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Abstract Fourier series are considered on the one-dimensional torus for the space of
periodic distributions that are the distributional derivative of a continuous function.
This space of distributions is denoted Ac(T) and is a Banach space under the Alex-
iewicz norm, ‖f ‖T = sup|I |≤2π | ∫

I
f |, the supremum being taken over intervals of

length not exceeding 2π . It contains the periodic functions integrable in the sense of
Lebesgue and Henstock–Kurzweil. Many of the properties of L1 Fourier series con-
tinue to hold for this larger space, with the L1 norm replaced by the Alexiewicz norm.
The Riemann–Lebesgue lemma takes the form f̂ (n) = o(n) as |n| → ∞. The convo-
lution is defined for f ∈ Ac(T) and g a periodic function of bounded variation. The
convolution commutes with translations and is commutative and associative. There
is the estimate ‖f ∗ g‖∞ ≤ ‖f ‖T‖g‖B V . For g ∈ L1(T), ‖f ∗ g‖T ≤ ‖f ‖T‖g‖1.
As well, f̂ ∗ g(n) = f̂ (n)ĝ(n). There are versions of the Salem–Zygmund–Rudin–
Cohen factorization theorem, Fejér’s lemma and the Parseval equality. The trigono-
metric polynomials are dense in Ac(T). The convolution of f with a sequence of
summability kernels converges to f in the Alexiewicz norm. Let Dn be the Dirichlet
kernel and let f ∈ L1(T). Then ‖Dn ∗ f − f ‖T → 0 as n → ∞. Fourier coefficients
of functions of bounded variation are characterized. The Appendix contains a type of
Fubini theorem.
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1 Introduction and Notation

In this paper we consider Fourier series on the one dimensional torus. Progress in
Fourier analysis has gone hand in hand with progress in theories of integration. This
is perhaps best exemplified by the work of Riemann and Lebesgue using the integrals
named after them. We describe below the continuous primitive integral. This is an
integral that includes the Lebesgue, Henstock–Kurzweil and wide Denjoy integrals.
It has a simple definition in terms of distributions. The space of distributions inte-
grable in this sense is a Banach space under the Alexiewicz norm. Many properties
of Fourier series that hold for L1 functions continue to hold in this larger space with
the L1 norm replaced by the Alexiewicz norm.

We use the following notation for distributions. The space of test functions is
D(R) = C∞

c (R) = {φ : R → R | φ ∈ C∞(R) and supp(φ) is compact}. The support
of function φ is the closure of the set on which φ does not vanish and is denoted
supp(φ). Under usual pointwise operations D(R) is a linear space over field R. In
D(R) we have a notion of convergence. If {φn} ⊂ D(R) then φn → 0 as n → ∞ if
there is a compact set K ⊂ R such that for each n, supp(φn) ⊂ K , and for each m ≥ 0
we have φ

(m)
n → 0 uniformly on K as n → ∞. The distributions are denoted D′(R)

and are the continuous linear functionals on D(R). For T ∈ D′(R) and φ ∈ D(R)

we write 〈T ,φ〉 ∈ R. For φ,ψ ∈ D(R) and a, b ∈ R we have 〈T ,aφ + bψ〉 =
a〈T ,φ〉+b〈T ,ψ〉. And, if φn → 0 in D(R) then 〈T ,φn〉 → 0 in R. Linear operations
are defined in D′(R) by 〈aS +bT ,φ〉 = a〈S,φ〉+b〈T ,φ〉 for S,T ∈ D′(R); a, b ∈ R

and φ ∈ D(R). If f ∈ L1
loc then 〈Tf ,φ〉 = ∫ ∞

−∞ f (x)φ(x) dx defines a distribution
Tf ∈ D′(R). The integral exists as a Lebesgue integral. All distributions have deriva-
tives of all orders that are themselves distributions. For T ∈ D′(R) and φ ∈ D(R)

the distributional derivative of T is T ′ where 〈T ′, φ〉 = −〈T ,φ′〉. If p : R → R is
a function that is differentiable in the pointwise sense at x ∈ R then we write its
derivative as p′(x). If p is a C∞ bijection such that p′(x) = 0 for any x ∈ R then

the composition with distribution T is defined by 〈T ◦ p,φ〉 = 〈T ,
φ◦p−1

p′◦p−1 〉 for all
φ ∈ D(R). Translations are a special case. For x ∈ R define the translation τx on
distribution T ∈ D′(R) by 〈τxT ,φ〉 = 〈T , τ−xφ〉 for test function φ ∈ D(R) where
τxφ(y) = φ(y − x). A distribution T ∈ D′(R) is periodic if 〈τpT ,φ〉 = 〈T ,φ〉 for
some p > 0 and all φ ∈ D(R). The least such positive p is the period. In this paper,
periodic will always mean periodic with period 2π . Periodic distributions are defined
in an alternative manner in [11] and [19]. All of the results on distributions we use
can be found in these works and [6].

We define the torus T = {z ∈ C | |z| = 1} = {eiθ | θ ∈ R}. The real interval [−π,π)

will be used as a model for T.
The continuous primitive integral was discussed on the real line in [15]. As the

name suggests, this integral is characterized by having a primitive that is a continu-
ous function; the integrable distributions are those that are the distributional derivative
of a continuous function. Take the space of primitives as Bc(T) = {F : R → R|F ∈
C0(R),F (−π) = 0,F (x) = F(y) + nF(π) if y ∈ [−π,π), x = y + 2nπ for n ∈ Z}.
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Note that F ∈ Bc(T) is periodic on R if and only if F(π) = 0. If x ∈ R and
n ∈ Z then F(x + 2nπ) = F(x) + nF(π) and F(x) = (x − x mod 2π)F(π)/(2π) +
F(x mod 2π). It is easy to see that Bc(T) is a Banach space under the uniform norm
‖F‖T,∞ = sup|α−β|≤2π |F(α) − F(β)|. The integrable distributions on the torus are

then given by Ac(T) = {f ∈ D′(R) | f = F ′ for some F ∈ Bc(T)}. For a, b ∈ R the
integral of f ∈ Ac(T) is

∫ b

a
f = F(b) − F(a) where F ∈ Bc(T) and F ′ = f . Note

that for all a, b ∈ R and all m,n ∈ Z we have
∫ b+2nπ

a+2mπ
f = ∫ b

a
f + (n − m)

∫ π

−π
f . If

f is complex-valued, the real and imaginary parts are integrated separately. The dis-
tributional differential equation T ′ = 0 has only constant solutions and we have made
our primitives in Bc(T) vanish at −π so the primitive of a distribution in Ac(T) is
unique.

