
J Fourier Anal Appl (2011) 17:355–373
DOI 10.1007/s00041-011-9174-5

Spectral Concentration of Positive Functions
on Compact Groups

Gorjan Alagic · Alexander Russell

Received: 4 June 2009 / Revised: 3 December 2010 / Published online: 24 February 2011
© Springer Science+Business Media, LLC 2011

Abstract The problem of understanding the Fourier-analytic structure of the cone of
positive functions on a group has a long history. In this article, we develop the first
quantitative spectral concentration results for such functions over arbitrary compact
groups. Specifically, we describe a family of finite, positive quadrature rules for the
Fourier coefficients of band-limited functions on compact groups. We apply these
quadrature rules to establish a spectral concentration result for positive functions:
given appropriately nested band limits A ⊂ B ⊂ ̂G, we prove a lower bound on the
fraction of L2-mass that any B-band-limited positive function has in A. Our bounds
are explicit and depend only on elementary properties of A and B; they are the first
such bounds that apply to arbitrary compact groups. They apply to finite groups as
a special case, where the quadrature rule is given by the Fourier transform on the
smallest quotient whose dual contains the Fourier support of the function.
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1 Introduction

Understanding the Fourier-analytic structure of the cone of positive functions on
a group is a long-standing problem inspired by signal processing applications.
Bochner’s theorem, for instance, characterizes the set of functions on R

n whose in-
verse Fourier transforms are positive [13]. In this article, we study the energy distri-
bution of the Fourier transforms of positive functions on arbitrary compact groups,
establishing lower bounds for the fraction of L2-mass that a positive band-limited
function must have in a given portion of the spectrum. Such bounds have been
known in specific cases since 1956, when Erdős and Fuchs [3] showed that the
Fourier transform φ(θ) = ∑∞

n=0 f (n)einθ of a nonnegative function f ∈ L1(Z≥0)

satisfies
∫ π/2

−π/2
|φ(θ)|2dθ ≥ 1

6
‖φ‖2

2; (1.1)

thus, the fraction of energy appearing in the “low frequency” end of the spec-
trum is at least 1/6. This constant was later improved to 1/4 by Logan [10] and
Shapiro [16].

In the setting of an arbitrary compact group G, the Fourier transform is determined
by the irreducible representations of G, associating with every square-integrable
function f ∈ L2(G) a family of linear operators

f̂ (ρ) = √

dρ

∫

G

f (x)ρ(x)† dμ(x),

one for each irreducible representation ρ of G. This transformation is unitary in the
sense that ‖f ‖2

2 is equal to the sum of the squared Hilbert-Schmidt norms ‖f̂ (ρ)‖2
HS.

In this setting, there is no canonical notion of “low frequency”; however, nested fam-
ilies of “band limits,” under mild conditions, can serve as a remarkable proxy. By
band limit, we mean a finite collection B of irreducible representations of G. For a
representation ρ of degree dρ , we reserve the notation

dimI ρ � d2
ρ

to denote the dimension of the bi-invariant subspace of L2(G) associated with ρ. We
extend this notation to band limits: dimI B �

∑

ρ∈B dimI ρ; note that this is precisely
the dimension of the space of B-band-limited functions, that is, those functions whose
Fourier transforms are supported only on B. In general, given a function f ∈ L2(G)

and a band limit B, we denote the energy f has in B by

‖f̂ (B)‖2
2 �

∑

ρ∈B
‖f̂ (ρ)‖2

HS.

In the special case where G is finite, Kueh et al. [9] proved a natural analogue
of (1.1), giving a lower bound for the fraction of energy that a positive function
must have in certain band limits. These band limits have a particular representation-
theoretic structure, due in part to the positivity constraint. Specifically, given A ⊂ Ĝ,
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let E(A) denote the set of irreducible representations appearing in the representations
ρ ⊗ σ ∗, for ρ,σ ∈ A. Considering such band limits leads to a particularly attractive
concentration bound.

Theorem 1 (Theorem 5 of [9]) Let f be a positive function on a finite group G, and
let A ⊂ Ĝ. Then

‖f̂ (E(A))‖2
2

‖f ‖2
2

≥ dimI A
|G| .

We remark that this bound is tight in the case of cyclic groups, in the sense that
the quantity on the right hand side cannot be increased uniformly in the size of the
group. Kueh et al. also extended the above theorem to the setting of certain compact
groups and band-limited positive functions. However, these results suffered from a
drawback: they depended critically on the maximum weight for an associated positive
quadrature rule for the underlying group and, in general, no bounds were known for
this quantity. Indeed, quadrature rules were only known for specific families of band
limits defined on certain Lie and finite groups [11, 12].

The principal contribution of this article is an explicit quantitative lower bound,
applying for band limits E(A) ⊂ B of arbitrary compact groups, on the fraction of
energy that positive B-band-limited functions must have in the representations of A.
Specifically, we establish the following theorem.

Theorem 2 Let G be a compact group with nonempty finite band limits A and B sat-
isfying E(A) ⊂ B. Define d = maxρ∈E(B) dimI ρ. Then any positive, B-band-limited
function f satisfies

‖f̂ (E(A))‖2
2

‖f ‖2
2

≥ dimI A
8d(3 + lnd) · dimI E(B)

.

The proof relies on establishing quantitative bounds on the weights of a generic
family of positive quadrature rules, a notion defined below. Indeed, the quantity
8d(3 + lnd) · dimI E(B) appearing in the estimate arises as the cardinality of the
support of a quadrature rule for the space of B-band-limited functions. We remark
that for a finite group G, uniform weights on the entire set G form a quadrature rule
for any band limit which recovers Theorem 1 as a consequence of Theorem 2.

Given a band limit B, a quadrature rule is a finite set of sample points X ⊂ G,
coupled with weights w : X → C, which allow one to calculate the Fourier transform
of any B-band-limited function at a representation ρ ∈ B via the finite sum:

f̂ (ρ) = √

dρ

∑

x∈X

w(x)f (x)ρ(x)†.

