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Abstract Let S be a hypersurface in R
3 which is the graph of a smooth, finite type

function φ, and let μ = ρ dσ be a surface carried measure on S, where dσ denotes
the surface element on S and ρ a smooth density with sufficiently small support.
We derive uniform estimates for the Fourier transform μ̂ of μ, which are sharp ex-
cept for the case where the principal face of the Newton polyhedron of φ, when
expressed in adapted coordinates, is unbounded. As an application, we prove a sharp
Lp-L2 Fourier restriction theorem for S in the case where the original coordinates
are adapted to φ. This improves on earlier joint work with M. Kempe.

Keywords Oscillatory integral · Newton diagram · Fourier restriction
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1 Introduction

The goal of this article is to improve on two results from our previous article [11]
concerning uniform estimates for two-dimensional oscillatory integrals with smooth,
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finite type phase functions, and Lp-L2 Fourier restriction for smooth, finite type hy-
persurfaces S in R

3 which are locally the graph of a function φ in adapted coordi-
nates. Note that we may and shall assume that φ(0,0) = 0, ∇φ(0,0) = 0.

More precisely, the estimate in Theorem 1.9 of [11] for the Fourier transform of a
surface carried measure of S can be re-written as
∣
∣
∣
∣

∫

R2
ei(ξ3φ(x1,x2)+ξ1x1+ξ2x2)η(x) dx

∣
∣
∣
∣
≤ C ‖η‖C3(R2) (log(2 + |ξ |))(1 + |ξ |)−1/h,

where h is the so-called height of φ in the sense of Varchenko (we shall recall some
basic notions like adaptedness of coordinates, height, etc., subsequently).

In Theorems 1.1 and 1.3, we shall identify exactly when the logarithmic factor in
this estimate will be present, with the exception of the case where the principal face of
the Newton polyhedron of φ, when expressed in adapted coordinates, is unbounded
and φ is non-analytic. Examples by A. Iosevich and E. Sawyer show that a different
behavior can indeed occur in the latter case.

Secondly, we shall improve on the following Fourier restriction estimate from
Corollary 1.10 in [11]: Assume that the given coordinates are adapted to φ. Then

(∫

S

|f̂ |2 ρ dσ

)1/2

≤ Cp‖f ‖Lp(R3), f ∈ S(R3), (1.1)

holds true for every p such that 1 ≤ p < (2h+ 2)/(2h+ 1), provided that the support
of the smooth density ρ lies in a sufficiently small neighborhood of the origin.

In Theorem 1.7 we shall prove that this restriction estimate holds true also at the
endpoint p = (2h + 2)/(2h + 1), provided that the coordinates (x1, x2) are adapted
to φ, possibly after applying a linear change of coordinates.

If the coordinates (x1, x2) are not adapted to φ, then we will show in a sequel to
this article that the restriction estimate can be extended to an even wider range of p’s.

We shall build in this article on the results and techniques developed in [12] and
[11], which will be our main references, also for cross-references to earlier and related
work. Let us first recall some basic notions from [12], which essentially go back to
A.N. Varchenko [21].

Let φ be a smooth real-valued function defined on a neighborhood of the origin in
R

2 with φ(0,0) = 0, ∇φ(0,0) = 0, and consider the associated Taylor series

φ(x1, x2) ∼
∞
∑

j,k=0

cjkx
j

1 xk
2

of φ centered at the origin. The set

T (φ) :=
{

(j, k) ∈ N
2 : cjk = 1

j !k!∂
j

1 ∂k
2 φ(0,0) �= 0

}

will be called the Taylor support of φ at (0,0). We shall always assume that

T (φ) �= ∅,
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i.e., that the function φ is of finite type at the origin. The Newton polyhedron N (φ)

of φ at the origin is defined to be the convex hull of the union of all the quadrants
(j, k) + R

2+ in R
2, with (j, k) ∈ T (φ). The associated Newton diagram Nd(φ) in the

sense of Varchenko [21] is the union of all compact faces of the Newton polyhedron;
here, by a face, we shall mean an edge or a vertex.

We shall use coordinates (t1, t2) for points in the plane containing the Newton
polyhedron, in order to distinguish this plane from the (x1, x2)-plane.

The Newton distance, or shorter distance d = d(φ) between the Newton polyhe-
dron and the origin in the sense of Varchenko is given by the coordinate d of the
point (d, d) at which the bi-sectrix t1 = t2 intersects the boundary of the Newton
polyhedron.

The principal face π(φ) of the Newton polyhedron of φ is the face of minimal
dimension containing the point (d, d). Deviating from the notation in [21], we shall
call the series

φpr(x1, x2) :=
∑

(j,k)∈π(φ)

cjkx
j

1 xk
2

the principal part of φ. In case that π(φ) is compact, φpr is a mixed homogeneous
polynomial; otherwise, we shall consider φpr as a formal power series.

Note that the distance between the Newton polyhedron and the origin depends
on the chosen local coordinate system in which φ is expressed. By a local coordinate
system at the origin we shall mean a smooth coordinate system defined near the origin
which preserves 0. The height of the smooth function φ is defined by

h(φ) := sup{dx},
where the supremum is taken over all local coordinate systems x = (x1, x2) at the
origin, and where dx is the distance between the Newton polyhedron and the origin
in the coordinates x.

A given coordinate system x is said to be adapted to φ if h(φ) = dx . In [12] we
proved that one can always find an adapted local coordinate system in two dimen-
sions, thus generalizing the fundamental work by Varchenko [21] who worked in the
setting of real-analytic functions φ. For real analytic functions φ, an alternative proof
of Varchenko’s result, based on Puiseux series expansions of roots and a clustering
of roots has been given by D.H. Phong, E.M. Stein and J. Sturm in [17]. Our proof in
the smooth case in [12] makes use of ideas from both approaches.

Following [21] (with as slight modification), we next define what we like to call
Varchenko’s exponent ν(φ) ∈ {0,1} as follows (this number had been identified by
Varchenko in [21] as what Karpushkin calls the “multiplicity of the oscillation of φ

at (0,0)” in [15]):
If there exists an adapted local coordinate system y near the origin such that the

principal face π(φa) of φ, when expressed by the function φa in the new coordinates
(i.e. φ(x) = φa(y)), is a vertex, and if h(φ) ≥ 2, then we put ν(φ) := 1; otherwise,
we put ν(φ) := 0.

As has been shown by Varchenko in [21], the number ν(φ) arises as the expo-
nent of a logarithmic factor in the principal part of the asymptotic expansion of two-
dimensional oscillatory integrals with real analytic phase functions φ.
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Analogously, we can prove the following uniform estimate for two-dimensional
oscillatory integrals with smooth, finite type phase functions φ, which improves on
Theorem 11.1 in [11].

Theorem 1.1 Let φ be a smooth, real-valued phase function of finite type, defined
near the origin, as before, and let h := h(φ), ν := ν(φ). Then there exist a neigh-
borhood 
 ⊂ R

2 of the origin and a constant C such that for every η ∈ C∞
0 (
) the

following estimate holds true for every ξ ∈ R
3:

∣
∣
∣
∣

∫

R2
ei(ξ3φ(x1,x2)+ξ1x1+ξ2x2)η(x) dx

∣
∣
∣
∣
≤ C ‖η‖C3(R2) (log(2 + |ξ |))ν(1 + |ξ |)−1/h.

(1.2)

Remarks 1.2

(a) For some special classes of hypersurfaces, related results have been derived by
L. Erdös and M. Salmhofer in [8], which, however, are not necessarily uniform
in all directions. For estimates with ξ1 = ξ2 = 0, we refer to the recent work of
M. Greenblatt [9].

(b) For real analytic phase functions φ, if we restrict ourselves to the direction where
ξ1 = ξ2 = 0, then the asymptotic expansion of the corresponding oscillatory in-
tegrals in [21] shows that the estimate (1.2) is essentially sharp as an estimate in
terms of |ξ |.

(c) For real analytic phase functions, our result is covered by Karpushkin’s work
[15], who proved the following:

If φ is a real analytic function defined near the origin with φ(0,0) = 0,
∇φ(0,0) = 0, and if r is a real analytic function with sufficiently small norm
(in the space of real analytic functions) then

∣
∣
∣
∣

∫

R2
eiλ(φ(x)+r(x))η(x) dx

∣
∣
∣
∣
≤ C‖η‖C3

(log(2 + |λ|))ν
(2 + |λ|)1/h

, λ ∈ R,

provided the amplitude η is supported in a sufficiently small neighborhood of the
origin. Moreover, the constant C then does not depend on the function r . These
estimates also imply closely related stability results for integrals

∫

B

|φ(x)|−δ dx

over compact balls B , under small analytic perturbations of φ. A simpler, alter-
native proof to such stability estimates has been devised in the work of Phong,
Stein and Sturm [17].

(d) If h(φ) < 2, results analogous to Karpushkin’s have been obtained by J.J. Duis-
termaat [6] in the smooth setting. In this case one always has ν(φ) = 0.

(e) If h(φ) = 2, and if the principal part of φ, when expressed in an adapted coor-
dinate system, has a critical point of finite multiplicity at the origin (so that it
is isolated), then an analogue to Karpushkin’s estimate has been established by
Colin de Verdière [3] in the smooth setting. Notice that if the principal part of φ
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has an isolated critical point at the origin, then the coordinate system is adapted
to φ and ν(φ) = 0.

The next result, which improves on corresponding results by M. Greenblatt, shows
in particular that, in most cases, the uniform estimates from Theorem 1.1 are sharp if
(ξ1, ξ2) = (0,0).

Theorem 1.3 Let us put

J±(λ) :=
∫

R2
e±iλφ(x1,x2)η(x) dx, λ > 0,

with φ and η as in Theorem 1.1. If the principal face π(φa) of φ, when given in
adapted coordinates, is a compact set (i.e., a compact edge or a vertex), then there
exists a neighborhood 
 of the origin such that for every η supported in 
 the fol-
lowing limits

lim
λ→+∞

λ1/h

(logλ)ν
J±(λ) = c± η(0) (1.3)

exist, where the constants c± are non-zero and depend on the phase function φ only.

Remarks 1.4

(a) The proof of Theorem 1.3 reveals the following additional facts:
If ν(φ) = 0 in the theorem, then the principal face π(φa) is a compact edge,

and the constants c± are completely determined by the principal part φa
pr of φa .

And, if ν(φ) = 1, and if we work in super-adapted coordinates in the sense of
Greenblatt (as explained in Lemma 3.4), so that in particular π(φa) consists of the
vertex (h,h), then the constants c± are completely determined by the principal
part φa

pr of φa and the slopes of those compact edges of N (φa) which contain
this vertex.

(b) An analogous result for real analytic phase functions φ has been proven by
M. Greenblatt (Theorem 1.2 in [9]). For non-analytic, but smooth and finite type
φ, the following weaker result had been obtained in Theorem 1.6b of the same
article:

lim sup
λ→+∞

∣
∣
∣
∣

λ1/h

(logλ)ν
J±(λ)

∣
∣
∣
∣
> 0.

(c) If the principal face π(φa) is unbounded, then the estimate in Theorem 1.1 may
fail to be sharp, if φ is non-analytic, as the following class of examples by A. Io-
sevich and E. Sawyer [13] shows: If

φ(x1, x2) := x2
2 + e−1/|x1|α ,

with α > 0, then

|J±(λ)| 
 1

λ1/2 logλ1/α
as λ → +∞,
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whereas ν(φ) = 0. These examples also indicate that a precise determination of
the asymptotic behavior of J±(λ) may be difficult when the principal face is non-
compact.

(d) For real-analytic phase functions depending on more than two variables and satis-
fying an appropriate non-degeneracy condition, the explicit form of the principal
part of the asymptotic expansion of the corresponding oscillatory integrals has
been obtained by J. Denef, J. Nicaise and P. Sargos [4].

The existence of an adapted coordinate system in which the principal face is a
vertex is a priori not so easily verified, but there exists an equivalent, more accessible
condition. In order to describe this, we first recall that if the principal face of the
Newton polyhedron N (φ) is a compact edge, then it lies on a unique line κ1t1 +
κ2t2 = 1, with κ1, κ2 > 0. By permuting the coordinates x1 and x2, if necessary, we
shall always assume that κ1 ≤ κ2. We shall call this weight κ = (κ1, κ2) the principal
weight associated to φ, and denote it also by κpr. It induces dilations δr (x1, x2) :=
(rκ1x1, r

κ2x2), r > 0, on R
2, so that the principal part φpr of φ is κ- homogeneous

of degree one with respect to these dilations, i.e., φpr(δr (x1, x2)) = rφpr(x1, x2) for
every r > 0, and

d = 1

κ
pr
1 + κ

pr
2

= 1

|κpr| . (1.4)

Denote by

m(φpr) := ordS1φpr

the maximal order of vanishing of φpr along the unit circle S1 centered at the origin.
We also recall from [12] that the homogeneous distance of a κ-homogeneous poly-

nomial P (such as P = φpr) is given by dh(P ) := 1/(κ1 + κ2) = 1/|κ|, and that

h(P ) = max{m(P ), dh(P )}. (1.5)

According to [12], Corollary 4.3 and Corollary 2.3, the coordinates x are adapted
to φ if and only if one of the following conditions is satisfied:

(a) The principal face π(φ) of the Newton polyhedron is a compact edge, and
m(φpr) ≤ d(φ).

(b) π(φ) is a vertex.
(c) π(φ) is an unbounded edge.

