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Abstract Complex-valued periodic sequences, u, constructed by Göran Björck, are
analyzed with regard to the behavior of their discrete periodic narrow-band ambiguity
functions Ap(u). The Björck sequences, which are defined on Z/pZ for p > 2 prime,
are unimodular and have zero autocorrelation on (Z/pZ)� {0}. These two properties
give rise to the acronym, CAZAC, to refer to constant amplitude zero autocorrela-
tion sequences. The bound proven is |Ap(u)| ≤ 2/

√
p + 4/p outside of (0,0), and

this is of optimal magnitude given the constraint that u is a CAZAC sequence. The
proof requires the full power of Weil’s exponential sum bound, which, in turn, is a
consequence of his proof of the Riemann hypothesis for finite fields. Such bounds are
not only of mathematical interest, but they have direct applications as sequences in
communications and radar, as well as when the sequences are used as coefficients of
phase-coded waveforms.
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1 Introduction

1.1 Purpose

Let Z denote the ring of integers and let C denote the field of complex numbers.
Given an integer N , form the ring Z/NZ of integers modulo N .

Definition 1.1 Let u : Z/NZ :→ C be an N -periodic sequence. The discrete narrow
band ambiguity function, AN(u) : Z/NZ × Z/NZ → C, is defined to be

AN(u)[m,n] = 1

N

N−1∑

k=0

u[m + k]u[k]e−2πikn/N

for all (m,n) ∈ Z/NZ × Z/NZ.
The discrete autocorrelation of u is the function AN(u)[·,0] : Z/NZ → C.

The ambiguity function in Definition 1.1 stems from P.M. Woodward’s definition
of the narrow band ambiguity function defined on R × R [37].

Definition 1.2 An N -periodic sequence u : Z/NZ → C is constant amplitude zero
autocorrelation (CAZAC) if it satisfies the following properties:

(CA) |u[k]| = 1 for all k ∈ Z/NZ, and

(ZAC) C(u)[m] = 1

N

N−1∑

k=0

u[m + k]u[k] = 0 for all m ∈ Z/NZ � {0}.

Clearly, C(u)[m] = AN(u)[m,0] for each m ∈ Z/NZ. Equation (CA) is the con-
dition that u has constant amplitude 1. Equation (ZAC) is the condition that u has
zero autocorrelation.

Our setting is almost exclusively limited to the case that N = p is prime. As such,
Z/pZ is a field.

We shall use a remarkable construction of CAZAC sequences up of prime length p

to prove optimal behavior of Ap(up). The construction is due to Göran Björck [8, 9].
By optimal behavior, we mean that if p is an odd prime, then

|Ap(up)[m,n]| < 2√
p

+ 4

p
for all (m,n) ∈ (Z/pZ × Z/pZ) �

{
(0,0)

}
, (1)

see Theorem 3.8. By comparison, a short and elementary calculation shows that for
any CAZAC u,

max
{|Ap(u)[m,n]| : (m,n) ∈ (Z/pZ × Z/pZ) �

{
(0,0)

}} ≥ 1√
p − 1

,

and therefore the bound (1) above is indeed of optimal order of magnitude.
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Remark 1.3 The proof of Theorem 3.8 requires André Weil’s exponential sum bound,
[35], which is a consequence of his proof of the Riemann Hypothesis for curves
over finite fields, [36], announced in the Comptes Rendus in 1940. Further, it seems
unlikely that there are more elementary means to prove the inequality (1). In fact, in
estimating Ap(up), the critical term to estimate is a Kloosterman sum; and, if there
were an easier way to bound it by C/

√
p, then there would be an easier way to prove

Weil’s bound for Kloosterman sums, which is an essential consequence of [35] and
which has withstood the test of time vis a vis evolutionary simplification.