If f : R → R is a periodic function that is locally integrable in the Lebesgue,
Henstock–Kurzweil or wide Denjoy sense then Tf ∈ Ac(T). Thus, if f (t) =
t−2 cos(t−2) for t ∈ (0,π) and f (t) = 0 for t ∈ [−π,0] with f extended periodi-
cally, then Tf ∈ Ac(T) but f is not Lebesgue integrable. In this case, f has an im-
proper Riemann integral and 0 is the only point of nonabsolute summability. There
are examples of functions integrable in the Henstock–Kurzweil sense but not in the
Lebesgue sense for which the set of points of nonabsolute summability has positive
measure. See [10]. Such functions correspond to distributions integrable in the con-
tinuous primitive sense. We will usually drop the distinction between f and Tf . As
well, if F ∈ Bc(T) is a function of Weierstrass type that is continuous but has a point-
wise derivative nowhere then the distributional derivative of F exists and F ′ ∈ Ac(T).
If F is a continuous singular function, so that F ′(x) = 0 a.e., then F ′ ∈ Ac(T) and
the continuous primitive integral is

∫ b

a
F ′ = F(b) − F(a). In this case, F ′ ∈ L1(T)

but the Lebesgue integral gives
∫ b

a
F ′(x) dx = 0.

If f ∈ Ac(T) and F ∈ Bc(T) is its primitive then the action of f on test function
φ ∈ D(R) is given by 〈f,φ〉 = 〈F ′, φ〉 = −〈F,φ′〉 = − ∫ ∞

−∞ F(x)φ′(x) dx. This last
integral exists as a Riemann integral. And, for f ∈ Ac(T) with primitive F ∈ Bc(T),

〈τ2πf,φ〉 = 〈f, τ−2πφ〉 = −
∫ ∞

−∞
F(x)φ′(x + 2π)dx

= −
∫ ∞

−∞
F(x − 2π)φ′(x) dx

= −
∫ ∞

−∞
F(x)φ′(x) dx + F(π)

∫ ∞

−∞
φ′(x) dx

= −〈F,φ′〉 = 〈f,φ〉,

so f is periodic. If F ∈ C0(T) then F ′ ∈ Ac(T). Note that distributions in Ac(T) are
tempered and of order one. See [6] for the definitions.

Distributions in Ac(T) can be composed with continuous functions and this leads
to a very powerful change of variables formula. See [15, Theorem 11].

The Alexiewicz norm of f ∈ Ac(T) is ‖f ‖T = sup|I |≤2π | ∫
I
f |, the supremum be-

ing taken over intervals of length not exceeding 2π . We have ‖f ‖T = ‖F‖T,∞ =
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max|β−α|≤2π |F(β) − F(α)| where F ∈ Bc(T) is the primitive of f . The inte-
gral provides a linear isometry and isomorphism between Ac(T) and Bc(T). De-
fine 	 : Ac(T) → Bc(T) by 	[f ](x) = ∫ x

−π
f . Then 	 is a linear bijection and

‖f ‖T = ‖	[f ]‖T,∞. Hence, Ac(T) is a Banach space. The spaces of periodic
Lebesgue, Henstock–Kurzweil and wide Denjoy integrable functions are not com-
plete under the Alexiewicz norm. The space Ac(T) furnishes their completion. An
equivalent norm is ‖f ‖′

T
= sup−π≤x≤π | ∫ x

−π
f |.

The multipliers and dual space of Ac(T) are given by the functions of bounded
variation. If g : R → R is periodic then its variation over T is given by Vg =
sup

∑ |g(si) − g(ti)| where the supremum is taken over all disjoint intervals
{(si , ti )} ⊂ (−π,π). We write B V(T) for the periodic functions with finite variation.
This is a Banach space under the norm ‖g‖B V = ‖g‖∞ +Vg. If g is complex-valued
with real and imaginary parts gr and gi , then Vg = √

(Vgr)2 + (Vgi)2. If f ∈ Ac(T)

with primitive F ∈ Bc(T) and g ∈ B V(T) then the integral of fg is defined using a
Riemann–Stieltjes integral,

H(x) =
∫ x

−π

fg = F(x)g(x) −
∫ x

−π

F (t) dg(t), x ∈ [−π,π). (1)

Extension of H outside this interval using H(x) = (x − x mod 2π)H(π)/(2π) +
H(x mod 2π) yields an element of Bc(T) whose derivative is then interpreted as
fg ∈ Ac(T). Note that B V(T) ⊂ L1(T) ⊂ Ac(T).

Growth estimates and other basic properties of Fourier coefficients are proved
in Theorem 2. Let f̂ (n) = ∫ π

−π
f (t)e−int dt denote the Fourier coefficient of f ∈

Ac(T). The Riemann–Lebesgue lemma takes the form f̂ (n) = o(n) as |n| → ∞. In
Theorem 4, the convolution f ∗g(x) = ∫ π

−π
f (x − t)g(t) dt is defined for f ∈ Ac(T)

and g ∈ B V(T). The convolution is then continuous, commutes with translations
and is commutative and associative. There is the estimate ‖f ∗ g‖∞ ≤ ‖f ‖T‖g‖B V .
As well, f̂ ∗ g(n) = f̂ (n)ĝ(n). The integral

∫ π

−π
f (x − t)g(t) dt need not exist for

f ∈ Ac(T) and g ∈ L1(T). But using the density of L1(T) in Ac(T) and the den-
sity of B V(T) in L1(T) we can define the convolution for f ∈ Ac(T) and g ∈ L1(T)

as the limit of a sequence of convolutions fk ∗ g for fk ∈ L1(T) or as the limit of
f ∗ gk for gk ∈ B V(T) (Theorem 7). The usual properties of convolution continue to
hold. Now we have ‖f ∗ g‖T ≤ ‖f ‖T‖g‖1. Theorem 8 gives a version of the Salem–
Zygmund–Rudin–Cohen factorization theorem, Ac(T) = L1(T) ∗ Ac(T). Using the
Fejér kernel it is shown that the trigonometric polynomials are dense in Ac(T). There
is the uniqueness result that if f̂ = ĝ then f = g as distributions in Ac(T). As well,
the convolution of f with a sequence of Fejér kernels converges to f in the Alex-
iewicz norm (Theorem 13). Let Dn be the Dirichlet kernel and let f ∈ L1(T). Then
‖Dn ∗f −f ‖T → 0 as n → ∞ (Theorem 15). Example 16 shows there is f ∈ Ac(T)

such that ‖Dn ∗f −f ‖T → 0. Proposition 17 is a version of Fejér’s lemma and The-
orem 18 is a type of Parseval equality. Theorem 19 gives a characterization of Fourier
coefficients of functions in B V(T). The Appendix contains a type of Fubini theorem.

We will use the following version of the Hölder inequality from the Appendix
of [14].
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Proposition 1 (Hölder inequality) Let f ∈ Ac(T). If g ∈ B V(T) then | ∫ π

−π
fg| ≤

| ∫ π

−π
f | inf |g| + ‖f ‖TVg ≤ ‖f ‖T‖g‖B V .

Distributions in Ac(T) are continuous in the Alexiewicz norm. This means that if
f ∈ Ac(T) then ‖f − τsf ‖T → 0 as s → 0. See [15, Theorem 28] for a proof.

