
J Fourier Anal Appl (2011) 17:854–878
DOI 10.1007/s00041-010-9166-x

Weak-Type Inequality for Conjugate First Order
Riesz-Laguerre Transforms

L. Forzani · E. Sasso · R. Scotto

Received: 31 March 2010 / Revised: 30 November 2010 / Published online: 6 January 2011
© Springer Science+Business Media, LLC 2011

Abstract In this paper we introduce a conjugate class of Riesz transforms in
the context of Laguerre polynomials. We prove their weak-type (1,1) and Lp,
1 < p < ∞, boundedness with respect to the Laguerre measure. A similar result
is known in the Hermite context, see Aimar et al. (Trans. Am. Math. Soc. 359(5),
2137–2154, 2007).
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1 Introduction: Conjugate Riesz-Laguerre Transforms of Order 1

Singular integrals, specially Riesz transforms, associated to orthogonal systems have
been a main topic of research since the 60’s. These orthogonal systems usually are
eigenfunctions of a Sturm-Liouville differential operator.
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In 2006, Nowak and Stempak [18] proposed a fairly general unified approach to
the theory of Riesz transforms and their conjugate in the setting of multi-dimensional
orthogonal expansions. In that paper they consider a second order differential oper-
ator L self-adjoint with respect to a measure dμ such that it has a decomposition of
the form

L =
d∑

i=1

δ∗
i δi ,

being δi and δ∗
i differential operators of first order. They assume that the spectrum

of L on L2(dμ) consists of a discrete set of eigenvalues {�i}∞i=0 with 0 ≤ �0 <

�1 < · · · and limi→∞ �i = ∞. In order to define the conjugate Riesz transforms
they introduce, for i = 1, . . . , d , the operator Mi , as being

Mi = L + [δi, δ
∗
i ]

where [·, ·] is the commutator defined as

[δi, δ
∗
i ] = δiδ

∗
i − δ∗

i δi .

Then they define in L2 the Riesz transforms of order 1 associated to δi and their
conjugates, the Riesz transforms associated with δ∗

i , respectively as

Ri = δi L−1/2�i, for i = 1, . . . , d

and

R∗
i = δ∗

i M−1/2
i �i, for i = 1, . . . , d; (1.1)

where �i denotes the orthogonal projection onto the closed subspace spanned by the
eigenfunctions that are not in the kernel of either L or Mi .

Under broad assumptions they proved the boundedness of those operators on
L2(dμ). The theory includes the already classical expansions with Hermite, La-
guerre, Jacobi polynomials among others. The Lp , 1 < p < ∞, boundedness and
the weak-L1 boundedness of the Riesz transforms associated to δi were already very
well known for some systems. In particular, for Hermite polynomial expansions, the
boundedness of the Riesz transforms associated to δi were known and extended to
higher order Riesz transforms, see [3, 4, 6, 8–14, 19–21, 26], and [5]. The same is
known for the Laguerre polynomial expansions, see [15, 16, 23], and [7]. For Jacobi
polynomial expansions, only the Lp , 1 < p < ∞, boundedness is known, see [17].

For the conjugate Riesz transforms in the Hermite context the only known result
for weak type (1,1) is due to Aimar, Forzani, and Scotto [2] where they showed that
the conjugate Riesz transforms of all orders are weak-type (1,1) and this came as a
surprise since this is not the case with the higher order Riesz transforms in the same
context. In fact, these last ones are weak-type (1,1) if and only if their order is at
most 2.

In this paper we will investigate the boundedness of these conjugate Riesz trans-
forms in the context of Laguerre polynomial expansions. For α = (α1, . . . , αd) with
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αi > −1 for all i = 1, . . . , d the Laguerre operator

Lα = −
d∑

i=1

(
xi

∂2

∂x2
i

+ (αi + 1 − xi)
∂

∂xi

)

is self-adjoint with respect to dμα,

dμα(x) =
d∏

i=1

x
αi

i e−xi dx,

and it can be written as the sum of the composition of two first order differential
operators, which are in duality with respect to the Laguerre measure dμα , that is

Lα =
d∑

i=1

δ∗
i δi ,

with δi = √
xi

∂
∂xi

and δ∗
i = −δi − αi+ 1

2√
xi

+ √
xi . From [18, p. 690] we have

δ∗
i δiL

α
k = kiL

α
k , (1.2)

where Lα
k (x) = ∏d

i=1 L
αi

ki
(xi) is the d-dimensional Laguerre polynomial of degree

|k| =∑d
i=1 ki and of order α (see [25, p. 100]). Hence

LαLα
k = |k|Lα

k .

From [18, Lemma 5, p. 683], we also have

Mi (δiL
α
k ) = |k|δiL

α
k , (1.3)

and the definition of the conjugate Riesz transforms of order 1 in L2(dμα) is given by
(1.1) and �i , in this case, denotes the orthogonal projection onto the closed subspace
spanned by the system {δiL

α
k }{k∈Z

d
≥0:ki>0}.

In order to extend this definition to Lp(dμα) and prove the corresponding bound-
edness of these Riesz-Laguerre transforms we need to define the conjugate Poisson
integrals associated with R∗

i as:

Ũ i
t = e−Lα

1/2tR∗
i , i = 1, . . . , d.