Remark 1.4 Notwithstanding the level of mathematics required to prove the inequal-
ity (1), as noted in Remark 1.3, we emphasize that our coding and implementation
of Björck’s CAZAC sequences is truly elementary. In this regard, see [7], as well
as earlier Björck experiments and constructions by one of the authors, e.g., see [6]
and references therein, cf. Remark 1.5. In the parlance of waveform design, Theo-
rem 3.8 is an ideal discrete “thumbtack” narrow band ambiguity function which can
be used to design ideal phase-coded waveforms devoid of any substantial time or
Doppler coupling in the continuous narrow band ambiguity function plane. With re-
gard to hardware implementation of these phase-coded waveforms (as well as others
stemming from low correlation sequences), the power, bandwidth, and hardware re-
quirements will introduce noise. It is understood that modifications must be made to
the formulation of a given low correlation sequence to permit implementation while
controlling this noise.

1.2 Background

The study of CAZAC sequences and of other sequences related to optimal autocorrela-
tion behavior has origins in several important applications, one of the most prominent
being in the general area of waveform design associated with radar and communica-
tions, see, e.g., according to year of publication [2, 3, 6, 10–12, 16, 20–22, 24, 25, 27,
31, 33, 34]. There are hundreds of articles in this area and so this selection may seem
arbitrary, although several of these references contain focused lists of contributions
and specific applications. Also see Remark 1.5.

There are also purely mathematical origins for the construction of CAZAC se-
quences. One such origin is due to Norbert Wiener, e.g., see new related constructions
in [4, 5]. Another may be said to have originated in a question by Per Enflo in 1983.
This particular mathematical path has been documented and built upon by Bahman
Saffari [28]. Enflo’s question is the following for a given odd prime p. Is it true that
the Gaussian sequences, u : Z/pZ → C, defined by

u[k] = ζ rk2+sk
p , k = 0,1, . . . , p − 1,

where ζp = e2πi/p , r, s ∈ Z and p does not divide r , are the only unimodular se-
quences of length p, with u[0] = 1, whose Discrete Fourier Transform (DFT) has
modulus 1? This is equivalent to asking whether such sequences u with u[0] = 1 are
the only bi-unimodular sequences of odd prime length. Enflo was interested in this
because of a problem dealing with exponential sums.
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Enflo’s question has a positive answer for p = 3 and p = 5. In 1984, by com-
puter search, Björck discovered counterexamples to the Enflo question for p = 7 and
p = 11, see [8]. Later in 1985, Björck saw the role of Legendre symbols in his coun-
terexamples, and this led to his theorems in [9]. It also led to a host of mathematical
problems, many still unresolved, about the number of CAZAC sequences for a given
length, see, [5–7, 14], as well as a several valuable oral and email communications
by Saffari [29].

Remark 1.5 (a) It is relevant to mention a striking recent application of low correla-
tion sequences to radar in terms of compressed sensing [17]. In this case, the authors
use Alltop sequences [1] Theorem 2, cf. [32] Sect. 2.1.3. It then becomes natural
to think in terms of frames generated by Björck sequences for extending the high-
resolution radar/compressed sensing setting of the authors of [17].

In fact, the correlation result we prove in Theorem 3.8 is equivalent to the mutual
coherence property of finite Gabor frames. This property is reflected by the maximal
magnitude of the pairwise inner products of Gabor frame elements. Consequently,
Theorem 3.8 can be interpreted as constructing a Gabor frame with essentially op-
timally low coherence. Naturally, this can lead to its effective numerical implemen-
tation using methods such as orthogonal matching pursuit (OMP). This approach is
developed in [7].

(b) Another approach to the problem addressed in Sect. 1.1 is found in [13],
cf. [23]. The authors obtain bounds comparable to those found herein, but their class
of signals, called the oscillator system, is not necessarily ZAC although excellent
cross-correlation criteria are obtained, something we have not pursued. More impor-
tant, from the point of view of application, the characterization and construction of the
oscillator system are decidedly representation theoretic. As such an explicit algorithm
associated with the collection of split tori in Sp requires a Bruhat decomposition.

(c) The companion, [7], of this paper not only exhibits the simplicity of imple-
mentation stressed in Remark 1.4, but also reflects the combinatorial and geometrical
complexity in the ambiguity function domain due to the role of the Legendre symbol
in defining Björck sequences. Some of this complexity is characterized by intricate
Latin and magic square patterns. Further, the simplicity of implementation gives rise
to useful, efficient bounds off of small neighborhoods of (0,0) in the ambiguity func-
tion domain for compactly supported waveforms on R having p lags whose coeffi-
cients are the elements of a Björck sequence up . Also, it is not difficult to see that,
as with the oscillator system, there is Fourier invariance of Björck sequences, most
simply calculated in the p ≡ 1 (mod 4) case, e.g., [26].

