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Abstract We prove a formula expressing the gradient of the phase function of a func-
tion f : R

d �→ C as a normalized first frequency moment of the Wigner distribution
for fixed time. The formula holds when f is the Fourier transform of a distribution of
compact support, or when f belongs to a Sobolev space Hd/2+1+ε(Rd) where ε > 0.
The restriction of the Wigner distribution to fixed time is well defined provided a cer-
tain condition on its wave front set is satisfied. Therefore we first need to study the
wave front set of the Wigner distribution of a tempered distribution.

Keywords Wigner distribution · Microregularity · Wave front set · Restriction of
distributions · Instantaneous frequency
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1 Introduction

This paper treats a time-frequency version of the following trivial observation in
Fourier analysis. Let f (t) = Ce2πiξ0·t , C ∈ C \ 0, t, ξ0 ∈ R

d , be a nonzero com-
plex multiple of a character on R

d , ξ0 · t denoting the inner product on R
d . Its Fourier
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transform is ̂f = Cδξ0 so the frequency ξ0 may be expressed using the Fourier trans-
form as the normalized first order moment formula

ξ0 = 〈 ̂f , ξ 〉
〈 ̂f ,1〉 (1.1)

where 〈 ̂f , ξ 〉 is the vector 〈 ̂f , ξ 〉 = (〈 ̂f , ξj 〉)dj=1 ∈ R
d and ξj : R

d �→ R is coordinate
function j , 1 ≤ j ≤ d .

We will deduce a time-frequency version of this formula for more general func-
tions, which looks like

1

2π
∇ argf (t) = 〈Wf (t, ·), ξ 〉

〈Wf (t, ·),1〉 , ∀t ∈ R
d : f (t) 
= 0, f ∈ FE ′(Rd). (1.2)

In the formula (1.2) Wf denotes the Wigner distribution, defined by

Wf (t, ξ) =
∫

Rd

f (t + τ/2)f (t − τ/2)e−2πiτ ·ξ dτ

for f ∈ S (Rd). FE ′ is the Fourier image of the compactly supported distributions
(cf. Sect. 2).

For functions in FE ′(Rd) which are not multiples of characters e2πiξ0·t , the fre-
quency is not well defined. Therefore it is replaced in (1.2) by the natural generaliza-
tion

1

2π
∇ argf (t) = 1

2π

(

∂j argf (t)
)d

j=1 ,

that is, a normalized gradient of the phase function. We use the term instantaneous
frequency, taken from the engineering literature [1, 5, 11], for this quantity. Thus
(1.2) may be seen as a time-frequency version of the observation (1.1). In Sect. 5
we shall also prove a version of (1.2) for functions f that belong to a Sobolev space
Hd/2+1+ε(Rd) (see Sect. 2) where ε > 0. Then the distribution actions 〈Wf (t, ·), ξ 〉
and 〈Wf (t, ·),1〉 are Lebesgue integrals.

In order to prove (1.2) we need to restrict the Wigner distribution as Wf �→
Wf (t, ·) to fixed time t ∈ R

d . For f ∈ S ′(Rd), we have Wf ∈ S ′(R2d) and the
restriction is a map S ′(R2d) �→ D ′(Rd), provided it is well defined. Restriction of a
distribution to a submanifold is possible under certain conditions on the wave front
set (cf. [17]). More precisely, the restriction defines a well defined distribution pro-
vided the normal bundle of the submanifold has empty intersection with the wave
front set of the distribution. Thus we are led to study the wave front set of the Wigner
distribution first. We pursue this study in somewhat greater generality than actually
needed in order to prove formula (1.2).

In Sect. 3 we define the space WFW⊥ of tempered distributions such that the
wave front set of the Wigner distribution is directed purely in the frequency direction,
and the space WFW 
= of tempered distributions such that the wave front set of the
Wigner distribution is nowhere parallel to the time direction. The latter space admits
restriction Wf �→ Wf (t, ·) for all t ∈ R

d . We show the inclusions C∞
slow ⊆ WFW⊥

and C∞
slow ⊆ Vcon ⊆ WFW 
=. Here C∞

slow (cf. Definition 3.4) denotes the space of
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smooth functions on R
d such that a derivative of any order is bounded by a constant

times a fixed polynomial. C∞
slow contains FE ′. The space Vcon (cf. Definition 3.11)

is the linear subspace of S ′(Rd) such that the short-time Fourier transform (STFT)
Vϕf , ϕ ∈ S \ 0, satisfies

sup
|η|>B|x|

〈(x, η)〉n|Vϕf (x, η)| < ∞, ∀n > 0,

for some B > 0. This means that the STFT decays polynomially in a conic neighbor-
hood of the frequency axis.

For other aspects of wave front sets and time-frequency analysis we refer to the
recent papers [7, 8, 23, 24]. Recently Guo, Molahajloo and Wong have studied the
instantaneous frequency and its relation to the modified Stockwell transform [16].

The instantaneous frequency has been studied extensively in the engineering and
physics literature when d = 1 (cf. [13, 26]), going back to Carson and Fry [2], Gabor
[14] and Ville [34]. For a survey we refer to [1] (see also [4] and for a recent ref-
erence [18]). The instantaneous frequency is of interest for several reasons in signal
processing and communication, for example for the fact that it represents the informa-
tion in a frequency-modulated signal. The formula (1.2) is well known in the applied
literature for d = 1 (cf. [1]), with distribution actions written as integrals and without
precise assumptions on f . The result is often attributed to Ville [34]. However, the
result does in fact not appear in [34] as is claimed in [1]. Instead it seems to have
appeared for the first time in Claasen and Mecklenbräuker [3]. The goal of this paper
is to fill a gap in the applied literature in the sense of finding conditions on f that
are sufficient for the formula (1.2) to hold true. As a prerequisite we need to study
microlocal analysis of the Wigner distribution, which we hope may have independent
mathematical interest.

2 Preliminaries

The Schwartz space S (Rd) consists of smooth functions such that a derivative of
any order multiplied by any polynomial is uniformly bounded. Its topological dual
S ′(Rd) is the space of tempered distributions. We denote by C∞

c (Rd) the space of
smooth and compactly supported functions, and D ′(Rd) is its topological dual, the
space of distributions. The compactly supported distributions are denoted E ′(Rd).

We normalize the Fourier transform for functions f ∈ S (Rd) as

Ff (ξ) = ̂f (ξ) =
∫

Rd

f (x)e−2πix·ξ dx, F−1f (x) =
∫

Rd

f (ξ)e2πix·ξ dξ,

where x · ξ denotes the inner product on R
d . The Fourier transform extends to

S ′(Rd), and FE ′(Rd) denotes the space of f ∈ S ′(Rd) such that ̂f ∈ E ′(Rd). For
s ∈ R and 〈ξ 〉 = (1 + |ξ |2)1/2, the Sobolev space Hs(Rd) is defined as the subspace
of f ∈ S ′(Rd) such that ̂f ∈ L2

loc(R
d) and

‖f ‖Hs =
(∫

Rd

〈ξ 〉2s | ̂f (ξ)|2dξ

)1/2

< ∞.
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Translation is denoted by (Tyf )(x) = f (x − y) and modulation by Mξf (x) =
e2πix·ξ f (x) for functions of one R

d variable, and by (Ty,wf )(x, z) = f (x − y,

z − w), Mξ,ηf (x, y) = e2πi(x·ξ+y·η)f (x, y), respectively, for functions of two R
d

variables. The short-time Fourier transform (STFT) of f ∈ S ′(Rd) with respect to a
window function ϕ ∈ S (Rd) (cf. [12, 15]) is defined by

Vϕf (t, ξ) = (f,MξTtϕ)

where (·, ·) denotes the conjugate (for consistency with the L2-product) linear action
of S ′(Rd) on S (Rd), or D ′(Rd) acting on C∞

c (Rd). The inner product on L2, also
denoted by (·, ·), is thus conjugate linear in the second variable. We denote the linear
(without conjugation) action of distributions on test functions by 〈·, ·〉, and hence
(u,ϕ) = 〈u,ϕ〉.

We use the symbol C for a positive constant that may change value over inequal-
ities and equalities. The space C0(R

d) consists of continuous functions that vanish
at infinity. This means that for any ε > 0 there exists a compact set Kε ⊆ R

d such
that x /∈ Kε ⇒ |f (x)| < ε. The symbol Ck(Rd) is the space of functions such that
all partial derivatives of order not greater than k are continuous everywhere, and
C∞(Rd) = ⋂

k≥1 Ck(Rd).
We recall the definition of the C∞ wave front set of u ∈ D ′(Rd), denoted WF(u)

(cf. [12, 17]). Let 
 ⊆ R
d \ 0 denote an open conic subset, where conic means ξ ∈


 ⇒ aξ ∈ 
 for all a > 0. The wave front set is defined as the complement

WF(u) =
(

R
d × (Rd \ 0)

)

\ {

(x, ξ) : ∃ψ ∈ C∞
c (Rd) : ψ(x) 
= 0, ∃
 ⊆ R

d \ 0 : ξ ∈ 
,

sup
η∈


〈η〉n|̂ψu(η)| < ∞ ∀n > 0
}

.

We have P1WF(u) = sing supp(u) where P1 denotes the projection on the first R
d

variable. The singular support sing supp(u) is the complement of the largest open set
where u is C∞.