A simple example of a quadrature rule can be obtained by considering a function f :
G → C that is bi-invariant under the action of a normal subgroup H of finite index.
In this case, the Fourier transform of f is supported on Ĝ/H ⊂ ̂G and, furthermore,
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the nontrivial Fourier coefficients are uniquely determined by the value taken by f

on any set of coset representatives.
Quadrature rules are basic tools for numerical integration [2] and can be formu-

lated in a variety of settings. In recent work, Schmid, Gräf and Potts [8, 14] estab-
lished necessary and sufficient conditions for positive quadrature rules on the rotation
group SO(3). In a quite different setting, Filbir and Mhaskar [4] have established the
existence of quadrature rules for integrating diffusion polynomials on compact Rie-
mannian manifolds. Quadrature rules are also an essential ingredient for Fast Fourier
Transform algorithms for certain families of compact Lie groups [11]. In that setting,
the rules in question depend heavily on the structure of the particular group, and are
tuned to specific families of band limits; this is a requirement imposed by the algo-
rithmic application. For our purposes, we only require that the quadrature rule have
positive weights, and we prefer rules with small sample sets. This flexibility allows
for a (nonconstructive) probabilistic proof for the existence of quadrature rules that
applies to any band limit on any compact group.

In the next section, we review some basic notions about representation theory,
nonabelian Fourier analysis, and quadrature rules on compact groups. In Sect. 3, we
construct new quadrature rules and prove lower bounds on their maximum weights. In
the last section, we apply these rules to prove our main result, a spectral concentration
theorem for band-limited positive functions.

2 Preliminaries

2.1 Fourier Analysis on Compact Groups

We briefly recall some basic facts from representation theory and nonabelian Fourier
analysis on compact groups, following Folland [5]. Our purpose here is primarily to
set down notation and establish normalizations for various Fourier-analytic equalities.

We define a representation of a compact group G to be a continuous homomor-
phism ρ : G → U(Hρ) from G to the group of unitary operators of some nonzero
Hilbert space Hρ . Continuity is the condition that the matrix elements ρuv : x 
→
〈ρ(x)u, v〉 of ρ are continuous maps for every u,v ∈ Hρ . If the dimension dρ of Hρ

is finite, then any orthonormal basis {ei} allows us to express ρ(x) as a complex,
unitary dρ × dρ matrix whose i, j -th entry is ρei ej

(x); when there is no ambiguity,
we will simply write ρij (x). We refer to dρ as the dimension of ρ.

A subspace W of Hρ is said to be G-invariant if ρ(g)W ⊂ W for all g ∈ G. In
this case, the restriction ρ|W of ρ to W is a representation, called a subrepresentation
of ρ; we write ρ|W ≺ ρ. A representation is irreducible if it has no proper subrepre-
sentations. In this compact case, every irreducible representation (or irrep, for short)
is finite-dimensional, and every representation decomposes into a direct sum of irre-
ducible ones. Two representations ρ and σ are equivalent if they differ by a change
of basis. We let Ĝ denote the set of equivalence classes of irreps of G.

The representations of a compact group G can be given natural ring structure
over the operations of direct sum and tensor product. We let 1 : G → U(C) de-
note the one-dimensional trivial representation, 1 : g 
→ 1. With two representations
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ρ : G → U(Hρ) and σ : G → U(Hσ ), we may naturally define a representation act-
ing on Hρ ⊕ Hσ by the rule g 
→ ρ(g) ⊕ σ(g); this representation we denote ρ ⊕ σ .
The space Hρ ⊗ Hσ can likewise be given the structure of a representation by the
rule g 
→ ρ(g)⊗σ(g) [18]. In general, the resulting representation, which we denote
ρ ⊗ σ , is not irreducible even when both ρ and σ are. These operations define the
representation ring of G. The additive structure is given by the free abelian group
generated by the (isomorphism classes of) finite-dimensional representations of G

under the relation ρ + σ −ρ ⊕ σ ; multiplication is determined by the tensor product.
Finally, we remark that dual spaces can also be given the structure of a representa-
tion: with each representation ρ : G → U(H), we may associate the contragredient
representation ρ∗ : G → U(H∗) by the rule ρ∗(g) = ρ(g−1)∗ where A∗, for a linear
operator A, denotes the dual operator on H∗ given by A∗ : φ 
→ φ ◦ A.

Every compact group admits a nonnegative bi-invariant Radon measure μ of total
mass 1, called Haar measure. This allows us to define the inner product

〈f,g〉 =
∫

G

f (x)g(x) dμ(x)

and the associated L2-norm ‖f ‖2
2 = |〈f,f 〉| for complex-valued functions on G.

The (typically infinite-dimensional) space L2(G), consisting of square-integrable
complex-valued functions on G, is naturally a representation of G under the left (or
right) multiplication action [x · f ](y) = f (x−1y). The Peter-Weyl theorem asserts
that this representation decomposes into a direct sum of irreps of G, each appearing
with multiplicity equal to its dimension. Concretely, if we decompose L2(G) into
subspaces invariant under both left and right translation by elements of G, then

L2(G) ∼=
⊕

ρ∈Ĝ

Eρ,

where Eρ is the span of the matrix elements of ρ, called the ρ-isotypic subspace
of L2(G). The spaces Eρ decompose into irreducible representations, according to
the left (or right) action, in a particularly attractive way. Given an orthonormal basis
{ei} for Hρ , the Schur orthogonality relations imply that the d2

ρ (scaled) matrix el-
ements

√

dρρeiej
for 1 ≤ i, j ≤ dρ form an orthonormal basis for Eρ . The union of

all the bases of the Eρ is then an orthonormal basis for L2(G), a Fourier basis. For a
particular Eρ , each “row” {ρeiej

: 1 ≤ j ≤ dρ} spans a right-G-invariant subspace iso-
morphic to ρ; similarly, each “column” {ρeiej

: 1 ≤ i ≤ dρ} spans a left-G-invariant
subspace isomorphic to ρ∗.