1.3 Outline

We define Björck sequences in Sect. 2. Properties of Kloosterman sums are proven
in Sect. 3.1. These, in turn, are used along with Weil’s results and the proper de-
composition formula to express Björck sequences in the way that allows us to prove
Theorem 3.8 in Sect. 3.2. Section 4 provides figures and data which motivated and
guided us.
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2 Björck Sequences and Multiplicative Characters

For each prime number p, recall that the Legendre symbol modulo p is the function
χ = ( ·

p
) : Z/pZ → {+1,0,−1} given by

χ[k] =
(

k

p

)
=

⎧
⎪⎨

⎪⎩

+1 if k ≡ m2 (mod p) for some m ∈ Z/pZ
×,

0 if k ≡ 0 (mod p),

−1 if k �≡ m2 (mod p) for all m ∈ Z/pZ.

The preimage of +1 under the Legendre symbol function is the set Q of nonzero
quadratic residues modulo p; and the preimage of −1 under the Legendre symbol
function is the set QC of quadratic nonresidues modulo p. Among the many proper-
ties of the Legendre symbol, we shall use the fact that it is a character of the multi-
plicative group (Z/pZ)×. This means that χ , when restricted to (Z/pZ)×, is a group
homomorphism into C

×; see [15], Chaps. V and VI.

Definition 2.1 The Björck sequence of length p, where p is a prime and p ≡ 1
(mod 4), is defined by

u[k] = exp
(
iθχ(k)

) = exp

(
iθ

(
k

p

))
, where θ = arccos

(
1

1 + √
p

)
,

for all k ∈ Z/pZ.
The Björck sequence of length p, where p is a prime and p ≡ 3 (mod 4), is de-

fined by

up[k] =
{

exp(iφ) if k ∈ QC ⊆ (Z/pZ)×, where φ = arccos( 1−p
1+p

),

1 otherwise,

for all k ∈ Z/pZ.

In the case p ≡ 1 (mod 4), Definition 2.1 is equivalent to the following definition
for the Legendre symbol sequence {0,1, . . . ,−1, . . . ,1} of length p. We replace the
first term 0 by 1, every term 1 by

η = exp

(
i arccos

√
p − 1

p − 1

)
= 1√

p + 1
+ i

√
p + 2

√
p√

p + 1
,

and every term −1 by the complex conjugate of η; see [28] for a modest generaliza-
tion. As proven by Björck and differently in [7], we obtain a CAZAC, and hence bi-
unimodular, sequence with three values, viz., 1 at k = 0, and η and η at k ∈ (Z/pZ)×.

In the case p ≡ 3 (mod 4), Definition 2.1 is equivalent to the following definition
for the Legendre symbol sequence {0,1, . . . ,−1} of length p. Replace the first term
0 by 1, and replace every −1 by

ξ = exp

(
i arccos

1 − p

1 + p

)
= 1 − p

1 + p
+ i

2
√

p

1 + p
.
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As proven by Björck and differently in [7], we obtain a CAZAC, and hence bi-
unimodular, sequence with only two values, viz., 1 and ξ .

3 The Main Theorem

3.1 The Legendre Symbol and Kloosterman Sums

Definition 3.1 Let p be a prime. For any integers a, b, the quantity

K[a, b;p] =
∑

x∈Z/pZ×
exp

(
2πi

(
ax + bx−1)/p

)
,

where x−1 denotes the multiplicative inverse of x in the field Z/pZ, is a Kloosterman
sum.

Kloosterman sums are always real-valued, as the following Lemma states.

Lemma 3.2 Let p be a prime. Then K[a, b;p] ∈ R for all integers a, b ∈ Z.

Proof By the substitution y = −x, we have

K[a, b;p] =
∑

x∈Z/pZ×
e−2πi(ax+bx−1)/p =

∑

y∈Z/pZ×
e2πi(ay+by−1)/p = K[a, b;p].