The cross-Wigner distribution (cf. [9, 12, 15, 33]) is defined by

Wf,g(t, ξ) =
∫

Rd

f (t + τ/2)g(t − τ/2)e−2πiτ ·ξ dτ

= (F2(f ⊗ g ◦ κ)) (t, ξ), f, g ∈ S (Rd), t, ξ ∈ R
d , (2.1)

where

κ(x, y) = (x + y/2, x − y/2)

and F2 denotes partial Fourier transformation in the second R
d variable. The Wigner

distribution of a single function is denoted by Wf = Wf,f . The definition (2.1) for
f,g ∈ S (Rd) extends to f,g ∈ S ′(Rd), and then Wf,g ∈ S ′(R2d).

The Wigner distribution has been studied thoroughly from many points of
view, in particular quantum mechanics [5, 12, 33], pseudodifferential calculus [12],
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time-frequency analysis and localization operators [6, 15, 31], and signal analy-
sis [5, 11, 15]. In signal analysis the Wigner distribution has been studied as a tool
to represent signals simultaneously in the time and frequency variables. The Wigner
distribution satisfies many properties requested by an ideal time-frequency repre-
sentation, among which the most important include the following, which holds for
example when f ∈ S (Rd).

WMηTxf = Tx,ηWf , ∀x,η ∈ R
d , (2.2)

∫∫

R2d

Wf (t, ξ)dtdξ = ‖f ‖2
L2(Rd )

, (2.3)

∫

Rd

Wf (t, ξ)dξ = |f (t)|2, ∀t ∈ R
d, (2.4)

∫

Rd

Wf (t, ξ)dt = | ̂f (ξ)|2, ∀ξ ∈ R
d, (2.5)

1

2π
∇ argf (t) =

∫

Rd ξWf (t, ξ)dξ
∫

Rd Wf (t, ξ)dξ
, ∀t ∈ R

d : f (t) 
= 0. (2.6)

Formula (2.2) says that the Wigner distribution respects time-frequency shifts, (2.3)
says that its integral equals the squared energy of the function, and (2.4), (2.5) say that
Wf has the correct marginal properties. This admits the interpretation of Wf as a dis-
tribution of the energy of f over (t, ξ) ∈ R

2d . Alternatively, in quantum mechanics,
Wf is interpreted as a phase space probability density. However, these interpretations
are in general not possible, since Wf for f ∈ L2 is not nonnegative everywhere unless
f is a generalized Gaussian of the form

f (t) = exp(−πt · At + 2πb · t + c) (2.7)

where c ∈ C, b ∈ C
d , A ∈ C

d×d is invertible and ReA > 0. This is Hudson’s theorem
(cf. [12, 15]). The function f has Wigner distribution

Wf (t, ξ) = C exp (−2π (t · ReAt − 2 Rebt))

× exp
(

−2π(ξ + ImAt − Imb) · (ReA)−1(ξ + ImAt − Imb)
)

and

1

2π
∇ argf (t) = − ImAt + Imb.

Thus Wf is a function mainly concentrated along the submanifold

{(t, (2π)−1∇ argf (t)) : t ∈ R
d} ⊆ R

2d .

Formula (2.6) may be interpreted as a generalization of this observation to functions
f other than Gaussians, in the sense that the instantaneous frequency is the mean in
the frequency direction of the Wigner distribution for each fixed t ∈ R

d .
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Janssen [19, 20] has studied the question whether the Wigner distribution (for
d = 1) may be concentrated on a curve in the phase space. Under some assumptions
on the curve it turns out that it must be a straight line and the distribution f is either
a multiple of a Dirac distribution or a degenerate Gaussian of the form (2.7) with
ReA = 0. This means that Wf is of the form Wf (t, ξ) = Cδ0(ξ − (2π)−1∇ argf (t))

(assuming b = 0), i.e. supported on the subspace {(t, (2π)−1∇ argf (t)) : t ∈ R}
⊆ R

2. For other functions the Wigner distribution gives a dispersion.
This paper concerns assumptions that imply that (2.6) holds true. It is relatively

straightforward to relax f ∈ S (Rd) into f ∈ Hd/2+1+ε(Rd) where ε > 0 (see
Proposition 5.1), since Wf is then a continuous function which admits restriction
Wf �→ Wf (t, ·) without problem. As another assumption we use f ∈ FE ′(Rd) (see
Proposition 5.2), which implies that Wf ∈ S ′(R2d). The integrals in (2.6) are then
replaced by distribution actions of Wf (t, ·) for fixed t ∈ R

d . This case is more subtle
since we need to verify the sufficient conditions on the wave front set for a restriction
to make sense. Consequently we first study the wave front set of the Wigner distri-
bution. This problem is a generalization of the study of the singular support of Wf ,
considered by Janssen [19, 20].

Finally we remark that the assumption f ∈ S (Rd), that implies the properties
(2.2), (2.3), (2.4) and (2.5), may be relaxed. In fact, (2.2) holds for f ∈ S ′(Rd).
The identities (2.3), (2.4) and (2.5) hold for f ∈ S0(R

d) which denotes Feichtinger’s
algebra [10] (see also [12, 15]).

The paper is organized as follows. We investigate the wave front set of the Wigner
distribution in Sect. 3. In Sect. 4 we study sufficient conditions for the restriction
operator Wf �→ Wf (t, ·) to be well defined for t ∈ R

d fixed. Finally in Sect. 5 we
prove formula (1.2) for f ∈ Hd/2+1+ε(Rd) where ε > 0 and for f ∈ FE ′(Rd).

3 The Wave Front Set of the Wigner Distribution

Let f ∈ S ′(Rd). Two natural questions are to compare sing supp(f ) and
P1 sing supp(Wf ), and to compare WF(f ) and P1,3WF(Wf ). Here P1 : R

2d �→ R
d

denotes the projection on the first variable, P1(t, ξ) = t , t, ξ ∈ R
d , and P1,3 :

R
4d �→ R

2d denotes the projection on the first and third variables, P1,3(t, ξ ;η,x) =
(t, η), t, ξ, η, x ∈ R

d .
Let f ≡ 1. Then sing supp(f ) = ∅ and WF(f ) = ∅. Moreover, Wf = 1 ⊗ δ0 so

sing supp(Wf ) = R
d × 0 and WF(Wf ) = {(t,0;0, x) : t ∈ R

d, x ∈ R
d \ 0} (cf. Ex-

ample 3.3). Hence P1 sing supp(Wf ) = R
d , P1,3WF(Wf ) = R

d × 0. Thus

P1 sing supp(Wf ) � sing supp(f ),

P1,3WF(Wf ) � WF(f ), f ∈ S ′(Rd).

We do not know whether any of the following inclusions hold for f ∈ S ′(Rd).

sing supp(f ) ⊆ P1 sing supp(Wf ), (3.1)

WF(f ) ⊆ P1,3WF(Wf ). (3.2)
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Note that the inclusion (3.2) is stronger than (3.1). In fact, assume (3.2). We have
sing supp(Wf ) = P1,2WF(Wf ) and therefore P1WF(Wf ) = P1 sing supp(Wf ). The
assumption implies

sing supp(f ) = P1WF(f ) ⊆ P1P1,3WF(Wf ) = P1WF(Wf )

= P1 sing supp(Wf ),

and thus (3.1) follows from (3.2).
To produce a counterexample to the inclusion (3.1), it suffices to find a function f

which is not C∞ at t = 0 whose Wigner distribution Wf is C∞ in a neighborhood of
(0, ξ) for all ξ ∈ R

d . There is some weak evidence that such a function may exist: In
fact, the Wigner distribution is regularizing in the sense that

W : L2(Rd) × L2(Rd) �→ C0(R
2d) (3.3)

continuously (cf. [21, Proposition 2.4]).
A characterization of the wave front set WF(f ) in terms of the asymptotic behav-

ior of Wf for large frequencies is given in [12, Corollary 3.28]. Let φ ∈ S (Rd)

be even, nonzero and define the dilation φs(x) = sd/4φ(s1/2x) for s > 0. Then
(t0, ξ0) /∈ WF(f ) if and only if there exists a neighborhood U of (t0, ξ0), conic in
the second variable, such that for any a ≥ 1

sup
(t,ξ)∈U, a−1≤|ξ |≤a, s≥1

sn|(Wf ∗ Wφs )(t, sξ)| < ∞, ∀n ≥ 1. (3.4)

This criterion says that the convolution Wf ∗ Wφs decreases faster than any poly-
nomial in the frequency direction in a neighborhood of (t0, ξ0), conic in the second
variable. Note that the function Wφs (t, ξ) = Wφ(s1/2t, s−1/2ξ), with which Wf is
convolved, concentrates around zero in the t variable and spreads out in the ξ vari-
able as s → +∞.

In particular we have that f is smooth in a neighborhood of t0 if and only if there
exists a neighborhood V of t0 such that for any a ≥ 1

sup
t∈V, a−1≤|ξ |≤a, s≥1

sn|(Wf ∗ Wφs )(t, sξ)| < ∞, ∀n ≥ 1,

which means that Wf ∗ Wφs decreases faster than any polynomial in any frequency
direction in a neighborhood of t0.

The criterion (3.4) says that the wave front set WF(f ) can be characterized
by Wf . Roughly speaking, the microregularity of f is characterized by the asymp-
totic behavior of Wf at infinity in conic frequency domains. (More precisely, this
behavior concerns the convolution Wf ∗ Wφs and not Wf .)