A function on the real line is called regulated if it has a left limit and a right limit
at each point. The regulated primitive integral integrates those distributions that are
the distributional derivative of a regulated function. Analogous to Ac(T), the space
of integrable distributions is a Banach space. This space includes Ac(T) and also all
signed Radon measures. A theory of Fourier series can be obtained as in the present
paper. The chief difference between these two integrals is in the integration by parts
formula and in the fact that we no longer have continuity in the Alexiewicz norm. See
[17].

If u is a periodic distribution then it has a Fourier series given by u(x) =
[1/(2π)]∑n∈Z

ûne
inx . The convergence is in the distributional sense, i.e., weak con-

vergence. There is also a converse, any trigonometric series with coefficients of poly-
nomial growth is the Fourier series of a distribution. See [6, Theorems 8.5.2, 8.5.3].
Other methods of defining Fourier series of distributions are given in [5] and [19].
Since Ac(T) is a subspace of distributions, all of the results in these works continue
to hold. However, Ac(T) is also a Banach space. We will see below that Fourier se-
ries of distributions in Ac(T) behave more like those for L1 functions than for general
distributions.

In this paper we develop basic properties of Fourier series and convolutions ab
initio from the definition of the integral. As the functions of bounded variation are
pointwise multipliers for distributions in Ac(T) it follows that Ac(T) is a Banach
B V(T)-module over the pointwise algebra of B V(T). And, as is shown in Sect. 3
below, distributions in Ac(T) can be convolved with functions in L1(T) such that
Ac(T) is a Banach L1(T)-module over the convolution algebra of L1(T). Although
we have employed a concrete approach here, such a two-module property may allow
the abstract methods developed in [1] to be used to deduce some of the theorems
below. An anonymous referee suggested Corollary 20 might be proved this way.

2 Fourier Coefficients

Let en(t) = eint . If f ∈ Ac(T) then the Fourier coefficients of f are f̂ (n) =
〈f, e−n〉 = ∫ π

−π
f e−n = ∫ π

−π
f (t)e−int dt , where n ∈ Z. Since the functions en and

1/en are in B V(T) for each n ∈ Z, the Fourier coefficients exist on Z as continuous
primitive integrals if and only if f ∈ Ac(T). Let F(x) = ∫ x

−π
f be the primitive of f .

Integrating by parts as in (1) gives

f̂ (n) = (−1)nF (π) + in

∫ π

−π

F (t)e−int dt. (2)

This last integral is the Riemann integral of a continuous function. Formula (2) can be
used as an alternative definition of f̂ (n). Note also that f̂ (n) = ∫ α+2π

α
f (t)e−int dt

for each α ∈ R. The following properties of the Fourier coefficients follow easily
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from the linearity of the integral and from (2). The complex conjugate is denoted
x + iy = x − iy for x, y ∈ R. We will take f to be real-valued but only trivial changes
are required for complex-valued distributions.

Theorem 2 Let f,g ∈ Ac(T). Then (a) f̂ + g(n) = f̂ (n) + ĝ(n); (b) if α ∈ C

then (̂αf )(n) = αf̂ (n); (c) f̂ (n) = f̂ (−n); (d) if s ∈ R then τ̂sf (n) = f̂ (n)e−ins ;
(e) |f̂ (n)| ≤ |F(π)| + |n| ∫ π

−π
|F | where F(x) = ∫ x

−π
f ; (f) for n = 0, |f̂ (n)| ≤

4
√

2 |n|‖f ‖T; (g) f̂ (n) = o(n) as |n| → ∞ and this estimate is sharp; (h) for n = 0
we have |f̂ (n)| ≤ 2

√
2 |n|‖f − τπ/nf ‖T; (i) if F ∈ C0(T) then F̂ ′(n) = inF̂ (n);

(j) if F ∈ Ck−1(T) for some k ∈ N then for n = 0 and each 0 ≤ 
 ≤ k, F̂ (n) =
(in)−
F̂ (
)(n) and

|F̂ (n)| ≤ 4
√

2 min
0≤
≤k

‖F (
)‖T

|n|
−1
.

As |n| → ∞, F̂ (n) = o(n1−k).

Part (g) is a version of the Riemann–Lebesgue lemma for the continuous primitive
integral. When f ∈ L1(T) then f̂ (n) = o(1) as |n| → ∞. This estimate is sharp in
the sense that if ψ : N → (0,∞) and ψ(n) = o(1) as n → ∞ then there is a function
f ∈ L1(T) such that f̂ (n) = o(ψ(n)) as |n| → ∞. Estimates similar to those in (j)
appear in [11, I 4.4] for F (k−1) absolutely continuous.

Proof To prove (f), apply the Hölder inequality (Proposition 1) as follows. Notice
that the minimum of | sin(nt)| and | cos(nt)| for |t | ≤ π are both zero. Then

|f̂ (n)| ≤ ‖f ‖T

√[∫ π

−π

|n sin(nt)|dt

]2

+
[∫ π

−π

|n cos(nt)|dt

]2

= 4
√

2 |n|‖f ‖T.

Part (g) follows upon integrating by parts and using the L1 form of the Riemann–
Lebesgue lemma on the integral

∫ π

−π
F (t)e−int dt . The estimate was proved sharp

by Titchmarsh [18]. To prove (h), use a linear change of variables to write f̂ (n) =
(1/2)

∫ π

−π
[f (t) − f (t − π/n)]e−int dt . Then proceed as in (f) to get |f̂ (n)| ≤

2
√

2 |n|‖f − τπ/nf ‖T. Since f is continuous in the Alexiewicz norm this also gives
the little oh estimate in (g). Part (i) follows from integrating by parts and then (j) is
obtained using (i) with the estimates in (f) and (g). �

The quantity ω(f, δ) = sup|t |<δ ‖f − τtf ‖T is known as the modulus of continuity

of f in the Alexiewicz norm. Part (h) gives |f̂ (n)| ≤ 2
√

2 |n|ω(f,π/|n|).
Katznelson [11] gives other estimates for f̂ (n) under such assumptions as f is of

bounded variation, absolutely continuous, Lipschitz continuous or in Lp(T).
The next theorem shows that when we have a sequence converging in the Alex-

iewicz norm, the Fourier coefficients also converge.



J Fourier Anal Appl (2012) 18:27–44 33

Theorem 3 For j ∈ N, let f,fj ∈ Ac(T) such that ‖fj −f ‖T → 0 as j → ∞. Then
for each n ∈ Z we have f̂j (n) → f̂ (n) as j → ∞. The convergence need not be
uniform in n ∈ Z.

Proof If n = 0 then |f̂j (0) − f̂ (0)| = | ∫ π

−π
[fj (t) − f (t)]dt | ≤ ‖fj − f ‖T. If n = 0

then

|f̂j (n) − f̂ (n)| =
∣
∣
∣
∣

∫ π

−π

[fj (t) − f (t)]e−int dt

∣
∣
∣
∣

≤ 4
√

2 |n|‖fj − f ‖T → 0 as j → ∞. (3)

Theorem 2(f) is used in (3).
To show the convergence need not be uniform, let fj (t) = eij t and f = 0. Then

‖fj‖T = sup|α−β|≤2π | ∫ β

α
eij t dt |. We have

∣
∣
∣
∣

∫ β

α

eij t dt

∣
∣
∣
∣ = 1

j

∣
∣
∣eij (β−α) − 1

∣
∣
∣ ≤ 2

j
.