For f ∈ L2(dμα) they satisfy the following Cauchy-Riemann type differential sys-
tem:

δ∗
i e−Mi

1/2t�if = − ∂

∂t
Ũ i

t f, i = 1, . . . , d; (1.4)

see [18, Sects. 6, 7.10].
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Let us call

Ũ i∗f = sup
t>0

∣∣∣Ũ i
t f

∣∣∣= sup
t>0

∣∣∣∣
∫ ∞

t

δ∗
i e−Mi

1/2l�if dl

∣∣∣∣ ,

where the second equality follows from (1.4).
For every multi-index α such as αi ≥ 0 ∀i = 1, . . . , d the main results of this

paper are:

Theorem 1.1 For every i = 1, . . . , d , Ũ i∗ is bounded from L1(dμα) into L1,∞(dμα).

Theorem 1.2 For every i = 1, . . . , d , Ũ i∗ is bounded on Lp(dμα) for 1 < p < ∞.

Now for f ∈ L1(dμα) we define

R̃∗
i f = lim

t→0+ Ũ i
t f,

which exists almost everywhere. Indeed, the claim follows taking into account Theo-
rem 1.1 and the facts that for ki > 0, there exists

lim
t→0

Ũ i
t (δiL

α
k )(x) = lim

t→0

∫ ∞

t

δ∗
i e−|k|1/2lδiL

α
k (x)dl

= lim
t→0

e−|k|1/2t δ
∗
i δiL

α
k (x)

|k|1/2

= ki

|k|1/2
Lα

k (x),

and the span of {δiL
α
k }{k∈Z

d
≥0:ki>0} is dense in L1(dμα). The boundedness properties

of R̃∗
i are given in the following corollary:

Corollary 1.1 For every i = 1, . . . , d , R̃∗
i = R∗

i on L2(dμα), R̃∗
i is weak-type (1,1),

and it is bounded on Lp(dμα) for 1 < p < ∞.

In order to achieve the first result, we prove the L2(dμα)-boundedness of Ũ i∗ in
Sect. 2 and we simplify the notation and give an expression for the kernel in L2 in
Sect. 3. Then the proof of Theorem 1.1 is based upon the usual decomposition of the
kernel of the singular operator into a local part, where we can use an adaptation of
the Calderón-Zygmund theory to the Laguerre measure (Sect. 5), and in a global part,
where we obtain good estimates of the kernel (Sect. 4). Section 6 will be devoted to
the proof of Theorem 1.2 and within the proof of this theorem we will also have the
proof of Corollary 1.1. Some proofs are given in the Appendix.

Throughout this paper the symbol a � b means a ≤ Cb for some constant C that
may be different on each occurrence. And we will write a ∼ b whenever a � b and
b � a.
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2 L2-Boundedness

Let us prove the L2(dμα)-boundedness of Ũ i∗.

Proposition 2.1 For every i = 1, . . . , d , Ũ i∗ is bounded on L2(dμα).

Proof The boundedness

‖R∗
i f ‖L2(dμα) ≤ ‖f ‖L2(dμα) (2.1)

follows from [18].

Now taking into account that Ũ i∗f = supt>0 |e−L1/2
α tR∗

i f | then from the Maximal
Theorem on Semigroups proved in [24, p. 73] and from (2.1) we get that

‖Ũ i∗f ‖L2(dμα) = ‖ sup
t>0

|e−L1/2
α tR∗

i f |‖L2(dμα) � ‖R∗
i f ‖L2(dμα) � ‖f ‖L2(dμα). �

3 Kernel of ˜Ui
t f in L2(dμα)

Let f ∈ L2(dμα), then Ũ i
t f satisfies the Cauchy-Riemann type differential system

(1.4) and therefore

Ũ i
t f (x) =

∫ ∞

t

δ∗
i e−Mi

1/2l�if (x)dl.

As a consequence,

Ũ i
t f (x) =

∫

R
d+

∫ 1

0

e
t2

4 log r

√
π

w(r)Ũα
i (x, y, r)

dr√
r
f (y)dmα(y), (3.1)

with w(r) = ( 1−r
− log r

)1/2,

Ũα
i (x, y, r) = 1

αi + 1/2

∫

[−1,1]d

[√
rxiyi(

√
xi − √

ryisi)

(1 − r)|α|+d+5/2

− (αi + 1)
√

ryi

(1 − r)|α|+d+3/2

]
(1 − s2

i )e− q−(rx,y,s)

1−r �α(s)ds

:=
∫

[−1,1]d
Ũα

i (x, y, r, s)�α(s)ds (3.2)

being q−(x, y, s) = ∑d
j=1(xj + yj − 2

√
xjyj sj ), �α(s) = ∏d

j=1
(1−s2

j )
αj −1/2

�(αj +1/2)�(1/2)
,

and dmα(y) = ∏d
j=1 eyj dμα(y). See the Appendix for the proof of how to obtain

kernel (3.2).
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Thus (3.1) can be written in the following way

Ũ i
t f (x) =

∫

R
d+

∫

[−1,1]d

⎛

⎝
∫ 1

0

e
t2

4 log r

√
π

w(r)Ũα
i (x, y, r, s)

dr√
r

⎞

⎠f (y)�α(s)ds dmα(y).