We like to mention that in case (a) we have h(φ) = h(φpr) = dh(φpr). Notice also
that (a) applies whenever π(φ) is a compact edge and κ2/κ1 /∈ N; in this case we even
have m(φpr) < d(φ) (cf. [12], Corollary 2.3).

Lemma 1.5 The following conditions on φ are equivalent:

(a) There exists an adapted local coordinate system y at the origin such that the
principal face π(φa) is a vertex.

(b) If y is any adapted local coordinate system at the origin, then either π(φa) is a
vertex, or a compact edge and m(φa

pr) = d(φa).
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Consider for example the function φ(x1, x2) := (x2 − 2x2
1)2(x2 − x2

1). Then
φ = φpr, π(φ) is a compact edge and m(φpr) = 2 = d(φ), so that case (b) above
applies and the coordinates x are adapted to φ. Moreover, ν(φ) = 1. If we intro-
duce new coordinates y given by y1 := x1, y2 := x2 − 2x2

1 , then φ(x) = φ̃(y), where
φ̃(y) = y2

2(y2 + y2
1). The principal face of N (φ̃) is the vertex (2,2), so that also the

coordinates y are adapted.
In the case where the coordinates are not adapted to φ, we see that the principal

face π(φ) is a compact edge such that

m1 := κ2/κ1 ∈ N. (1.6)

Then, by Theorem 5.1 in [12], there exists a smooth real-valued function ψ of the
form

ψ(x1) = b1x
m1
1 + O(x

m1+1
1 ), (1.7)

with b1 �= 0, defined on a neighborhood of the origin such that an adapted coordinate
system (y1, y2) for φ is given locally near the origin by means of the (in general
non-linear) shear

y1 := x1, y2 := x2 − ψ(x1).

In these coordinates, φ is given by

φa(y) := φ(y1, y2 + ψ(y1)). (1.8)

As an immediate consequence of Theorem 1.1 we obtain uniform estimates for
the Fourier transform

ρ̂dσ (ξ) =
∫

S

e−iξ ·xρ(x) dσ (x), ξ ∈ R
3,

of surface carried measures on smooth, finite type hypersurfaces S in R
3. Here, dσ

denotes the Riemannian volume element on S.
If a point x0 on such a hypersurface S is given, which we may assume to be

the origin after a translation of coordinates, and if we represent S locally near x0 =
(0,0) as the graph x3 = φ(x1, x2) of smooth, finite type function φ with φ(0,0) = 0,
∇φ(0,0) = 0 as before, then we define the height of S at x0 by h(x0, S) := h(φ). This
notion is invariant under affine linear coordinate changes of the ambient space, as has
been shown in [11]. Similarly, we define ν(x0, S) := ν(φ). Denote by dσ the surface
element of S. Then we have the following improvement of Theorem 1.9 in [11]:

Corollary 1.6 Let S be a smooth hypersurface of finite type in R
3 and let x0 be a

fixed point on S. Then there exists a neighborhood U ⊂ S of the point x0 such that
for every ρ ∈ C∞

0 (U) the following estimate holds true:

|ρ̂dσ (ξ)| ≤ C‖ρ‖C3(S)(log(2 + |ξ |))ν(x0,S)(1 + |ξ |)−1/h(x0,S) for every ξ ∈ R
3.
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Our second result concerns Fourier restriction to S. We shall prove that the Lp-L2

Fourier restriction theorem of Corollary 1.10 in [11] also holds true at the endpoint, if
S is locally given as the graph of a function φ which is given in adapted coordinates:

Theorem 1.7 Let S be a smooth hypersurface of finite type in R
3, and let x0 be a

fixed point on S. Assume that, possibly after a translation of coordinates, x0 = 0, and
that S is locally near x0 given as the graph x3 = φ(x1, x2) of a smooth, finite type
function φ with φ(0,0) = 0,∇φ(0,0) = 0 as before.

We also assume that, after applying a suitable linear change of coordinates, the
coordinates (x1, x2) are adapted to φ, so that d = h, where d = d(φ) denotes the
Newton distance of φ and h = h = h(x0, S) = h(φ) its height. We then define the
critical exponent pc by

p′
c := 2h + 2, (1.9)

where p′ denotes the exponent conjugate to p, i.e., 1/p + 1/p′ = 1.
Then there exists a neighborhood U ⊂ S of the point x0 such that for every non-

negative density ρ ∈ C∞
0 (U) the Fourier restriction estimate

(∫

S

|f̂ |2 ρ dσ

)1/2

≤ Cp‖f ‖Lp(R3), f ∈ S(R3), (1.10)

holds true for every p such that

1 ≤ p ≤ pc. (1.11)

Moreover, if ρ(x0) �= 0, then the condition (1.11) on p is also necessary for the
validity of (1.10).

The second statement about sharpness had already been proven in [11], Sect. 12,
and is based, as usually, on Knapp type examples. The idea is very simple: if we
assume that the coordinates are adapted to φ and if, for instance, the principal face
of the Newton polyhedron of φ is a compact edge, then we can use the dilations δr

associated to the principal weight κpr to construct Knapp boxes by dilating a fixed
cube. Since the Jacobian of δr is given by r |κpr| = r1/d = r1/h (cf. (1.4)) and since φ

can be well-approximated by the homogeneous polynomial φpr, the necessity of the
condition (1.11) follows easily.

Remarks 1.8

(a) The case where the coordinates (x1, x2) are not adapted to φ will be treated in
a subsequent article. It has turned out that in this case the restriction estimate
(1.10) is valid in a wider range of p’s, with a critical exponent which is strictly
bigger than pc and which can be determined explicitly by means of Varchenko’s
algorithm (cf. [12]) for the construction of adapted coordinates.

(b) If the surface S is of finite line type and convex, and if the restriction property
(1.10) holds true also in the endpoint pc = (2h + 2)/(2h + 1), then it has been
shown by A. Iosevich in [14] that necessarily the Fourier transform of ρ dσ must
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decay of order O(|ξ |−1/h) as |ξ | → +∞ (it can easily be shown by means of
Schulz’ [18] decomposition of convex smooth functions of finite line type), i.e.,
ν(x0, S) = 0. Conversely, the decay rate O(|ξ |−1/h) immediately implies the
restriction estimate (1.10) also for the endpoint p = pc; this is an immediate
consequence of A. Greenleaf’s work in [10].

However, if ν(x0, S) = 1, which can only happen in the non-convex case,
the logarithmic factor in (1.2) is necessary, so that one cannot apply Greenleaf’s
result directly.

(c) Of course, ultimately one would be interested in more general Lp-Lq Fourier
restriction estimates for S. Since the full range of such estimates is not known
yet even for manifolds with non-vanishing Gaussian curvature, such as spheres
or paraboloids, at present one cannot expect to find the full range for more general
surfaces. A first step in this direction would be bilinear restriction estimates for
more general hypersurfaces, which is the subject of recent ongoing joint work of
the second author with A. Vargas.

Restriction theorems for the Fourier transform go back to E.M. Stein and have
a long history by now. Recall for instance the seminal work by E.M. Stein, and
P. Tomas, for the case of the Euclidean sphere (see, e.g., [19]). Some restriction esti-
mates for analytic hypersurfaces in R

3 have been obtained by A. Magyar [16], whose
results were sharp for particular classes of hypersurfaces given as graphs of functions
in adapted coordinates, with the exception of the endpoint.

2 Uniform Estimates for Oscillatory Integrals with Finite Type Phase
Functions of Two Variables

In this section we shall give a proof of Theorem 1.1. We shall closely follow the
proof of Theorem 11.1 in [11], which did already provide the uniform estimates in
Theorem 1.1, except for a logarithmic factor which is not really needed in many cases,
as we shall see.

The reader is strongly recommended to have [11] at hand when reading this article,
since we shall make use of the notation and many results from [11] without repeating
all of them here.

By decomposing R
2 into its four quadrants, we may reduce ourselves to the esti-

mation of oscillatory integrals of the form

J (ξ) :=
∫

(R+)2
ei(ξ3φ(x1,x2)+ξ1x1+ξ2x2)η(x1, x2) dx.

Notice also that we may assume in the sequel that

|ξ1| + |ξ2| ≤ δ|ξ3|, hence |ξ | ∼ |ξ3|, (2.1)

where 0 < δ � 1 is a sufficiently small constant to be chosen later, since for |ξ1| +
|ξ2| > δ|ξ3| the estimate (1.2) follows by an integration by parts, if 
 is chosen small
enough. Of course, we may in addition always assume that |ξ | ≥ 2.
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If χ is any integrable function defined on 
, we shall put

Jχ(ξ) :=
∫

(R+)2
ei(ξ3φ(x1,x2)+ξ1x1+ξ2x2)η(x1, x2)χ(x) dx.

The case where h(φ) < 2 is contained in Duistermaat’s work [6] (notice that Duis-
termaat proves estimates of the form (1.2) without the presence of a logarithmic factor
log(2 + |ξ |), even for a wider class of phase functions), so let us assume from now
on that

h := h(φ) ≥ 2.

Moreover, if h = 2, then we shall make use of the following special property:

Lemma 2.1 If h(φ) = 2, then, after applying a suitable linear change of coordinates,
we may assume that one of the following conditions are satisfied:

(i) The coordinates are adapted to φ.
(ii) The coordinates are not adapted to φ, but h(φpr) = h(φ). In this case, we have

ν(φ) = 0 and m(φpr) = 2.

Note that in general we only have h(φpr) ≥ h(φ), and the inequality may be strict.

Proof Let us assume that the coordinates x are not adapted to φ. Then the principal
face π(φ) is a compact edge and m(φpr) > d(φ) = dx . In particular, the principal part
φpr of φ is a polynomial which is κ-homogeneous of degree 1, where we may assume
that 0 < κ1 ≤ κ2, so that m := m1 = κ2/κ1 ≥ 1 is an integer. According to [12], φpr
can be written as

φpr(x1, x2) = cxα
1 x

β

2

∏

l

(x2 − clx
m
1 )nl ,

where the cl’s are the non-trivial distinct complex roots of the polynomial t �→
φpr(1, t) and the nl’s are their multiplicities. Moreover, there exists an l0 such that
m(φpr) = nl0 and such that cl0 is real. Notice also that α ≤ 1, β ≤ 1, since otherwise
the coordinates were adapted.

Assume first that κ1 = κ2. Then m = 1, and applying the first step in Varchenko’s
algorithm (see [12], or Sect. 2.5 in [11]), we see that we can transform φ into φ̃ by
means of the linear change of variables y1 = x1, y2 = x2 − cl0x1 such that either the
coordinates y are adapted to φ̃, hence φ̃ = φa , or they are not, but then κ̃1 < κ̃2 (where
φ̃pr is assumed to be κ̃-homogeneous of degree 1).

After applying a suitable linear change of coordinates, we are thus reduced to
the situation where κ1 < κ2, hence m ≥ 2. Let us denote by (A0,B0) and (A1,B1)

the two vertices of π(φ), and assume that A0 < A1. Recall from [12], displays (3.2)
and (3.3), that

A0 = α, B0 = β + N, A1 = α + mN, B1 = β,

and that

dx = α + m(β + N)

1 + m
, (2.2)
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with N :=∑l nl . Recall also that the point (A0,B0), with A0 < B0, will be a vertex
of all the Newton diagrams that arise when running Varchenko’s algorithm on φ, so
that we must have β + N = B0 ≥ 2, since h(φ) = 2. Then (2.2) implies that dx ≥

2m
1+m

> 1, so that nl0 = m(φ) ≥ 2.

Since dx ≤ h(φ) = 2, (2.2) implies that β + N ≤ 2 + 2
m

≤ 3. But, if we had β +
N = 3, then the conditions dx ≤ 2 and m ≥ 2 would imply α = 0,m = 2, hence
dx = 2, and so the coordinates x would be adapted, contradicting our assumption.

Therefore, we must have β + N = 2. Then β = 0,N = nl0 = 2 and α < 2, and
thus the change of coordinates

y1 := x1, y2 := x2 − cl0x
m
1

transforms the principal part φpr into φ̃pr(y) = cyα
1 y2

2 . This implies h(φpr) =
2 = h(φ). Notice also that in this case the principal face of the Newton polyhedron
of φ, when expressed in adapted coordinates, must be the unbounded half-line with
left endpoint (α,2), so that ν(φ) = 0. �

We recall the following lemma, which is a (not quite straight-forward) conse-
quence of van der Corput’s lemma and whose formulation goes back to J.E. Björk
(see [5]) and G.I. Arhipov [1].

Lemma 2.2 Assume that f is a smooth real valued function defined on an interval
I ⊂ R which is of polynomial type m ≥ 2 (m ∈ N), i.e., there are positive constants
c1, c2 > 0 such that

c1 ≤
m
∑

j=1

|f (j)(s)| ≤ c2 for every s ∈ I.

Then for λ ∈ R,
∣
∣
∣
∣

∫

I

eiλf (s)g(s) ds

∣
∣
∣
∣
≤ C‖g‖C1(I )(1 + |λ|)−1/m,

where the constant C depends only on the constants c1 and c2.

2.1 The Case where the Coordinates Are Adapted to φ, or where h = 2

We shall begin with the easiest case where either the coordinates x are adapted to φ,
or h = 2 and condition (ii) in Lemma 2.1 is satisfied.