Equality is realized when β = α + π/j . Hence, ‖fj‖T = 2/j → 0 as j → ∞. But,
f̂n(n) = ∫ π

−π
dt = 2π → 0. �

This is different from the case f,fj ∈ L1(T). There, if {fj } converges to f in the
L1 norm then f̂j (n) converges to f̂ (n) uniformly in n as j → ∞. See [11, I Corol-
lary 1.5].

3 Convolution

The convolution is one of the most important operations in analysis, with applications
to differential equations, integral equations and approximation of functions. For f ∈
Ac(T) and g ∈ B V(T) the convolution is

∫ π

−π
(f ◦ rx)g where rx(t) = x − t . We write

this as f ∗ g(x) = ∫ π

−π
f (x − t)g(t) dt . This integral exists for all such f and g.

The convolution inherits smoothness properties from f and g. We will also use a
limiting process to define the convolution for g ∈ L1(T). This then makes Ac(T)

into an L1(T)-module over the L1(T) convolution algebra. See [9, 32.14] for the
definition. The convolution was considered for the continuous primitive integral on
the real line in [16]. Many of the results of that paper are easily adapted to the setting
of T, especially differentiation and integration theorems which we do not reproduce
here.

When f and g are in L1(T) the convolution f ∗g is commutative and associative.
The estimate ‖f ∗ g‖1 ≤ ‖f ‖1‖g‖1 shows the convolution is a bounded linear oper-
ator ∗ : L1(T) × L1(T) → L1(T) and L1(T) is a Banach algebra under convolution.
See [11] for details.

Since B V(T) is the dual of Ac(T), many of the usual properties of convolutions
hold when it is defined on Ac(T) × B V(T).
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Theorem 4 Let f ∈ Ac(T) and let g ∈ B V(T). Then (a) f ∗ g ∈ C0(T); (b) f ∗ g =
g ∗ f ; (c) ‖f ∗ g‖∞ ≤ ‖f ‖T‖g‖B V ; (d) for y ∈ R we have τy(f ∗ g) = (τyf ) ∗ g =
f ∗ (τyg). (e) If h ∈ L1(T) then f ∗ (g ∗ h) = (f ∗ g) ∗ h ∈ C0(T). (f) For each f ∈
Ac(T), define 	f : B V(T) → C0(T) by 	f [g] = f ∗g. Then 	f is a bounded linear
operator and ‖	f ‖ ≤ ‖f ‖T. For each g ∈ B V (T), define g : Ac(T) → C0(T) by
g[f ] = f ∗ g. Then f is a bounded linear operator and ‖g‖ ≤ ‖g‖B V . (g) We

have f̂ ∗ g(n) = f̂ (n)ĝ(n) for all n ∈ Z. (h) ‖f ∗ g‖T ≤ ‖f ‖T‖g‖1. (i) Let f,g ∈
L1(T). Then ‖f ∗ g‖T ≤ ‖f ‖T‖g‖1 ≤ ‖f ‖1‖g‖1.

Proof The proofs of (a) through (e) are essentially the same as for [16, Theo-
rem 1]. Proposition 1 is used in the proof of (c). Theorem 21 is used in the proof
of (e). Part (f) follows from part (c). To prove (g), write f̂ ∗ g(n) = ∫ π

−π

∫ π

−π
f (x −

t)e−in(x−t)g(t)e−int dt dx. By Theorem 21 we can interchange the orders of integra-
tion. The result then follows upon a change of variables. To prove (h), use Theorem 21
and a linear change of variables to write

∫ β

α

f ∗ g(x)dx =
∫ β

α

∫ π

−π

f (x − t)g(t) dt dx =
∫ π

−π

∫ β

α

f (x − t)g(t) dx dt

=
∫ π

−π

g(t)

∫ β−t

α−t

f (x) dx dt.

Then
∣
∣
∣
∣

∫ β

α

f ∗ g(x)dx

∣
∣
∣
∣ ≤ sup

u<v

∣
∣
∣
∣

∫ v

u

f

∣
∣
∣
∣‖g‖1 ≤ ‖f ‖T‖g‖1.

The proof of (i) is similar but now the usual Fubini theorem is used. �

Using two equivalent norms, we can have equality in part (f). Define ‖f ‖′
T

=
sup−π≤x≤π | ∫ x

−π
f | for f ∈ Ac(T) and define ‖g‖′

B V = |g(−π)| + 0.5Vg for
g ∈ B V(T). These norms are equivalent to ‖ · ‖T and ‖ · ‖B V , respectively. Given
f ∈ Ac(T) with f = 0 there is α ∈ (−π,π] such that ‖f ‖′

T
= | ∫ α

−π
f |. Define

g ∈ B V(T) by g(t) = χ(−α,π)(t) for t ∈ [−π,π) and extend periodically. Then
‖g‖′

B V = 1 and |f ∗ g(0)| = ‖f ‖′
T

. With these norms, ‖	f ‖ = ‖f ‖′
T

. However, we
can have ‖g‖ < ‖g‖B V . Let g(t) = (1/3)χ{0}(t) for t ∈ [−π,π) and extend pe-
riodically. Then ‖g‖B V = 1 but f ∗ g = 0 for each f ∈ Ac(T). Hence, ‖g‖ = 0.
This problem goes away if we replace B V(T) with functions of normalized bounded
variation. Fix 0 ≤ λ ≤ 1. A function g ∈ B V(T) is of normalized bounded varia-
tion if g(x) = (1 − λ)g(x−) + λg(x+) for each x ∈ [−π,π). The case λ = 0 cor-
responds to left continuity and λ = 1 corresponds to right continuity. See [17] for
details.

Linearity in each component, associativity (e) and inequality (c) show that Ac(T)

is a B V(T)-module. Note that B V(T) is a Banach algebra under pointwise operations.

Example 5 Note that f ∗ g need not be of bounded variation and hence need not
be absolutely continuous. For example, let g be the periodic extension of χ(0,π).
Then f ∗ g(x) = F(x) − F(x − π) where F ∈ Bc(T) is the primitive of f . Since F
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need not be of bounded variation, the same can be said for f ∗ g. For instance, take
F(x) = x sin(x−2)χ[0,π)(x) on [−π,π) with F(0) = 0.

Using the estimate ‖f ∗g‖T ≤ ‖f ‖T‖g‖1 (Theorem 4(h)) and the fact that B V(T)

is dense in L1(T) we can define f ∗ g for f ∈ Ac(T) and g ∈ L1(T). Since L1(T) is
dense in Ac(T) we can also define the convolution using a sequence in L1(T) with
the inequality in Theorem 4(i).