(3.3)
In order to pass from the Laguerre context into a Gaussian-like context, we are

going to perform a change of coordinates in Rd+. Let 	 : Rd+ → Rd+ be defined as
	(x) = x2, where for x ∈ Rd+, x = (x1, . . . , xd), x2 = (x2

1 , . . . , x2
d). Let dμ̃α = dμα ◦

	−1 be the pull-back measure from dμα . Then the modified Laguerre measure dμ̃α

is given by

dμ̃α(x) = e−|x|2 dm̃α(x),

where m̃α is the polynomial measure on Rd+ defined as

dm̃α(x) = 2d

d∏

j=1

x
2αj +1
j dx.

The map f → U	f = f ◦ 	 is an isometry from Lq(dμα) onto Lq(dμ̃α) and from
Lq,∞(dμα) onto Lq,∞(dμ̃α), for every q in [1,∞]. So we may reduce the problem
of studying the weak-type (1,1) of Ũ i∗ to the study of the same boundedness for the
modified maximal conjugate Poisson integrals Ui∗ = U	Ũ i∗U −1

	 with respect to the
measure dμ̃α . Thus

Ui∗f (x)

= sup
t>0

∣∣∣∣∣∣

∫

R
d+

∫

[−1,1]d

⎛

⎝
∫ 1

0

e
t2

4 log r

√
π

w(r)Uα
i (x, y, r, s)

dr√
r

⎞

⎠�α(s)dsf (y)dm̃α(y)

∣∣∣∣∣∣

with

Uα
i (x, y, r, s) = Ũα

i (x2, y2, r, s)

= Cα

[√
rxiyi(xi − √

ryisi)

(1 − r)|α|+d+5/2
− (αi + 1)

√
ryi

(1 − r)|α|+d+3/2

]

× (1 − s2
i )e− q−(rx2,y2,s)

1−r . (3.4)

Due to the isometry U	 the proof of Theorem 1.1 is a consequence of

Theorem 3.1 The conjugate Poisson integrals Ui∗ are bounded from L1(dμ̃α) into
L1,∞(dμ̃α).
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In order to prove Theorem 3.1 we need to apply the usual technique in this field:
first we define the local region

Nτ =
{
(x, y, s) ∈ Rd+ × Rd+ × [−1,1]d : q1/2

− (x2, y2, s) ≤ Cτ

1 + |x|
}

, τ > 0

and then we divide the operator into the local and global operators by using a cut-off
function

ϕ(x, y, s) =
{

1 if (x, y, s) ∈ N1

0 if (x, y, s) ∈ N2

with ϕ ∈ C∞, 0 ≤ ϕ ≤ 1, and |∇(x,y)ϕ(x, y, s)| � 1
q

1/2
− (x2,y2,s)

.

We define the global operator as being:

Ui
∗,globalf (x) = sup

t>0

∣∣∣∣∣

∫

R
d+

∫

[−1.1]d
Ki (x, y, s, t)(1 − ϕ(x, y, s))�α(s)dsf (y)dm̃α(y)

∣∣∣∣∣

with

Ki (x, y, s, t) =
∫ 1

0

e
t2

4 log r

√
π

w(r) Uα
i (x, y, r, s)

dr√
r
. (3.5)

The local operator will be:

Ui
∗,localf (x) = sup

t>0

∣∣∣∣∣

∫

R
d+

∫

[−1.1]d
Ki (x, y, s, t)ϕ(x, y, s)�α(s)dsf (y)dm̃α(y)

∣∣∣∣∣ ,

(see for example [23]). Hence

Ui∗f (x) ≤ Ui
∗,localf (x) + Ui

∗,globalf (x), (3.6)

and also

Ui
∗,localf (x) ≤ Ui∗f (x) + Ui

∗,globalf (x). (3.7)

From inequality (3.6) Theorem 3.1 will be a consequence of Lemmas 3.1 and 3.2 that
deal with the boundedness of the operator on each part.

Lemma 3.1 The operator Ui
∗,global is bounded from L1(dμ̃α) into L1,∞(dμ̃α).

and

Lemma 3.2 The operator Ui
∗,local is bounded from L1(dμ̃α) into L1,∞(dμ̃α) .

These lemmas will be proved in Sects. 4 and 5 respectively.

Remark 3.8 Let us recall that q±(x, y, s) =∑d
j=1(xj + yj ± 2

√
xjyj sj ) and since

there will be some calculations involving q±(x2, y2, s) it is convenient to think of
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this expression as being a distance between vectors in a space of a higher dimension.
Namely, let n = (n1, . . . , nd) ∈ Nd and let X = (X1, . . . ,Xd) and Y = (Y1, . . . , Yd)

be two vectors in R|n| with Xi,Yi ∈ Rni such that |Xi | = xi and |Yi | = yi , for every
i = 1, . . . , d. Let ϕi be the angle between Xi and Yi . Calling si = cosϕi , we have

q±(x2, y2, s) = |X ± Y |2
= |x|2 + |y|2 ± 2|x||y| cos θ

where the symbol in the first equality stands for the Euclidean distance in R|n| and
|x||y| cos θ =∑d

j=1 xjyj sj .