�

The following classical description of certain Kloosterman sums was first ob-
served by Hans Salié in (52) of [30], using a formula of Ernst Jacobsthal from a
footnote on page 239 of [19]. Jacobsthal’s footnote refers the reader to his 1906 Ph.D.
thesis, but fortunately the proof of his formula is not difficult to derive.

Lemma 3.3 Fix an odd prime p and an integer a not divisible by p. Let χ = ( ·
p
)

denote the Legendre symbol modulo p.

(a) (Jacobsthal, 1907) Let F : Z/pZ → C be any function. Then

∑

x∈Z/pZ×
F

[
x + ax−1] =

p−1∑

x=0

F [x] +
p−1∑

x=0

χ
[
x2 − 4a

]
F [x].

(b) (Salié, 1932) K[1, a;p] =
p−1∑

x=0

χ[x2 − 4a]e2πix/p .

The formulas of Lemma 3.3 are known, but we include their proofs because of the
role they play in our approach.

Proof (a). Let g : (Z/pZ)× → Z/pZ be the function g[x] = x + ax−1. For each
t ∈ Z/pZ, set

N [t] = card
{
x ∈ (Z/pZ)× : g[x] = t

}
.
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The desired sum can now be written as
∑

x∈Z/pZ×
F

[
x + ax−1] =

∑

x∈Z/pZ×
F

[
g[x]] =

∑

t∈Z/pZ

N [t]F [t].

Thus, it suffices to show that N [t] = 1 + χ[t2 − 4a].
Note that g[x] = g[ax−1]. Conversely, for any x, y ∈ (Z/pZ)× with g[x] = g[y],

we must have either y = x or y = ax−1, since 0 = g[x] − g[y] = (x − y)(1 −
ax−1y−1). Thus, N [t] ≤ 2 for all t ∈ Z/pZ, and N [t] = 1 if and only if t = g[x]
for a point x ∈ (Z/pZ)× such that x = ax−1. This latter condition occurs if and only
if x2 = a in Z/pZ; in that case, t = g[x] = g[ax−1] = 2x, or equivalently, t2 = 4a.
Thus, if we set

S = {
g[x] : x ∈ (Z/pZ)×, x2 �= a

}
,

then

N [t] =

⎧
⎪⎨

⎪⎩

2 if t ∈ S,

1 if t2 = 4a,

0 otherwise.

Note, on the other hand, that

1 + χ
[
t2 − 4a

] =

⎧
⎪⎨

⎪⎩

2 if t2 − 4a is a square in (Z/pZ)×,

1 if t2 − 4a = 0 in Z/pZ,

0 otherwise.

Thus, it suffices to show that

S = {
t ∈ Z/pZ : t2 − 4a is a square in (Z/pZ)×

}
. (2)

Given t ∈ S, pick x ∈ (Z/pZ)× such that t = g[x]. Then

t2 − 4a = (
x + ax−1)2 − 4a = x2 − 2a + a2x−2 = (

x − ax−1)2
.

In addition, since t2 �= 4a for all t ∈ S, it follows that t2 −4a is a square in (Z/pZ)×,
proving the forward inclusion.

Conversely, given t ∈ (Z/pZ) for which there is some z ∈ (Z/pZ)× with z2 =
t2 −4a, set x = (t +z)/2 ∈ (Z/pZ)×. Then x(x−z) = (t2 −z2)/4 = a, and therefore
g(x) = x + ax−1 = 2x − z = t . It follows that t ∈ S, proving (2) and hence part (a).

Part (b) is immediate by setting F [x] = e2πix/p and noting that∑p−1
x=0 e2πix/p = 0. �

Theorem 3.4 Fix an odd prime p. Let χ = ( ·
p
) be the Legendre symbol modulo p.

Then

e−πimn/pAp(χ)[m,n] ∈ R, and |Ap(χ)[m,n]| ≤ 2√
p

,

for all m,n ∈ Z/pZ � {0}.
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Proof Fix m,n ∈ Z/pZ � {0}. Noting that χ is multiplicative and real-valued, we
have

Ap(χ)[m,n] = 1

p

∑

k∈Z/pZ

χ[k+m]χ[k]e−2πikn/p = 1

p

∑

k∈Z/pZ

χ
[
k(k+m)

]
e−2πikn/p.