Definition 6 Let f ∈ Ac(T) and g ∈ L1(T). (a) Let {gk} ⊂ B V(T) such that ‖gk −
g‖1 → 0. Then f ∗g is the unique element of Ac(T) such that ‖f ∗gk −f ∗g‖T → 0.
(b) Let {fk} ⊂ L1(T) such that ‖fk − f ‖T → 0. Then f ∗ g is the unique element of
Ac(T) such that ‖fk ∗ g − f ∗ g‖T → 0.

See [16] for a proof that (a) defines a unique element of Ac(T). The validity of (b)
and the equality of definitions (a) and (b) is proved following the proof of Theorem 7.

Theorem 7 Let f ∈ Ac(T) and g ∈ L1(T). Then (a) f ∗ g ∈ Ac(T); (b) ‖f ∗ g‖T ≤
‖f ‖T‖g‖1; (c) for y ∈ R we have τy(f ∗g) = (τyf )∗g = f ∗ (τyg). (d) If h ∈ L1(T)

then f ∗ (g ∗h) = (f ∗g)∗h ∈ Ac(T). (e) For each f ∈ Ac(T), define 	f : L1(T) →
Ac(T) by 	f [g] = f ∗ g. Then 	f is a bounded linear operator and ‖	f ‖ = ‖f ‖T.
For each g ∈ L1(T), define g : Ac(T) → Ac(T) by g[f ] = f ∗ g. Then g is a

bounded linear operator and ‖g‖ = ‖g‖1. (f) We have f̂ ∗ g(n) = f̂ (n)ĝ(n) for all
n ∈ Z.

Proof Using Theorem 21, the proofs of (a) through (d) are essentially the same as
for [16, Theorem 3], taking Theorem 4 into account. To proof (e), let f ∈ Ac(T).
Then ‖	f ‖ = sup‖g‖1=1 ‖f ∗g‖T ≤ sup‖g‖1=1 ‖f ‖T‖g‖1 = ‖f ‖T. To show we have
equality, let kn ∈ B V(T) be a sequence of non-negative summability kernels as in
Definition 10. Using Theorem 11, ‖	f ‖ ≥ ‖f ∗ kn‖T → ‖f ‖T as n → ∞. The in-
equality ‖g‖ ≤ ‖g‖1 follows similarly. To prove we have equality, note that C0(T)

is dense in L1(T) and such functions are uniformly continuous, so for each g ∈ L1(T)

and each ε > 0 there is a step function σ(x) = ∑n
j=1 σjχ(aj−1,aj )(x) defined by

a uniform partition −π = a0 < a1 < · · · < an = π , aj = −π + 2πj/n, for which
‖g − σ‖1 < ε. It then suffices to find a sequence {fm} ⊂ Ac(T) with ‖fm‖T = 1
and ‖fm ∗ σ‖T → ‖σ‖1 as m → ∞. Define fm(x) = ∑n

i=1 εipm(x + ai−1) where
εi = sgn(σi) and pm is a delta sequence. This is a sequence of continuous func-
tions pm ≥ 0 such that there is a sequence of real numbers δm ↓ 0 with supp(pm) ⊂
(−δm, δm) and

∫ δm

−δm
pm(x)dx = 1. Take m large enough so that δm < π/n. With the

Fubini theorem we have

‖fm ∗ σ‖T ≥
∫ 2π/n

0
fm ∗ σ(x)dx =

n∑

i,j=1

εiσj

∫ aj

aj−1

∫ ai−t

ai−1−t

pm(x) dx dt. (4)

The non-zero terms in (4) occur when j = i − 1, i, i + 1. The j = i term yields
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n∑

i=1

|σi |
∫ ai

ai−1

∫ ai−t

ai−1−t

pm(x) dx dt

≥
n∑

i=1

|σi |
∫ ai−δm

ai−1+δm

∫ δm

−δm

pm(x)dx dt

=
n∑

i=1

|σi |
(

2π

n
− 2δm

)

→ ‖σ‖1 as m → ∞.

When j = i + 1, (4) gives

∣
∣
∣
∣
∣

n−1∑

i=1

εiσi+1

∫ ai+1

ai

∫ ai−t

ai−1−t

pm(x) dx dt

∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

n−1∑

i=1

εiσi+1

∫ ai+δm

ai

∫ ai−t

−δm

pm(x)dx dt

∣
∣
∣
∣
∣
≤ nδm‖σ‖1/(2π) → 0 as m → ∞.

Similarly with the j = i − 1 term in (4). To prove (f), consider a sequence {gn} ⊂
B V(T) such that ‖gk − g‖1 → 0 as k → ∞. From (g) in Theorem 4 we have
f̂ ∗ gk(n) = f̂ (n)ĝk(n). But {ĝk} converges to ĝ as k → ∞, uniformly on Z ([11,
I Corollary 1.5]) so we can take the limit k → ∞ to complete the proof. �

To see that (b) of Definition 6 makes sense, take a sequence {fk} ⊂ L1(T) such that
‖fk −f ‖T → 0. The estimate ‖fk ∗g−fl ∗g‖T ≤ ‖fk −fl‖T‖g‖1 from Theorem 4(i)
shows {fk ∗g} converges to a unique element of Ac(T). It is easy to see that this does
not depend on the choice of sequence {fk}. To see that (a) and (b) agree, take {fk}
and {gk} as in Definition 6. Then

‖fk ∗ g − f ∗ gk‖T ≤ ‖fk ∗ g − fk ∗ gk‖T + ‖f ∗ gk − fk ∗ gk‖T

≤ ‖fk‖T‖gk − g‖1 + ‖fk − f ‖T‖gk‖1.

Since {‖fk‖T} and {‖gk‖1} are bounded, letting k → ∞ shows that f ∗ g as defined
by (a) and (b) are the same.

The factorization theorem of Salem–Zygmund–Rudin–Cohen states that if E is
any of the spaces Lp(T) for 1 ≤ p < ∞ or any of the spaces Ck(T) for 0 ≤ k < ∞
then E = L1(T) ∗ E, i.e., for each f ∈ E there exist g ∈ L1(T) and h ∈ E such that
f = g ∗ h. See [4, 7.5.1]. We have a similar result in Ac(T).

Theorem 8 Ac(T) = L1(T) ∗ Ac(T).

Proof Let f ∈ Ac(T). Its primitive in Bc(T) is given by F(x) = ∫ x

−π
f . Write

f̃ = f − F(π)/(2π) and F̃ (x) = ∫ x

−π
f̃ . Then f̃ ∈ Ac(T) and F̃ ∈ C0(T) since

∫ π

−π
f̃ = 0. As C0(T) = L1(T) ∗ C0(T) there exist g ∈ L1(T) and H ∈ C0(T) such

that F̃ = g ∗ H . Differentiating both sides [16, Theorem 12] gives f̃ = g ∗ H ′. Now
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let c1 and c2 be constants. Then (g + c1)∗ (H ′ + c2) = f −F(π)/(2π)+ c2
∫ π

−π
g +

2πc1c2. Let c2 = 1/(2π) and c1 = (F (π) − ∫ π

−π
g)/(2π) to complete the proof. �

This theorem also follows from Theorem 22 and Note 25a in [9, Sect. 32] since the
approximate unit for L1(T) is also an approximate unit for Ac(T). This is a sequence
{kn} ⊂ L1(T) such that ‖kn‖1 < M and ‖f ∗ kn − f ‖1 → 0 as n → ∞, for each
f ∈ L1(T). See [9, 28.51] and Theorem 11 below. This connection was pointed out
by an anonymous referee.