In the proof of the lemmas above we will use some inequalities, some of them
were already proven in [7]. For the sake of completeness we will write them all.

1 − r

− log r
≤ C on the interval (0,1), (3.9)

|xi − √
ryisi | ≤ q

1/2
− (x2, ry2, s), (3.10)

√
rxiyi(1 − s2

i ) ≤ q−(x2, ry2, s), (3.11)

√
ryi(1 − s2

i ) ≤ √
ryi

√
(1 − s2

i ) ≤ q
1/2
− (x2, ry2, s). (3.12)

Let us prove (3.10). q−(x2, ry2, s) ≥ x2
i + ry2

i − 2
√

rxiyisi ≥ x2
i + rs2

i y2
i −

2
√

rxiyisi = |xi − √
ryisi |2. Here the first inequality is immediate from the defi-

nition of q− and the second one is due to si ∈ [−1,1].
Let us prove now (3.11): q−(x2, ry2, s) = |x−√

ry|2 +2
√

r
∑d

j=1 xjyj (1−sj ) ≥√
rxiyi2(1 − si) ≥ √

rxiyi(1 − s2
i ), since xi, yi > 0.

Finally let us prove (3.12): q−(x2, ry2, s) = |x|2 + r|y|2 − ∑d
j=1 2xj

√
ryj sj ≥

|x|2 + r|y|2 − (|x|2 + r
∑d

j=1 y2
j s2

j ) = r
∑d

j=1 y2
j (1 − s2

j ) ≥ ry2
i (1 − s2

i ).
Now we are going to define the global region and write out inequalities on every

subregion in which this global region is split. These inequalities will be used in the
proof of Ũ i

∗,global -boundedness.

Let us call G = Rd+ × [−1,1]d \Nx
1 the global region, being Nx

1 the section of N1

at a fixed level x, i.e. Nx
1 = {(y, s) : (x, y, s) ∈ N1}.

We divide the global region as G = R1 ∪ R2 ∪ R3 ∪ R4, with

R1 = {(y, s) /∈ Nx
1 : cos θ < 0},

R2 = {(y, s) /∈ Nx
1 : cos θ ≥ 0, |y| ≤ |x|},

R3 = {(y, s) /∈ Nx
1 : cos θ ≥ 0, |x| ≤ |y| ≤ 2|x|},

R4 = {(y, s) /∈ Nx
1 : cos θ ≥ 0, |y| ≥ 2|x|}.

For 0 < l ≤ 1 let us define

u(l) = q−((1 − l)x2, y2, s)

l
.
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Then

u(l) = q−((1 − l)x2, y2, s)

l
(3.13)

= |x|2 + |y|2
l

−
√

1 − l

l
2|x||y| cos θ − |x|2 (3.14)

= q−(x2, (1 − l)y2, s)

l
− |x|2 + |y|2. (3.15)

By doing the same computations as in [12, p. 849, Proposition 2.1, with t = l and
t0 = l0] we have on G that

sup
0<l<1

e−u(l)

l|α|+d
∼ e−u0

l
|α|+d
0

(3.16)

with u0 = u(l0) and l0 ∈ (0,1]. By setting a = |x|2 + |y|2 and b = 2|x||y| cos θ and

considering b ≥ 0 we obtain that l0 ∼
√

a2−b2

a
. Since q− = a − b, q+ = a + b, then

a ∼ q+ and

l0 ∼
√

q−
q+

. (3.17)

Moreover, since
√

q+q− ≥ ||x|2 − |y|2|,

u(l) ≥ u0 = u(l0) = |y|2 − |x|2
2

+ (q+q−)1/2

2

= |y|2 − |x|2 + (q+q−)1/2 + |x|2 − |y|2
2

≥ |y|2 − |x|2, (3.18)

and also

u0 ≤ (q+q−)1/2. (3.19)

And from [5] we will use inequality (10):

∫ 1

0
u1/2(l)e−νu(l) dl

l3/2
√

1 − l
� e−νu0

l
1/2
0

. (3.20)

In region R1

u(l) ≥ a

l
− |x|2 and a ≥ c. (3.21)

Indeed, the first inequality follows from (3.14) since cos θ < 0 on R1. On the other
hand, taking into account again that cos θ < 0 on R1, the second inequality follows
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from the reasoning below

2a = |x|2 + |y|2 + |x|2 + |y|2 ≥ |x|2 + |y|2 − 2|x||y| cos θ = q−(x2, y2, s)

≥ C2

(1 + |x|)2
≥ C2

2(1 + |x|2) ≥ C2

2(1 + a)
.