Recall from [12] that if κ = (κ1, κ2) is any weight with 0 < κ1 ≤ κ2 such that
the line Lκ := {(t1, t2) ∈ R

2 : κ1t1 + κ2t2 = 1} is a supporting line to the Newton
polyhedron N (φ) of φ, then the κ-principal part of φ

φκ(x1, x2) :=
∑

(j,k)∈Lκ

cjkx
j

1 xk
2
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is a non-trivial polynomial which is κ-homogeneous of degree 1. By definition, we
then have

φ(x1, x2) = φκ(x1, x2)+ terms of higher κ-degree

(see [12] for the precise meaning of this notion).
We claim that we can choose a weight κ with 0 < κ1 ≤ κ2 < 1 such that Lκ is a

supporting line to the Newton polyhedron of φ and

1

|κ| = dh(φκ) ≤ h(φκ) = h.

Indeed, in case that the coordinates are adapted to φ, this has been shown in [11],
Lemma 2.4. And, if the coordinates are not adapted to φ but h(φpr) = h(φ), then the
principal face is a compact edge, and we can choose for κ the principal weight, so
that φκ = φpr. Notice that we have κ2 < 1, since ∇φ(0,0) = 0.

Let us denote by δr the dilation by the factor r > 0 associated to the weight κ , i.e.,
δr (x1, x2) = (rκ1x1, r

κ2x2).
In analogy with the proof of Theorem 11.1 in [11] we fix a suitable smooth cut-off

function χ on R
2 supported in an annulus D such that the functions χk := χ ◦ δ2k

form a partition of unity, and then decompose

J (ξ) =
∞
∑

k=k0

Jk(ξ),

where

Jk(ξ) :=
∫

(R+)2
ei(ξ3φ(x)+ξ1x1+ξ2x2)η(x)χk(x) dx

= 2−k|κ|
∫

(R+)2
ei(2−kξ3φ

k(x)+2−kκ1 ξ1x1+2−kκ2 ξ2x2)η(δ2−k (x))χ(x) dx,

with φk(x) := 2kφ(δ2−k x) = φκ(x) + error term.
We claim that given any point x0 ∈ D, we can find a unit vector e ∈ R

2 and some
j ∈ N with 2 ≤ j ≤ h(φκ) = h such that ∂

j
e φκ(x0) �= 0.

Indeed, if the coordinates are adapted to φ, then this has been shown in Sect. 7 of
[11], and if they are not adapted to φ, then the same is true whenever x0 does not lie
on the principal root of φκ , as shown in Sect. 8 of [11]. However, if x0 does lie an the
principal root of φκ , then according to Lemma 2.1 we may choose j = 2.

For k ≥ k0 sufficiently large we can thus apply Lemma 2.2 to the integration along
lines parallel to the direction e in the integral defining Jk(ξ) near the point x0. Ap-
plying Fubini’s theorem and a partition of unity argument, we thus obtain

|Jk(ξ)| ≤ C‖η‖C3(R2) 2−k|κ|(1 + 2−k|ξ3|)−1/j

≤ C‖η‖C3(R2) 2−k|κ|(1 + 2−k|ξ |)−1/m, (2.3)

where m denotes the maximal j that arises in this context.
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Summation in k then yields the following estimates:

|J (ξ)| ≤ C‖η‖C3(R2)

⎧

⎪⎨

⎪⎩

(1 + |ξ |)−1/m, if m|κ| > 1,

log(2 + |ξ |)(1 + |ξ |)−1/m, if m|κ| = 1,

(1 + |ξ |)−|κ|, if m|κ| < 1.

(2.4)

Now, if h(φ) = 2 and if the coordinates are not adapted to φ, then m = m(φpr) >

d(φ) = 1/|κ|, so the first case in (2.4) applies. This implies (1.2), in view of
Lemma 2.1(ii).

Next, assume that the coordinates are adapted. If the principal face π(φ) is
a compact edge, then φκ = φpr, hence 1/|κ| = d(φ) = h, and moreover m ≤ h.
This implies |κ|m ≤ 1. Since in this case, by Lemma 1.5, ν(φ) = 1 if and only if
m = m(φpr) = h(φ), i.e., if and only if m|κ| = 1, we again obtain estimate (1.2).

If π(φ) is unbounded, then m = h and 1/|κ| < h, so that the first case in (2.4)
applies and we again verify (1.2).

Finally, if π(φ) is a vertex, then 1/|κ| = h = m, so that the second case in (2.4)
applies and we obtain (1.2) also in this case.

2.2 The Case of Non-adapted Coordinates: The Contribution of Regions Away from
the Principal Root Jet

Assume next that the coordinates x are not adapted to φ and that h > 2.
As we already explained in Sect. 1, based on Varchenko’s algorithm we can then

locally find a smooth real-valued function ψ which defines an adapted coordinate
system

y1 := x1, y2 := x2 − ψ(x1) (2.5)

for the function φ near the origin. In these coordinates, φ is given by

φa(y) := φ(y1, y2 + ψ(y1)).

In the case where Varchenko’s algorithm stops after a finite number of steps be-
cause the principal face π(φa) is a compact edge and m(φa

pr) = d(φa), we meet the
following convention:

We assume that we have then run the algorithm one further step (as in the proof
of the implication (b) ⇒ (a) in Lemma 1.5), so that we may assume that π(φa) is a
vertex, i.e., the point (h,h). Under this convention, π(φa) will be a vertex whenever
ν(φ) = 1.

Consider the Taylor series

ψ(x1) ≈
∑

l≥1

blx
ml

1 (2.6)

of ψ , where the bl are assumed to be non-zero. After applying a linear change of
coordinates, if necessary, we may and shall assume that b1 �= 0 and that the ml ∈ N

form a strictly increasing sequence

2 ≤ m1 < m2 < · · · .
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Suppose that the vertices of the Newton diagram Nd(φa) of φa are the points
(Al,Bl), l = 0, . . . , n, so that the Newton polyhedron N (φa) is the convex hull of
the set

⋃

l ((Al,Bl) + R
2+), where Al < Al+1 for every l ≥ 0.

Let Ll := {(t1, t2) ∈ R
2 : κl

1t1 + κl
2t2 = 1} denote the line passing through the

points (Al−1,Bl−1) and (Al,Bl), and let al := κl
2/κ

l
1. The al can be identified as

the distinct leading exponents of all the roots of φa in case that φa is analytic (see
Sect. 3 of [11]), and the cluster of roots whose leading exponent in their Puiseux se-
ries expansion is given by al is associated to the edge γl := [(Al−1,Bl−1), (Al,Bl)]
of N (φa).

As in Sect. 8.2 of [11], we choose the integer l0 ≥ 1 such that

a0 < · · · < al0−1 ≤ m1 < al0 < · · · < al < al+1 < · · · < an.

As has been shown in Sect. 3 of [11], the vertex (Al0−1,Bl0−1) lies strictly above the
bisectrix, i.e., Al0−1 < Bl0−1, since the original coordinates x were assumed to be
non-adapted.

Distinguishing the cases listed below, we single out a particular edge by fixing the
corresponding index λ ≥ l0 as in Sect. 3 of [11]:

Cases:

(a) In case (a), where the principal face of φa is a compact edge, we choose λ so
that the edge γλ = [(Aλ−1,Bλ−1), (Aλ,Bλ)] is the principal face π(φa) of the
Newton polyhedron of φa .

(b) In case (b), where π(φa) is the vertex (h,h), we choose λ so that (h,h) =
(Aλ,Bλ). Then λ ≥ 1, and (h,h) is the right endpoint of the compact edge γλ.

(c) Consider finally case (c), in which the principal face π(φa) is unbounded, namely
a half-line given by t1 ≥ ν1 and t2 = h, where ν1 < h. Here, we distinguish two
sub-cases:
(c1) If the point (ν1, h) is the right endpoint of a compact edge of N (φa), then

we choose again λ ≥ 1 so that this edge is given by γλ.
(c2) Otherwise, (ν1, h) = (A0,B0) is the only vertex of N (φa), i.e., N (φa) =

(ν1, h) + R
2+. In this case, there is no non-trivial root r , hence n = 0.

In the cases (a), (b) and (c1), let us put

a := aλ = κλ
2

κλ
1

. (2.7)

We shall assume in the sequel that φ is analytic, since the general case can be reduced
to this case as in [11].

In a first step, we now decompose J (ξ) = J 1−ρ1(ξ) + Jρ1(ξ), where ρ1 is the
cut-off function introduced in Sect. 8.1 of [11] which localizes to a narrow κ-
homogeneous neighborhood of the form

|x2 − b1x
m1
1 | ≤ ε1x

m1
1 (2.8)

of the curve x2 = b1x
m1
1 .
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Lemma 2.3 Let ε1 > 0. If the neighborhood 
 of the point (0,0) is chosen suffi-
ciently small, then J 1−ρ1(ξ) satisfies estimate (1.2).

Moreover, if N (φa) is of the form (ν1, h) + R
2+, with ν1 < h, (case (c2) above),

then the same statement holds true for J (ξ) in place of J 1−ρ1(ξ).

Proof The oscillatory integral J 1−ρ1(ξ) can be estimated in a similar way as in the
case of adapted coordinates by means of Lemma 2.2, and no logarithmic factor is
needed. The reason for this is that any root of φpr which does not agree with the
principal root x2 = b1x

m1
1 has multiplicity strictly less then d(φ), as can be seen from

Corollary 2.3 in [12], so that the third case of (2.4) applies.
Moreover, if N (φa) = (ν1, h) + R

2+, with ν1 < h, then we recall from the proof
of Lemma 8.1 in [11] that φκ(x) = cx

ν1
1 (x2 − b1x

m1
1 )h, which implies h(φκ) =

h(φa
κ ) = h, and we see that in this case we can again apply Lemma 2.2 to the x2-

integration in order to see that also Jρ1(ξ) satisfies (1.2), without logarithmic factor,
since here 1/|κ| = dh(φ) < h. This proves also the second statement in the lemma. �

We may and shall therefore from now on assume that the Newton polyhedron of
φa has at least one compact edge “lying above” the principal face, i.e., that one of the
cases (a), (b) or (c1) applies. There remains Jρ1(ξ) to be considered.

In a next step we shall narrow down the domain (2.8) to a neighborhood of the
principal root jet of the form

|x2 − ψ(x1)| ≤ Nλx
aλ

1 , (2.9)

where Nλ is a constant to be chosen later. This domain is κλ-homogeneous in the
adapted coordinates y. More precisely, we fix a cut-off function ρ ∈ C∞

0 (R) sup-
ported in a neighborhood of the origin such that ρ = 1 near the origin, and put

ρλ(x1, x2) := ρ

(
x2 − ψ(x1)

Nλx
a
1

)

.

Proposition 2.4 Let Nλ > 0. If the neighborhood 
 of the point (0,0) is chosen
sufficiently small, then the oscillatory integral J 1−ρλ(ξ) satisfies estimate (1.2).

Moreover, if the principal face π(φa) is a vertex or unbounded, then the same
holds true for J (ξ) in place of J 1−ρλ(ξ).

Proof To prove the first statement in the proposition, we decompose the difference
set of the domains (2.8) and (2.9) in a similar way as in Sect. 8.2 of [11] into domains

Dl := {(x1, x2) : εlx
al

1 < |x2 − ψ(x1)| ≤ Nlx
al

1 }, l = l0, . . . , λ − 1,

which are κl-homogeneous in the adapted coordinates y given by (2.5), and interme-
diate domains

El := {(x1, x2) : Nl+1x
al+1
1 < |x2 − ψ(x1)| ≤ εlx

al

1 }, l = l0, . . . , λ − 1,

and
El0−1 := {(x1, x2) : Nl0x

al0
1 < |x2 − ψ(x1)| ≤ ε1x

m1
1 }.

Here, the εl > 0 are small and the Nl > 0 are large parameters to be determined later.
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Notice that what will remain is the domain in (2.9). Deviating somewhat from our
previous notation for l < λ (and the one in [11]), we shall denote this domain by Dλ,
i.e.,

Dλ := {(x1, x2) : |x2 − ψ(x1)| ≤ Nλx
aλ

1 }.
The localizations to these domains will be performed by means of cut-off functions

ρl(x1, x2) := ρ

(
x2 − ψ(x1)

Nlx
al

1

)

− ρ

(
x2 − ψ(x1)

εlx
al

1

)

, l = l0, . . . , λ − 1,

τl(x1, x2) := ρ

(
x2 − ψ(x1)

εlx
al

1

)

(1 − ρ)

(
x2 − ψ(x1)

Nl+1x
al+1
1

)

, l = l0, . . . , λ − 1,

and

τl0−1(x1, x2) := ρ

(
x2 − ψ(x1)

ε1x
m1
1

)

(1 − ρ)

(
x2 − ψ(x1)

Nl0x
al0
1

)

,

respectively by ρλ for the domain Dλ.
Here, in each instance ρ ∈ C∞

0 (R) is a suitable cut-off function supported in the
interval [−1,1] such that ρ = 1 near the origin. Accordingly, we decompose

Jρ1(ξ) − Jρλ(ξ) =
λ−1
∑

l=l0

Jρl (ξ) +
λ−1
∑

l=l0−1

J τl (ξ).

The first part of Proposition 2.4 will be verified if we show that each of the oscillatory
integrals Jρl (ξ) and J τl (ξ) arising in this sum satisfies estimate (1.2).

Now, the estimates of Sect. 11 in [11] show that the J τl (ξ) satisfy estimate (1.2),
even without logarithmic factor, so we only need to consider the Jρl (ξ).