Example 9 Using the method of Definition 6, it does not seem possible to define
the convolution on Ac(T) × Ac(T). The following example shows there is no k ∈ R

such that ‖f ∗ g‖T ≤ k‖f ‖T‖g‖T for all f,g ∈ Ac(T). Let f (t) = t−3 sin(t−4) for
t ∈ (0,π), let f (t) = 0 for t ∈ [−π,0] and extend f periodically. The primitive is

F(x) =
∫ x

−π

f =
{

0, −π ≤ x ≤ 0,
x2

4 cos(x−4) − 1
2

∫ x

0 t cos(t−4) dt, 0 < x < π,

extended outside [−π,π) so that F ∈ Bc(T). Let fn(t) = t−3 sin(t−4)χ((nπ)−1/4,π)(t).
Extend periodically outside [−π,π) then fn ∈ B V(T). Now,

‖f − fn‖T = sup
|α−β|<2π

∣
∣
∣
∣

∫ β

α

f − fn

∣
∣
∣
∣ = max

x,y∈[0,(nπ)−1/4]
|F(x) − F(y)|

≤ (nπ)−1/2 → 0 as n → ∞.

Define G(t) = t sin(t−4) for t ∈ [−π,0), G(t) = 0 for t ∈ [0,π) and extend G so
that G ∈ Bc(T). Let g = G′. Then g ∗ fn(x) = ∫ π

(nπ)−1/4 g(x − t)f (t) dt . Using The-
orem 21,

∣
∣
∣
∣

∫ π

0
g ∗ fn(x) dx

∣
∣
∣
∣ =

∫ π

(nπ)−1/4
sin2(t−4)

dt

t2
= 1

4

∫ nπ

π−4
x−3/4 sin2(x) dx.

Hence, ‖g ∗ fn‖T → ∞ as n → ∞.

Since the convolution is linear in both arguments, associative over L1(T) and
satisfies the inequality ‖f ∗ g‖T ≤ ‖f ‖T‖g‖1, the convolution maps ∗ : Ac(T) ×
L1(T) → Ac(T) and Ac(T) is an L1(T)-module over the L1(T) convolution algebra.
Trigonometric polynomials are dense in Ac(T) (Lemma 12) so Ac(T) is an essential
Banach module. See [3] for the definitions.

A Segal algebra is a subalgebra of L1(T) that is dense, translation invariant, and
continuous in norm. See [12]. Since L1(T) is a subalgebra of Ac(T) the roles of
the spaces are reversed. For each x ∈ R and f ∈ L1(T) we have ‖τxf ‖1 = ‖f ‖1

and there is continuity in ‖ · ‖1. Some properties of Segal algebras hold in this case.
For example, if f ∈ L1(T) then ‖f ‖T ≤ ‖f ‖1 [12, Proposition 6.2.3]. However, it
follows from Theorem 8 that L1(T) is not an ideal of Ac(T) [12, Proposition 6.2.4].
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4 Convergence

The series
∑∞

−∞ f̂ (n)eint is known as the Fourier series of f . If f is a smooth
enough function then the Fourier series of f converges to f . There is a substantial
literature on pointwise convergence of Fourier series. For example, if the pointwise
derivative f ′(x) exists then the Fourier series converges to f at x [7, Corollary 3.3.9].
It is a celebrated result of A.N. Kolmogorov that there exists a function f ∈ L1(T)

such that for each t ∈ T the sequence
∑N

−N f̂ (n)eint diverges as N → ∞ [11, p. 80].
L. Carleson and R.A. Hunt have proved that if f ∈ Lp(T) for some 1 < p < ∞
these symmetric partial sums (given by convolution of f with the Dirichlet ker-
nel) converge to f almost everywhere. For a proof see [7, Sect. 3.6] together with
[8, Chap. 11]. On the one-dimensional torus, convergence of these symmetric par-
tial sums to f in the p-norm is equivalent to Lp(T) boundedness of the conjugate
function. M. Riesz has shown that the conjugate function is bounded for 1 < p < ∞.
See [7, Sect. 3.5]. We will see below that these symmetric partial sums converge to
f ∈ L1(T) in the Alexiewicz norm. For f ∈ Ac(T) we will show that the Fourier
series converges in the Alexiewicz norm with an appropriate summability factor.

First we consider summability kernels.

Definition 10 A summability kernel is a sequence {kn} ⊂ B V(T) such that
∫ π

−π
kn =

1, limn→∞
∫
|s|>δ

|kn(s)|ds = 0 for each 0 < δ ≤ π and there is M ∈ R so that
‖kn‖1 ≤ M for all n ∈ N.

Theorem 11 Let f ∈ Ac(T). Let kn be a summability kernel. Then ‖f ∗kn −f ‖T →
0 as n → ∞.

Proof Let −π ≤ α < β ≤ π . Then

∣
∣
∣
∣

∫ β

α

[
f ∗ kn(t) − f (t)

]
dt

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ β

α

[∫ π

−π

kn(s)f (t − s) ds − f (t)

∫ π

−π

kn(s)ds

]

dt

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ π

−π

kn(s)

∫ β

α

[
f (t − s) − f (t)

]
dt ds

∣
∣
∣
∣

≤ sup
|s|<δ

‖f − τsf ‖T

∫

|s|<δ

|kn(s)|ds + 2‖f ‖T

∫

δ<|s|<π

|kn(s)|ds. (5)

The interchange of integrals in (5) is accomplished using Theorem 21 in the
Appendix. Due to continuity in the Alexiewicz norm, given ε, we can take 0 < δ < π

small enough so that ‖f − τsf ‖T < ε for all |s| < δ. Hence, ‖f ∗ kn − f ‖T <

Mε + 2‖f ‖T

∫
δ<|s|<π

|kn(s)|ds. Letting n → ∞ completes the proof. �
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A commonly used summability kernel is the Fejér kernel,

kn(t) = 1

2π

n∑

k=−n

(

1 − |k|
n + 1

)

eikt = 1

2π(n + 1)

[
sin((n + 1)t/2)

sin(t/2)

]2

.

See [11] for this and other summability kernels. The classical summability ker-
nels (de la Vallée Poussin, Poisson, Jackson) all satisfy the conditions of Theo-
rem 11, which differ from Lebesgue integral conditions by requiring the kernels be of
bounded variation. A sequence (or net) of functions satisfying the conclusion of The-
orem 11 is also called an approximate unit when its Fourier series consists of a finite
number of terms. See [12]. The approximate units for L1(T) are then approximate
units for Ac(T).