Let a = (mn)2/16, b = m/2, and c = −1/n, where we are doing the arithmetic in
Z/pZ. Substituting k = cx − b, we have

Ap(χ)[m,n] = 1

p

∑

x∈Z/pZ

χ
[
(cx − b)(cx + b)

]
exp

(−2πin(cx − b)/p
)

= e2πibn/p

p

∑

x∈Z/pZ

χ
[
c2x2 − b2]e2πix/p = e2πibn/p

p
K[1, a;p], (3)

where the final equality is valid because b2 = 4ac2, and hence

χ
[
c2x2 − b2] = χ

[
c2(x2 − 4a

)] = χ
[
c2]χ

[
x2 − 4a

] = χ
[
x2 − 4a

]
.

Since (e2πibn/p)2 = e2πimn/p = (eπimn/p)2, we have e2πibn/p = ±eπimn/p , and
therefore by (3) and Lemma 3.2,

e−πimn/pAp(χ)[m,n] = ± 1

p
K[1, a;p] ∈ R.

Finally, because a ∈ Z/pZ � {0}, we have |K[1, a;p]| ≤ 2
√

p, by Weil’s bound for
Kloosterman sums in [35]. Thus, (3) gives |Ap(χ)[m,n]| ≤ 2/

√
p, as desired. �

Remark 3.5 In [35], Weil proves his bound for |K[a, b;p]| by first using Lemma 3.3
to rewrite K[a, b;p] as

∑
χ[x2 − 4a]e2πix/p and then bounding the new sum.

Philosophically, then, it would be more direct not to convert the sum to the form∑
exp(2πi(x + ax−1)/p). Nevertheless, we have applied the transformation in

Lemma 3.3 because the latter form of Kloosterman sums is better known than are
the details of Weil’s proof.

3.2 Main Bound

We shall need the following technical lemma. It gives an exact formula, in terms of
Ap(χ), for the ambiguity function of any sequence that is a function of the Legendre
symbol χ .

Lemma 3.6 Fix an odd prime p and complex numbers r, s, t ∈ C. Let χ : Z/pZ → C

be the Legendre symbol modulo p, and let U : Z/pZ → C be the function

U [k] =

⎧
⎪⎨

⎪⎩

r if χ(k) = 1,

s if χ(k) = −1,

t if k = 0.
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Set R = (r + s)/2, S = (r − s)/2, T = t − R, and ζp = e2πi/p . Then

Ap(U)[m,n] = |S|2Ap(χ)[m,n] + 1

p

(
E1[m,n] + E2[m,n])

for all m,n ∈ Z/pZ � {0}, where E1[m,n] = RT̄ + R̄T ζmn
p , and

E2[m,n] =
{

(ST̄ + S̄T ζmn
p )χ[m] + (RS̄ + R̄Sζmn

p )χ[n]√p if p ≡ 1 (mod 4),

(ST̄ − S̄T ζmn
p )χ[m] − (RS̄ + R̄Sζmn

p )iχ[n]√p if p ≡ 3 (mod 4).

Proof For any two functions F,G : Z/pZ → C, write

Bp(F,G)[m,n] = 1

p

∑

k∈Z/pZ

F [k + m]G[k]e−2πikn/p.

Define functions η, δ : Z/pZ → C by

η[k] = 1 and δ[k] =
{

0 if k �= 0,

1 if k = 0.

Thus, U = Rη + Sχ + T δ, and hence

Bp(U,U) = |R|2Bp(η,η) + |S|2Bp(χ,χ) + |T |2Bp(δ, δ)

+ RT̄ Bp(η, δ) + R̄T Bp(δ, η) + ST̄ Bp(χ, δ) + S̄T Bp(δ,χ)

+ RS̄Bp(η,χ) + R̄SBp(χ,η).

To compute Bp(U,U), we shall compute each of these nine terms sepa-
rately. Since m �= 0, we have Bp(δ, δ) = 0. In addition, Bp(η,η) = 0, since∑

k∈Z/pZ
e−2πikn/p = 0 and n �= 0. We also have Bp(χ,χ) = Ap(χ) by definition.