Estimation of Jρl (ξ) for l0 ≤ l ≤ λ − 1 Applying the change of coordinates (2.5),
performing a dyadic decomposition and re-scaling similarly as in the case of adapted
coordinates, only with the weight κ replaced by the weight κl , we find that

Jρl (ξ) =
∞
∑

k=k0

Jk(ξ),

where

Jk(ξ) = 2−k|κl |
∫

(R+)2
ei(2−kξ3φ

k(y)+2−kκl
1 ξ1y1+2−kκl

2 ξ2y2+2−kκl
2 ξ2ψ

k(y1))

× ρa
l (y) ηa(δl

2−k y)χ(y) dy,

with ψk(y1) := 2kκl
2ψ(2−kκl

1y1), φk(y) := φa
κl (y) + 2kφa

r (δl
2−k y), and

ρa
l (y) := ρ

(
y2

Nly
al

1

)

− ρ

(
y2

εly
al

1

)

.
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Here, δl
r denotes the dilation by r > 0 associated to the weight κl , and we have again

decomposed

φa = φa
κl + φa

r ,

where φa
r depends in fact also on l and consists of terms of κl-degree higher than 1.

Since l ≤ λ−1 we can then again estimate Jk(ξ) by means of Lemma 2.2, applied
to the y2-integration, by using Corollary 3.2(i) in [11], and obtain

|Jk(ξ)| ≤ C‖η‖C3(R2) 2−k|κl |(1 + 2−k|ξ3|)−1/dh(φa

κl )

≤ C‖η‖C3(R2) 2−k|κl |(1 + 2−k|ξ3|)−1/h (2.10)

since dh(φ
a
κl ) < h. This also implies 1 = |κl |dh(φ

a
κl )| < |κl |h, so that a comparison

with (2.4) shows that summation over k yields

|Jρl (ξ)| ≤ C‖η‖C3(R2)(1 + |ξ |)−1/h.

We next turn to the second statement in Proposition 2.4. We have to show that also
Jρλ(ξ) satisfies estimate (1.2). However, if the principal face π(φa) is a vertex (case
(b)) or unbounded (case (c1)) then Corollary 3.2 (ii) in [11] allows us to argue exactly
as before in order to see that (2.10) also holds for l = λ. And, in case (b) we have
|κλ|h = 1, whereas in case (c1) we have |κλ|h > 1, so that a comparison with (2.4)
shows that estimate (1.2) is indeed valid for Jρλ(ξ). �

2.3 The Contribution of the Homogenous Domain Dλ Containing the Principal
Root Jet

In view of Proposition 2.4, we may and shall from now on assume that the principal
face of N (φa) is a compact edge (case (a)). What remains to be estimated is the
contribution of the domain (2.9) to J (ξ), i.e., we are left with the oscillatory integral
Jρλ(ξ). This will require different arguments then those used in [11]. We are also
assuming that x1 > 0. Recall also that according to our convention

m(φa
pr) < d(φa) = h, (2.11)

so that ν(φ) = 0. This means that we have to prove that Jρλ(ξ) satisfies (1.2), without
the presence of a logarithmic factor.

2.3.1 Preliminary Reductions

Following [11], Sect. 9, it will be convenient at this point to defray our notation by
writing φ in place of φa and η in place of ηa , κ in place of κλ, δr in place of δλ

r , etc.
With some slight abuse of notation, we shall denote Jρλ(ξ) by J (ξ).

After applying the change of coordinates (2.5), this means that from now on we
shall have to consider oscillatory integrals

J (ξ) :=
∫

R
2+

ei(ξ3φ(x)+ξ1x1+ξ2(x2+ψ(x1)))ρ

(
x2

N0x
a
1

)

η(x)dx,
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where a = κ2/κ1 > m1, and where N0 is a given, possibly large positive number.
Notice that the integration takes place only over the domain

|x2| ≤ N0x
a
1 . (2.12)

We shall write m := m1, so that ψ can be factored as ψ(x1) = xm
1 σ(x1), with a

smooth function σ satisfying σ(0) �= 0. J (ξ) can thus be written as an oscillatory
integral

J (ξ) =
∫

R
2+

eiF (x,ξ)ρ

(
x2

N0x
a
1

)

η(x)dx, (2.13)

with a phase function

F(x, ξ) := ξ3φ(x) + ξ1x1 + ξ2x
m
1 σ(x1) + ξ2x2

depending on ξ ∈ R
3. The coordinates x are now adapted to φ. We shall again de-

compose

φ(x) = φκ + φr,

where φr consists of terms of κ-degree strictly bigger then 1, the κ-degree of φκ .
In order to estimate J (ξ), in a first step we shall decompose the domain (2.12)

into smaller, κ-homogeneous sub-domains. To this end, given any point c ∈ [0,N0],
we define

J c(ξ) :=
∫

R
2+

eiF (x,ξ)ρ

(
x2 − cxa

1

ε0x
a
1

)

η(x)dx,

where ε0 > 0 will be a sufficiently small constant (the cut-off function ρ here is
possibly different from the one in (2.13)).

In order to prove that J (ξ) satisfies estimate (1.2), it will be sufficient to show that
for every c ∈ [0,N0] there exists an ε0 > 0 such that J c(ξ) satisfies (1.2), as can be
seen easily be means of a partition of unity argument.

We therefore assume that c is fixed. Then we take again a smooth cut-off function
χ which is supported in an annulus D such that

∞
∑

k=k0

χ(δ2k (x)) = 1 for every x ∈ suppη \ {0}.

Notice that we can assume that k0 is a sufficiently large positive integer by choosing
the support of η sufficiently small. Then we have

J c(ξ) =
∞
∑

k=k0

Jk(ξ),

where

Jk(ξ) :=
∫

R
2+

eiF (x,ξ)ρ

(
x2 − cxa

1

ε0x
a
1

)

η(x)χ(δ2k (x)) dx.
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After the change of variables x �→ δ2−k (x) we obtain

Jk(ξ) = 2−|κ|k
∫

ei2−kξ3Fk(x,s)ρ

(
x2 − cxa

1

ε0x
a
1

)

η(δ2−k (x))χ(x) dx, (2.14)

where

Fk(x, s) := φκ(x) + 2kφr(δ2−k (x)) + s1x1 + S2x
m
1 σ(2−κ1kx1) + s2x2,

s1 := 2(1−κ1)k
ξ1

ξ3
, s2 := 2(1−κ2)k

ξ2

ξ3
, S2 := 2(κ2−mκ1)ks2,

s := (s1, s2, S2).

Note that 2 ≤ m < a = κ2/κ1 and k � 1, so that |S2| � |s2|. Observe also that there
exists a compact interval I such that x1 ∼ 1 on I , so that for every (x1, x2) in the
support of the integrand of Jk(ξ) as given by (2.14), we have

x1 ∈ I and |x2 − cxa
1 | � ε0.

Recall also from (2.1) that we are assuming that |ξ | ∼ |ξ3|.
2.3.2 Estimation of the Oscillatory Integrals Jk(ξ)

In order to estimate Jk(ξ), we shall distinguish several cases depending on the size
of the parameters s1, s2 and S2. Recall here that ξ is a function of ξ3, s1, s2 and S2.

Case 1. |S2| ≥ M for some sufficiently large constant M � 1. In this case we can
apply Lemma 2.2 to the x1-integration and obtain

|Jk(ξ)| ≤ C
2−k|κ|‖η‖C1

(1 + 2−k|ξ |)1/2
. (2.15)

Case 2. |S2| < M , where M is chosen as in Case 1. Then |s2| � 1, provided we
have chosen k0 sufficiently large.

If we assume that there is some j ≥ 1 such that

∂
j

2 φκ(1, c) �= 0, (2.16)

then we claim that

|Jk(ξ)| ≤ C
2−k|κ|‖η‖C1

(1 + 2−k|ξ |)1/j
. (2.17)

Indeed, by the homogeneity of φκ , if we choose ε0 sufficiently small, then
∂

j

2 φκ(x) �= 0 at every point x in the support of the integrand of Jk(ξ), so that the esti-
mate follows for j ≥ 2 from Lemma 2.2 again, this time applied to the x2-integration.
Notice that the term 2kφr(δ2−k (x)) can be viewed as a perturbation term. Similarly,
if j = 1, the estimate follows by an integration by parts with respect to x2.

We observe that if (2.16) holds for some 1 ≤ j < h, then by (2.15), (2.17) and
(2.4) we obtain the desired estimate (1.2), even without a logarithmic factor, since
h > 2.
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We may and shall therefore henceforth assume that

∂
j

2 φκ(1, c) = 0 for 1 ≤ j < h. (2.18)

Recall that we are assuming that the principal face of N (φ) is a compact edge, so
that φκ = φpr and h = 1/|κ|.
Assume first that c = 0 Then necessarily φpr(1,0) �= 0, for otherwise φpr would
have a root of multiplicity at least h at (1,0), which would contradict (2.11).

Assuming without loss of generality that φpr(1,0) = 1, we can then write (com-
pare [11], Sect. 9.1)

φpr(x1, x2) = xB
2 Q(x1, x2) + xn

1 ,

where Q is a κ-homogeneous polynomial such that Q(1,0) �= 0, and where
B ≥ h > 2.

Recall that |S2| < M , so that |s2| � 1. We now distinguish two subcases:
Case 2.a. |S2| < M , and |s1| ≥ N for some sufficiently large constant N � 1.

Then an integration by parts in x1 leads to the estimate |Jk(ξ)| ≤ C
2−k|κ|‖η‖

C1

1+2−k |ξ | , which
in return implies (1.2), even without logarithmic factor.

Case 2.b. |S2| < M , hence |s2| � 1, and |s1| < N , where N is chosen as in
Case 2.a.

We shall show that, given any point (s0
1 , S0

2) ∈ [−M,M]× [−N,N ] and any point
x0

1 ∈ I , there exist a neighborhood U of (s0
1 , S0

2), a neighborhood V of x0
1 and some

ω > 1/h such that we have an estimate of the form

|Jk(ξ)| ≤ C
2−k|κ|‖η‖C1

(1 + 2−k|ξ |)ω (2.19)

for every (s1, S2) ∈ U , provided the function χ in the definition of Jk(ξ) is supported
in V and ε0 and k are chosen sufficiently small, respectively large. The same type
of estimate will then hold also for every (s1, S2) ∈ [−M,M] × [−N,N ] and for the
original function χ in the definition of Jk(ξ), as can be seen by means of a partition
of unity argument. Summing over all k, this will clearly imply the estimate (1.2),
even without logarithmic factor.

To this end, first notice that for (s1, S2) ∈ U and k sufficiently large, the function
Fk(x, s) can be viewed as a small C∞-perturbation of the function

Fpr(x) := xB
2 Q(x1, x2) + s0

1x1 + S0
2σ(0)xm

1 + xn
1 .

Thus, if ∇Fpr(x
0
1 ,0) �= 0, then we obtain (2.19), with ω = 1, simply by integration by

parts.
Assume therefore that (x0

1 ,0) is a critical point of Fpr. Then x0
1 is a critical point

of the polynomial function

g(x1) := s0
1x1 + S0

2σ(0)xm
1 + xn

1 ,

which comprises all terms of Fpr depending on the variable x1 only. Note that 2 ≤
m < n, since n = 1/κ1 > κ2/κ1 > m. It is then easy to see that g′′ and g′′′ cannot
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vanish simultaneously at the given point x0
1 ∈ I , so that there are positive constants

c1, c2 > 0 and a compact neighborhood V of x0
1 such that

c1 ≤
3
∑

j=1

|g(j)(x1)| ≤ c2 for every x1 ∈ V.

This implies an analogous estimate for the partial derivatives ∂
j
x1Fk(x1, x2, s) of Fk ,

uniformly for (s1, S2) ∈ U and x2 satisfying (2.12), provided we choose U and ε0
sufficiently small. Applying the van der Corput type estimate in Lemma 2.2, we thus
obtain the estimate (2.19) with ω = 1/3, so that we are done provided h > 3. Notice
also that if g′′(x0

1) �= 0, then by the same type of argument we see that (2.19) holds
true with ω = 1/2 > 1/h.

We may thus finally assume that 2 < h ≤ 3, and that g′(x0
1) = g′′(x0

1) = 0. In this
case we have

1

κ1 + κ2
= h ≤ 3 and

κ2

κ1
> m ≥ 2,

so that 1/κ2 < 9/2.
Note that B ≤ 1/κ2 is a positive integer, and h ≤ B < 9/2, so that either B = 4 or

B = 3. We translate the critical point (x0
1 ,0) of Fpr to the origin by considering the

function

F�
pr(y) := Fpr(x

0
1 + y1, y2) − g(x0

1) = yB
2 Q(x0

1 + y1, y2) + 1

6
g(3)(x0

1) y3
1 + · · · .

It is easy to see that this function has height h� := h(F
�
pr) given by h� = 1

1/3+1/4 =
12/7, if B = 4, and h� = 1

1/3+1/3 = 3/2, if B = 3.

In both cases, F
�
pr has height h� < 2 (indeed, according to Arnol’d’s classification

of singularities, F
�
pr is of type E6 and D4, respectively). We can therefore again apply

Duistermaat’s results in [6] to the oscillatory integral Jk(ξ) and obtain the estimate
(2.19), with ω = 1/h� > 1/h. Note here that the estimates in [6] are stable under
small perturbations.