In the remainder of this section we will investigate the wave front set of the
Wigner distribution Wf for f ∈ S ′(Rd). We introduce the following two subspaces
of S ′(Rd) for this purpose. Here we understand by subspace a subset which is not
necessarily linear.1

1We do not know whether WFW⊥ or WFW 
= are linear subspaces of S ′ .
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Definition 3.1

WFW⊥(Rd) = {f ∈ S ′(Rd) : WF(Wf ) ⊆ R
2d × (0 × (Rd \ 0))}.

Thus WFW⊥(Rd) consists of the tempered distributions such that the wave front
set of the Wigner distribution is directed purely in the frequency direction (or is
empty).

Definition 3.2

WFW 
=(Rd) = {f ∈ S ′(Rd) : WF(Wf ) ∩ R
2d × ((Rd \ 0) × 0) = ∅}.

The definition says that WFW 
=(Rd) consists of the tempered distributions such
that the wave front set of the Wigner distribution does not contain vectors purely in
the time direction. Obviously

WFW⊥(Rd) ⊆ WFW 
=(Rd).

The following example shows that for f (t) = exp(πit · At), A symmetric, we
have

f ∈ WFW 
=(Rd) \ WFW⊥(Rd), A ∈ R
d×d \ 0.

Example 3.3 Let f (t) = exp(πit · At) where A ∈ R
d×d is a symmetric matrix (f is

sometimes called a chirp [15]). Then

Wf (t, ξ) =
∫

Rd

exp(−2πiτ · (ξ − At))dτ = δ0(ξ − At),

sing supp(Wf ) = {(t,At), t ∈ R
d}.

Since the transformation T : R
2d �→ R

d , T (t, ξ) = ξ − At has surjective differential,
the distribution Wf = δ0 ◦T ∈ D ′(R2d) is well defined (cf. [17, Theorem 6.1.2]). Let
ϕ ∈ C∞

c (R2d) and let (ψn) ⊆ C∞
c (Rd) be a sequence converging in D ′(Rd) to δ0.

The continuity statement of [17, Theorem 6.1.2] gives

ϕ̂Wf (η, x) = 〈δ0 ◦ T ,M−η,−xϕ〉 = lim
n→∞〈ψn ◦ T ,M−η,−xϕ〉

= lim
n→∞

∫∫

R2d

ψn(ξ − At)ϕ(t, ξ)e−2πi(η·t+x·ξ)dtdξ

= lim
n→∞

∫∫

R2d

ψn(ξ)ϕ(t, ξ + At)e−2πi(t ·(η+Ax)+x·ξ)dtdξ

=
∫

Rd

ϕ(t,At)e−2πit ·(η+Ax)dt

= χ̂(η + Ax)

where χ(t) = ϕ(t,At) ∈ C∞
c (Rd).
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Let (t, ξ) ∈ sing supp(Wf ), i.e. ξ = At and suppose ϕ(t,At) 
= 0. If η0 +Ax0 
= 0
then there is a conic neighborhood 
 containing (η0, x0) such that |η + Ax| ≥ C > 0
when |(η, x)| = 1 and (η, x) ∈ 
. This gives |η + Ax| ≥ C|(η, x)| for (η, x) ∈ 
 and
thus, using the fact that χ̂ ∈ S (Rd),

sup
(η,x)∈


|(η, x)|n|ϕ̂Wf (η, x)| ≤ Cn sup
(η,x)∈


|(η, x)|n|η + Ax|−n < ∞

for any n > 0, so (t,At;η0, x0) /∈ WF(Wf ).
On the other hand, we may use the following result [17] for u ∈ D ′(Rd) and

ϕj ∈ C∞
c (Rd). If ϕj (x) 
= 0 for all j ≥ 1, supp(ϕj ) → {x}, and ϕ̂j u does not de-

cay polynomially in any conical neighborhood of ξ for any j , then (x, ξ) ∈ WF(u).
Let ϕ satisfy ϕ(t,At) 
= 0 and ϕ ≥ 0. Then χ̂ (0) = ∫

ϕ(u,Au)du > 0 and

ϕ̂Wf (−Ax,x) = χ̂ (0) 
= 0 for any x ∈ R
d . Therefore ϕ̂Wf is not polynomially de-

creasing in any conic neighborhood of the manifold {(η, x) : η +Ax = 0}. By shrink-
ing the support of ϕ we may thus conclude

WF(Wf ) = {(t,At;−Ax,x), t ∈ R, x ∈ R \ 0}.
For A = 0 we thus have f ∈ WFW⊥(Rd) but if A 
= 0 then f ∈ WFW 
=(Rd) \
WFW⊥(Rd).

We are interested in WFW 
=(Rd) since f ∈ WFW 
=(Rd) is a sufficient condi-
tion for the restriction operator Wf �→ Wf (t, ·) to be well defined from D ′(R2d) to
D ′(Rd) for all t ∈ R

d (see Sect. 4). We are interested in WFW⊥(Rd) since it is easier
to prove inclusions of familiar spaces in WFW⊥(Rd).

Next we define a linear space of smooth functions, whose derivatives are slowly
increasing, uniformly with respect to the order of derivation.

Definition 3.4 The space C∞
slow(Rd) consists of smooth functions such that for some

N > 0 we have

|∂αf (x)| ≤ Cα〈x〉N, ∀x ∈ R
d , Cα > 0, ∀α ∈ N

d . (3.5)

A derivative of any order α ∈ N
d of a function in C∞

slow(Rd) is thus bounded
by a constant Cα times a fixed polynomial. Note that C∞

slow(Rd) ⊆ Od
M(Rd), where

Od
M(Rd) is the space of smooth functions such that the derivatives satisfy (3.5) where

N may depend on α. For more information on Od
M(Rd) we refer to [25].

The following simple lemma may be considered well known. We write down a
short proof, based on a combination of results in [17], in order to make the paper
self-contained.

Lemma 3.5

FE ′(Rd) ⊆ C∞
slow(Rd).

Proof Let f ∈ FE ′(Rd) which means that there exists u ∈ E ′(Rd) such that f (x) =
(u,φx) where φx(ξ) = exp(2πix · ξ) [17, Theorem 7.1.14]. Denote by N the finite
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order of the distribution u ∈ E ′(Rd). By [17, Theorem 2.1.3] we have ∂αf (x) =
(u, ∂α

x φx) for any α ∈ N
d . For some compact set K ⊆ R

d containing the support of
u, this yields

|∂αf (x)| = |(u, ∂α
x φx)| ≤ Cα

∑

|β|≤N

sup
ξ∈K

|∂α
x ∂

β
ξ φx(ξ)|

≤ Cα〈x〉N, α ∈ N
d . �

Remark 3.6 If f ≡ 1 = F δ0 then Wf = 1 ⊗ δ0, and WF(Wf ) = (Rd × 0) × (0 ×
(Rd \ 0)) according to Example 3.3. This shows that the wave front set of the Wigner
distribution of a function f ∈ FE ′(Rd) in general is nonempty.

Remark 3.7 Note that the inclusion FE ′(Rd) ⊆ C∞
slow(Rd) is strict. For instance

C∞
c (Rd) ⊆ C∞

slow(Rd) \ FE ′(Rd).

Next we shall make some preparations in order to introduce a linear space which
is larger than C∞

slow(Rd). We need the following lemma (cf. [22, Eq. (2.1)]), a proof
of which is included for the convenience of the reader.

Lemma 3.8 If f ∈ S ′(Rd) and ϕ ∈ S (Rd) then

Ŵf Wϕ(η, x) = Vϕf (−x/2, η/2)Vϕf (x/2,−η/2), η, x ∈ R
d .

Proof We compute

(F−1
2 (Mη,xWϕ)) ◦ κ−1(y, z) =

∫

Rd

e2πi(ξ ·(y−z)+η·(y+z)/2+x·ξ)Wϕ

(

y + z

2
, ξ

)

dξ

= eπiη·(y+z)F−1
2 Wϕ

(

y + z

2
, y − z + x

)

= eπiη·(y+z)(ϕ ⊗ ϕ ◦ κ)

(

y + z

2
, y − z + x

)

= eπiη·(y+z)ϕ(y + x/2)ϕ(z − x/2)

= Mη/2T−x/2ϕ(y)M−η/2Tx/2ϕ(z).

This gives, using [17, Lemma 7.4.1] and the fact that Wϕ is real-valued [15],

Ŵf Wϕ(η, x) = (Wf ,Mη,xWϕ)

= (f ⊗ f ◦ κ,F−1
2 (Mη,xWϕ))

= (f ⊗ f ,F−1
2 (Mη,xWϕ) ◦ κ−1)

= (f ⊗ f ,Mη/2T−x/2ϕ ⊗ M−η/2Tx/2ϕ)

= Vϕf (−x/2, η/2)Vϕf (x/2,−η/2). �
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Lemma 3.9 Let g ∈ C∞(R2d) and suppose

|g(t, ξ)| ≤ C〈(t, ξ)〉N for some N > 0 and all t, ξ ∈ R
d,


 = {(t, ξ) : |ξ | > C|t |} for some C > 0, and

sup
(t,ξ)∈


〈(t, ξ)〉n|g(t, ξ)| < ∞, ∀n > 0.