With a finite-dimensional representation ρ we associate the function χρ(g) =
trρ(g), the character of ρ. The function χρ is invariant under conjugation and hence
constant on conjugacy classes of G. In fact, the set {χρ : ρ ∈ Ĝ} of characters of irreps
forms an orthonormal basis for the subspace in L2(G) of functions invariant under
conjugation (the class functions). The multiplicity of an irrep ρ in a representation σ

is given by the inner product 〈χρ,χσ 〉 of their characters.
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The Fourier transform of a function f ∈ L2(G) at an irreducible representation ρ

is given by

f̂ (ρ) �
√

dρ

∫

G

f (x)ρ(x)† dμ(x).

Here the notation ·† denotes the Hilbert dual: for an operator A on H, the Hilbert
dual A† : H → H has the defining property that 〈v,Aw〉 = 〈A†v,w〉 for all v,w ∈ H.
Given an orthonormal basis {ei} for the space of ρ, one can view f̂ (ρ) as the matrix
whose i, j -th entry is given by

√

dρ〈f,ρeiej
〉; indeed, this is precisely the definition

of the operator-valued Haar integral appearing in the transform. The Fourier inversion
formula allows us to write f in terms of its transform:

f (x) =
∑

ρ∈Ĝ

√

dρ tr[f̂ (ρ)ρ(x)], (2.1)

where the series converges in L2 so long as f ∈ L2(G). If we fix a basis for each
ρ ∈ Ĝ, then (2.1) yields an expansion of f in the resulting (orthonormal) Fourier
basis for L2(G). Taken together, the inversion formula and the Peter-Weyl theorem
imply the Plancherel equality:

‖f ‖2
2 =

∑

ρ∈Ĝ

‖f̂ (ρ)‖2
HS ; (2.2)

indeed, with appropriate normalizations, the Fourier transform is unitary.
Finally, we remark that the space L2(G) is afforded an algebra structure by the

convolution product:

[f � g](x) =
∫

f (y)g(y−1x)dμ(y).

This product is the linearization of the group action of G on L2(G). As a result, the
Fourier transform carries convolution to matrix product. Specifically,

f̂ � g(ρ) = 1
√

dρ

ĝ(ρ)f̂ (ρ).

2.2 Quadrature Rules

Let B be a finite collection of irreducible representations of a compact group G.
A function f ∈ L2(G) is said to be B-band-limited if the support of f̂ is contained
in B. The space of such functions is spanned by the matrix entries of the represen-
tations in B, a subspace of L2(G) of dimension dimI B < ∞. By analogy with the
finite group case, where L2(G) is itself finite-dimensional, one might expect that
the Fourier transform of a B-band-limited function could be determined via a finite
sum rather than an operator-valued Haar integral. This is indeed the case, a phenom-
enon expressed by a quadrature rule for B. Such a rule specifies a finitely-supported
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measure ν (that is, a finite set X = suppν ⊂ G along with complex weights ν(x) as-
sociated to each x ∈ X) with the promise that the Fourier coefficients of any B-band
limited function f satisfy

f̂ (ρ) = √

dρ

∑

x∈suppν

ν(x)f (x)ρ(x)† for all ρ ∈ B. (2.3)

We remark that as f is B-band-limited, f̂ (ρ) = 0 for those ρ �∈ B; we do not insist,
however, that the corresponding finite sum (2.3) for such ρ evaluate to zero. Observe
that the quadrature rule, coupled with the Fourier inversion formula, yields a descrip-
tion of f as a finite sum:

f (y) =
∑

ρ∈B
dρ

∑

x∈suppν

tr[ν(x)f (x)ρ(x)†ρ(y)]

=
∑

x∈suppν
ρ∈B

dρν(x)f (x)χρ(x−1y).

We remark that the uncertainty principle places certain restrictions on the fam-
ilies of functions that can be reconstructed via a quadrature rule. One such
principle for compact groups [1] states that any nonzero f ∈ L2(G) satisfies
μ(suppf )

∑

ρ∈Ĝ
dρ rk f̂ (ρ) ≥ 1. It immediately follows that the measure of the

support of any B-band-limited function f must be at least 1/dimI B.
The following proposition gives an equivalent condition for a finitely supported

measure to determine a quadrature rule for a band limit B; a similar statement, with
some additional restrictions on B, appears as Lemma 1 in [11]. Recall from above the
notation E(·):

E(B) � {τ ∈ Ĝ : τ ≺ ρ ⊗ σ ∗ for some ρ,σ ∈ B}.

Proposition 3 Let G be a compact group and B ⊂ Ĝ a finite, nonempty band limit.
A finitely supported measure ν is a quadrature rule for B if and only if for all
ρ ∈ E(B),

∑

x∈suppν

ν(x)ρ(x)† =
{

1 if ρ is trivial, and

0 if ρ is nontrivial.

Proof We first observe that, given a choice of basis for every irrep in B, ν gives a
quadrature rule for B if and only if the Fourier basis functions in B are orthonormal
when computed over ν. Specifically, for every ρ,σ ∈ B and 1 ≤ i, j ≤ dρ and 1 ≤
k, � ≤ dσ , we have

∑

x∈suppν

ν(x)ρij (x)σk�(x) =
{

1
dρ

if ρ ∼= σ , i = k, j = �;

0 otherwise.
(2.4)

Since
√

dσ 〈ρij , σk�〉 = ρ̂ij (σ )k�, a quadrature rule ν for B will imply the above by
definition; the other direction of the equivalence follows directly from the Peter-Weyl
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theorem:

√

dρ

∑

x∈suppν

f (x)ρ(x)†ν(x) = √

dρ

∑

x∈suppν

∑

σ∈B
1≤k,�≤dσ

√

dσ f̂ (σ )�kσk�(x)ρ(x)†ν(x)

= √

dρ

∑

σ∈B
1≤k,�≤dσ

f̂ (σ )�k
√

dσ

∑

x∈suppν

σk�(x)ρ(x)†ν(x)

=
∑

k,�

dρf̂ (ρ)�k
e�k

dρ

= f̂ (ρ),

where e�k denotes the dρ × dρ matrix with a 1 in the �, k-th entry and zeroes else-
where.