Assume finally that c > 0 Then, by Corollary 3.2(iii) in [11], our assumption (2.18)
implies that necessarily a = κ2/κ1 ∈ N.

We can then reduce this case to the previous case c = 0 by performing another
change of variables x2 �→ x2 + cxa

1 in the integral defining Jk(ξ).
Indeed, this is equivalent to replacing the function ψ in our previous argument by

ψ�(x1) := ψ(x1)+cxa
1 , and assuming that c = 0. Denote by φ�(x1, x2) := φ(x1, x2 +

cxa
1 ) the corresponding phase function. Then the coordinates (x1, x2) are adapted to

φ� too, as can be seen as follows:
Lemma 3.1 in [12] shows that (φpr)

�(x1, x2) := φpr(x1, x2 + cxa
1 ) is again

a κ-homogeneous polynomial whose principal face intersects the bi-sectrix, and
m(φpr) = m((φpr)

�). Therefore (φpr)
� must be the principal part of φ�.

This completes the proof of Theorem 1.1.
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3 Sharpness of the Uniform Estimates

In this section, we shall give a proof of Theorem 1.3. Observe that we may assume
for this purpose that the coordinates (x1, x2) are adapted to φ, so that d := d(φ) = h.

We shall only consider the asymptotic behavior of J+(λ), since the result for
J−(λ) follows from the one for J+(λ) by means of complex conjugation.

Remarks 3.1 If h < 2, then the phase function φ has a critical point at the origin
with finite Milnor number, and can thus be reduced to a polynomial phase function
by means of a smooth local change of coordinates at the origin (see [2]). Therefore,
in this case we could apply the classical results for analytic phase functions by A.N.
Varchenko [21]. However, we will give a more elementary argument which does not
rely on this classification of singularities.

Notice also that if h = 1, then the phase function has a non-degenerate critical
point at the origin in our adapted coordinates, and we could apply the method of
stationary phase in order to prove the existence of the limits in Theorem 1.3 (see
[19]).We shall, however, proceed somewhat differently also in this case.

3.1 The Case where the Principal Face is a Compact Edge

We begin with the simplest case where the principal face π(φ) is a compact edge.
Arguing as in Sect. 2.2, we may then assume in addition that

m(φpr) < d,

since otherwise a suitable local change of coordinates would reduce us to the situation
where the principal face is a vertex.

Then there is a unique weight κ such that π(φ) is lying on the line given by the
equation κ1t1 +κ2t2 = 1. Without loss of generality we may assume that 0 < κ1 ≤ κ2.
Recall also that then φpr = φκ and d = dh(φκ) = 1/|κ|, and that if we decompose

φ(x) = φκ(x) + φr(x),

then φr is an error term whose Newton polyhedron is contained in the set {(k1, k2) ∈
Z

2 : κ1k1 + κ2k2 > 1}.
In a first step, we shall reduce ourselves to the situation where the amplitude a is

constant on a neighborhood of the origin. To this end, if 
 is an open neighborhood
of the origin in R

2, let us introduce the subspace of amplitude functions

Ċ3
0(
) := {a ∈ C3

0(
) : a(0,0) = 0}.

If a ∈ Ċ3
0(
) and if F is a smooth, real-valued phase function on 
, we consider

the oscillatory integral

J (λ,F,a) :=
∫

eiλ(φκ (x)+F(x))a(x) dx, λ > 0.



1314 J Fourier Anal Appl (2011) 17:1292–1332

Proposition 3.2 There exists a positive number ε such that for any smooth function
F ∈ C∞(R2) with N (F ) ⊂ {(k1, k2) ∈ Z

2 : κ1k1 + κ2k2 > 1} there exists a neigh-
borhood 
 of the origin so that for any a ∈ Ċ3

0(
) the following estimate

|J (λ, F,a)| ≤ C(F)‖a‖C3(
)

λ1/d+ε

holds true, with a constant C(F) depending only on the CN(
) norm of F , for some
sufficiently large number N .

Proof If a ∈ Ċ2
0(
), then a can be written as a(x1, x2) = x1a1(x1, x2)+x2a2(x1, x2),

with functions a1, a2 ∈ C1(
) whose C1-norms can be controlled by the C2-norm
of a. Consequently for the oscillatory integral we have

J (λ, F,a) = J (λ, F,x1a1) + J (λ, F,x2a2).

We shall therefore estimate J (λ, F,x1a1) (J (λ, F,x2a2) can be treated in a similar
way). As before, we choose a suitable smooth cut-off function χ on R

2 supported in
an annulus D such that the functions χk := χ ◦ δ2k form a partition of unity, and then
decompose

J (λ, F,x1a1) =
∞
∑

k=k0

J (λ, F,x1a1χk).

Here, δr denotes again the dilation by the factor r > 0 associated to the weight κ .
Recall that by choosing 
 sufficiently small we may assume that k0 is a sufficiently
large number. After re-scaling, we may re-write

Jk(λ) := J (λ, F,x1a1χk)

as

Jk(λ) = 2−(|κ|+κ1)k

∫

eiλ2−k(φκ+2kF (δ2k (x)))x1a1(δ2−k (x))χ(x) dx.

If λ2−k ≤ M (with a fixed positive number M), a trivial estimate for the integral
Jk(λ) gives

|Jk(λ)| ≤ C‖a1‖C0(
)2
−(|κ|+κ1)k,

hence
∑

λ2−k≤M

|Jk(λ)| ≤ CM

‖a‖C1(
)

λ|κ|+κ1
, (3.1)

if we assume without loss of generality that 
 is a ball.
Assume next that λ2−k > M . Since ‖2kF ◦ δ2−k‖Cm(
) → 0 as k → +∞, by

choosing 
 sufficiently small we may assume that ‖2kF ◦ δ2−k‖Cm(
) is sufficiently
small.
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Now, if m(φκ) ≥ 1, we put m := m(φκ). Then 1 ≤ m < d . Notice that if x0 ∈ D is
such that ∇φκ(x0) = 0, then, by Euler’s homogeneity relation, also φ(x0) = 0. There-
fore, by applying Lemma 2.2, respectively an integration by parts, and assuming that
M is sufficiently big, we see that

|Jk(λ)| ≤ C(F)‖a1‖C1(
)2
−(|κ|+κ1)k(1 + 2−kλ)−1/m.

Summing in k, this implies

∑

λ2−k>M

|Jk(λ)| ≤ C(F)‖a‖C2(
)

⎧

⎨

⎩

(1 + λ)−1/m, if m(|κ| + κ1) > 1,

log(2 + λ) (1 + λ)−1/m, if m(|κ| + κ1) = 1,

(1 + λ)−(|κ|+κ1), if m(|κ| + κ1) < 1.

(3.2)
If we put ε0 := min{κ1,1/m − 1/d}, we see that (3.1) and (3.2) imply that

|J (λ, F,x1a1)| ≤
C(F)‖a‖C2(
)

λ1/d+ε
,

for every positive number ε < ε0. Similar estimates hold true for J (λ, F,x2a2), only
with κ1 replaced by κ2. Since κ1 ≤ κ2, we see that we can use the same range of ε’s
also in this case and obtain the desired estimate in Proposition 3.2.

There remains the case where m(φκ) = 0. Here, φκ does not vanish away from
the origin, and thus ∇φκ(x0) �= 0 for every x0 ∈ D. Thus, choosing m = 1 here and
applying one integration by parts, we again obtain estimate (3.2), and can conclude
as before, if d > 1.

Finally, if d = 1 (notice that necessarily d ≥ 1, since ∇φ(0,0) = 0), applying two
integrations by parts to Jk(λ), we obtain

∑

λ2−k>M

|Jk(λ)| ≤ C(F)‖a‖C3(
) λ
−(|κ|+κ1),

where |κ| = 1. Thus, we can choose ε := κ1 in this case. �

Let us now consider the oscillatory integral

J+(λ) :=
∫

R2
eiλφ(x)η(x) dx,

where η ∈ C∞
0 (
). Choose a smooth bump function χ0 supported in 
 which is

identically 1 on a neighborhood of the origin. Then, if we choose 
 sufficiently small,
Proposition 3.2 implies that the oscillatory integrals J+(λ) and η(0,0)J (λ), with

J (λ) :=
∫

R2
eiλφ(x)χ0(x) dx,

differ by a term of decay rate O(λ−1/d−ε). This shows that, in order to prove Theo-
rem 1.3 in this case, it suffices to prove that the limit

lim
λ→+∞λ1/dJ (λ) = c (3.3)

exists and that c �= 0.
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To this end, put δ := ε/4, with ε > 0 as in Proposition 3.2, and define the polyno-
mial functions P and Q by

Q(x) :=
∑

|α|≤1/δ+3

∂αφ(0)

α! xα =: φκ(x) + P(x).

Notice that all the derivatives of the function eiλ(φ(x)−Q(x)) up to order 3 are uni-
formly bounded with respect to λ on the set where λδ|x| < 1. We therefore decom-
pose

J (λ) =
∫

eiλφ(x)χ0(x)χ0(λ
δx) dx +

∫

eiλφ(x)χ0(x)(1 − χ0(λ
δx)) dx.

Due to Proposition 3.2 (with F := P ), the second summand has decay rate of order
O(λ−1/d−ε+3δ) = O(λ−1/d−δ) as λ → +∞, if 
 is supposed to be chosen suffi-
ciently small. In order to prove (3.3), we may therefore replace J (λ) by the first
summand, J0(λ), which we again decompose as

J0(λ) =
∫

eiλφ(x)χ0(x)χ0(λ
δx) dx

=
∫

eiλQ(x)χ0(x) dx

+
∫

eiλ(φκ (x)+P(x))χ0(x)
(

χ0(λ
δx)eiλ(φ(x)−Q(x)) − 1

)

dx.

Again, by applying Proposition 3.2, we see that the second summand has decay rate
O(λ−1/d−δ) as λ → +∞, and thus we are reduced to proving that the limit

lim
λ→+∞λ1/d

∫

eiλQ(x)χ0(x) dx = c

exists and that c �= 0. But, Q(x) = φκ(x) + P(x) is a polynomial, with principal part
φκ , and therefore this statement follows from the classical results for analytic phase
functions due to Varchenko [21] (see also [9]).

3.2 The Case where the Principal Face Is a Vertex

Assume now that π(φ) = {(d, d)} is a vertex, so that in particular d is a positive
integer. After multiplying the phase function with a suitable real constant (this can be
implemented by means of a suitable scaling in λ and, possibly, complex conjugation
of J+(λ)), we may assume without loss of generality that the principal part of φ is
given by

φpr(x) = xd
1 xd

2 .

We may also assume that the coordinates (x1, x2) are super-adapted, in the sense
of Greenblatt [9]. Then, if d = h = 1, according to Lemma 1.0 in [9], the critical
point of φ at the origin is non-degenerate, and thus the statement of Theorem 1.3 is a
well-known consequence of the method of stationary phase.

Let us therefore henceforth assume that d = h ≥ 2.
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3.2.1 Two Compact Edges

First, assume that the Newton polyhedron N (φ) has two compact edges containing
the vertex (d, d) as one of their endpoints, say γa , lying “above” the bi-sectrix and
on the line given by κa

1 t1 + κa
2 t2 = 1, and γb , lying “below” the principal face and on

the line given by κb
1 t1 + κb

2 t2 = 1. Notice that then

a := κa
2

κa
1

<
κb

2

κb
1

=: b. (3.4)

Lemma 3.3 The function φ can be written as

φ(x1, x2) = xd
1 xd

2 + φa(x1, x2) + φb(x1, x2),

where φa(x1, x2) = xd
2 φ̃a(x1, x2) and φb(x1, x2) = xd

1 φ̃b(x1, x2), with smooth func-
tions φ̃a and φ̃b .

The proof of Lemma 3.3 is straightforward. Notice also that we have

xd
1 xd

2 + φa(x1, x2) = φκa (x1, x2) + φa,r and

xd
1 xd

2 + φb(x1, x2) = φκb(x1, x2) + φb,r ,

where φκa is κa := (κa
1 , κa

2 )-homogeneous of degree 1, and φa,r consists of terms
of κa-degree higher than 1, and where the analogous statements holds true for φκb

and φb,r .

Lemma 3.4 After applying a suitable smooth local change of coordinates at the
origin, we may assume that the functions x1 �→ φκa (x1,±1) and x2 �→ φκb(±1, x2)

have no root of multiplicity greater or equal to d , respectively.

Proof We may assume that b ≥ 1, for otherwise, after interchanging the coordinates
x1 and x2, we will have b ≥ a ≥ 1.

Then, the proof of Theorem 7.1 in [9] for the existence of “super-adapted coordi-
nates” shows that, after applying a suitable local change of coordinates at the origin,
we may assume that φκb(±1, x2) has no non-zero root of order greater or equal to d

(of course, the edge γb may have changed and even have become unbounded, but this
would be a case to be considered later). We also remark that the change of coordi-
nates in [9] is such that the edge γa remains to be an edge of the Newton diagram in
the new coordinates.

According to Proposition 2.2 in [12], we can then write, say for x1 > 0,

φκb (x1, x2) = xα
1 x

β

2

∏

l

(x
q

2 − clx
p

1 )nl ,

for suitable integers α,β ≥ 0 and p,q ≥ 1 such that p/q = b, where cl ∈ C \ {0} and
nl ∈ N \ {0}. Since we are assuming that (d, d) is the upper vertex of the edge γb,
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we see that α = d and β + (
∑

l nl)q = d . Therefore, necessarily β < d , which shows
that φκb(±1, x2) that also x2 = 0 is no root of order greater or equal to d .