If ϕ ∈ S (R2d) then we have for any C′ > C and 
′ = {(t, ξ) : |ξ | > C′|t |}
sup

(t,ξ)∈
′
〈(t, ξ)〉n|g ∗ ϕ(t, ξ)| < ∞, ∀n > 0. (3.6)

Proof We have

|g ∗ ϕ(t, ξ)| ≤
∫∫

〈(x,η)〉≤〈(t,ξ)〉1/2
|g(t − x, ξ − η)| |ϕ(x,η)|dx dη

+
∫∫

〈(x,η)〉>〈(t,ξ)〉1/2
|g(t − x, ξ − η)| |ϕ(x,η)|dx dη

:= I1 + I2.

Consider the first integral I1. For any C′ > C and the corresponding cone 
′ =
{(t, ξ) : |ξ | > C′|t |} ⊆ 
 we have: (t, ξ) ∈ 
′ and 〈(x, η)〉 ≤ 〈(t, ξ)〉1/2 imply that
(t − x, ξ − η) ∈ 
 provided that 〈(t, ξ)〉 is sufficiently large. In fact, these assump-
tions imply

|ξ − η|
|t − x| ≥ |ξ | − 〈(t, ξ)〉1/2

C′−1|ξ | + 〈(t, ξ)〉1/2
= C′ |ξ | − 〈(t, ξ)〉1/2

|ξ | + C′〈(t, ξ)〉1/2

and the quotient approaches one as 〈(t, ξ)〉 → ∞, because |ξ | > C′|t |. Thus we have
for any integer n ≥ 0

I1 ≤ Cn

∫∫

〈(x,η)〉≤〈(t,ξ)〉1/2
〈(t − x, ξ − η)〉−n|ϕ(x,η)|dx dη

≤ Cn〈(t, ξ)〉−n

∫∫

R2d

〈(x, η)〉n|ϕ(x,η)|dx dη

≤ Cn〈(t, ξ)〉−n, (t, ξ) ∈ 
′, Cn > 0, (3.7)

provided 〈(t, ξ)〉 is sufficiently large.
Next let us look at the second integral I2. We have for any L > 0

I2 ≤ CL

∫∫

〈(x,η)〉>〈(t,ξ)〉1/2
〈(t − x, ξ − η)〉N 〈(x, η)〉−L dx dη

≤ CL〈(t, ξ)〉N
∫∫

〈(x,η)〉>〈(t,ξ)〉1/2
〈(x, η)〉N−L dx dη
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= CL〈(t, ξ)〉N
∫∫

〈(x,η)〉>〈(t,ξ)〉1/2
(1 + |x|2 + |η|2)(N−L)/2 dx dη

= CL〈(t, ξ)〉N
∫

r>(〈(t,ξ)〉−1)1/2
(1 + r2)(N−L)/2r2d−1 dr

≤ CL〈(t, ξ)〉N
∫

r>(〈(t,ξ)〉−1)1/2
rN−L+2d−1 dr

≤ CL〈(t, ξ)〉3N/2−L/2+d (3.8)

provided that L > N + 2d and 〈(t, ξ)〉 is sufficiently large. Since L > 0 is arbi-
trary, (3.7) and (3.8) prove (3.6), that is g ∗ ϕ(t, ξ) decays rapidly (polynomially) for
(t, ξ) ∈ 
′. �

Remark 3.10 Obviously Lemma 3.9 is invariant under a change of roles of the vari-
ables, that is, with cones 
,
′ of the form 
 = {(t, ξ) : |t | > C|ξ |}, C > 0.

We are now prepared to define the following linear subspace of S ′(Rd).

Definition 3.11 Let ϕ ∈ S (Rd) \ 0.

V ϕ
con(R

d) =
{

f ∈ S ′(Rd) : ∃B > 0 :

sup
|η|>B|x|

〈(x, η)〉n|Vϕf (x, η)| < ∞ ∀n > 0
}

. (3.9)

According to this definition V
ϕ
con(R

d) consists of tempered distributions such that
the STFT decays rapidly in some conical neighborhood of the frequency axis of the
form {(x, η) ∈ R

2d : |η| > B|x|}. Obviously V
ϕ
con(R

d) is a linear space. A priori
V

ϕ
con(R

d) depends on the window function ϕ ∈ S (Rd), but the next lemma shows
that this is in fact not the case.

Lemma 3.12 If f ∈ V
ϕ
con(R

d) then f ∈ V
ψ
con(R

d) for any ψ ∈ S (Rd) \ 0.

Proof Let f ∈ V
ϕ
con(R

d). According to [15, Lemma 11.3.3] we have

|Vψf (t, ξ)| ≤ C|Vϕf | ∗ |Vψϕ|(t, ξ), t, ξ ∈ R
d .

Furthermore, we have Vψϕ ∈ S (R2d), Vϕf ∈ C∞(R2d) and by [15, Theorem
11.2.3] there exist C,N > 0 such that

|Vϕf (t, ξ)| ≤ C〈(t, ξ)〉N, t, ξ ∈ R
d .

The result now follows from Lemma 3.9. �

As a consequence of Lemma 3.12 we may denote V
ϕ
con(R

d) = Vcon(R
d), which

is understood to be defined by an arbitrary ϕ ∈ S (Rd) \ 0. Another consequence is
that if (3.9) holds, that is Vϕf (x, η) decays rapidly in a conical neighborhood of the
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frequency axis {(x, η) ∈ R
2d : |η| > B|x|}, then rapid decay holds for a neighborhood

of the form {(x, η) ∈ R
2d : |η| > B ′|x − y|}, B ′ > B , for any fixed y ∈ R

d . In fact we
have VT−yϕf (x, η) = Vϕf (x − y,η) which gives

sup
(x,η):|η|>B ′|x−y|

〈(x, η)〉n|Vϕf (x, η)|

= sup
|η|>B ′|x−y|

〈(x − y,η) + (y,0)〉n|VTyϕf (x − y,η)|

≤ C〈y〉n sup
|η|>B ′|x−y|

〈(x − y,η)〉n|VTyϕf (x − y,η)| < ∞, ∀n > 0

by the proof of Lemma 3.12 and Lemma 3.9.

Proposition 3.13 We have the inclusions

C∞
slow(Rd) ⊆ WFW⊥(Rd), (3.10)

C∞
slow(Rd) ⊆ Vcon(R

d) ⊆ WFW 
=(Rd). (3.11)

Proof Let f ∈ C∞
slow(Rd) and ϕ ∈ S (Rd). For α ∈ N

d integration by parts and (3.5)
give for some N > 0

|ηαVϕf (x, η)| =
∣

∣

∣

∣

Cα

∫

Rd

f (t)ϕ(t − x)∂α
t (e−2πit ·η) dt

∣

∣

∣

∣

=
∣

∣

∣

∣

∑

β≤α

Cβ

∫

Rd

∂α−βf (t)∂βϕ(t − x)e−2πit ·η dt

∣

∣

∣

∣

≤
∑

β≤α

Cβ

∫

Rd

〈t〉N 〈t − x〉−N−d−1 dt

≤
∑

β≤α

Cβ

∫

Rd

〈t〉N 〈t〉−N−d−1〈x〉N+d+1 dt

≤ Cα〈x〉N+d+1. (3.12)

Let B > 0 be arbitrary and define the cone 
 = {(x, η) ∈ R
2d : |η| > B|x|}. Then if

(x, η) ∈ 
, we have by (3.12) for any n > 0

〈η〉n|Vϕf (x, η)| ≤ Cn〈x〉N+d+1 ≤ Cn〈η〉N+d+1,

which leads to

sup
(x,η)∈


〈(x, η)〉n|Vϕf (x, η)| ≤ C sup
(x,η)∈


〈η〉n|Vϕf (x, η)| < ∞

for any n > 0. Thus Vϕf (x, η) decays rapidly in a cone |η| > B|x| for any B > 0.
This proves the first inclusion in (3.11).
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By Lemma 3.8 we have

sup
|η|>B|x|

〈(x, η)〉n|Ŵf Wϕ(η, x)| < ∞, ∀n > 0 (3.13)

for any B > 0. Let χ ∈ C∞
c (R2d) and ϕ ∈ S (Rd) satisfy (χWϕ)(t, ξ) 
= 0 for arbi-

trary fixed (t, ξ) ∈ R
2d . We have χWϕ ∈ C∞

c (R2d), and

F (Wf Wϕχ)(η, x) = Ŵf Wϕ ∗ χ̂(η, x). (3.14)

We have Ŵf Wϕ = ̂Wf ∗ ̂Wϕ ∈ C∞(R2d) and Ŵf Wϕ has polynomial growth by [28,
Theorem 7.19] since ̂Wf ∈ S ′(R2d) and ̂Wϕ ∈ S (R2d). This means that there exist
C,N > 0 such that

|Ŵf Wϕ(η, x)| ≤ C〈(η, x)〉N, η, x ∈ R
d .

Now (3.13), (3.14), Lemma 3.9 and Remark 3.10 says that for any B ′ > B and cor-
responding cone 
′ = {|η| > B ′|x|} ⊆ 
, it holds that F (Wf Wϕχ)(η, x) decays
rapidly in the cone 
′. Hence F (Wf Wϕχ)(η, x) decays rapidly in a cone |η| > B|x|
for any B > 0. Therefore f ∈ WFW⊥(Rd). The inclusion (3.10) is therefore proved.