Note that the matrix entries of the operator
√

dρdσ

∫

x∈G
[ρ ⊗ σ ∗](x) dμ(x) are

precisely the inner products of the various Fourier basis functions belonging to ρ

and σ . By the equivalence shown above, it follows that ν gives a quadrature rule for
B if and only if, for every ρ,σ ∈ B, we have

∑

x∈suppν

ν(x)[ρ ⊗ σ ∗](x) =
∫

x∈G

[ρ ⊗ σ ∗](x) dμ(x).

If we consider the orthogonal decomposition of each tensor product ρ ⊗ σ ∗ into
irreducible subrepresentations τ ≺ ρ ⊗ σ ∗, the above amounts to requiring that

∑

x∈suppν

ν(x)τ (x) =
∫

x∈G

τ(x)dμ(x)

for every τ ∈ E(B). When τ is trivial, the right hand side is equal to 1; otherwise, by
Schur’s Lemma (see p. 13 of [15]), it is the zero operator. �

We remark that the condition of Proposition 3 referring to the trivial representation
is relevant regardless of the structure of B. Indeed, for any pair of irreps ρ and σ ,
the multiplicity with which the trivial representation appears in ρ ⊗ σ ∗ is given by
〈1, χρ⊗σ ∗〉 = 〈χρ,χσ 〉, and is equal to one when ρ ∼= σ and zero otherwise. Since B
is nonempty, this implies that the trivial representation always appears in E(B).

3 Quadrature Rules for Arbitrary Compact Groups

3.1 Representations Evaluated at Random Group Elements

The goal of this section is to establish the existence of nonnegative quadrature rules
for arbitrary compact groups. The construction proceeds by demonstrating that, with
nonzero probability, a sufficiently large family of independent samples according to
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Haar measure can be given weights that yield a positive quadrature rule. In particu-
lar, we establish that for appropriate representations ρ of G, the convex hull of the
operators ρ(x) contains zero with nonzero probability. Then any convex combination
of these operators that equals zero yields weights which satisfy the quadrature rule
conditions given by Proposition 3.

For a finite-dimensional complex Hilbert space H we let End(H) denote the
Hilbert space of linear operators on H with the inner product 〈A,B〉 = tr(A†B).
As real weights play a special role in our application, we shall focus on real sub-
spaces of End(H). Specifically, define EndR(H) to be the real Hilbert space obtained
from End(H) by restriction of scalars to R and adoption of the real inner product

〈A,B〉 = Re
(

tr(A†B)
)

.

If ρ is an irreducible, finite-dimensional unitary representation ρ : G → U(H) the
linear operators {ρ(g) : g ∈ G} span End(H). As vectors in EndR(H), however, they
may span a strict subspace, which we denote spanR ρ.

We naturally extend the notation spanR ρ to general finite-dimensional represen-
tations ρ (which may not be irreducible). The first step in our proof is to show that
when x is drawn from the Haar measure, the random variable ρ(x) is evenly distrib-
uted in some approximate sense. More precisely, let N be a vector in spanR ρ; with
the inner product above, N determines a hyperplane in spanR ρ. We will see that, for
any N , the fraction of operators ρ(x) lying in either of the (open) half-spaces induced
by the hyperplane is not too small.

Proposition 4 Let G be a compact group and K a finite subset of Ĝ closed under
taking contragredients and not containing the trivial representation. Define K(g) =
⊕

τ∈K τ(g) and suppose N ∈ spanR K. If x is drawn from the Haar measure on G,
then

Pr [Re (tr (K(x)N)) > 0] ≥ 1

2 · maxτ∈K dimI τ
.

Proof Observe that E[τ(x)] = ∫

τ(x) dμ(x) = 0 for each τ ∈ K, so that

E [Re(tr(K(x)N))] = 0. (3.1)

Both K(x) and N can be viewed as block diagonal operators, each block correspond-
ing to an irrep τ in K. We let Nτ denote the projection of N into the subspace
spanned by matrices of τ ; the projection of K(x) into that subspace is simply τ(x).
By Cauchy-Schwarz, the triangle inequality, and the unitarity of each τ , we now
have

|Re tr(K(x)N)| ≤
∑

τ∈K
‖τ(x)‖HS‖Nτ‖HS =

∑

τ∈K
‖Nτ‖HS

√

dτ

≤ ‖N‖HS
√

max
τ∈K

dτ . (3.2)
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The next step is to control the second moment. It can be expanded as follows:

E
[|Re tr(K(x)N)|2] = 1

4
E

[

tr(K(x)N)2 + 2 tr(K(x)N)tr(K(x)N) + tr(K(x)N)
2]

= 1

4

∑

ρ,σ∈K
E

[

tr(ρ(x)Nρ) tr(σ (x)Nσ )

+ 2 tr(ρ(x)Nρ)tr(σ (x)Nσ )

+ tr(ρ(x)Nρ) tr(σ (x)Nσ )
]

.

Each term inside the expectation above then involves a sum of products of Fourier
basis functions. When averaged over the group, the second term is zero except when
ρ ∼= σ ; the first and third terms are zero except when ρ∗ ∼= σ . The expectation above
can then be expressed as

1

4

∑

τ∈K
E

[

tr(τ (x)Nτ ) tr(τ ∗(x)Nτ∗) + 2 tr(τ (x)Nτ )tr(τ (x)Nτ )

+ tr(τ (x)Nτ ) tr(τ ∗(x)Nτ∗)
]

.

The second term is

∑

i,j,k,�

E
[

τ(x)ij (Nτ )jiτ (x)k�(Nτ )�k
] = 1

dτ

∑

i,j

(Nτ )ji(Nτ )ji = ‖Nτ‖2
HS

dτ

.