We now turn to φκa . If a ≤ 1, after interchanging again the coordinates x1 and
x2, hence also the edges γa and γb , we may assume that x1 �→ φκa (x1,±1) has no
root of multiplicity greater or equal to d , and that a ≥ 1. Applying then the previous
argument again to γb , we see that in addition we may assume that φκb(±1, x2) has
no root of multiplicity greater or equal to d , and are done.

Assume finally that a > 1. Then we can accordingly write

φκa (x1, x2) = xα
1 x

β

2

∏

l

(x
q

2 − clx
p

1 )nl ,

where now p/q = a. Since (d, d) is the lower vertex of γa , we see that β = d and
α + (

∑

l nl)p = d , hence α < d . Moreover, if a /∈ N, then Corollary 2.3 in [12] shows
that nl < d for every l, which shows that φκa (x1,±1) has no root of multiplicity
greater or equal to d .

And, if a ∈ N, then q = 1 and p = a > 1, hence nl < nlp ≤ d , so that again
nl < d , and we can conclude as before. �

Let us assume in the sequel that the adapted coordinates are chosen so that the
conclusions in Lemma 3.4 do apply, and consider again the oscillatory integral

J+(λ) :=
∫

R2
eiλφ(x)η(x) dx.

Note that in this case we have to prove that

lim
λ→+∞

λ1/d

logλ
J+(λ) = c η(0),

where c �= 0.
With χ0 as before, let us consider the oscillatory integrals

J1(λ) :=
∫

eiλφ(x)(η(x) − η(0)χ0(x)) dx

and

J (λ) :=
∫

R2
eiλφ(x)χ0(x) dx.

We then have the following substitute for Proposition 3.2, which allows to reduce to
proving that the following limit

lim
λ→+∞

λ1/d

logλ
J (λ) = c (3.5)

exists and is non-zero.
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Lemma 3.5 If 
 is chosen sufficiently small, then the following estimate

|J1(λ)| ≤ C‖η‖C2(
)

λ1/d

holds true.

Proof Permuting the coordinates x1, x2, if necessary, we may choose a weight κ =
(κ1, κ2) with 0 < κ1 ≤ κ2, such that the line given by κ1t1 + κ2t2 = 1 is a supporting
line to N (φ) which contains only the point (d, d) of N (φ). Arguing now in the same
way is in the proof of Proposition 3.2, with m := d , we obtain the desired estimate. �

Choose a smooth cut-off function χ0 ∈ C∞
0 (R) supported in a sufficiently small

neighborhood of the origin. In order to prove (3.5), let us decompose

J (λ) = J0(λ) + J∞(λ),

where

J0(λ) :=
∫

eiλφ(x1,x2)χ0(x1, x2)χ
0
(

x2

ε|x1|a
)

χ0
(

x1

ε|x2|1/b

)

dx, (3.6)

J∞(λ) :=
∫

eiλφ(x1,x2)χ0(x1, x2)

(

1 − χ0
(

x2

ε|x1|a
)

χ0
(

x1

ε|x2|1/b

))

dx, (3.7)

where ε > 0 will be chosen later.

Lemma 3.6 Let ε > 0. Then, if 
 is chosen sufficiently small, the following estimate

|J∞(λ)| ≤ C‖η‖C2(
)

λ1/d

holds true.

Proof We decompose J∞(λ) = Ja(λ) + Jb(λ), where

Ja(λ) :=
∫

eiλφ(x1,x2)χ0(x1, x2)

(

1 − χ0
(

x2

ε|x1|a
))

dx,

Jb(λ) :=
∫

eiλφ(x1,x2)χ0(x1, x2)

(

1 − χ0
(

x1

ε|x2|1/b

))

χ0
(

x2

ε|x1|a
)

dx,

and show that both terms separately satisfy the estimate in Lemma 3.6.
We begin with Ja(λ). Using the dilations δr associated to the weight κa , we dyadi-

cally decompose Ja(λ) =∑∞
k=k0

Jk(λ) in a similar way as in the proof of Lemma 3.2.
Here, after re-scaling, Jk(λ) is given by

Jk(λ) = 2−|κa |k
∫

eiλ2−k(φκa +2kφr (δ2k (x)))χ0(δ2−k (x))

×
(

1 − χ0
(

x2

ε|x1|a
))

χ(x1, x2) dx,
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where |κa | = 1/d . Notice that

|x1| � 1 and ε � |x2| � 1

for every (x1, x2) in the support of the integrand. Let m denote the maximal order of
vanishing of φκa transversal to its roots on this domain. Then m < d , since, according
to Lemma 3.4, we are assuming that φκa (x1,±1) has no root of order greater or equal
to d . Consequently, we have m|κa | < 1. Arguing as in the proof of Lemma 3.2 in
order to estimate the Jk(λ), and summing in k, we then find that |Ja(λ)| ≤ Cλ−|κa | =
Cλ−1/d .

Finally, Jb(λ) can be estimated in a very similar way, making use of the dila-
tions associated to the weight κb in place of κa . Note that the additional factor
χ0(x2/(ε|x1|a)) appearing in the integral defining Jb(λ) is under control because
of (3.4).

The proof of (3.5) is thus reduced to proving the next

Lemma 3.7 The following limit

lim
λ→+∞

λ1/d

logλ
J0(λ)

exists and is non-zero. Moreover, it does not depend on the choice of ε.

Proof Let us first assume that the integer d ≥ 2 even.
We may also assume without loss of generality that χ0 is an even function and

that χ0 is radial, so that in particular

χ0(x1, x2) = χ0(±x1, ±x2).

This implies that, if we decompose the integral defining J0(λ) into the four integrals
over each of the quadrants of R

2, then, after an obvious change of coordinates, all
four of them will have the same amplitude, as well as the same principal part xd

1 xd
2

for their phases. Since we shall see that the leading term in the asymptotic expan-
sion of J0(λ) will only depend on the principal part of the phase function, we may
thus reduce ourselves to considering the integral J+

0 (λ) over the positive quadrant
only.

Notice that by (3.4) b − a > 0. In the integral for J+
0 (λ) we apply the change of

variables

x2 = xa
1 y2, x1 = y

1
b−a

2 y1,

and denote by φ̃ the phase function when expressed in the coordinates y, i.e., φ̃(y) =
φ(x).

Observe that this change of coordinates is of class C∞ away from the coordinate
axes, and that it leads to the following form of the phase function φ̃:

φ̃(y1, y2) = y
d(1+a)
1 y

d(1+b)
b−a

2 (1 + ρ(yδ
1, yδ

2)),
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where ρ(z1, z2) is a smooth function with ρ(0,0) = 0, and where δ = 1/p > 0 is
some rational number.

Indeed, the Newton polyhedron is transformed into N (φ̃) = (d, d) + R
2+ under

this change of variables, and since

x1 = y
1

b−a

2 y1, x2 = ya
1 y

1+ a
b−a

2 ,

it is clear that if f is any smooth function of x which is flat at the origin, i.e., which
vanishes to infinity oder at the origin, then f̃ , defined by f̃ (y) = f (x), can be fac-

tored as f̃ (y) = y
d(1+a)
1 y

d(1+b)
b−a

2 g(y), where also g is smooth and flat at the origin.
The oscillatory integral J+

0 (λ) then transforms into

J+
0 (λ) =

∫

eiλφ̃(y1,y2)ya
1 y

1+a
b−a

2 χ0

(
y1

ε

)

χ0

(
y2

ε

)

χ̃0(y1, y2) dy,

where χ̃0 is of class C1 on the closed positive quadrant, and of class C∞ away from
the coordinate axes, and χ̃0(0,0) = 1.

Observe next that if M is any positive constant, then the contribution to the integral
J+

0 (λ) by the sub-domain where λy
d(1+a)
1 ≤ M is trivially of order O(λ−1/d) as

λ → +∞.
We may therefore consider the oscillatory integral

I (λ) :=
∫

λy
d(1+a)
1 >M

∫

eiλφ̃(y1,y2)ya
1 y

1+a
b−a

2 χ0

(
y1

ε

)

χ0

(
y2

ε

)

χ̃0(y1, y2) dy2dy1

=
∫

λy
d(1+a)
1 >M

ya
1 χ0

(
y1

ε

)

Iint(λ, y1) dy1

in place of J+
0 (λ), where M is a fixed, sufficiently large positive number.

Assuming that ε > 0 is chosen sufficiently small, we may apply the change of
variables

z2 := y2(1 + ρ(yδ
1, yδ

2))
b−a

d(1+b)

to the inner integral

Iint(λ, y1) :=
∫

eiλφ̃(y1,y2)χ0

(
y2

ε

)

χ̃0(y1, y2) y
1+a
b−a

2 dy2,

which leads to

Iint(λ, y1) =
∫

eiλy
d(1+a)
1 z

d(1+b)
b−a

2 χ0

(
z2(1 + ρ̃(y1, z2))

ε

)

χ̃0,0(y1, z2) z
1+a
b−a

2 dz2,

where ρ̃ and χ̃0,0 have similar properties as ρ and χ̃0, respectively. Changing vari-

ables in this integral to t := z
1+b
b−a

2 , and applying some classical results on one-
dimensional oscillatory integrals with critical points of order d (see A. Erde’lyi [7],
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Sect. 2.9), we thus obtain

Iint(λ, y1) = b − a

1 + b

(
Cd

(λy
d(1+a)
1 )1/d

+ R(λ,y1)

)

,

where Cd �= 0 is given explicitly by

Cd := �(1/d)

d
e

πi
2d , (3.8)

and where the remainder term satisfies an estimate

|R(λ,y1)| ≤ C′
d

(λy
d(1+a)
1 )1/d+δ1

,

where δ1 > 0 is a positive number and where the constant C′
d can be chosen inde-

pendently of a and b (we mention this here for later use). The latter estimate implies
that

∣
∣
∣
∣

∫

λy
d(1+a)
1 >M

ya
1 χ0

(
y1

ε

)

R(λ,y1) dy1

∣
∣
∣
∣
≤ C2

λ1/d
,

whereas the corresponding integral over the principal part of Iint(λ, y1) behaves
asymptotically like c logλ/λ1/d , as required. Explicitly, our argument shows that

lim
λ→+∞

λ1/d

logλ
J0(λ) = 4

b − a

1 + b
Cd, (3.9)

if d is even.
Finally, if d is odd, a very similar reasoning shows that

lim
λ→+∞

λ1/d

logλ
J0(λ) = 2

b − a

1 + b
(Cd + Cd). (3.10)

�

We have thus proved the theorem in the case where the Newton polyhedron N (φ)

has two compact edges containing the vertex (d, d) as one of their endpoints.
Assume therefore next that at least one of the two edges containing the vertex

(d, d) is unbounded. We shall then argue in a similar way as in the previous case,
however, by approximating the unbounded faces by compact line segments which
have (d, d) as one of their vertices and which lie on supporting lines to N (φ) whose
angle with the unbounded face tend to zero.

3.2.2 Two Unbounded Edges

Assume next that both edges containing (d, d) are unbounded, i.e., that N (φ) =
(d, d) + R

2+. Let us then choose numbers a, b such that 0 < a < 1 < b, where later
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we shall let a tend to 0 and b to ∞. We associate to a and b weights

κa :=
(

1

(1 + a)d
,

a

(1 + a)d

)

, κb :=
( 1

(1 + b)d
,

b

(1 + b)d

)

.

Then the supporting lines mentioned before will be given by κa
1 t1 +κa

2 = 1 and κb
1 t1 +

κb
2 = 1, respectively, and the identities (3.4) remain valid.

We can then proceed as in the previous case, reducing to the asymptotic analysis
of J (λ), which in return is decomposed into J0(λ) and J∞(λ), given by (3.6) and
(3.7), respectively. We further decompose J∞(λ) = Ja(λ) + Jb(λ) as in the proof of
Lemma 3.6.

In place of this lemma, we here have

Lemma 3.8 Let ε > 0. Then, if 
 is chosen sufficiently small, the following estimates

|Ja(λ)| ≤ Ad

(

1 + logλ

1 + 1/a

)

λ−1/d , (3.11)

|Jb(λ)| ≤ Ad

(

1 + logλ

1 + b

)

λ−1/d (3.12)

hold true, with a constant Ad which does not depend on a and b, but only on d .

Proof We shall prove the estimate for Ja(λ); the proof of the corresponding estimate
for Jb(λ) is obtained by the same kind of reasoning, essentially just by interchanging
the roles of the variables x1, x2 in the argument. Assuming that ε is chosen suffi-
ciently small, we may decompose Ja(λ) = J 0

a (λ) + J∞
a (λ), where

J 0
a (λ) :=

∫

eiλφ(x1,x2)χ0(x1, x2)χ
0
(

εx2

|x1|a
)(

1 − χ0
(

x2

ε|x1|a
))

dx

and

J∞
a (λ) :=

∫

eiλφ(x1,x2)χ0(x1, x2)

(

1 − χ0
(

εx2

|x1|a
))

dx.

Notice that the integrand of J 0
a (λ) is supported where

ε|x1|a � |x2| � 1

ε
|x1|a,

and the integrand of J∞
a (λ) is supported where

1

ε
|x1|a � |x2|.