And from this a ≥ c.
In Region R2, from (1) of [7, p. 263] we know that

|x| ≥ c > 0, q+ ∼ |x|2, and (q+/q−)
1
2 � |x|2. (3.22)

On the other hand from (3.18) we obtain that

u0 ≥ |y|2 − |x|2 + (q+q−)1/2

2
. (3.23)

In Region R3 we have

u0 ≥ |y|2 − |x|2 + c|x|4 sin2 θ

|y|2 − |x|2 + |x||y| sin θ
, u0 ≥ c > 0, (3.24)

(see (3.4) of [7]) and

(q+q−)1/2 ∼ |y|2 − |x|2 + |x||y| sin θ ≥ |y|2 − |x|2 + |x|2 sin θ, (3.25)

(see (3.3) of [7]). Using the fact that in R3, |x| ≤ |y| ≤ 2|x|, (3.19), and the second
inequality of (3.24) we get

q+ ≤ C|x|2 and q+q− ≥ c > 0. (3.26)

In R4 the following inequalities hold, their proofs can be found in page 265 of [7]:

q− ≥ c|y|2, q+ � |y|2, u0 ≥ c > 0, and u0 ≥ |y|2 − |x|2 + sin2 θ

2
|x|2.

(3.27)

4 Boundedness of ˜Ui
∗,global

In this section we are going to prove Lemma 3.1 and the Lp-boundedness of Ũ i
∗,global

for 1 < p < ∞.

Let us observe that

Ui
∗,globalf (x) �

∫

R
d+

∫

[−1.1]d
χG(y, s)|Ki (x, y, s, t)|�α(s)ds|f (y)|dm̃α(y),

then Lemma 3.1 is a consequence of the following propositions:
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Proposition 4.1

|K̄i (x, y, s, t)| � e|x|2 K∗(x, y, s)e−|y|2

on the global region G with

K∗(x, y, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e− |x|2
2 , (y, s) ∈ R1,

|x|2|α|+2de−c|x|q1/2
− (x2,y2,s), (y, s) ∈ R2,

|x|2|α|+2d

⎛

⎝1 ∧ e
− c|x|4 sin2 θ

|y|2−|x|2+sin θ |x|2

(|y|2−|x|2+sin θ |x|2) 2|α|+2d−1
2

⎞

⎠ , (y, s) ∈ R3,

(1 + |x|)e− sin2 θ |x|2 , (y, s) ∈ R4.

Proposition 4.2 The operator K∗ defined as

K∗f (x) = e|x|2
∫

Rd+

∫

[−1,1]d
χG(y, s)K∗(x, y, s)�α(s)ds|f (y)|dμ̃α(y),

is of weak type (1,1) with respect to the measure μ̃α .

The proof of Proposition 4.2 is given in [7, Proposition 2.2], except for the region
R1 but the operator on this region turns out to be bounded on L1(dμ̃α) as can be
verified easily.

Proof of Proposition 4.1 By definition (3.5) of Ki (x, y, s, t), definition (3.4) of
Uα

i (x, y, s, t) and taking into account inequalities (3.9)–(3.12) we obtain that

|Ki (x, y, s, t)| �
∫ 1

0

√
ryixi(1 − s2

i )|xi − √
ryisi | e− q−(rx2,y2,s)

1−r

(1 − r)|α|+d+5/2

dr√
r

+
∫ 1

0

√
ryi(1 − s2

i )
e− q−(rx2,y2,s)

1−r

(1 − r)|α|+d+3/2

dr√
r

�
∫ 1

0
(q−(x2, ry2, s))3/2 e− q−(rx2,y2,s)

1−r

(1 − r)|α|+d+5/2

dr√
r

+
∫ 1

0
(q−(x2, ry2, s))1/2 e− q−(rx2,y2,s)

1−r

(1 − r)|α|+d+3/2

dr√
r
.

In these last integrals we make the change of variables l = 1 − r and taking into
account (3.13) and (3.15) we have

|Ki (x, y, s, t)| �
∫ 1

0
(1 ∨ (u(l) + |x|2 − |y|2)3/2)

e−u(l)

l|α|+d+1

dl√
1 − l

. (4.1)

Now, we have the following lemmas, whose proofs can be found in the Appendix.



J Fourier Anal Appl (2011) 17:854–878 865

Lemma 4.3 For ν > 0 and m > 0 we have

(1 ∨ (u(l) + |x|2 − |y|2)m)e−νu(l) � eν|x|2e−ν|y|2 .

Lemma 4.4 For 0 < η < 1, q
1/2
− (x2, y2, s) > C

1+|x| , cos θ ≥ 0 and |x| ≥ |y|, we have

∫ 1

0

e−ηu(l)

l|α|+d+1

dl√
1 − l

� |x|2|α|+2d .

Lemma 4.5 For u0 defined in (3.18) with u0 � 1, we have

∫ 1

0
(1 ∨ (u(l) + |x|2 − |y|2)3/2)

e−u(l)

l|α|+d+1

dl√
1 − l

� eν|x|2e−ν|y|2
(

q+
q−

)(|α|+d)/2

e−(1−ν)u0,

with ν = 1
4(|α|+d)

.