To simplify the first and third term, we distinguish between three cases: when τ is
real, complex, and quaternionic (see Sect. III.5 in [17].) If τ is not isomorphic to
its contragredient τ ∗, then we say that τ is complex. If τ is isomorphic to τ ∗, then
either τ is real (meaning that τ = τ ∗), or it is quaternionic (meaning that there exists
a nontrivial unitary operator U such that τ = Uτ ∗U†). Recalling that K is closed
under taking contragredients, we see that each complex τ will contribute

E
[

tr(τ (x)Nτ ) tr(τ ∗(x)Nτ∗)
] = E

[

tr(τ (x)Nτ )tr(τ (x)Nτ )
] = ‖Nτ‖2

HS

dτ

,

while, likewise, each real τ contributes

E
[

tr(τ (x)Nτ ) tr(τ (x)Nτ )
] = E

[

tr(τ (x)Nτ )tr(τ (x)Nτ )
] = ‖Nτ‖2

HS

dτ

.

In the quaternionic case, letting U be the unitary operator that satisfies τ = Uτ ∗U†,
we have

E
[

tr(τ (x)Nτ ) tr(τ (x)Nτ )
] = E

[

tr(τ (x)Nτ )tr(Uτ ∗(x)U†Nτ )
]

= tr
[

Nτ (U
†NτU)⊥

]

.
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It is easy to check that for a quaternionic irrep, the Fourier transform of a real el-
ement of the group algebra commutes with conjugation, up to unitary equivalence;
specifically, U(Nτ )

∗U† = Nτ . Substituting into the above, we now have

E
[

tr(τ (x)Nτ ) tr(τ (x)Nτ )
] = tr

[

Nτ (U
†UN∗

τ U†U)⊥
] = ‖Nτ‖2

HS

dτ

for every quaternionic τ . We conclude that

E
[|Re(tr(K(x)N))|2] =

∑

τ∈K

‖Nτ‖2
HS

dτ

≥ ‖N‖2
HS

maxτ∈K dτ

. (3.3)

Now let X be the random variable Re(tr(K(x)N)), where x is chosen from Haar
measure on G, and consider (3.1), (3.2) and (3.3). Let A+ and A− be the subsets of
G where X takes positive and negative values, respectively. Then

‖N‖2
HS

maxτ∈K dτ

≤ EA+[X2] + EA−[X2] ≤ 2
√

max
τ∈K

dτ‖N‖HSEA+[X]

≤ 2 max
τ∈K

dτ‖N‖2
HSμ(A+),

and the result follows. �

Remark 5 The bound given in the proposition above is nearly tight. To see this, let
p be prime and let Fp denote the finite field with p elements. Consider Ap , the
group of affine transformations of Fp of the form αa,b : x 
→ ax + b with a ∈ F

∗
p and

b ∈ Fp . We view Ap as a subgroup of the symmetric group Sp , and consider its action
in the standard representation σ (with dσ = p − 1) of Sp . Recall that the character
χσ (π) = F(π) − 1, where F(π) = |{x | π(x) = x}| is the number of fixed points
of the permutation π . Let N be the identity operator and consider tr(σ (αa,b)N) =
χσ (αa,b) for uniformly random αa,b ∈ Ap . This is p − 1 with probability 1/p(p −
1) = 1/(d2

σ + dσ ), −1 with probability 1/p = 1/(dσ + 1), and zero otherwise. Note
that the probability that χσ (a, b) is positive is within a constant of the bound given
by Proposition 4.

3.2 Generic Quadrature Rules

We establish the existence of our quadrature rules by observing that, with nonzero
probability, a sufficiently large family of samples drawn from the Haar measure can
be given appropriate positive weights to form a quadrature rule.

Theorem 6 Let G be a compact group and B ⊂ ̂G a finite band limit closed un-
der taking contragredients. Set n = dimI E(B) and d = maxτ∈E(B) dimI τ. Then there
exists a quadrature rule for B given by a nonnegative measure ν with | suppν| ≤
8nd(3 + lnd).
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Proof We first define the representation

K(x) =
⊕

τ∈E(B);τ�1

τ(x).

Fixing an index set I of size 4d(2n − 3) ln(e3 · d) ≤ 8nd(3 + ln(d)), let X = {xi :
i ∈ I } be a family of independent random variables distributed according to Haar
measure on G. We shall see that the convex hull of the set

K(X) � {K(xi) : i ∈ I } ⊂ span
R

K

contains the vector 0 with probability bounded away from zero; in this case, there
exists a nonnegative linear combination

∑

i

νi · K(xi) = 0 with
∑

i

νi = 1.

Proposition 3 then guarantees that the finitely-supported measure ν determined by
these weights on X is a positive quadrature rule for B.

To set down notation, let nR denote the real dimension of spanR K. For a finite set
of points Z ⊂ spanR K, we let

hull(Z) =
{

∑

z∈Z

λz · z : λz ≥ 0,
∑

z∈Z

λz = 1

}

denote their convex hull. We say that a hyperplane H bounds a convex set if the set
is entirely contained in one of the closed half-spaces determined by H . A convex
polytope P is the convex hull of a finite set of vectors in a real vector space; the
dimension of such a polytope is the dimension of the corresponding space spanned
by the elements {x −y | x, y ∈ P }. The intersection of P with a bounding hyperplane
is a convex set we call a face of P ; if P is d-dimensional, a face of dimension d −1 is
called a facet. We remark that any hyperplane containing a facet bounds the polytope.