Using a dyadic decomposition of J 0
a (λ) by means of the dilations δr associated

to the weight κa , we can estimate J 0
a (λ) in the same way as we did estimate Ja(λ)
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in the proof of Lemma 3.6. Notice to this end that the corresponding integrals Jk(λ)

will be performed here over a domain where

ε1/a � |x1| � 1 and ε � |x2| � 1.

And, since now we have φκa (x1, x2) = xd
1 xd

2 , there is no root of multiplicity d or
greater of φκa on this domain, hence we obtain the estimate

|J 0
a (λ)| ≤ Cdλ−1/d .

As for J∞
a (λ), observe first that there is another smooth, even bump func-

tion χ̃0 which is identically 1 near the origin such that 1 − χ0(εx2/|x1|a) =
χ̃0(x1/(ε

1/a|x2|1/a)). Moreover, even though this function will depend on a, we may
assume that its derivatives are uniformly bounded for 0 < a < 1. We accordingly
re-write

J∞
a (λ) :=

∫

eiλφ(x1,x2)χ0(x1, x2)χ̃
0
(

x1

ε1/a|x2|1/a

)

dx.

Decomposing the integral into the contributions by the four quadrants, we reduce our
considerations to estimating the integral

I (λ) :=
∫ ∞

0

∫ ∞

0
eiλφ(x1,x2) χ0(x1, x2) χ̃0

(
x1

ε1/ax
1/a

2

)

dx1 dx2.

Observe next that the phase function can be written as

φ(x1, x2) = xd
1 xd

2 a(x1, x2) +
d−1
∑

ν=0

(xν
1 ϕν(x2) + xν

2 ψν(x1)),

where the functions ϕν,ψν are smooth and flat at the origin and where a is a smooth
function such that a(0,0) = 1. This shows that the change of variables

x1 := x
1/a

2 y1, x2 := y2

will transform the phase function φ into a phase function φ̃ of the form

φ̃(y1, y2) = y
d(1+1/a)

2

(

yd
1 ã(y1, y2) +

d−1
∑

ν=0

yν
1 ϕ̃ν(y2)

)

=: yd(1+1/a)

2 ψ(y1, y2),

where the functions ϕ̃ν are again smooth and flat at the origin and where ã is smooth
with ã(0,0) = 1.

Accordingly, we re-write

I (λ) =
∫ ∞

0

∫ ∞

0
eiλy

d(1+1/a)
2 ψ(y1,y2) χ̃0(y1, y2) χ̃0

( y1

ε1/a

)

dy1 y
1/a

2 dy2.

Notice that if M is any fixed positive constant, than the contribution to I (λ) by the
region where λy

d(1+1/a)

2 ≤ M is trivially bounded by CMλ−1/d , with a constant CM
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which does not depend on a, so that we may assume that λy
d(1+1/a)

2 > M in the inner
integral, where M is a sufficiently large constant.

In order to estimate the inner integral, observe that the CM -norm of ψ as a function
of y1 and y2 may be very large as a → 0, due the type of change of coordinates
that we applied. However, for y2 fixed, the d’th derivative of ψ with respect to y1
is bounded from below by a fixed constant not depending on y2 and a. Indeed, by
choosing 
 sufficiently small, it is easy to see that we may assume that ∂d

1 ψ(y1, y2) ≥
a(0,0)d!/2 = d!/2.

We may thus apply van der Corput’s estimate in order to estimate the inner integral
with respect to y1 by C(λy

d(1+1/a)

2 )−1/d , with a constant C which does not depend
on a, and then perform the integration in y2, to find that

|I (λ)| ≤ Ad

(

1 + logλ

1 + 1/a

)

λ−1/d ,

as required. �

We are thus left with the main term J0(λ), which can be treated exactly as in the
proof of Lemma 3.7, so that the conclusion of this lemma holds true. In particular,
the limit relations (3.9) and (3.10) hold true. Letting a → 0 and b → ∞, we finally
derive from those limit relations in combination with Lemma 3.8 that indeed

lim
λ→+∞

λ1/d

logλ
J (λ) = c,

where c is given by 4Cd , if d is even, and by 2(Cd + Cd), if d is odd. This proves
Theorem 1.3 also in this case.

3.2.3 A Compact and an Unbounded Edge

Finally, if one of the edges containing (d, d) is compact and the other one is un-
bounded, then let us assume without loss of generality that the edge lying above the
bi-sectrix is compact, and the one below is unbounded. Then we define a := κa

2 /κa
1

associated to the upper, compact edge as in Sect. 3.2.1, and approximate the lower,
horizontal edge by a compact line segment of slope 1/b as in Sect. 3.2.2, and consider
what will happen to the integrals Ja(λ), Jb(λ) and J0(λ), defined in the same way as
before, when b → +∞.

Applying the same kind of reasoning as before, one then finds that Ja(λ) =
O(λ−1/d) as λ → +∞, that Jb(λ) satisfies estimate (3.12) from Lemma 3.8, and
that the main contribution is again given by J0(λ), which can be treated as before by
Lemma 3.6. We can then conclude as in the previous case by letting b → +∞.

This completes the proof of Theorem 1.3. �

4 Fourier Restriction in the Case of Adapted Coordinates

Let us turn to proving the restriction estimate (1.10) in Theorem 1.7. We may assume
that x0 = (0,0), and that the hypersurface S is given as the graph x3 = φ(x1, x2) of a
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smooth, finite type function φ in adapted coordinates (x1, x2), which is defined in an
open neighborhood 
 of the origin such that φ(0,0) = 0,∇φ(0,0) = 0. Recall that
then ν(x0, S) = ν(φ) and h(x0, S) = h = d(φ).

If ν(φ) = 0, then by A. Greenleaf’s work [10] (compare also [19], Chap. VIII,
5.15(b)), the Lp(R3)-L2(S) restriction theorem for the Fourier transform in Theorem
1.7 is an immediate consequence of the uniform estimate in Corollary 1.6 for the
Fourier transform of the surface carried measure ρdσ of the hypersurface S.

We shall therefore assume in the sequel that ν(φ) = 1. This implies in particular
that h = h(φ) ≥ 2. Note that in this case Greenleaf’s theorem misses the endpoint p =
pc = (2h+2)/(2h+1), on which we shall concentrate in the sequel. As we shall see,
this endpoint can nevertheless be obtained if we invoke tools from Littlewood-Paley
theory. Our approach has some resemblance to Stein’s proof in [19], Chap. VIII, 5.16,
of Strichartz’ estimates for the Fourier restriction to quadratic surfaces from [20].

We shall denote by μ the surface carried measure ρdσ from Theorem 1.7. By
decomposing R

2 again into its four quadrants, we may assume without loss of gen-
erality that μ is of the form

〈μ,f 〉 =
∫

(R+)2
f (x′, φ(x′)) η(x′) dx′, f ∈ C0(R

3),

where η(x′) := ρ(x′, φ(x′))
√

1 + |∇φ(x′)|2 is smooth and has its support in a suffi-
ciently small neighborhood 
 of the origin.

In the sequel, we shall split the coordinates in R
3 as x = (x′, x3) ∈ R

2 × R. If χ is
an integrable function defined on 
, we put

μχ := (χ ⊗ 1)μ, i.e., 〈μχ,f 〉 =
∫

(R+)2
f (x′, φ(x′)) η(x′)χ(x′) dx′.

Observe that then

μ̂χ (−ξ) = Jχ(ξ), ξ ∈ R
3, (4.1)

with Jχ(ξ) defined as in Sect. 2.
We next choose a weight κ with 0 < κ1 ≤ κ2 such that the line Lκ is a supporting

line to the Newton polyhedron N (φ) and so that

1

|κ| = dh(φκ) = h(φκ) = h.

This is possible, since according to Lemma 1.5 the principal face π(φ) of N (φ) is
either a vertex, or a compact edge such that m(φpr) = d(φ). In the first case, we have
φκ(x1, x2) = cxh

1 xh
2 , and in the second φκ = φpr, so that in both cases

m(φκ) = h. (4.2)

The corresponding dilations will be denoted by δr . Fixing a suitable smooth cut-off
function χ ≥ 0 on R

2 supported in an annulus D such that the functions χk := χ ◦ δ2k
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form a partition of unity, we then decompose the measure μ as

μ =
∑

k≥k0

μk, (4.3)

where μk := μχk . Let us extend the dilations δr to R
3 by putting

δe
r (x

′, x3) := (rκ1x1, r
κ2x2, rx3).

We re-scale the measure μk by defining μ0,(k) := 2−kμk ◦ δe
2−k , i.e.,

〈μ0,(k), f 〉 = 2|κ|k〈μk,f ◦ δe
2k 〉 =

∫

(R+)2
f (x′, φk(x′)) η(δ2−k x′)χ(x′) dx′, (4.4)

with φk(x) := 2kφ(δ2−k x) = φκ(x)+error terms. This shows that the measures μ0,(k)

are supported on the smooth hypersurfaces Sk defined as the graph of φk , their total
variations are uniformly bounded, i.e., supk ‖μ0,(k)‖1 < ∞, and that they are ap-
proaching the surface carried measure μ0,(∞) on S defined by

〈μ0,(∞), f 〉 :=
∫

(R+)2
f (x′, φ(x′)) η(0)χ(x′) dx′

as k → ∞.
We claim that there is a constant C such that

|μ̂0,(k)(ξ)| ≤ C(1 + |ξ |)−1/h for every ξ ∈ R
3, k ≥ k0. (4.5)

Indeed, we may again assume that |ξ1| + |ξ2| ≤ δ|ξ3|, where 0 < δ � 1 is a suf-
ficiently small constant, since for |ξ1| + |ξ2| > δ|ξ3| the estimate (4.5) follows by an
integration by parts, if 
 is chosen small enough, i.e., k0 sufficiently large.

We may thus in particular assume that |ξ | ∼ |ξ3|. Note that (4.1) and (4.4) show
that

μ̂0,(k)(−ξ) = 2|κ|kJ χk (δe
2k ξ ).

Therefore, in view of (4.2) the estimate (2.3) for Jk(ξ) = Jχk (ξ) in Sect. 2.1 implies
in our case that

|μ̂0,(k)(ξ)| ≤ C(1 + 2−k|δe
2k ξ |)−1/h,

which yields (4.5) if |ξ | ∼ |ξ3|.
According to Theorem 1 in [10], the estimates in (4.5) imply the restriction esti-

mates

(∫

|f̂ (x)|2 dμ0,(k)(x)

)1/2

≤ C‖f ‖p, f ∈ S(R3), (4.6)

with p = (2h + 2)/(2h + 1), and the proof in [10] reveals that the constant C can be
chosen independently of k.
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Let us re-scale these estimates, by putting

f(r)(x) := r |κ|/2f (δe
rx), r > 0,

for any function f on R
3. Then f̂(r) = r−|κ|/2−1 ̂f ◦ δe

r−1 , and (4.6) implies
∫

|f̂ (x)|2 dμk(x) =
∫

|f̂(2−k)(x)|2 dμ0,(k)(x) ≤ C22(|κ|/2+1)k‖f ◦ δe
2k‖2

p,

hence
∫

|f̂ (x)|2 dμk(x) ≤ C2‖f ‖2
p, (4.7)

with a constant C which does not depend in k.
Fix a cut-off function χ̃ ∈ C∞

0 (R2) supported in an annulus centered at the origin
such that χ̃ = 1 on the support of χ , and define dyadic decomposition operators �′

k

by

̂�′
kf (x) := χ̃ (δ2k x′) f̂ (x′, x3).

Then
∫ |f̂ (x)|2dμk(x) = ∫ |̂�′

kf (x)|2dμk(x), so that (4.7) yields in fact that

∫

|f̂ (x)|2dμk(x) ≤ C2 ‖̂�′
kf ‖2

p,

for any k ≥ k0. In combination with Minkowski’s inequality, this implies

(∫

|f̂ (x)|2dμ(x)

)1/2

=
⎛

⎝
∑

k≥k0

∫

|f̂ (x)|2dμk(x)

⎞

⎠

1/2

≤
⎛

⎝
∑

k≥k0

‖�′
kf ‖2

p

⎞

⎠

1/2

= C

⎛

⎜
⎝

⎛

⎝
∑

k≥k0

(∫

|�′
kf (x)|pdx

)2/p
⎞

⎠

p/2
⎞

⎟
⎠

1/p

≤ C

∥
∥
∥
∥

(
∑

k≥k0

|�′
kf (x)|2

)1/2∥
∥
∥
∥

Lp(R3)

,

since p < 2.
Thus, by Littlewood-Paley Theory [19], we obtain estimate (1.10). This completes

the proof of Theorem 1.7.

Corrigenda We would like to take the opportunity to make some statements about
uniqueness of certain roots of a quasi-homogeneous polynomial in [12] (e.g. in Corol-
lary 2.3) and [11] (e.g. in Proposition 2.3) more precise, and correct statement (c) in
the latter proposition: (1) When P(x1, x2) = cx

ν1
1 x

ν2
2

∏M
l=1(x

q

2 − λlx
p

1 )nl is a quasi-
homogenous polynomial, where (p, q) = 1, then its roots on the unit circle can be
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partitioned into classes consisting of pairs of roots S1
R := {(x1, x2) ∈ S1 : R(x1, x2) =

0}, where R is any of the factors x1, x2 or x
q

2 − λlx
p

1 (with λl real) appearing in its
factorization. We shall not distinguish between the roots within a given class. I.e.,
when we say that there is a unique root of maximal multiplicity, then what we mean
precisely is that there is a unique class of roots of maximal multiplicity. The unique-
ness statements in [12] and [11] have to be interpreted in this way. (2) The proof of
Proposition 2.3(c) in [11] contains an error on p. 170: the estimate qm1(x

0) ≤ n1 has
to be replaced by m1(x

0) ≤ n1. Tracing the corresponding arguments of the proof
one finds that the correct statement should read as follows:

(c) Assume that κ2/κ1 /∈ N, and that ∂2P does not vanish identically. If x0 ∈ S1,
then denote by m1(x

0) the order of vanishing of ∂2P along S1 in the point x0. Then
m1(x0) < dh(P ) − 1 for every root x0 of ∂2P with x0

1 �= 0 �= x0
2 , unless κ2/κ1 = 3/2

and ∂2P is of the form ∂2P(x1, x2) = c(x2
2 − λx3

1)k , k = 1 or k = 2 and λ �= 0
real.