It remains to prove the second inclusion in (3.11). Let f ∈ Vcon(R
d). This as-

sumption and Lemma 3.8 imply that Ŵf Wϕ(η, x) decays rapidly in a conic neigh-
borhood |η| > B|x| for some B > 0 for any ϕ ∈ S (Rd). Hence by Lemma 3.9,
F (Wf Wϕχ)(η, x) = Ŵf Wϕ ∗ χ̂ (η, x) decays rapidly in a conical neighborhood
of the form |η| > B ′|x| where B ′ > 0, for any χ ∈ C∞

c (R2d). This means that
(t, ξ ;η,0) /∈ WF(Wf ) for any t, ξ ∈ R

d and η ∈ R
d \ 0, that is f ∈ WFW 
=(Rd). �

Remark 3.14 A combination of Lemma 3.5 and Proposition 3.13, (3.10), gives
FE ′(Rd) ⊆ WFW⊥(Rd). This admits the interpretation that the very high (analytic)
regularity of f ∈ FE ′(Rd) is reflected by the fact that Wf inherits smoothness in the
time direction. In fact the wave front set of Wf is directed purely in the frequency
direction and has no component in the time direction.

Remark 3.15 We note that an alternative proof of the inclusion

Vcon(R
d) ⊆ WFW 
=(Rd)

can be deduced from the results by Toft [30, 32]. In fact, [32, Proposition 1.8 and
Theorem 4.1] imply the following result.

If f ∈ S ′(Rd) and (0,0;η,x) /∈ WF(Af )

then (t, ξ ;η,2πx) /∈ WF(Wf ) for all (t, ξ) ∈ R
2d .

(Note the factor 2π that appears in front of x, due to different normalizations of
the Wigner distribution.) Here Af is the so called ambiguity function of f [12, 15],
normalized for f ∈ S (Rd) as

Af (η, x) =
(

2

π

)d/2 ∫

Rd

f (t − η)f (t + η)e2it ·x dt.
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One can show with computations resembling those of the proof of Lemma 3.8 that

Âf Aϕ(η, x) = |Vϕ̌f (πx,−πη)|2, η, x ∈ R
d,

for f ∈ S ′(Rd), ϕ ∈ S (Rd). Here ϕ̌(t) = ϕ(−t). Using Lemma 3.9 as in the
proof of Proposition 3.13 with (χAϕ)(0,0) 
= 0 we obtain (0,0;η,0) /∈ WF(Af )

for η ∈ R
d \ 0 provided f ∈ Vcon(R

d). An application of Toft’s results finally gives
Vcon(R

d) ⊆ WFW 
=(Rd).

We may summarize the inclusions we have found as follows.

FE ′(Rd) ⊆ C∞
slow(Rd) ⊆ Vcon(R

d) ⊆ WFW 
=(Rd),

C∞
slow(Rd) ⊆ WFW⊥(Rd) ⊆ WFW 
=(Rd).

The next example shows that Vcon(R
d) � WFW⊥(Rd) and C∞

slow(Rd) �

Vcon(R
d).

Example 3.16 Let s ∈ R \ 0 and set f (t) = exp(2πist2). Then by Example 3.3 we
have WF(Wf ) = {(t,2st;−2sx, x), t ∈ R

d, x ∈ R
d \ 0}, so f /∈ WFW⊥(Rd). If

we choose ϕ(x) = exp(−2πx2) then it can be verified that

|Vϕf (x, η)| = Cs exp

(

− 2π

1 + s2 (sx − η/2)2
)

, Cs > 0.

If B > 0, |η| > B|x| and 0 < ε < 1/2 we have

∣

∣

∣sx − η

2

∣

∣

∣ ≥ |η|
2

− |s||x| > |η|
(

1

2
− |s|

B

)

≥ ε|η|

provided B is sufficiently large. Thus

sup
|η|>B|x|

〈(x, η)〉n|Vϕf (x, η)| ≤ C sup
|η|>B|x|

〈η〉n|Vϕf (x, η)|

≤ C sup
|η|>B|x|

〈η〉n exp

(

− 2πε2

1 + s2
|η|2

)

< ∞,

which means that f ∈ Vcon(R
d). Hence we have shown Vcon(R

d) � WFW⊥(Rd).
For the function f we also have f /∈ C∞

slow(Rd) which shows that C∞
slow(Rd) �

Vcon(R
d). In fact, we have

|∂αf (t)| = |pα(t)|
where pα is a polynomial of order |α|. If we suppose that f ∈ C∞

slow(Rd) then (3.5)
gives for some N > 0

sup
t∈Rd

|∂αf (t)|〈t〉−N = sup
t∈Rd

|pα(t)|〈t〉−N < ∞
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for all α ∈ N
d , which is a contradiction. Thus f /∈ C∞

slow(Rd). We note furthermore
that a cone |η| > B|x| where Vϕf (x, η) decays rapidly has B ≥ 2|s|. Therefore it is
not always the case that the cone of decay for elements in Vcon(R

d) can be arbitrarily
large, that is, B is arbitrarily small.

Let A ∈ R
d×d be symmetric. The transformation TA defined by

TAf (t) = exp(πit · At)f (t)

is continuous on S (Rd) and extends to a continuous transformation on S ′(Rd). The
Wigner distribution is transformed according to

WTAf (t, ξ) = Wf (t, ξ − At). (3.15)

The next result treats the invariance and noninvariance under TA of four of the spaces
introduced above. However, for Vcon(R

d) we cannot prove or disprove invariance.

Proposition 3.17 Let A ∈ R
d×d \ 0 be symmetric. Then the following holds:

(i) FE ′(Rd), C∞
slow(Rd) and WFW⊥(Rd) are not invariant under TA.

(ii) WFW 
=(Rd) is invariant under TA.

Proof (i) Since 1 ∈ FE ′(Rd) ⊆ C∞
slow(Rd) ⊆ WFW⊥(Rd) by Lemma 3.5 and

Proposition 3.13, it suffices to show that g /∈ WFW⊥(Rd) where g(t) =
exp(πit · At). According to Example 3.3 we have

WF(Wg) = {(t,At;−Ax,x) : t ∈ R
d, x ∈ R

d \ 0}.

Picking x ∈ R
d such that Ax 
= 0 reveals that g /∈ WFW⊥(Rd).

(ii) According to (3.15) we have WTAf = Wf ◦ Q for f ∈ S ′(Rd) where Q de-
notes the invertible matrix

Q =
(

I 0
−A I

)

∈ R
2d×2d .

According to [17, Theorem 8.2.4] we have

WF(Wf ◦ Q) = {(t, ξ ;Qt(η, x)) : (Q(t, ξ);η,x) ∈ WF(Wf ), t, ξ, η, x ∈ R
d}

= {(t, ξ ;η − Ax,x) : (t, ξ − At;η,x) ∈ WF(Wf ), t, ξ, η, x ∈ R
d}.

If f ∈ WFW 
=(Rd) and (t, ξ ;η,x) ∈ WF(Wf ) then x 
= 0, which implies that

WF(WTAf ) ∩
(

R
2d × ((Rd \ 0) × 0)

)

= ∅.

Hence TAf ∈ WFW 
=(Rd). �
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3.1 An Elaboration of the Inclusion (3.10)

In this subsection we prove a result related to the inclusion C∞
slow(Rd) ⊆ WFW⊥(Rd).

We will prove a stronger statement under a stronger hypothesis. The conclusion again
includes the fact that the wave front set is directed purely in the frequency direction.
On top of that we add the statement that the location of the singular support is in-
cluded in R

d × 0.
We begin by recalling the definition of two classes of symbols: the Hörmander

classes Sm
ρ,δ(X × R

d) [17] and the Shubin classes Sm
ρ (Rd) [29].

Definition 3.18 Let X ⊆ R
n
z be open, m ∈ R, ρ ∈ (0,1], and δ ∈ [0,1). Then

Sm
ρ,δ(X×R

d
τ ) is the subspace of a ∈ C∞(X×R

d
τ ) such that for every α ∈ N

d , β ∈ N
n

and every compact K ⊆ X there exists a constant Cα,β,K > 0 so that

|∂β
z ∂α

τ a(z, τ )| ≤ Cα,β,K 〈τ 〉m−ρ|α|+δ|β|

is satisfied for z ∈ K,τ ∈ R
d .

Definition 3.19 For m ∈ R, 0 < ρ ≤ 1, 
m
ρ (Rd) is the subspace of f ∈ C∞(Rd) such

that for every γ ∈ N
d there exists a constant Cγ > 0 so that

|∂γ
t f (t)| ≤ Cγ 〈t〉m−ρ|γ |

is satisfied for every t ∈ R
d .

Remark 3.20 Sm
ρ,δ(X × R

d) and 
m
ρ (Rd) are Fréchet spaces with respect to the best

constants appearing in the estimates. If we extend Definition 3.19 to ρ = 0 we note
that


m
ρ (Rd) ⊆ C∞

slow(Rd) =
⋃

m>0


m
0 (Rd), 0 < ρ ≤ 1.

We set 
 = R
n
z × (Rd

τ \ 0). A phase function φ on 
 is a real-valued smooth
function that satisfies the conditions:

(i) φ(z,λτ) = λφ(z, τ ) for (z, τ ) ∈ 
, λ > 0.
(ii) ∇φ(z, τ ) 
= 0 for every (z, τ ) ∈ 
.
We recall the meaning of oscillatory integrals of the type

I a
φ =

∫

Rd

eiφ(·,τ )a(·, τ ) dτ

where a ∈ Sm
ρ,δ(R

n+d) and φ is a phase function on 
 (cf. [17, Theorem 7.8.2]).