Meanwhile, it is immediate that

pBp(η, δ)[m,n] = 1, pBp(δ, η)[m,n] = ζmn
p ,

pBp(χ, δ)[m,n] = χ[m], and pBp(δ,χ)[m,n] = ζmn
p χ[−m].

Next, pBp(η,χ)[m,n] = τ [−n;p], where τ [a;p] is the Gauss sum

τ [a;p] =
∑

k∈Z/pZ

χ[k]e2πiak/p.

However, Gauss proved that τ [a;p] = εχ[a]√p, where ε = 1 if p ≡ 1 (mod 4),
and ε = i if p ≡ 3 (mod 4); see, for example, Proposition 6.3.1 and Theorem 6.4.1
of [18]. Hence, pBp(η,χ)[m,n] = εχ[−n]√p. Similarly,
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pBp(χ,η)[m,n] =
∑

k∈Z/pZ

χ[k + m]e−2πikn/p =
∑

j∈Z/pZ

χ[j ]e−2πi(j−m)n/p

= ζmn
p τ [−n;p] = εζmn

p χ[−n]√p.

Combining the nine computations above, and noting that

χ[−k] = χ[−1]χ[k]
{

χ[k] if p ≡ 1 (mod 4),

−χ[k] if p ≡ 3 (mod 4),

we have Bp(U,U) = |S|2Ap(χ)+ (E1 +E2)/p, where E1 and E2 are the quantities
in the statement of Lemma 3.6. �

The following elementary bound will be needed to prove the p ≡ 3 (mod 4) case
of Theorem 3.8.

Lemma 3.7 Let X,Y ∈ R, and let z ∈ C with |z| = 1. Then

|zX + (
1 − z2)Y | ≤

√
X2 + 4Y 2.

Proof Noting that zz = 1, we have

∣∣zX + (
1 − z2)Y

∣∣ =
√(

zX + (
1 − z2

)
Y

)(
zX + (

1 − z2)Y
)

=
√

X2 + (
z
(
1 − z2) + z

(
1 − z2

))
XY + (

1 − z2
)(

1 − z2)Y 2

=
√

X2 + |1 − z2|2Y 2 ≤
√

X2 + 4Y 2,

since z(1 − z2) + z(1 − z2) = z − z + z − z = 0 and |1 − z2| ≤ 2. �

We are now ready to state and prove our main result.

Theorem 3.8 Let p be an odd prime, and let up be the Björck function for p. Then
the ambiguity function, Ap(up), defined on Z/pZ × Z/pZ as

Ap(up)[m,n] = 1

p

∑

k∈Z/pZ

up[k + m]up[k]e−2πikn/p,

satisfies the estimate

|A(up)[m,n]| < 2√
p

+
{

4
p

if p ≡ 1 (mod 4),
4

p3/2 if p ≡ 3 (mod 4),

for all (m,n) ∈ (Z/pZ × Z/pZ) � {(0,0)}.
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Proof Fix (m,n) ∈ (Z/pZ × Z/pZ) � {(0,0)}. If m = 0, then n �= 0, and we have

Ap(up)[0, n] = 1

p

∑

k∈Z/pZ

up[k]up[k]e−2πikn/p = 1

p

∑

k∈Z/pZ

e−2πikn/p = 0,

since |up[k]| = 1 for all k ∈ Z/pZ. On the other hand, if n = 0, then m �= 0, and we
have

Ap(up)[m,0] = 1

p

∑

k∈Z/pZ

up[k + m]up[k] = 0,

because up has zero autocorrelation. Thus, by the fact that up is a CAZAC, we may
assume for the remainder of the proof that m,n �= 0.

If p ≡ 1 (mod 4), then in the notation of Lemma 3.6, we have r = (1 +√
p)−1(1 + i

√
2
√

p + p), s = (1 + √
p)−1(1 − i

√
2
√

p + p), and t = 1. Thus,

R = r + s

2
= 1

1 + √
p

,

S = r − s

2
= i

√
2
√

p + p

1 + √
p

and T = t − R =
√

p

1 + √
p

.