In particular, if κ2/κ1 �= 3/2, then for every point x ∈ S1 which does not lie on a
coordinate axis, there exists some j with 1 ≤ j < dh(P ) such that ∂

j

2 P(x) �= 0. Note
that this error has no further consequences, since Proposition 2.3 is applied only in
the proof of Corollary 3.2, which is not effected by it, since we assume that κ2/κ1 > 2
in that corollary.

Acknowledgement We wish to express our gratitude to the referees for helpful comments and sugges-
tions. Thanks also to James Wright for pointing out the flaw in the proof of Proposition 2.3 in [11].

Appendix: Proof of Lemma 1.5

To prove Lemma 1.5, we shall apply the techniques and results from [12], in particular
the reasoning in the proof of Lemma 3.2 of that article.

In order to show that (a) implies (b), we may assume without loss of generality
that the coordinates x are adapted to φ, and that the principal face π(φ) is a vertex,
say π(φ) = {(�, �)}, i.e.,

φpr(x1, x2) = cx�
1x�

2 .

Assume that y is another adapted coordinate system, say x = F(y), where F is a
local, smooth diffeomorphism at the origin, and write φ̃(y) := φ(F (y)).

Possibly after permuting the coordinates x1 and x2, we may choose a weight κ =
(κ1, κ2) with 0 < κ1 ≤ κ2 in the following way:

Case I. If (�, �) is the right endpoint of a compact edge γ of the Newton diagram
of φ, then we choose the unique weight κ so that γ lies on the line Lκ := {(t1, t2) ∈
R

2 : κ1t1 + κ2t2 = 1} (which is then a supporting line to N (φ)).
Case II. Otherwise, i.e., if N (φ) is contained in the half-plane t1 ≥ �, then we

choose κ so that the vertex (�, �) is the unique point of the Newton polyhedron N (φ)

contained in the supporting line Lκ .
Permuting the coordinates y1 and y2, if necessary, we may assume without loss of

generality that (x1, x2) = (F1(y1, y2),F2(y1, y2)) satisfies
∂Fj (0,0)

∂yj
�= 0 for j = 1,2.
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Therefore, we can write the functions F1,F2 in the form

F1(y1, y2) = y1ψ1(y1, y2) + η1(y2), F2(y1, y2) = y2ψ2(y1, y2) + η2(y1),

(5.1)
where ψ1, ψ2, η1, η2 are smooth functions satisfying

ψ1(0,0) �= 0, ψ2(0,0) �= 0, η1(0) = η2(0) = 0.

We may further assume that ψ1(0,0) = ψ2(0,0) = 1. Denote by kj the order of van-
ishing of ηj at 0, j = 1,2. Then clearly kj ≥ 1.

Notice that in Case II, we may and shall assume that κ2/κ1 > k2.
We first recall some observation from [12]. If Fκ denotes the κ-principal part of

F , then

φ̃(y1, y2) = φκ ◦ Fκ(y1, y2)+ terms of higher κ-degree,

so that

φ̃κ = φκ ◦ Fκ.

Moreover, φκ ◦ Fκ is a κ-homogeneous polynomial, so that its Newton diagram
Nd(φ̃κ ) is again a compact interval (possibly a single point). In case that this interval
intersects the bi-sectrix too, then it contains the principal face of N (φ̃).

(a) The case where k2 > κ2
κ1

, and either κ2 > κ1, or κ1 = κ2 and k1 > 1.

In this case, one finds that Fκ(y1, y2) = (y1, y2) (see [12]), hence φ̃κ = φκ , so that
π(φ̃) = π(φ) is a vertex.

(b) The case where k2 > κ2
κ1

, κ1 = κ2 and k1 = 1.

Then k2 > 1, k1 = 1, so that Fκ(y1, y2) = (y1 + ay2, y2) for some constant a ∈
R, hence φ̃κ (y1, y2) = c(y1 + ay2)

�y�
2 . From a view at the Newton diagram of this

polynomial, we see that π(φ̃) = π(φ) is a vertex.

(c) The case where k2 < κ2
κ1

.

As in the proof of Lemma 3.2 in [12], we then introduce a second weight μ :=
(1, k2), and choose d > 0 so that the line Lμ := {(t1, t2) ∈ R

2 : t1 + k2t2 = d} is the
supporting line to the Newton polyhedron N (φ). It has been shown in the proof of
Lemma 3.2 in [12] (Case (c)) that the principal face of N (φ̃) then lies on the line Lμ.
Noticing that the line Lμ is steeper than the line Lκ , we see that Case I cannot arise
here, since otherwise we would have dy < dx , contradicting our assumption that also
the coordinates y are adapted. And, in Case II, we see that (�, �) will be the only point
of N (φ) contained in Lμ, so that φμ = φpr. This shows that φ̃μ = φμ ◦Fμ = φpr ◦Fμ.

Moreover, the μ-principal part of F is given by Fμ(y1, y2) = (y1, y2 + a2y
k2
1 ), if

k2 > 1, and by Fμ(y1, y2) = (y1 +a1y2, y2 +a2y1), if k2 = 1, with a1 �= 0 if and only
if k1 = 1.

In the first case, we obtain φ̃μ = cy�
1(y2 + a2y

k2
1 )�, so that π(φ̃) = π(φ) is again

a vertex. A similar reasoning applies in the second case, if a1 = 0 or a2 = 0. And,
if a1 �= 0 �= a2, we find that φ̃μ = c(y1 + a1y2)

�(y2 + a2y1)
�. This means that the
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principal face of N (φ̃) is a compact edge passing through the point (�, �), and clearly
m(φ̃pr) = �, so that m(φ̃pr) = � = d(φ̃).

(e) The case where k2 = κ2
κ1

.

Observe that k1κ2 > κ1, unless κ1 = κ2 and k1 = 1, since κ1/κ2 ≤ 1 (the latter will
only arise in Case I).

Assuming first that k1κ2 > κ1, we then see that φκ(y1, y2) = (y1, y2 + a2y
k2
1 ),

hence φ̃κ (y1, y2) = cy�
1(y2 +a2y

k2
1 )�. This shows that again π(φ̃) = π(φ) is a vertex.

Finally, assume that κ1 = κ2 and k1 = 1, so that also k2 = 1. Then φκ is of the form
φκ(y1, y2) = (y1 + a1y2, y2 + a2y1), hence φ̃κ (y1, y2) = c(y1 + a1y2)

�(y2 + a2y1)
�.

As before, this means that the principal face of N (φ̃) is a compact edge passing
through the point (�, �), and we have m(φ̃pr) = � = d(φ̃).

There remains to show that (b) implies (a). To this end, we may assume without
loss of generality that y = x, i.e., that x is an adapted coordinate system, and that
π(φ) is a compact edge and m(φpr) = d(φ). We shall denote the latter by d . Let us
denote by (A0,B0) and (A1,B1) the two vertices of π(φ), and assume that A0 < A1.
According to [12], displays (3.2) and (3.3), we can then write the principal part of φ

as

φpr(x1, x2) = cxα
1 x

β

2

∏

l

(x2 − clx
m
1 )nl ,

where the cl’s are the non-trivial distinct complex roots of the polynomial φpr(1, x2)

and the nl’s are their multiplicities. Moreover, there exists an l0 such that d = nl0 and
such that cl0 is real.

We then apply the change of coordinates y1 := x1, y2 := x2 − cl0x
m
1 , which pre-

serves the mixed homogeneity of φpr and transforms this polynomial into a polyno-

mial of the same form, cxα̃
1 x

β̃

2

∏

l(x2 − c̃lx
m
1 )nl , but now with β̃ = d . The vertices

of the corresponding Newton diagram are given by (A0,B0) and (Ã1, B̃1) and lie
on the same line as (A0,B0) and (A1,B1) (see [12]), where obviously B̃1 = β̃ = d .
This shows that (Ã1, B̃1) = (d, d), and consequently the principal face of the Newton
polyhedron of φ̃ is given by the vertex (d, d).
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1. Arhipov, G.I., Karacuba, A.A., Čubarikov, V.N.: Trigonometric integrals. Izv. Akad. Nauk SSSR, Ser.
Mat. 43, 971–1003 (1979), also see p. 1197 (in Russian); English translation in Math. USSR-Izv. 15,
211–239 (1980)

2. Arnol’d, V.I.: Remarks on the method of stationary phase and on the Coxeter numbers. Usp. Mat.
Nauk 28, 17–44 (1973) (in Russian); English translation in Russ. Math. Surv. 28, 19–48 (1973)

3. Colin de Verdière, I.: Nombre de points entiers dans une famille homothetique de domains de R
n.

Ann. Sci. Ecole Norm. Super. 10, 559–575 (1974)
4. Denef, J., Nicaise, J., Sargos, P.: Oscillatory integrals and Newton polyhedra. J. Anal. Math. 95, 147–

172 (2005)
5. Domar, Y.: On the Banach algebra A(G) for smooth sets � ⊂ R

n. Comment. Math. Helv. 52(3),
357–371 (1977)

6. Duistermaat, J.J.: Oscillatory integrals, Lagrange immersions and unfolding of singularities. Com-
mun. Pure Appl. Math. 27, 207–281 (1974)

7. Erde’lyi, A.: Asymptotic Expansions. Dover, New York (1956)



1332 J Fourier Anal Appl (2011) 17:1292–1332

8. Erdös, L., Salmhofer, M.: Decay of the Fourier transform of surfaces with vanishing curvature.
Math. Z. 257, 261–294 (2007)

9. Greenblatt, M.: The asymptotic behavior of degenerate oscillatory integrals in two dimensions.
J. Funct. Anal. 257(6), 1759–1798 (2009)

10. Greenleaf, A.: Principal curvature and harmonic analysis. Indiana Univ. Math. J. 30(4), 519–537
(1981)

11. Ikromov, I.A., Kempe, M., Müller, D.: Estimates for maximal functions associated to hypersurfaces
in R

3 and related problems of harmonic analysis. Acta Math. 204, 151–271 (2010)
12. Ikromov, I.A., Müller, D.: On adapted coordinate systems. Trans. Am. Math. Soc. 363(6), 2821–2848

(2011)
13. Iosevich, A., Sawyer, E.: Maximal averages over surfaces. Adv. Math. 132, 46–119 (1997)
14. Iosevich, A.: Fourier transform, L2 restriction theorem, and scaling. Boll. Unione Mat. Ital. Sez. B

Artic. Ric. Mat. 2(8), 383–387 (1999)
15. Karpushkin, V.N.: A theorem on uniform estimates for oscillatory integrals with a phase depending

on two variables. Trudy Semin. Petrovsk. 10, 150–169 (1984), also see p. 238 (in Russian); English
translation in J. Sov. Math. 35, 2809–2826 (1986)

16. Magyar, A.: On Fourier restriction and the Newton polygon. Proc. Am. Math. Soc. 137, 615–625
(2009)

17. Phong, D.H., Stein, E.M., Sturm, J.A.: On the growth and stability of real-analytic functions. Am. J.
Math. 121(3), 519–554 (1999)

18. Schulz, H.: Convex hypersurfaces of finite type and the asymptotics of their Fourier transforms. Indi-
ana Univ. Math. J. 40, 1267–1275 (1991)

19. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals.
Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton (1993)

20. Strichartz, R.S.: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of
wave equations. Duke Math. J. 44, 705–714 (1977)

21. Varchenko, A.N.: Newton polyhedra and estimates of oscillating integrals. Funkc. Anal. Prilož. 10,
13–38 (1976) (in Russian); English translation in Funkt. Anal. Appl. 18, 175–196 (1976)


	Uniform Estimates for the Fourier Transform of Surface Carried Measures in R3 and an Application to Fourier Restriction
	Abstract
	Introduction
	Uniform Estimates for Oscillatory Integrals with Finite Type Phase Functions of Two Variables
	The Case where the Coordinates Are Adapted to phi, or where h=2
	The Case of Non-adapted Coordinates: The Contribution of Regions Away from the Principal Root Jet
	Estimation of Jrhol(xi) for l0<=l<=lambda-1

	The Contribution of the Homogenous Domain Dlambda Containing the Principal Root Jet
	Preliminary Reductions
	Estimation of the Oscillatory Integrals Jk(xi)
	Assume first that c=0
	Assume finally that c>0



	Sharpness of the Uniform Estimates
	The Case where the Principal Face is a Compact Edge
	The Case where the Principal Face Is a Vertex
	Two Compact Edges
	Two Unbounded Edges
	A Compact and an Unbounded Edge


	Fourier Restriction in the Case of Adapted Coordinates
	Corrigenda

	Acknowledgement
	Appendix: Proof of Lemma 1.5
	References