Lemma 12 Let f ∈ Ac(T). Then f ∗ en(x) = f̂ (n)einx . Let g(t) = ∑n
−n akek(t) for

a sequence {ak} ⊂ R. Then f ∗ g(x) = ∑n
−n akf̂ (k)eikx .

The proof follows from the identity en(x − t) = en(x)en(−t) and linearity of the
integral.

The lemma allows us to prove that trigonometric polynomials are dense in Ac(T)

and gives a uniqueness result. Let kn be the Fejér kernel and define σn[f ] = kn ∗ f .
From Theorem 11 we have σn[f ] → f in the Alexiewicz norm. The lemma shows
σn[f ] is a trigonometric polynomial. Hence, the trigonometric polynomials are dense
in Ac(T).

Theorem 13 Let f ∈ Ac(T). The trigonometric polynomials are dense in Ac(T);

σn[f ](t) = 1

2π

n∑

k=−n

(

1 − |k|
n + 1

)

f̂ (k)eikt and lim
n→∞‖f − σn[f ]‖T = 0. (6)

If f̂ (n) = 0 for all n ∈ Z then f = 0.

Define the space of doubly indexed sequences converging to 0 by c0 = {σ : Z →
R | σn = o(1) as |n| → ∞}. Then c0 is a Banach space under the uniform norm.
Distributions whose sequence of Fourier coefficients are in c0 are known as pseudo-
functions. Let d = {σ : Z → R | σn = o(n) as |n| → ∞}. Then d is a Banach space
under the norm ‖σ‖d = supn∈Z |σn|/(|n| + 1). In fact, c0 and d are isometrically
isomorphic, a linear isometry being given by σn �→ σn/(|n|+1). Note that a corollary

to Theorem 3 is that if ‖fj − f ‖T → 0 then ‖f̂j − f̂ ‖d → 0. The following theorem
summarizes the properties of the mapping f �→ f̂ for f ∈ Ac(T).

Theorem 14 Define F : Ac(T) → d by F [f ] = f̂ . Then F is a bounded linear
transformation that is injective but not surjective.

Proof Linearity is given in Theorem 2(a), (b). Part (f) of the same theorem shows F
is bounded. The uniqueness theorem (Theorem 13) shows F is an injection. If F were
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also a surjection then a consequence of the Open Mapping Theorem is that there is
δ > 0 such that ‖f̂ ‖d ≥ δ‖f ‖T for all f ∈ Ac(T). See [13, Theorem 5.10]. For each
α ∈ R let fα(t) = |t |−αsgn(t) on [−π,π). Then fα ∈ Ac(T) if and only if α < 1. We
have f̂α(0) = 0 and for n = 0 we get |f̂α(n)| ≤ 2|n| ∫ π

0 t1−α dt = 2|n|π2−α/(2 − α).

Then ‖f̂α‖d ≤ 2π2−α/(2−α) → 2π as α → 1−. And, ‖fα‖T = π1−α/(1−α) → ∞
as α → 1−. Hence, F cannot be surjective. �

For L1 Fourier series, f̂ (n) = o(1) but the transformation f �→ f̂ is not onto c0.
See [13, Theorem 5.15].

For n ≥ 0 define the Dirichlet kernel Dn(t) = ∑n
−n eikt = sin[(n+1/2)t]/ sin(t/2).

Notice that according to the definition in Theorem 11, Dn is not a summability ker-
nel. In fact, ‖Dn‖1 ∼ (4/π2) log(n) as n → ∞. See [11, p. 71]. However, ‖Dn‖T are
bounded. This shows that Dn ∗ f converges to f in ‖ · ‖T for f ∈ L1(T).

Theorem 15 The sequence ‖Dn‖T is bounded. Let f ∈ L1(T). Then ‖Dn ∗ f −
f ‖T → 0 as n → ∞.

Proof Fix n ∈ N. Since the function t �→ sin(t/2) is increasing on [0,π] we have
| ∫ (k+1)π/(n+1/2)

kπ/(n+1/2) Dn(t) dt | ≥ | ∫ (k+2)π/(n+1/2)

(k+1)π/(n+1/2) Dn(t) dt | for each integer k ≥ 0. We
then have

‖Dn‖T = 2
∫ 2π/(2n+1)

0

sin[(n + 1/2)t]
sin(t/2)

dt = 2
∫ 2π/(2n+1)

0

n∑

k=−n

eikt dt

= 4π

2n + 1
+ 4

n∑

k=1

1

k
sin

(
2πk

2n + 1

)

≤ 4π

2n + 1
+ 8πn

2n + 1
= 4π.

Let f ∈ L1(T) and let ε > 0. There is a trigonometric polynomial p such that
‖f −p‖1 < ε/(4π + 1). Let n be greater than the degree of p. Then from Lemma 12
we have Dn ∗ p = p. Using the estimate in Theorem 7(b)

‖Dn ∗ f − f ‖T = ‖Dn ∗ (f − p) + p − f ‖T

≤ ‖Dn‖T‖f − p‖1 + ‖f − p‖T

≤ (4π + 1)‖f − p‖1 < ε. �

Example 16 Since the Dirichlet kernels are not uniformly bounded in the L1 norm
there is a function f ∈ Ac(T) such that ‖Dn ∗ f − f ‖T → 0. To see this, for each
n ∈ N define

Fn(t) =
⎧
⎨

⎩

0, 0 ≤ t ≤ π

− sin[(n + 1/2)t], −nπ/(n + 1/2) ≤ t ≤ 0
0, −π ≤ t ≤ −nπ/(n + 1/2),

with Fn extended periodically. Then Fn ∈ Bc(T) so F ′
n ∈ Ac(T).
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We have Dn ∗ F ′
n = (Dn ∗ Fn)

′ [16, Proposition 4.2]. Therefore, ‖Dn ∗ F ′
n‖T =

maxx,y∈[−π,π] |Dn ∗ Fn(y) − Dn ∗ Fn(x)|. Note that

Dn ∗ Fn(0) = 2

2n + 1

∫ nπ

0

sin2(t)

sin[t/(2n + 1)] dt ≥ 2
∫ nπ

π

sin2(t)
dt

t

= log(n) −
∫ nπ

π

cos(2t)
dt

t
.

Hence, Dn ∗ Fn(0) ≥ 0.5 log(n) for large enough n. As well,

Dn ∗ Fn(π) = (−1)n

2n + 1

∫ nπ

0

sin(2t)

cos[t/(2n + 1)] dt.

Since the function t �→ sec[t/(2n + 1)] is positive and increasing on [0, nπ] we have∫ nπ

0 sin(2t) sec[t/(2n + 1)]dt < 0.
We now have maxx,y∈[−π,π] |D2n ∗ F2n(y) − D2n ∗ F2n(x)| ≥ 0.5 log(n) for large

enough n. And, ‖F ′
2n‖T = 2. Hence, ‖Dn‖ = sup‖f ‖T=1 ‖Dn ∗f ‖T are not uniformly

bounded. By the Uniform Boundedness Principle, there exists f ∈ Ac(T) such that
‖Dn ∗ f ‖T is not bounded as n → ∞. Therefore, ‖Dn ∗ f − f ‖T → 0.

