̄1

(
f (z − w)e

i
2 Im(z.w̄)w

p−1
1 w̄2

q
)

dμρ(w) = 0,

whenever z ∈ Cn and ρ > |z| + B . Computing the differential inside the integral and
rearranging the terms, we get

∫
|w|=ρ

(
− ∂

∂w̄1
f (z − w) + 1

4
z1f (z − w)

)
e

i
2 Im(z.w̄)w

p−1
1 w̄2

q dμρ(w) = 0.

That is
∫

|w|=ρ

(
∂

∂z̄1
f (z − w) + 1

4
(z1 − w1)f (z − w)

)
e

i
2 Im(z.w̄)w

p−1
1 w̄2

q dμρ(w) = 0,

which is (4.1). Proceeding in a similar way, it can be shown that P1(Z̃)f ×μρ(z) = 0,
whenever z ∈ C

n and ρ > |z| + B . �

As before, it is enough to prove Theorem 1.4 for the function of type ã(ρ)Ps,t (z).
We can see this in the following lemma.

Lemma 4.4 Fix p,q ∈ Z+ and let f × νr,j (z) = 0, for all z ∈ Cn and r > |z| + B

and for all j,1 ≤ j ≤ d(p,q). Then flm × νr,j (z) = 0, for all z ∈ C
n and for all

ρ > |z| + B .

Proof The proof of this lemma is similar to the proof of Lemma 3.1 and hence omit-
ted. �

To prove Theorem 1.4, in view of Lemma 4.4, it is enough to prove the following
result.
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Proposition 4.5 Let f (z) = ãPs,t be a smooth function on C
n such that |f (z)||z|k ≤

Ck e− 1
4 |z|2 , k ∈ Z+. Let f × νr(z) = 0, for all z ∈ C

n and r > |z| + B and for all
j, 1 ≤ j ≤ d(p,q). Then f = 0 whenever |z| > B .

Proof We first prove the result in case when p = 1, q = 0. The argument for general
p,q is very similar. In this case, by Lemma 4.3, we have Z̃∗

1f ∈ ZB,∞(Cn). Since
f = ãPs,t , a similar calculation as in [13], pp. 2516–2517, gives that

Z̃∗
1f = 1

2ρ
D̃∗ãPs+1,t +

{(
1

2(γ − 1)
ρD̃∗ + 1

)
ã

}
∂Ps,t

∂z̄1
,

where γ = n + s + t . Since Z̃1f ∈ ZB,∞(Cn), by Lemma 4.4 and Theorem 4.1, it
follows that

(
1

2(γ − 1)
ρD̃∗ + 1

)
ã =

s∑
i=1

c′
i e

1
4 ρ2

ρ−2(γ−1−i) +
t−1∑
k=1

d ′
k e− 1

4 ρ2
ρ−2(γ−1−k)

and

1

2ρ
D̃∗ã =

s+1∑
i=1

cie
1
4 ρ2

ρ−2(γ+1−i) +
t∑

k=1

dke
− 1

4 ρ2
ρ−2(γ+1−k).

Solving these equations for ã we get

ã(ρ) =
s+1∑
i=1

Ci e
1
4 ρ2

ρ−2(γ−i) +
t∑

k=1

Dk e− 1
4 ρ2

ρ−2(γ−k), Ci,Dk ∈ C.

But the given decay condition on the function f then implies that ã(ρ) = 0, whenever
ρ > B . Hence f = 0 for ρ > B . For the weight z

p

1 z̄
q

2 , the computations are similar
and therefore omitted. �

Next we take up the case of Euclidean weighed spherical means. We prove the
following lemma which is key to the proof of Theorem 1.5. As in [3], let

flm(x) = ds

∫
SO(n)

f (τ−1x)t lmπs
(τ ) dτ,

for any l,m with 1 ≤ l,m ≤ ds .

Lemma 4.6 Let f ∗ μk
ρ,j (x) = 0, for all x ∈ R

n, ρ > |x| + B and for all j,1 ≤ j ≤
dk . Then flm ∗ μk

ρ,j (x) = 0, for all x ∈ R
n and for all ρ > |x| + B .

Proof Since space Hk is SO(n)-invariant by change of variables, it follows that

flm ∗ μk
ρ,j (x) = ds

∫
SO(n)

t lmπs
(τ )

∫
Sρ(o)

f (τ−1x + y)Pkj (τy) dμρ(w)dτ = 0,
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whenever x ∈ R
n and ρ > |x| + B . �

For x = (x1, x2, x3, . . . , xn) ∈ R
n, we realize the function f (x1, x2, x3, . . . , xn) as

f (x1 + ix2, x3, . . . , xn). Let z1 = x1 + ix2. Then we can write

∂z̄1 = 2
∂

∂z̄1
= ∂

∂x1
+ i

∂

∂x2
.