Returning to the set K(X), observe that if 0 /∈ hull(K(X)), there is a facet
of hull(K(X) ∪ {0}) containing 0; in this case, regardless of the dimension of
hull(K(X)), the offending facet lies in the subspace spanned by some nR − 1
elements of K(X). Any hyperspace containing this subspace evidently bounds
hull(K(X)). For a fixed subset F ⊂ I of size nR − 1, let BF denote the bad event
that every hyperspace H containing {K(xi) : i ∈ F } bounds hull(K(X)); in partic-
ular, for each such hyperspace H , the remaining elements {K(xi) : i �∈ F } of K(X)

collectively lie in one of the closed half-spaces determined by H . With these events
defined, we have

Pr[0 /∈ hull(K(X))] ≤ Pr

[

⋃

F

BF

]

≤
∑

F

Pr[BF ],

where both the union and sum are extended over all F ⊂ I of size nR − 1. Recalling
that the trivial representation has been excluded from K, the real dimension nR of
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spanR K is no more than 2(n − 1). As the xi are independent and identically distrib-
uted (and, specifically, invariant under permutation), Pr[BF ] = Pr[BF ′ ] for any pair
F,F ′ and we conclude that

Pr[0 /∈ hull(K(X)] ≤
( |X|

nR − 1

)

Pr[BF0 ] ≤
( |X|

2n − 3

)

Pr[BF0 ],

for any fixed F0.
Consider a collection F ⊂ I of nR − 1 indices; to estimate Pr[BF ], we shall an-

alyze the event conditioned on a fixed, but arbitrary, assignment a : F → G for the
variables {xi : i ∈ F }. Fixing a vector Na normal to the subspace spanned by the el-
ements {K(a(i)) : i ∈ F }, the inner product of an element K(z) with Na determines
the half-space of the hyperplane orthogonal to Na in which K(z) lies. As the xi are
independent,

Pr[BF | xi = a(i), i ∈ F ] ≤
∏

i /∈F

Pr
[

Re
(

tr[K(xi)N
†
a ]) ≤ 0

]

+
∏

i /∈F

Pr
[

Re
(

tr[K(xi)N
†
a ]) ≥ 0

]

≤ 2 · sup
N

(

Pr
x

[

Re
(

tr[K(x)N†]) ≤ 0
]

)|I\F |
,

where x is distributed according to Haar measure and the supremum is taken over all
unit length vectors N ∈ spanR K. Hence

Pr[BF ] ≤ sup
a

Pr[BF | xi = a(i), i ∈ F ] ≤ 2 · sup
N

(

Pr
x

[

Re
(

tr[K(x)N†]) ≤ 0
]

)|I\F |
.

In light of Proposition 4 and the fact that
(

n
k

) ≤ (

ne/k
)k we infer that

Pr
[

0 /∈ hull(X)
] ≤ 2

( |X|
2n − 3

)(

sup
N

(

Pr
x

[

Re(tr[K(x)N†]) ≤ 0
]

)

)|X|−(2n−3)

≤ 2

(

e|X|
2n − 3

)2n−3 (

1 − 1

2d

)|X|−(2n−3)

.

Recalling that |X| = 4d(2n − 3) ln(e3 · d) and that (1 − x) ≤ e−x for x ∈ [0,∞),

Pr[0 /∈ hull(X)] ≤
(

2e|X|
2n − 3

)2n−3

e−(|X|−(2n−3))/2d =
(

8 ln(e3d)

e5d
· e 1

2d

)2n−3

.

Observing that the derivative of ln(e3 · d)/d is negative in [1,∞) and that 1 ≤ d < n,
we conclude that

(

8 ln(e3d)

e5d
· e 1

2d

)2n−3

≤
(

24

e5

√
e

)2n−3

≤
(

24

e4.5

)

< 1,

as desired. �
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Remark 7 The argument above can yield slightly stronger constants than those
claimed. In particular, a more involved computation shows there is a function f :
R

+ → R
+ so that for any ε > 0 there is a quadrature rule of size 4(1 + ε)nd(ln(d) +

f (ε)).

4 Spectral Concentration of Positive Functions

4.1 The General Approach, and Previous Results

Let A ⊂ B be two band limits of a compact group G, with B closed under contra-
gredients. Our goal is to prove a lower bound for the fraction of spectral mass that
any positive B-band-limited function must have in A. The insight of Kueh et al. [9]
in bounding this quantity was to study the function

f c = f̃ � f,

where f̃ is defined by f̃ (x) = f (x−1). Note that f̂ and f̂ c have the same Fourier
support. The essential property of f c for our application is that it is an indicator of
the spectral mass of f :

〈f c,χρ〉 = 1
√

dρ

tr
[

̂f c(ρ)
] = 1

dρ

tr
[

f̂ (ρ)†f̂ (ρ)
] = ‖f̂ (ρ)‖2

HS

dρ

.

Now consider a positive, A-band-limited class function ψ . Computing the inner prod-
uct of f c with ψ in the Fourier basis, we have

〈f c,ψ〉 =
∑

ρ∈Ĝ

〈χρ,ψ〉‖f̂ (ρ)‖2
HS

dρ

≤ N(ψ)
∑

ρ∈A
‖f̂ (ρ)‖2

HS = N(ψ)‖f̂ (A)‖2
2, (4.1)

where N(ψ) = maxρ∈A〈χρ,ψ〉/dρ. Since both f c and ψ are B-band-limited, their
inner product can be viewed as a finite linear combination of Fourier coefficients
associated with representations from B only; by the Peter-Weyl theorem, this is also
true for left translations of f c and ψ . We can thus compute 〈f c,ψ〉 via a quadrature
rule for B. Let ν be a quadrature rule for B with positive weights, and let x0 ∈ G

be the element where ν achieves its maximum ‖ν‖∞. Then, by the positivity of f c

and ψ ,

〈f c,ψ〉 =
∫

f c(x−1
0 x)ψ(x−1

0 x)dμ(x)

=
∑

x∈suppν

ν(x)f c(x−1
0 x)ψ(x−1

0 x)

≥ f c(1)ψ(1)ν(x0)

= ‖f ‖2
2ψ(1)‖ν‖∞.
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Combining with (4.1), we now have

‖f̂ (A)‖2
2

‖f ‖2
2

≥ ‖ν‖∞
ψ(1)

N(ψ)
, (4.2)

a lower bound for the fraction of L2-mass f has in A (recall the Plancherel iden-
tity (2.2).) Clearly, the quality of this bound depends critically on our choice of
quadrature rule ν and “test function” ψ . Our quadrature rules will be provided by
the results of Sect. 3.2; we will discuss several possible choices for ψ below.