The quantities E1 and E2 in Lemma 3.6 are therefore

E1[m,n] =
√

p(1 + ζmn
p )

(1 + √
p)2

and

E2[m,n] = 1

(1 + √
p)2

[(
1 − ζmn

p

)√
p

√
2
√

p + p · iχ[m]

+ (
ζmn
p − 1

)√
p

√
2
√

p + p · iχ[n]]

=
√

p

(1 + √
p)2

[
i
(
1 − ζmn

p

)(
χ[m] − χ[n])

√
2
√

p + p
]
.

Noting that |1 + ζmn
p |, |1 − ζmn

p |, and |χ[m] − χ[n]| are each less than or equal to 2

and that
√

2
√

p + p <
√

1 + 2
√

p + p = 1 + √
p, we obtain

|E1[m,n] + E2[m,n]| < 2
√

p

(1 + √
p)2

+ 4
√

p

1 + √
p

<
2
√

p

(1 + √
p)2

+ 4.

Hence, by Lemma 3.6 and Theorem 3.4, we have

|Ap(up)[m,n]|

≤ 2√
p

|S|2 + 2√
p(1 + √

p)2
+ 4

p
= 2√

p(1 + √
p)2

(2
√

p + p + 1) + 4

p
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= 2√
p(1 + √

p)2
(1 + √

p)2 + 4

p
= 2√

p
+ 4

p
.

Similarly, if p ≡ 3 (mod 4), then r = 1, s = (1+p)−1(1−p+2i
√

p), and t = 1,
and therefore

R = r + s

2
= 1

1 − i
√

p
, S = r − s

2
= −i

√
p

1 − i
√

p
, and T = t −R = −i

√
p

1 − i
√

p
.

Thus, the quantities E1 and E2 in Lemma 3.6 are

E1[m,n] = i
√

p(1 − ζmn
p )

p + 1

and

E2[m,n] = 1

p + 1

[(
p − pζmn

p

)
χ[m] − (

i
√

p − ζmn
p i

√
p
)
iχ[n]√p

]

= p(1 − ζmn
p )

p + 1

[
χ[m] + χ[n]].

Since |S|2 = p/(p + 1), we have

||S|2Ap(χ)[m,n]+ 1

p
E2[m,n]| = 1

p + 1
|pAp(χ)[m,n]+(

1−ζmn
p

)(
χ[m]+χ[n])|.

Setting z = eπimn/p , X = e−πimn/ppAp(χ)[m,n], and Y = χ[m] + χ[n], so that
X ∈ R with |X| ≤ 2

√
p by Theorem 3.4, Y ∈ R with |Y | ≤ 2, and |z| = 1, Lemma 3.7

tells us that
∣∣∣∣|S|2Ap(χ)[m,n] + 1

p
E2[m,n]

∣∣∣∣ ≤
√

X2 + 4Y 2

p + 1
≤

√
4p + 16

p + 1
= 2

√
p + 4

p + 1
.

Hence, by Lemma 3.6 and the fact that |1 − ζmn
p | ≤ 2, we obtain

|Ap(up)[m,n]| ≤
∣∣∣∣|S|2Ap(χ)[m,n] + 1

p
E2[m,n]

∣∣∣∣ +
∣∣∣∣

1

p
E1[m,n]

∣∣∣∣

≤ 2
√

p + 4

p + 1
+ 2√

p(p + 1)
= 2√

p(p + 1)

(√
p2 + 4p + 1

)

≤ 2(p + 3)√
p(p + 1)

= 2√
p

+ 4√
p(p + 1)

≤ 2√
p

+ 4

p3/2
. �

Remark 3.9 The bounds in Theorem 3.8 may be improved very slightly but at
the great expense of simplicity. For example, if p ≡ 1 (mod 4), then the bounds
|1 − ζmn

p | ≤ 2 and |1 + ζmn
p | ≤ 2 could be improved, as obviously these quantities

cannot both be simultaneously close to 2. However, the resulting bound is far more
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complicated to write, and the savings is only about 2p−3/2, as illustrated by consider-
ing ζmn

p very close to −1. Similarly, removing the simplification 4
√

p/(1 +√
p) < 4

would also only save us about 4p−3/2. For further details, including the explicit for-
mula of Lemma 3.6 in the case that U = up , we refer the reader to [7].