Proposition 3.21 (i) For fixed u ∈ C∞
c (Rn), and fixed phase function φ, the map

defined by the absolutely convergent integral

C∞
c (Rn+d) � a −→ I a

φ (u) =
∫

Rn+d

eiφ(z,τ )a(z, τ )u(z) dz dτ (3.16)
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has a unique extension to a continuous functional on Sm
ρ,δ(R

n+d) for m ∈ R,
ρ ∈ (0,1], δ ∈ [0,1). Hence I a

φ (u) is well defined for every u ∈ C∞
c (Rn) and

a ∈ Sm
ρ,δ(R

n+d).

(ii) For fixed a ∈ Sm
ρ,δ(R

n+d) the map (well-defined from (i)):

C∞
c (Rn) � u −→ I a

φ (u) (3.17)

is a distribution in D ′(Rn) of finite order, which is indicated by

I a
φ (·) =

∫

Rd

eiφ(·,τ )a(·, τ ) dτ

and called an oscillatory integral of symbol a and phase φ.

A general result on the wave front set of oscillatory integrals is [17, Theo-
rem 8.1.9], which follows.

Proposition 3.22 For the distribution I a
φ we have the inclusion

WF(Ia
φ ) ⊆ {(z,∇zφ(z, τ )) : ∇τ φ(z, τ ) = 0}. (3.18)

Now we use the previous result in the study of the wave front set of the Wigner
distribution. More precisely, in the following proposition we prove that, considering
a function f in a Shubin class, the wave front set of the Wigner distribution Wf is
not only “vertical” in the dual variables (η, x), but the singular support of Wf is also
contained in the “horizontal” subspace ξ = 0 of the space variables (t, ξ).

Proposition 3.23 If ρ > 0 and f ∈ 
m
ρ (Rd) then

WF(Wf ) ⊆ {(t,0;0, x) ∈ R
4d : t ∈ R

d, x ∈ R
d \ 0}. (3.19)

Proof If f ∈ 
m
ρ (Rd) we have f ⊗ f ◦ κ ∈ S2m

ρ,0(R
2d). In fact, for every α,β ∈ N

d

and for t in a compact set K ⊆ R
d , we have:

|∂α
τ ∂

β
t f (t + τ/2)f (t − τ/2)|

=
∣

∣

∣

∣

∂α
τ

∑

β ′≤β

cβ,β ′∂β ′
f (t + τ/2)∂β−β ′

f (t − τ/2)

∣

∣

∣

∣

=
∣

∣

∣

∣

∑

α′≤α

∑

β ′≤β

cα,α′cβ,β ′∂α′+β ′
f (t + τ/2)∂α−α′+β−β ′

f (t − τ/2)

∣

∣

∣

∣

≤ C
∑

α′≤α

∑

β ′≤β

〈t + τ/2〉m−ρ|α′+β ′|〈t − τ/2〉m−ρ|α−α′+β−β ′|
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≤ C
∑

α′≤α

∑

β ′≤β

〈t〉|m−ρ|α′+β ′||+|m−ρ|α−α′+β−β ′||〈τ 〉m−ρ|α′+β ′|+m−ρ|α−α′+β−β ′|

≤ C〈τ 〉2m−ρ|α+β| ≤ C〈τ 〉2m−ρ|α|

where Peetre’s inequality 〈t ± τ/2〉s ≤ Cs〈t〉|s|〈τ 〉s , s ∈ R, has been used.
We set z = (t, ξ) ∈ R

d
t × R

d
ξ and remark that a symbol a(t, τ ) ∈ Sm

ρ,δ(R
d
t × R

d
τ )

can also be seen as a symbol in Sm
ρ,δ(R

2d
z ×R

d
τ ), and likewise a phase function φ(t, τ )

on R
d
t × R

d
τ is also a phase function on R

2d
z × R

d
τ . Therefore we can apply Proposi-

tion 3.22 in the case n = 2d with

a(t, ξ, τ ) := f (t + τ/2)f (t − τ/2) ∈ S2m
ρ,0(R

2d
t,ξ × R

d
τ )

and phase function on R
2d
t,ξ × R

d
ξ

φ(t, ξ, τ ) = −2πξ · τ.
Thus we have Wf = I a

φ , and

∇zφ = (0,−2πτ) ∈ R
2d,

∇τ φ = −2πξ ∈ R
d ,

which means that (3.18) implies the inclusion (3.19). �

4 Restriction of the Wigner Distribution to Fixed Time

In this section we shall study the restriction operator of a distribution F ∈ D ′(R2d)

to the submanifold t × R
d ⊆ R

2d for t ∈ R
d fixed, which is denoted

RtF = F(t, ·). (4.1)

This map is not well defined for any F ∈ D ′(R2d). But according to [17, Corol-
lary 8.2.7], the restriction (4.1) gives a well defined element in D ′(Rd) provided
WF(F) ∩ Nt = ∅, where

Nt = (t × R
d) × (Rd × 0) (4.2)

is the normal bundle of the submanifold t × R
d ⊆ R

2d .
For f ∈ WFW 
=(Rd) we have WF(Wf ) ∩ Nt = ∅ for any t ∈ R

d , so [17, Corol-
lary 8.2.7] implies that the restriction Wf (t, ·) gives an element in D ′(Rd) for any
t ∈ R

d .
The distribution f = δ0 on R

d has Wigner distribution Wf = δ0 ⊗ 1 [15], which
has wave front set

WF(Wf ) = (0 × R
d) × ((Rd \ 0) × 0).

This example shows that WF(Wf ) ∩ Nt = ∅ is not always satisfied.
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We will study the continuity properties of the restriction operator (4.1), and for
that purpose we need the following definitions and results from [17]. For a closed set

 ⊆ R

d × (Rd \ 0), conic in the second variable, we define

D ′

(Rd) = {u ∈ D ′(Rd), WF(u) ⊆ 
}.

If u,uj ∈ D ′

(Rd) for 1 ≤ j < ∞ we say that uj → u in D ′


(Rd) provided

uj −→ u in D ′(Rd), and (4.3)

sup
ξ∈V

|ξ |n|F (ϕ(u − uj ))(ξ)| → 0, j → ∞, ∀n ∈ N, (4.4)

for a closed conic set V ⊆ R
d and ϕ ∈ C∞

c (Rd) such that


 ∩ (suppϕ × V ) = ∅.

It is sometimes more convenient to use instead of (4.4) the equivalent requirement
[17]

sup
j

sup
ξ∈V

|ξ |n|ϕ̂uj (ξ)| < ∞, ∀n ∈ N. (4.4)′

For a closed set 
 ⊆ R
2d × (R2d \ 0), conic in the second variable, we set


t = {(ξ, x) ∈ R
2d : ∃η ∈ R

d : (t, ξ ;η,x) ∈ 
}.
We will use [17, Theorem 8.2.4]. Let 
 ⊆ R

2d × (R2d \ 0) be a closed set, conic
in the second variable, such that 
 ∩ Nt = ∅. Then [17, Theorem 8.2.4] implies in
particular that Rt is a continuous map

Rt : D ′

(R2d) �→ D ′


t
(Rd). (4.5)

Next we study F ∈ C∞
slow(R2d) and the following two operators: (i) the restriction

(4.1) to the submanifold t × R
d ⊆ R

2d for t ∈ R
d fixed, and (ii) Fourier transfor-

mation in the second variable F �→ F2F . The following results say that these two
operators commute for F ∈ C∞

slow(R2d). First we need a lemma.

Lemma 4.1 Let F ∈ C∞
slow(R2d), 
 = R

2d × U where

U = {(η, x) ∈ R
2d \ 0 : |η| ≤ |x|}, (4.6)

let χ ∈ C∞
c (Rd), χ ≥ 0, χ(x) = 1 for |x| ≤ 1, χj (x) = χ(x/j), j > 0 integer, and

Fj = Fχj ⊗ χj . Then we have

F2Fj −→ F2F in D ′

(R2d) as j → ∞. (4.7)

Proof If F2ϕ ∈ C∞
c (R2d) then ϕ ∈ S (R2d) and we have, since Fj → F in S ′(R2d)

as j → ∞
(F2Fj ,F2ϕ) = (Fj ,ϕ) → (F,ϕ) = (F2F,F2ϕ), j → ∞.
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Thus F2Fj → F2F in D ′(R2d) as j → ∞ and the first criterion (4.3) for (4.7) is
proved. To prove the second criterion we use (4.4)′. Since F−1(g(−η − ·)) = M−ηĝ

for g ∈ S (Rd) we have for ϕ ∈ C∞
c (R2d)

F (ϕF2Fj )(η, x) = F−1(ϕF2Fj )(−η,−x)

= F−1
1 Fj ∗ F−1ϕ(−η,−x)

= 〈F−1
1 Fj ,F

−1ϕ(−η − ·,−x − ·)〉
= 〈Fj ,F

−1
1 (F−1ϕ(−η − ·,−x − ·))〉

= 〈Fj ,M−η,0F
−1
2 ϕ(·,−x − ·)〉

=
∫∫

R2d

F (t, τ )e−2πit ·ηF−1
2 ϕ(t,−x − τ)χj (t)χj (τ ) dt dτ

=
∫∫

R2d

F (t, τ )e−2πit ·ηF−1
2 ϕ(t,−x − τ)χj (τ ) dt dτ,

for j ≥ J for sufficiently large J . In fact, the last equality holds for such j since
F−1