We prove now the boundedness of |Ki (x, y, s, t)| on each region Rj , j = 1,2,3,4.
Region R1: Using Lemma 4.3 with m = 3/2 and ν = 1/2 and taking into account

(3.21): a
l
− |x|2 ≤ u(l) and a ≥ c, we have

∫ 1

0
(1 ∨ (u(l) + |x|2 − |y|2)3/2)

e−u(l)

l|α|+d+1

dl√
1 − l

� e
|x|2

2

∫ 1

0

e− a
2l

+ |x|2
2

l|α|+d+1

dl√
1 − l

e
−|y|2

2

� e|x|2e− a
2

∫ ∞

0
e−v

(
2v

a
+ 1

)|α|+d dv√
v + a

2

√
v

e
−|y|2

2 � e
|x|2

2 e−|y|2 , (4.2)

where we made the change of variables v = a
2l

− a
2 . Therefore for (y, s) ∈ R1 we

have

|K(x, y, s)| � e|x|2 K∗(x, y, s)e−|y|2 .

Region R2: In order to prove the boundedness in R2 we need to consider the cases
u0 � 1 and u0 � 1 separately.

If u0 � 1, taking into account Lemma 4.3 with m = 3/2, 0 < ν < 1 and Lemma 4.4
with η = 1 − ν, (3.22) and (3.23) we obtain that

∫ 1

0
(1 ∨ (u(l) + |x|2 − |y|2)3/2)

e−u(l)

l|α|+d+1

dl√
1 − l

� eν|x|2e−ν|y|2
∫ 1

0

e−(1−ν)u(l)

l|α|+d+1

dl√
1 − l
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� eν|x|2e−ν|y|2 |x|2|α|+2d

� eν|x|2e−ν|y|2 |x|2|α|+2de−(1−ν)u0

� |x|2|α|+2de|x|2e−|y|2e− (1−ν)(q+q−)1/2

2

� |x|2|α|+2de|x|2e−|y|2e−c|x|q1/2
− .

From inequality (4.1) and this last estimate, |Ki (x, y, s, t)| � e|x|2 K∗(x, y, s)e−|y|2 .
If u0 � 1, from inequality (4.1), Lemma 4.5, (3.22) and (3.23) we get

|Ki (x, y, s, t)| � eν|x|2e−ν|y|2 |x|2|α|+2de−(1−ν)u0

� |x|2|α|+2de|x|2e−|y|2e−c(q+q−)1/2

� |x|2|α|+2de|x|2e−|y|2e−c|x|q1/2
− = e|x|2 K∗(x, y, s)e−|y|2 .

Region R3: Taking into account inequality (4.1), Lemma 4.5, (3.24), (3.26) and
(3.25), we have

|Ki (x, y, s, t)| � eν|x|2e−ν|y|2
(

q+
q−

)(|α|+d)/2

e
−(1−ν)

(
|y|2−|x|2+ c|x|4 sin2 θ

|y|2−|x|2+|x||y| sin θ

)

= e|x|2e−|y|2
(

q+
q−

)(|α|+d)/2

e
− c̃|x|4 sin2 θ

|y|2−|x|2+|x||y| sin θ

= e|x|2e−|y|2 q
|α|+d
+

(q+q−)1/4

e
− c̃|x|4 sin2 θ

|y|2−|x|2+|x||y| sin θ

(q+q−)
2|α|+2d−1

4

� e|x|2e−|y|2 |x|2|α|+2d e
− c̃|x|4 sin2 θ

|y|2−|x|2+|x||y| sin θ

(|y|2 − |x|2 + sin θ |x|2) 2|α|+2d−1
2

.

On the other hand taking into account the first inequality above and (3.26), it is im-
mediate this other inequality:

|Ki (x, y, s, t)| � |x|2|α|+2de|x|2e−|y|2 .

Thus, for (y, s) ∈ R3, |Ki (x, y, s, t)| � e|x|2 K∗(x, y, s)e−|y|2 .
Region R4: Using Lemma 4.5 and (3.27) we get

|Ki (x, y, s)| � eν|x|2e−ν|y|2
(

q+
q−

)(|α|+d)/2

e−(1−ν)u0

� e|x|2e−|y|2e−c sin2 θ |x|2 = e|x|2 K∗(x, y, s)e−|y|2 . �

Now we prove the Lp-boundedness of Ũ i
∗,global.



J Fourier Anal Appl (2011) 17:854–878 867

Theorem 4.1 For 1 < p < ∞, the operator Ui
∗,global is bounded on Lp(dμ̃α).

Proof Region R1: By Lemma 4.3 with m = 3
2 and 0 < ν < 1/p

∫ 1

0
(1 ∨ (u(l) + |x|2 − |y|2)3/2)

e−u(l)

l|α|+d+1

dl√
1 − l

=
∫ 1

0
(1 ∨ (u(l) + |x|2 − |y|2)3/2)

e−νu(l)

l|α|+d+1
e−(1−ν)u(l) dl√

1 − l

� eν|x|2−ν|y|2
∫ 1

0

e−(1−ν)u(l)

l|α|+d+1

dl√
1 − l

.