4 Figures and Table

Natural algebraic and analytic calculations convinced us that the proof of Theo-
rem 3.8 depended on substantial number theoretic results. In parallel, Fig. 1 supported
the truth of Theorem 3.8 before we proved it. The x-axis lists the primes between 1
and 1000. The y axis lists the values,

max
(m,n) �=(0,0)

|Ap(up)[m,n]|. (4)

Figure 1 also displays the curves y = 2/
√

p and y = 2/
√

p + 4/p for comparison.
Figure 2, for the case p = 13, illustrates the symmetries inherent in the function
Ap(up) on Z/pZ × Z/pZ. These are fully explained for all p in [7]; and they led
to the realization of the complexity involved in proving Theorem 3.8, as well as to a
host of geometrical and combinatorial phenomena and problems. Figure 3 illustrates
Theorem 3.8 for the case p = 503.

Table 1 indicates some of the finer behavior of the quantity (4), over three different
ranges of primes. This data suggested to us that 2/

√
p was very nearly the upper

bound for |Ap(up)[m,n]|, (m,n) �= (0,0), and it helped lead us to the proof that
2/

√
p + 4/p is an upper bound. In addition, although a number of primes p ≡ 1

Fig. 1 p and max{|Ap(up)[m,n]| : (m,n) �= (0,0)}
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Fig. 2 Ap(up) for p = 13

Fig. 3 Ap(up) for p = 503

(mod 4) require a bound larger than 2/
√

p, we noted that only very few primes p ≡ 3
(mod 4) allowed |Ap(up)[m,n]| > 2/

√
p for (m,n) �= (0,0). For example, p = 139

is the only such prime in Table 1. Our broader calculations for other primes showed



J Fourier Anal Appl (2012) 18:471–487 485

Table 1 Comparison of max |Ap(up)| outside (0,0) with 2/
√

p

p max |Ap(up)| 2/
√

p p max |Ap(up)| 2/
√

p

3 1 1.15470 1009 0.065505 0.062963

5 1 0.894427 1013 0.064300 0.062838

7 0.599074 0.755929 1019 0.060996 0.062653

11 0.572765 0.603023 1021 0.063567 0.062592

13 0.570127 0.554700 1031 0.061432 0.062287

17 0.544798 0.485071 1033 0.062460 0.062227

19 0.388357 0.458831 1039 0.061420 0.062047

23 0.365960 0.417029 1049 0.063469 0.061751

29 0.312280 0.371391 1051 0.060041 0.061692

101 0.208395 0.199007 1061 0.063533 0.061401

103 0.187876 0.197066 1063 0.060180 0.061343

107 0.192309 0.193347 1069 0.062845 0.061170

109 0.212120 0.191565 1087 0.059183 0.060662

113 0.191960 0.188144 1091 0.059923 0.060550

127 0.171881 0.177471 1093 0.060828 0.060495

131 0.170530 0.174741 1097 0.063115 0.060385

137 0.159752 0.170872 1103 0.059840 0.060220

139 0.171326 0.169638 1109 0.061014 0.060057

149 0.157303 0.163846 1117 0.062083 0.059842

151 0.149263 0.162758 1123 0.058489 0.059682

157 0.157840 0.159617 1129 0.062178 0.059523

163 0.154913 0.156652 1151 0.058290 0.058951

167 0.152243 0.154765 1153 0.061266 0.058900

173 0.152966 0.152057 1163 0.058550 0.058646

179 0.143966 0.149487 1171 0.056711 0.058446

181 0.154193 0.148659 1181 0.059624 0.058198

191 0.139244 0.144715 1187 0.057459 0.058050

193 0.151468 0.143963 1193 0.059935 0.057904

197 0.151479 0.142494 1201 0.057850 0.057711

199 0.138516 0.141776 1213 0.058716 0.057425

that the only such primes between 1000 and 5000 are 1259, 2111, and 3511; the only
ones between 10000 and 24360 are 13879, 16091 and 23719; and there are none
between 100000 and 105000. Moreover, for all seven of those primes, the maximum
value of |Ap(up)[m,n]| − 2/

√
p for (m,n) �= (0,0) is still far smaller than 4/p, a

fact which ultimately led us to the sharper bound for p ≡ 3 (mod 4) in Theorem 3.8.
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