2 ϕ(·, y) has support in a fixed compact set, independent of y ∈ R
d . The assump-

tion implies that

|∂α
t F (t, τ )| ≤ Cα〈t〉N 〈τ 〉N, α ∈ N

d, (4.8)

for some Cα,N > 0. By means of integration by parts, (4.8) and the observation that
F−1

2 ϕ ∈ S , we obtain for j ≥ J and any α ∈ N
d

∣

∣ηαF (ϕF2Fj )(η, x)
∣

∣

=
∣

∣

∣

∣

∫∫

R2d

(−2πi)−|α|∂α
t

(

e−2πit ·η)F(t, τ )F−1
2 ϕ(t,−x − τ)χj (τ ) dt dτ

∣

∣

∣

∣

≤
∑

β≤α

Cβ

∫∫

R2d

∣

∣∂
β
t F (t, τ )

∣

∣

∣

∣∂
α−β
t F−1

2 ϕ(t,−x − τ)
∣

∣dt dτ

≤
∑

β≤α

Cβ

∫∫

R2d

〈t〉N 〈τ 〉N 〈t〉−N−d−1〈τ + x〉−N−d−1 dt dτ

≤ Cα

∑

β≤α

〈x〉N+d+1
∫∫

R2d

〈t〉−d−1〈τ 〉N−N−d−1 dt dτ

≤ Cα〈x〉N+d+1,

for some constant Cα > 0. This gives for j ≥ J

∣

∣ηαF (ϕF2Fj )(η, x)
∣

∣

= 〈η〉−2(N+d+1)
∣

∣〈η〉2(N+d+1)ηαF (ϕF2Fj )(η, x)
∣

∣
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= 〈η〉−2(N+d+1)

∣

∣

∣

∣

∑

|γ |≤2(N+d+1)

Cγ ηα+γ F (ϕF2Fj )(η, x)

∣

∣

∣

∣

≤ Cα〈η〉−2(N+d+1)〈x〉N+d+1, α ∈ N
d , Cα > 0. (4.9)

Now let V ⊆ R
d be a closed conic set and let ϕ ∈ C∞

c (R2d) \ 0 satisfy

∅ = 
 ∩ (suppϕ × V ) = suppϕ × (U ∩ V ),

which by (4.6) means that (η, x) ∈ V \ 0 ⇒ |x| < |η|. Let n ∈ N \ 0 and let (η, x) ∈
V \ 0. Then we have

|(η, x)|n = (|η|2 + |x|2)n/2 ≤ 2n/2|η|n ≤ (2d)n/2 max
α:|α|=n

|ηα|.

For j ≥ J (4.9) thus implies

sup
(η,x)∈V

|(η, x)|n ∣

∣F (ϕF2Fj )(η, x)
∣

∣

≤ Cn sup
(η,x)∈V

sup
|α|=n

∣

∣ηαF (ϕF2Fj )(η, x)
∣

∣

≤ Cn sup
(η,x)∈V

sup
|α|=n

Cα〈η〉−2(N+d+1)〈x〉N+d+1

≤ Cn sup
(η,x)∈V

sup
|α|=n

Cα〈η〉−2(N+d+1)〈η〉N+d+1

≤ Cn (4.10)

for some Cn > 0, independently of j ≥ J . This means that the second criterion (4.4)′
for the convergence (4.7) has been proved.

It remains to verify that F2Fj ,F2F ∈ D ′

(R2d). If (η, x) /∈ U and (η, x) 
= 0 then

|x| < |η| and there is an open conic neighborhood U ′ containing (η, x) of the form
U ′ = {(η, x) : |x| < C|η|} for C > 0 such that U ∩ U ′ = ∅. The estimate (4.10) with
V replaced by U ′ shows that WF(F2Fj ) ⊆ 
. Likewise WF(F2F) ⊆ 
 so we have
proved F2Fj ,F2F ∈ D ′


(R2d). �

Proposition 4.2 If F ∈ C∞
slow(R2d) and t ∈ R

d then we have

F (F (t, ·)) = (F2F)(t, ·) in D ′(Rd). (4.11)

Proof The result (4.11) says that F ◦Rt = Rt ◦F2 on C∞
slow(R2d), where the equality

is understood in D ′(Rd). Let U ⊆ R
2d \ 0 be defined by (4.6). Then 
 = R

2d × U is
a closed set, conic in the second variable, and by (4.2) we have


 ∩ Nt = (t × R
d) × U ∩ (Rd × 0) = ∅.

Thus the restriction (4.1) is a continuous map between distribution spaces according
to (4.5). By Lemma 4.1 and (4.5) we have (F2F)(t, ·) ∈ D ′(Rd).
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Let χ ∈ C∞
c (Rd), χ ≥ 0, χ(x) = 1 for |x| ≤ 1, χj (x) = χ(x/j) and Fj = Fχj ⊗

χj ∈ C∞
c (R2d). We have

Fj (t, ·) → F(t, ·) in S ′(Rd). (4.12)

Now we use Lemma 4.1. The convergence (4.7), (4.5) and (4.3) give

(F2Fj )(t, ·) −→ (F2F)(t, ·) in D ′(Rd) as j → ∞.

For ϕ̂ ∈ C∞
c (Rd), this finally gives, using (4.12) and Fubini’s theorem,

(F (F (t, ·)), ϕ̂ ) = (F (t, ·), ϕ)

= lim
j→∞(Fj (t, ·), ϕ)

= lim
j→∞

∫

Rd

Fj (t, τ )ϕ(τ)dτ

= lim
j→∞

∫

Rd

Fj (t, τ )

(∫

Rd

ϕ̂(ξ)e2πiτ ·ξ dξ

)

dτ

= lim
j→∞

∫

Rd

(F2Fj )(t, ξ)ϕ̂(ξ)dξ

= lim
j→∞((F2Fj )(t, ·), ϕ̂ )

= ((F2F)(t, ·), ϕ̂ ). �

If f ∈ C∞
slow(Rd) then f ⊗ f ◦ κ ∈ C∞

slow(R2d), so the definition of the Wigner
distribution (2.1) combined with Proposition 4.2 gives the following byproduct.

Corollary 4.3 If f ∈ C∞
slow(Rd) and t ∈ R

d then we have

F (f ⊗ f ◦ κ(t, ·)) = Wf (t, ·) in D ′(Rd).

Finally Lemma 3.5 gives

Corollary 4.4 If f ∈ FE ′(Rd) and t ∈ R
d then we have

F (f ⊗ f ◦ κ(t, ·)) = Wf (t, ·) in D ′(Rd).

5 A Wigner Distribution Moment Formula for the Instantaneous Frequency

Denote the modulus of z = x + iy ∈ C by r = |z| and the argument (or phase) by
ϕ = arg z. The polar-to-rectangular coordinate transformation on R

2 � C is defined
by (x, y) = g(r,ϕ) = (r cosϕ, r sinϕ). Denote the positive reals by R+. Then each
of the restrictions g1 and g2, defined respectively by

g1 := g|R+×(−π,π), g2 := g|R+×(0,2π),
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is an analytic map with an analytic inverse, mapping surjectively on the open sets U1
and U2, respectively, defined by

g1 : R+ × (−π,π) �→ C \ {(−∞,0] + i0} := U1,

g2 : R+ × (0,2π) �→ C \ {[0,+∞) + i0} := U2.

The Jacobian of g is

Dg =
(

∂x
∂r

∂x
∂ϕ

∂y
∂r

∂y
∂ϕ

)

=
(

cosϕ −r sinϕ

sinϕ r cosϕ

)

which is invertible with inverse

(Dg)−1 = 1

r

(

r cosϕ r sinϕ

− sinϕ cosϕ

)

= 1

x2 + y2

(

x
√

x2 + y2 y
√

x2 + y2

−y x

)

provided r > 0. The inverse function theorem applied to each of the restrictions g1
and g2 thus gives

∂ arg z

∂x
= −y

x2 + y2
,

∂ arg z

∂y
= x

x2 + y2
, x + iy ∈ U1 ∪ U2. (5.1)

(Note that g−1
1 (z) and g−1

2 (z) have arguments that differ by 2π for Im z < 0, but this
does not affect the partial derivatives of arg z.)

Let f = u + iv be a function f : R
d �→ C. If f is continuous then Uf,1 :=

f −1(U1) and Uf,2 := f −1(U2) are open sets, and it follows from above that each
of argf = (g−1

1 ◦ f )2 : Uf,1 �→ R and argf = (g−1
2 ◦ f )2 : Uf,2 �→ R are continu-

ous. Here (g−1
1 ◦ f )2 means the second component of g−1

1 ◦ f . If f ∈ C1(Rd) then,
likewise, each of argf : Uf,1 �→ R and argf : Uf,2 �→ R are differentiable. From
(5.1) and the chain rule we obtain the partial derivative with respect to tj , in both
cases, as

∂ argf (t)

∂tj
= ∂ arg z

∂x

∣

∣

∣

z=f (t)

∂u(t)

∂tj
+ ∂ arg z

∂y

∣

∣

∣

z=f (t)

∂v(t)

∂tj

= u(t)∂tj v(t) − v(t)∂tj u(t)

u2(t) + v2(t)
(5.2)

for t ∈ Uf,1 ∪ Uf,2 = {s ∈ R
d : f (s) 
= 0} and 1 ≤ j ≤ d . Thus

∇ argf (t) = u(t)∇v(t) − v(t)∇u(t)

u2(t) + v2(t)
, f (t) 
= 0.