By using that a
l
−|x|2 ≤ u(l) and then the change of variables v = (1−ν)a

l
− (1−ν)a,

the fact that a ≥ c, and following similar estimates as the ones done in (4.2) we obtain
that

eν|x|2−ν|y|2
∫ 1

0

e−(1−ν)u(l)

l|α|+d+1

dl√
1 − l

� eν|x|2 e−|y|2 .

So on R1

|Ki (x, y, s, t)| � e|x|2 (e−(1−ν)|x|2) e−|y|2 ,

and the Lp(dμ̃α)-boundedness of Ui
∗,global on region R1 follows. Indeed, for f ∈

Lp(dμ̃α), since pν − 1 < 0, we obtain that

‖Ui
∗,global(χR1f )‖Lp(dμ̃α) � ‖eν|·|2‖Lp(dμ̃α)‖f ‖Lp(dμ̃α) � ‖f ‖Lp(dμ̃α).

Region G \ R1: From the proof of Proposition 4.1 we get the following inequality

|Ki (x, y, s, t)| �
∫ 1

0

√
ryixi(1 − s2

i )|xi − √
ryisi | e− q−(rx2,y2,s)

1−r

(1 − r)|α|+d+5/2

dr√
r

+
∫ 1

0

√
ryi(1 − s2

i )
e− q−(rx2,y2,s)

1−r

(1 − r)|α|+d+3/2

dr√
r

�
∫ 1

0
(q−(x2, ry2, s))3/2 e− q−(rx2,y2,s)

1−r

(1 − r)|α|+d+5/2

dr√
r

+
∫ 1

0
(q−(x2, ry2, s))1/2 e− q−(rx2,y2,s)

1−r

(1 − r)|α|+d+3/2
dr

=
∫ 1

0
(q−(x2, (1 − l)y2, s))3/2 e− q−((1−l)x2,y2,s)

l

l|α|+d+5/2

dl√
1 − l



868 J Fourier Anal Appl (2011) 17:854–878

+
∫ 1

0
(q−(x2, (1 − l)y2, s))1/2 e− q−((1−l)x2,y2,s)

l

l|α|+d+3/2

dl√
1 − l

= I + II.

Let us set

ũ(l) = q−(x2, (1 − l)y2, s)

l
.

From (3.15) ũ(l) = u(l) + |x|2 − |y|2, we can rewrite I and II as

I =
∫ 1

0
(ũ(l))3/2 e−ũ(l)

l|α|+d+1

dl√
1 − l

e|x|2−|y|2 ,

I I =
∫ 1

0
(ũ(l))1/2 e−ũ(l)

l|α|+d+1

dl√
1 − l

e|x|2−|y|2 .

We bound I and II separately.
Let us observe that by an adaptation of the proof of Lemma 4.3 in [12] with m = 3

(exchanging x with y) we get

I � e|x|2−|y|2e−u0(y,x,s) 1 + u0(y, x, s)

l
|α|+d
0

with u0(x, y, s) = |y|2−|x|2
2 + (q+q−)1/2

2 . By using (3.17), (3.19) and the fact that for
cos θ ≥ 0, q+q− ≥ c (see [12, p. 863]) we obtain that

I �
(

q+
q−

) |α|+d
2

(q+q−)1/2e−(
|y|2−|x|2

2 + (q+q−)1/2

2 )

� q
|α|+d
+ (q+q−)1/2e−(

|y|2−|x|2
2 + (q+q−)1/2

2 ). (4.3)

On the other hand by an adaptation of the proof of Proposition 2.2 in [12] (exchanging
x with y) we have

II �
(

q+
q−

) |α|+d
2

e−(
|y|2−|x|2

2 + (q+q−)1/2

2 )

� q
|α|+d
+ e−(

|y|2−|x|2
2 + (q+q−)1/2

2 ).

Taking into account that q+q− ≥ c on G \ R1 we conclude that this last kernel is
bounded also by the kernel (4.3).

Therefore both integrals I and II are bounded by the kernel ˜̃Km for m = 3 of [7]
(kernel defined within proof of Theorem 8). So by Theorem 8 of the same paper, we
have the Lp-boundedness, for 1 < p < ∞ with respect to the measure μ̃α . �
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5 Local Part—Proof of Lemma 3.2

In order to prove the weak-type (1,1) of Ui
∗,local, all we need to know is the L2(dμ̃α)-

boundedness of Ui
∗,local and suitable gradient estimates for the kernel of Ui

∗,local,

Ki (x, y, s, t)ϕ(x, y, s).
Indeed, the weak-type (1,1) of Ui

∗,local with respect to the measure μ̃α follows
from the proof of Theorem 5 in [23] where in that proof we have to replace Proposi-
tion 6 of [22] by

Proposition 5.1 Let us assume α is a multi-index such that αi ≥ 0 for all i =
1, . . . , d . Let {Tt }t>0 be a family of linear operators defined on L2(Rd+,dm̃α) such
that T∗f (x) = supt>0 |Ttf (x)| is bounded on L2(Rd+,dm̃α). Let us assume also that
there exists a function k = k(x, y, s, t) defined on R

d+ × R
d+ × [−1,1]d × (0,∞) that

satisfies

(i) k is of class C1 on the variables x and y and there exists C > 0 such that

|∇(x,y)k(x, y, s, t)| ≤ C

q
|α|+d+ 1

2− (x2, y2, s)

.