In [9], the above technique is applied to both finite and compact groups. Given
two band limits A and B satisfying E(A) ⊂ B, they provide a lower bound for the
fraction of energy (that is, ‖ · ‖2-mass) which any B-band-limited function must have
in E(A). This is accomplished by setting φA = ∑

ρ∈A χρ and applying (4.2) to the

test function ψ = φAφA. The resulting bound (Theorem 14 in [9]) is

‖f̂ (E(A))‖2
2

‖f ‖2
2

≥ ‖ν‖∞
(
∑

ρ∈A dρ)2

N(φAφA)
.

The special case of finite groups appears as Theorem 4 in [9].

4.2 New Spectral Concentration Bounds

There are a number of ways in which the bounds from the previous section could be
improved. Most importantly, prior to the present work no general nonnegative quadra-
ture rules were known for arbitrary compact groups and band limits. The quantity
‖ν‖∞ was thus only defined for specific families of band limits on particular com-
pact groups where positive quadrature rules had been constructed (see Maslen [12]).
In general, no explicit lower bounds were known for ‖ν‖∞. Secondly, it is unclear
if the choice of test function ψ = φAφA is optimal; different test functions, chosen
in a way that maximizes the quantity ψ(1)/N(ψ), may improve the bound. Finally,
we may prefer a bound expressed merely in terms of the dimensions of the relevant
irreducible representations of G, rather than “quadratic” features of the band limits
such as the multiplicities N(ψ). We address these issues in the following theorem.

Theorem 8 Let G be a compact group with nonempty finite band limits A and B
satisfying E(A) ⊂ B. Define n = dimI E(B) and d = maxρ∈E(B) dimI ρ. Then any
B-band-limited function f satisfies

‖f̂ (E(A))‖2
2

‖f ‖2
2

≥ dimI A
8nd(3 + lnd)

.

Proof The notion of band limit extends immediately to characters: note that if C is a
band limit, a character φ is C -band-limited if and only if

φ =
∑

ρ∈C
aρχρ
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for a family of non-negative integer coefficients aρ,ρ ∈ C . We say that the character
θ is C -regular if 〈θ,χρ〉 = dρ for all ρ ∈ C . With this terminology in place, observe
that if θ is C -regular and φ = ∑

aρχρ is C -band-limited, we have

〈θ,φ〉 =
∑

ρ∈C
aρdρ = φ(1).

Equivalently, 〈θ,φ〉 is equal to the dimension of any representation σ for which
χσ = φ.

Defining φA = ∑

ρ∈A dρχρ we shall focus on the character ψ = φAφ̄A and, as
above, the quantity

N(ψ) = N(φAφ̄A) = max
ρ∈E(A)

〈χρ,φAφ̄A〉
dρ

.

In order to estimate N(φAφ̄A), we introduce the band limit

A′ = {ρ ∈ Ĝ : ρ ≺ σ1 ⊗ σ ∗
2 ⊗ σ3 for some σ1, σ2, σ3 ∈ A}

and the A′-regular character θ = ∑

ρ∈A′ dρχρ . Since 〈1, χσ χσ ∗〉 = 〈χσ ,χσ 〉 = 1,
the trivial representation is always a direct summand of σ ⊗ σ ∗; it follows that τ ≺
σ ⊗ σ ∗ ⊗ τ for any irreps σ, τ . As A is nonempty, we conclude that A ⊂ A′. Note,
also, that if σ ∈ E(A) and τ ∈ A we have {ρ ∈ Ĝ : ρ ≺ σ ⊗ τ } ⊂ A′ and, as θ is
A′-regular, that

〈χσ χτ , θ〉 = dσ dτ and, by linearity, 〈χσ φA, θ〉 = dσ dimI A.

Returning now to estimate N(φAφ̄A), for any σ ∈ E(A) we have

〈χσ ,φAφ̄A〉
dσ

= 〈φAχσ ,φA〉
dσ

≤ 〈φAχσ , θ〉
dσ

= dimI A,

where the inequality follows from the fact that 〈χρ, θ〉 ≥ 〈χρ,φA〉 for all irreps
ρ ∈ Ĝ.

We now repeat the calculations from the previous section with the test function
ψ = φAφ̄A.

〈f c,φAφ̄A〉 ≤ N(φAφ̄A)
∑

ρ∈E(A)

‖f̂ (ρ)‖2
HS ≤ dimI A‖f̂ (E(A))‖2

2.

Continuing as before, but now with the quadrature rule from Theorem 6, we see that

〈f c,φAφ̄A〉 ≥ ‖f ‖2
2|φA(1)|2‖ν‖∞ ≥ ‖f ‖2

2(dimI A)2

8nd(3 + lnd)
.

Combining the last two equations yields the result. �

We remark that for certain choices of B, simple quadrature rules are easy to come
by. For instance, suppose G is compact and H is a normal subgroup of finite in-
dex in G. The functions which are invariant under left translation by elements of
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H form a [G :H ]-dimensional vector subspace of L2(G). This subspace is also a
representation of G under left translation; let B be the collection of its irreducible
subrepresentations. It is easy to check that B is in fact isomorphic to the dual of the
finite quotient group G/H . As a result, given any set {gi} of coset representatives, we
can compute the Fourier transforms of a B-band-limited function f via the rule

f̂ (ρ) = √

dρ

∫

f (x)ρ(x)† dμ(x) =
[G :H ]
∑

i=1

μ(giH)f (gi)ρ(gi)
†

=
[G :H ]
∑

i=1

1

[G :H ]f (gi)ρ(gi)
†.

Hence, given any A such that E(A) ⊂ B, the proof of Theorem 8 implies that

‖f̂ (E(A))‖2
2

‖f ‖2
2

≥ dimI A
[G :H ] .

This includes the special case of finite groups and, in particular, Theorem 4 from [9].
For general compact groups and band limits, we would like to find quadrature rules
with large weights, as well as a test function ψ which maximizes N(ψ). The positiv-
ity constraint makes finding such a function a nontrivial matter.