The instantaneous frequency [1, 3, 5] of f is defined as the normalized gradient
(2π)−1∇ argf with domain {t : f (t) 
= 0}. For a character t �→ e2πiξ ·t with fre-
quency ξ the instantaneous frequency is thus ξ constantly, which means that the
instantaneous frequency is a generalization of the concept of constant (global) fre-
quency.
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There is a connection between the instantaneous frequency of a sufficiently smooth
and decaying function and its Wigner distribution: The instantaneous frequency can
be written, for fixed t ∈ R

d , as a normalized frequency moment of order one of the
Wigner distribution. This result is well known in the engineering and physics litera-
ture [1, 3, 5] where it is derived heuristically without precise assumptions on f . In
the following result we give a sufficient condition on f for the formula to hold.

Proposition 5.1 Suppose ε > 0 and f ∈ H
d
2 +1+ε(Rd). Then for any t ∈ R

d such
that f (t) 
= 0 we have

1

2π
∇ argf (t) =

∫

Rd ξWf (t, ξ)dξ
∫

Rd Wf (t, ξ)dξ
. (5.3)

Proof First we note that f ∈ H
d
2 +1+ε ⊆ L2 and (3.3) imply that Wf ∈ C0(R

2d).
Hence the restriction of the Wigner distribution Wf �→ Wf (t, ·) is a well defined
continuous map C0(R

2d) �→ C0(R
d) for any t ∈ R

d .

Let t ∈ R
d be fixed arbitrary such that f (t) 
= 0. The assumption f ∈ H

d
2 +1+ε(Rd)

and the Sobolev embedding theorem imply that

f, ∂jf ∈ C0(R
d), 1 ≤ j ≤ d. (5.4)

The Cauchy–Schwarz inequality and the fact that f ∈ L2 give

g := f (t + ·/2)f (t − ·/2) ∈ L1(Rd). (5.5)

The assumption f ∈ H
d
2 +1+ε(Rd) also gives

∫

Rd

〈ξ 〉| ̂f (ξ)|dξ ≤
(∫

Rd

〈ξ 〉2( d
2 +1+ε)| ̂f (ξ)|2dξ

)1/2 (∫

Rd

〈ξ 〉−d−2εdξ

)1/2

< ∞.

(5.6)
Hence ̂f ∈ L1(Rd) and since F (f (t + ·/2))(ξ) = 2dMt

̂f (2ξ) we have
F (f (t + ·/2)) ∈ L1(Rd). Thus F (f (t − ·/2)) = F (f (t + ·/2)) implies that

Fg = F (f (t + ·/2)) ∗ F (f (t + ·/2)) ∈ L1(Rd). (5.7)

By (5.4), (5.5) and (5.7) we have g ∈ (C0 ∩ L1 ∩ FL1)(Rd), which means that the
conditions for Fourier’s inversion formula to hold pointwise for the function g are
satisfied (cf. [27]). In particular

|f (t)|2 = g(0) =
∫

Rd

ĝ(ξ)dξ =
∫

Rd

Wf (t, ξ)dξ, (5.8)

in the last step using the definition (2.1).
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Concerning the numerator in (5.3) we obtain using integration by parts and the
fact (5.4) that f vanishes at infinity

ξjWf (t, ξ) = −1

2πi

∫

Rd

f (t + τ/2)f (t − τ/2) ∂τj
(e−2πiτ ·ξ ) dτ

= 1

2πi

∫

Rd

e−2πiτ ·ξ ∂τj

(

f (t + τ/2)f (t − τ/2)
)

dτ (5.9)

for 1 ≤ j ≤ d . Let us study the function gj := ∂jf (t + ·/2)f (t − ·/2) and

hj (τ ) := ∂τj

(

f (t + τ/2)f (t − τ/2)
)

= 1

2
(gj (τ ) − gj (−τ))

for 1 ≤ j ≤ d fixed. We have ξj
̂f (ξ) ∈ L2(Rd) and thus ∂jf ∈ L2(Rd). Since f ∈

L2(Rd) the Cauchy–Schwarz inequality gives gj ∈ L1(Rd). From above we know
that F (f (t − ·/2)) ∈ L1(Rd) and likewise we have

F (∂jf (t + ·/2))(ξ) = 2de4πiξ ·t
̂∂jf (2ξ) = 2d2πie4πiξ ·t2ξj

̂f (2ξ) ∈ L1(Rd)

because of (5.6). Thus

ĝj = F (∂jf (t + ·/2)) ∗ F (f (t − ·/2)) ∈ L1(Rd).

Invoking (5.4) we have proved that gj ∈ (C0 ∩ L1 ∩ FL1)(Rd) which means that
Fourier’s inversion formula holds for gj and thus hj . Integration of (5.9) gives, de-
noting f = u + iv,

∫

Rd

ξjWf (t, ξ)dξ = 1

2πi

∫

Rd

Fhj (ξ)dξ = hj (0)

2πi

= gj (0) − gj (0)

4πi

= 1

4πi

(

∂jf (t)f (t) − ∂jf (t)f (t)
)

= 1

2π

(

u(t)∂j v(t) − ∂ju(t)v(t)
)

. (5.10)

Finally (5.3) follows from a combination of (5.2), (5.8) and (5.10). �

Next we will prove a version of Proposition 5.1 for functions f ∈ FE ′(Rd). Note
that this assumption is neither a generalization nor a special case of the assumptions
of Proposition 5.1. Here we need the results of Sect. 4.

Proposition 5.2 If f ∈ FE ′(Rd) then

1

2π
∇ argf (t) = 〈Wf (t, ·), ξ 〉

〈Wf (t, ·),1〉 , f (t) 
= 0. (5.11)
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Proof Let f = u + iv, and let t ∈ R
d be fixed such that f (t) 
= 0. Set

gt := f (t + ·/2)f (t − ·/2).

By Corollary 4.4 we have Fgt = Wf (t, ·) in D ′(Rd). The assumption ̂f ∈ E ′(Rd)

implies that Fgt = F (f (t +·/2))∗F (f (t − ·/2)) ∈ E ′(Rd), and Fgt is supported
in a fixed compact set independent of t ∈ R

d . Since Fgt = Wf (t, ·) in D ′(Rd) we
have Wf (t, ·) ∈ E ′(Rd).

Because Wf (t, ·) has compact support, 〈Fgt ,1〉 and 〈Fgt , ξ 〉 are well defined,
where 〈Fgt , ξ 〉 means the vector (〈Fgt , ξj 〉)dj=1 and ξj : R

d �→ R is the j th coordi-

nate function. The inverse Fourier transform of a distribution u ∈ E ′(Rd) is the entire
function x �→ 〈u, e2πix·〉 [17, Theorem 7.1.14] so we have

gt (τ ) = F−1Fgt (τ ) = 〈Fgt , e
2πiτ ·〉

and in particular

〈Wf (t, ·),1〉 = 〈Fgt ,1〉 = gt (0) = |f (t)|2 = u2(t) + v2(t). (5.12)

In a similar way we have for 1 ≤ j ≤ d

〈Wf (t, ·), ξj 〉 = 〈ξjFgt ,1〉

= 1

2πi
〈F (∂j gt ),1〉

= ∂jgt (0)

2πi

= 1

4πi

(

∂jf (t)f (t) − f (t)∂jf (t)
)

= 1

2π

(

u(t)∂j v(t) − ∂ju(t)v(t)
)

. (5.13)

Now (5.11) follows from (5.12), (5.13) and (5.2). �

Finally we give a generalization of Proposition 5.2.

Proposition 5.3 Let

f (t) = exp(πit · At)h(t)

where A ∈ R
d×d is symmetric, and h ∈ FE ′(Rd). Then

1

2π
∇ argf (t) = 〈Wf (t, ·), ξ 〉

〈Wf (t, ·),1〉 , f (t) 
= 0. (5.14)

Proof Let t ∈ R
d be fixed and satisfy f (t) 
= 0. We have

argf (t) = argh(t) + πt · At,

∇ argf (t) = ∇ argh(t) + 2πAt,
(5.15)
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and (see (3.15))

Wf (t, ξ) = Wh(t, ξ − At).

It follows that Wf (t, ·) ∈ D ′(Rd) from h ∈ FE ′(Rd), Lemma 3.5, Propositions 3.13,
3.17(ii), and the fact that for f ∈ WFW 
=(Rd) the restriction Wf (t, ·) is well defined
in D ′(Rd). We have

〈Wf (t, ·),1〉 = 〈Wh(t, ·),1〉 (5.16)

and

〈Wf (t, ·), ξj 〉 = 〈Wh(t, · − At), ξj 〉
= 〈Wh(t, ·), ξj 〉 + (At)j 〈Wh(t, ·),1〉. (5.17)

Finally (5.16), (5.17), Proposition 5.2 and (5.15) give

〈Wf (t, ·), ξj 〉
〈Wf (t, ·),1〉 = 〈Wh(t, ·), ξj 〉 + (At)j 〈Wh(t, ·),1〉

〈Wh(t, ·),1〉

= 〈Wh(t, ·), ξj 〉
〈Wh(t, ·),1〉 + (At)j

=
(

1

2π
∇ argh(t) + At

)

j

=
(

1

2π
∇ argf (t)

)

j

. �
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