Note that if f ∈ L1(T) then ‖Dn ∗ f − f ‖1 need not tend to zero. See [11, p. 68].

If f ∈ L1(T) and g ∈ L∞(T) then Fejér’s lemma states that
∫ π

−π
f (t)g(nt) dt has

limit f̂ (0)ĝ(0)/(2π) as n → ∞. Since the multipliers for Ac(T) are the functions of
bounded variation we have the following version for the continuous primitive integral.

Proposition 17 Let f ∈ Ac(T) and g ∈ B V(T). Then
∫ π

−π
f (t)g(nt) dt = o(n) as

n → ∞. The order estimate is sharp.

Proof The trigonometric polynomials are dense in Ac(T) (Lemma 12) so there are
sequences of trigonometric polynomials {p
} and {qm} such that ‖f −p
‖T → 0 and
‖g − qm‖T → 0 as 
,m → ∞. Write

∫ π

−π

f (t)g(nt) dt =
∫ π

−π

[f (t) − p
(t)]g(nt) dt +
∫ π

−π

p
(t)[g(nt) − qm(nt)]dt

+
∫ π

−π

p
(t)qm(nt) dt.

Use the Hölder inequality, Proposition 1. Then | ∫ π

−π
[f (t) − p
(t)]g(nt) dt | ≤

n‖f − p
‖T‖g‖B V . Take 
 ∈ N large enough so that ‖f − p
‖T‖g‖B V < ε.
And, | ∫ π

−π
p
(t)[g(nt) − qm(nt)]dt | ≤ ‖p
‖B V ‖g − qm‖T. Take m ∈ N large

enough so that ‖p
‖B V ‖g − qm‖T < ε. Now write qm = ∑m
−m ake−k . Then∫ π

−π
p
(t)qm(nt) dt = ∑m

−m akp̂(nk). By the Riemann–Lebesgue lemma this tends
to a0p̂(0) as n → ∞. Hence,

∫ π

−π
f (t)g(nt) dt = o(n). The estimate is sharp by

Theorem 2(g). �

Since the topological dual of Ac(T) is B V(T) we can view functions of bounded
variation as continuous linear functionals on Ac(T). For f ∈ Ac(T) and g ∈ B V(T)
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we define a linear functional g : Ac(T) → R by g[f ] = ∫ π

−π
fg. If {fn} ⊂ Ac(T)

such that ‖fn − f ‖T → 0 then by the Hölder inequality

|g[fn] − g[f ]| =
∣
∣
∣
∣

∫ π

−π

(fn − f )g

∣
∣
∣
∣ ≤ ‖fn − f ‖T‖g‖B V → 0.

Hence g is a continuous linear functional on Ac(T).
The following Parseval equality states that for every g ∈ B V we have σn[g] → g

in the weak∗ topology.

Theorem 18 If f ∈ Ac(T) and g ∈ B V(T) then

g[f ] = 〈f,g〉 =
∫ π

−π

fg = lim
n→∞

n∑

k=−n

(

1 − |k|
n + 1

)

f̂ (k)ĝ(k).

The proof is essentially the same as the version for Lebesgue integrals given in [11,
p. 37]. Note that for f ∈ Ac(T) and g ∈ B V(T), the series

∑∞
−∞ f̂ (k)ĝ(k) need not

converge. This follows from the sharp growth estimates f̂ (k) = o(k) (Theorem 2(g))
and ĝ(k) = O(1/k) [11, I Theorem 4.5]. To see this, let g(t) = √

1 − (t/π)2 on
(0,π) and extend g as an odd periodic function. Then

ĝ(k) = 2i

k
− 2i

π2k

∫ π

0

t cos(kt) dt
√

1 − (π/t)2
.

By the Riemann–Lebesgue lemma, ĝ(k) ∼ 2i/k as k → ∞.
The Parseval equality lets us characterize sequences of Fourier coefficients of

functions in B V(T).

Theorem 19 Let {an}n∈Z be a sequence in C. The following are equivalent: (a) There
exists g ∈ B V(T) and c ≥ 0 such that ‖g‖B V ≤ c and ĝ(n) = an for each n ∈ Z.
(b) For all trigonometric polynomials p we have |∑∞

−∞ p̂(n)an| ≤ c‖p‖T.

Corollary 20 A trigonometric series S(t) ∼ ∑
ane

int is the Fourier series of some
function g ∈ B V(T) with ‖g‖B V ≤ c if and only if ‖σn[S]‖B V ≤ c for all n ∈ Z.

The proof is essentially the same as that for Theorem 7.3 in [11, p. 39].

Appendix

The following type of Fubini theorem generalizes a similar one for the Henstock–
Kurzweil and wide Denjoy integral in [2, Theorem 58].

Theorem 21 Let f ∈ Ac(T). Let g ∈ B V(T). If −∞ < a < b < ∞ then
∫ b

a

∫ π

−π
f (x−

y)g(y) dy dx = ∫ π

−π

∫ b

a
f (x − y)g(y) dx dy.
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Proof Let F ∈ Bc(T) be the primitive of f . Integrating by parts gives
∫ π

−π
f (x −

y)g(y) dy = F(x + π)g(−π) − F(x − π)g(π) + ∫ π

−π
F (x − y)dg(y). Now use the

periodicity of g to write

∫ b

a

∫ π

−π

f (x − y)g(y) dy dx

=
(∫ b+π

a+π

F −
∫ b−π

a−π

F

)

g(π) +
∫ b

a

∫ π

−π

F (x − y)dg(y) dx.

A linear change of variables and integration by parts gives

∫ π

−π

∫ b

a

f (x − y)g(y) dx dy

=
∫ π

−π

g(y)

∫ b−y

a−y

f (x) dx dy

=
∫ π

−π

[
F(b − y) − F(a − y)

]
g(y)dy

=
∫ π

−π

[F(b − y) − F(a − y)]dy g(π)

−
∫ π

−π

∫ y

−π

[F(b − z) − F(a − z)]dzdg(y)

=
(∫ b+π

b−π

F −
∫ a+π

a−π

F

)

g(π) +
∫ π

−π

(∫ b

a

F (x − y)dx −
∫ b+π

a+π

F

)

dg(y)

=
(∫ b+π

a+π

F −
∫ b−π

a−π

F

)

g(π) +
∫ π

−π

∫ b

a

F (x − y)dx dg(y) −
∫ b+π

a+π

F

∫ π

−π

dg.

The usual Fubini theorem gives

∫ π

−π

∫ b

a

F (x − y)dx dg(y) =
∫ b

a

∫ π

−π

F (x − y)dg(y) dx

since
∣
∣
∣
∣

∫ π

−π

∫ b

a

F (x − y)dx dg(y)

∣
∣
∣
∣ ≤ max

x∈[a−π,b+π] |F(x)|Vg.

As g is periodic,
∫ π

−π
dg = 0. �
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