We point out another natural choice of test function, namely ψ = ∑

ρ∈E(A) χρχ̄ρ .
The result is a bound for a different portion of the spectrum; specifically, it controls
the fraction of spectral mass appearing in representations ρ which are irreducible
summands of σ ⊗ σ ∗ for some σ ∈ E(A). It is easy to check that the bound in this
case is

dimI A
8nd(3 + lnd)N(ψ)

;
unfortunately, there seems to be no immediate way of explicitly controlling the mul-
tiplicity N(ψ).

4.3 An Example: The Special Unitary Group

The special unitary group SU(2) is the set of all unitary transformations of C
2 with

determinant one. The representation theory of SU(2) is particularly attractive and
easy to describe. Let Vn denote the vector space of all homogeneous n-th degree
polynomials over C, in two variables:

Vn = {

a0z
n + a1z

n−1w + · · · + an−1w
n−1z + anw

n : ai ∈ C
}

.

There is a natural action of SU(2) on f ∈ Vn, given by [U · f ](z) = f (U−1z) where
z denotes the two-dimensional indeterminate vector (z,w). It is easy to check that
each Vn is a representation of SU(2) under this action; moreover, they are pairwise
inequivalent, since dimVn = n + 1. With some more work, one can show that each
Vn is self-dual and irreducible, and that these are the only irreducible representations
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of SU(2) [6]. We will denote the character of Vn by χn; in particular, χ0 will denote
the trivial representation. We will also require the Clebsch-Gordan rule for SU(2),
which is given by

Vn ⊗ Vm = V|m−n| ⊕ V|m−n|+2 ⊕ · · · ⊕ Vm+n−2 ⊕ Vm+n. (4.3)

We will work with band limits Bn = {V0,V1, . . . , Vn−1,Vn}. Note that the maxi-
mum dimension of any irrep in Bn is n + 1, and that the total dimension of the subal-
gebra of L2(SU(2)) corresponding to Bn is equal to the (n + 1)-st square-pyramidal
number (see [7] for a simple geometric proof):

Pn =
n+1
∑

k=1

k2 = (n + 1)(n + 2)(2n + 3)

6
.

By the results of Sect. 3, there exist quadrature rules for the space of Bn-band-limited
functions involving a number of samples that depends only on the dimensions of
irreps in Bn ⊗ Bn

∗ = B2n. Specifically, we require at most 8 · P2n(2n + 1)(ln(2n +
1) + 3) many samples.

Observe that the set Fn of positive functions which are band limited to Bn is
nontrivial, since

∑

0≤�≤n/2

a� · |χ�|2 ∈ Fn

for any non-negative coefficients a� ≥ 0. Consider now the fraction of energy a func-
tion f ∈ Fn has in the “low frequency” portion of the spectrum, say in Bm for some
m < n. Theorem 8 asserts that

‖f̂ (E(Bm))‖2
2

‖f ‖2
2

≥ Pm/2

8P2n(2n + 1)(ln(2n + 1) + 3)
,

where we assumed m to be even for simplicity.
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3. Erdős, P., Fuchs, W.: On a problem in additive number theory. J. Lond. Math. Soc. 31, 67–73 (1956)
4. Filbir, F., Mhaskar, H.N.: A quadrature formula for diffusion polynomials corresponding to a gener-

alized heat kernel. J. Fourier Anal. Appl. 16(5), 629–657 (2010)
5. Folland, G.: A Course in Abstract Harmonic Analysis. Studies in Advanced Mathematics. CRC Press,

Boca Raton (1995)
6. Fulton, W., Harris, J.: Representation Theory: A First Course. Graduate Texts in Mathematics,

vol. 129. Springer, Berlin (1991)
7. Goldoni, G.: A visual proof for the sum of the first n squares and for the sum of the first n factorials

of order two. Math. Intell. 24, 67–69 (2002)
8. Gräf, M., Potts, D.: Sampling sets and quadrature formulae on the rotation group. Numer. Funct. Anal.

Optim. 30, 665–688 (2009)



J Fourier Anal Appl (2011) 17:355–373 373

9. Kueh, K., Olson, T., Rockmore, D., Tan, K.: Nonlinear approximation theory on compact groups.
J. Fourier Anal. Appl. 7(3), 257–281 (2001)

10. Logan, B.: An interference problem for exponentials. Mich. Math. J. 35, 369–401 (1988)
11. Maslen, D.: Efficient computation of Fourier transforms on compact groups. J. Fourier Anal. Appl.

4(1), 19–52 (1988)
12. Maslen, D.: Sampling of functions and sections for compact groups. Tech. Report PMA-TR99-193,

Dartmouth College Department of Mathematics (1999)
13. Reed, M., Simon, B.: Methods of Mathematical Physics I, Functional Analysis. Academic Press, San

Diego (1980)
14. Schmid, D.: Scattered data approximation on the rotation group and generalizations. Ph.D. thesis,

Technische Universität München (2009)
15. Serre, J.-P.: Linear Representations of Finite Groups. Graduate Texts in Mathematics, vol. 42.

Springer, Berlin (1977)
16. Shapiro, H.: Majorant problems for Fourier coefficients. Q. J. Math. 26, 9–18 (1975)
17. Simon, B.: Representations of Finite and Compact Groups. Graduate Studies in Mathematics, vol. 10.

Am. Math. Soc., Providence (1996)
18. Vilenkin, N., Klimyk, A.: Representation of Lie Groups and Special Functions. Volume 1: Simplest

Lie Groups, Special Functions and Integral Transforms. Mathematics and Its Applications. Soviet
Series. Kluwer Academic, Dordrecht (1991)


	Spectral Concentration of Positive Functions on Compact Groups
	Abstract
	Introduction
	Preliminaries
	Fourier Analysis on Compact Groups
	Quadrature Rules

	Quadrature Rules for Arbitrary Compact Groups
	Representations Evaluated at Random Group Elements
	Generic Quadrature Rules

	Spectral Concentration of Positive Functions
	The General Approach, and Previous Results
	New Spectral Concentration Bounds
	An Example: The Special Unitary Group

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