We need the following result from [3]. Let ZB,∞ be a class of continuous functions
on Ann(B,∞) = {x ∈ R

n : B < |x| < ∞} such that f ∗ μr(x) = 0 for all x ∈ R
n and

r > |x| + B .

Theorem 4.7 [3] A necessary and sufficient condition for f ∈ ZB,∞(Rn) is that
for all k ∈ Z+, the spherical harmonic coefficients akj of f satisfy the following
conditions.

akj (ρ) =
k−1∑
i=0

αi
kjρ

k−d−2i , αi
kj ∈ C,

for all k > 0, 1 ≤ j ≤ dk , and a0(ρ) = 0 whenever r < ρ < R.

Lemma 4.8 Let Pk(x) = (x1 + ix2)
k . Suppose f ∗ μk

ρ(x) = 0, for all x ∈ R
n and

for all ρ > |x| + B . Then ∂k
z̄1

f ∗ μρ(x) = 0 for all x ∈ R
n and for all ρ > |x| + B .

Equivalently, ∂k
z̄1

f ∈ ZB,∞(Rn).

Proof We first prove

∂z̄1f ∗ μk−1
ρ (x) = 0, x ∈ R

n for ρ > |x| + B. (4.2)

Let ∂w̄1 = 2 ∂
∂w̄1

= ∂
∂y1

+ i ∂
∂y2

, w1 = y1 + iy2. Then

∫
Ann(r,ρ)

∂w̄1

(
f (z1 + w1, x3 + y3, . . . , xn + yn)w

k−1
1

)
dy

=
∫

|y|=ρ

f (z1 + w1, x3 + y3, . . . , xn + yn)w
k−1
1

w1

ρ
dμρ(y)

−
∫

|y|=r

f (z1 + w1, x3 + y3, . . . , xn + yn)w
k−1
1

w1

r
dμr(w) = 0.

Thus we have the following equation
∫

Ann(r,ρ)

∂w̄1

(
f (z1 + w1, x3 + y3, . . . , xn + yn)w

k−1
1

)
dy = 0.

Rewriting this equation into polar form, we get
∫ ρ

s=r

∫
|y|=s

∂w̄1

(
f (z1 + w1, x3 + y3, . . . , xn + yn)w

k−1
1

)
dμs(y) sn−1 ds = 0.
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Differentiating the above equation with respect to ρ, we have∫
|y|=ρ

∂w̄1f
(
f (z1 + w1, x3 + y3, . . . , xn + yn)w

k−1
1

)
dμρ(w) = 0,

whenever x ∈ R
n and ρ > |x| + B . Computing the differential inside integral, we

obtain (4.2). Proceeding in a similar way, it can be shown that ∂k
z̄1

f ∗ μk
ρ(x) = 0,

whenever x ∈ R
n and ρ > |x| + B . �

To prove Theorem 1.5, in view of Lemma 4.6, it is enough to prove the following
result.

Proposition 4.9 Let f (x) = ã(|x|)Ps(x) ∈ C∞(Rn) such that |x|mf (x) is bounded
for each m ∈ Z+. Let f ∗ μk

ρ(x) = 0, for all x ∈ R
n, ρ > |x| + B . Then f = 0

whenever |x| > B .

Proof First we find ã(ρ) for k = 1. For this, by Lemma 4.8 we have ∂̄1f ∈
ZB,∞(Rn). A computation similar to that in [3], p. 445–446, we can write

∂f

∂xj

= 1

ρ

∂ã

∂ρ
P

j

s+1 +
{(

1

n + 2(s − 1)
ρ

∂

∂ρ
+ 1

)
ã

}
∂Ps

∂xj

,

where P
j

s+1 ∈ Hs+1. Therefore,

∂̄1f = 1

ρ

∂ã

∂ρ
Ps+1 +

{(
1

n + 2(s − 1)
ρ

∂

∂ρ
+ 1

)
ã

}
∂̄1Ps

for some Ps+1 ∈ Hs+1. By Lemmas [4.6,4.8] and Theorem 4.7, it follows that

1

ρ

∂ã

∂ρ
=

s∑
i=0

ciρ
−n−2i

and (
1

n + 2(s − 1)
ρ

∂

∂ρ
+ 1

)
ã =

s−2∑
i=0

diρ
−n−2i ,

where ci, di ∈ C. Solving these equations for ã we get

ã(ρ) =
s−1∑

i=−1

c′
iρ

−n−2i , c′
i ∈ C.

The given decay condition on the function f then implies that ã(ρ) = 0, whenever
ρ > B . Hence f = 0 for ρ > B . The case of general weight (x1 + ix2)

k follows from
induction. This completes the proof. �
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