(ii)

Ttf (x) =
∫

R
d+

∫

[−1,1]d
k(x, y, s, t)�α(s)dsf (y)dm̃α(y).

Then T∗ can be extended to a bounded operator on Lp(Rd+,dm̃α) for 1 < p < ∞ and
of weak-type (1,1).

The proof of Proposition 5.1 follows essentially from the technique developed by
E. Sasso in [22, Proposition 6].

In our case we have to take k(x, y, s, t) = Ki (x, y, s, t)ϕ(x, y, s). Now we are
going to prove the claims stated at the beginning of this section.

From Sect. 2 and taking into account the isometry U	 defined in Sect. 3 we get
the boundedness of Ui∗ on L2(dμ̃α). The L2(dμ̃α)-boundedness of Ui

∗,global is a con-

sequence of Theorem 4.1. Therefore from (3.7) the L2(dμ̃α)-boundedness of Ui
∗,local

follows.
Finally let us obtain suitable estimates on the local region Nx

2 for both the kernel
Ki (x, y, s, t)ϕ(x, y, s) and its gradients with respect to x and y.

Lemma 5.2 For (y, s) ∈ Nx
2 , we have the following estimates

|Ki (x, y, s, t)|ϕ(x, y, s) ≤ |Ki (x, y, s, t)| ≤ C

q−(x2,y2,s)|α|+d ,

|∇(x,y)(Ki (x, y, s)ϕ(x, y, s))| ≤ C

q−(x2,y2,s)|α|+d+1/2 .
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Proof Let us remark that there exists a constant C > 0 such that C−1 ≤ e|x|2−|y|2 ≤ C

for every (y, s) ∈ Nx
2 . Also for (y, s) ∈ Nx

2

e−c
q−(x2,ry2,s)

1−r � e−c
q−(x2,y2,s)

1−r .

Indeed, according to Remark 3.8

q−(x2, ry2, s) = |X − √
rY |2

= |X − Y |2 + (1 − √
r)2|Y |2 + 2(1 − √

r)Y · (X − Y)

≥ |X − Y |2 − 2(1 − r)|Y ||X − Y |
= q−(x2, y2, s) − 2(1 − r)|y|q1/2

− (x2, y2, s)

≥ q−(x2, y2, s) − c(1 − r),

since on Nx
2 , |x| ∼ |y|. Again from the proof of Proposition 4.1 and taking into ac-

count that (y, s) ∈ Nx
2 , we have

|Ki (x, y, s, t)| �
∫ 1

0
(q−(x2, ry2, s))3/2 e− q−(rx2,y2,s)

1−r

(1 − r)|α|+d+5/2

dr√
r

+
∫ 1

0
(q−(x2, ry2, s))1/2 e− q−(rx2,y2,s)

1−r

(1 − r)|α|+d+3/2

dr√
r

�
[∫ 1

0

(
q−(x2, ry2, s)

1 − r

)3/2
e− q−(x2,ry2,s)

1−r

(1 − r)|α|+d+1

dr√
r

+
∫ 1

0

(
q−(x2, ry2, s)

1 − r

)1/2
e− q−(x2,ry2,s)

1−r

(1 − r)|α|+d+1

dr√
r

]
e|x|2−|y|2

�
∫ 1

0

e
−c

q−(x2,ry2,s)

(1−r)

(1 − r)|α|+d+1

dr√
r

e|x|2−|y|2 �
∫ 1

0

e−c
q−(x2,y2,s)

1−r

(1 − r)|α|+d+1

dr√
r

≤ C

q−(x2, y2, s)|α|+d
.

Now, we may consider the derivatives. If j = i,

∂Ki

∂yj

(x, y, s, t) =
∫ 1

0

e
t2

4 log r

√
π

w(r)
∂Uα

i

∂yj

(x, y, r, s)
dr√

r

= −2
∫ 1

0

e
t2

4 log r

√
π

w(r)Uα
i (x, y, r, s)

yj − √
rxj sj

1 − r

dr√
r
.
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Thus, since |yj − √
rxj sj | ≤ q

1/2
− (rx2, y2, s),

|Uα
i (x, y, r, s)| �

[(
q−(x2, ry2, s)

1 − r

)3/2

+
(

q−(x2, ry2, s)

1 − r

)1/2]
e− q−(rx2,y2,s)

1−r

(1 − r)|α|+d+1

and taking into account the above inequalities, we can conclude as before that
∣∣∣∣∣
∂Ki

∂yj

(x, y, s, t)

∣∣∣∣∣≤
C

q−(x2, y2, s)|α|+d+1/2
.

On the other hand,

∂Ki

∂yi

(x, y, s, t) =
∫ 1

0

e
t2

4 log r

√
π

w(r)
∂Uα

i

∂yi

(x, y, r, s)
dr√

r

with

∂Uα
i

∂yi

(x, y, r, s) = −2Uα
i (x, y, r, s)

yi − √
rxisi

1 − r

+ √
r

[
x2
i − 2

√
rxiyisi

1 − r
− (αi + 1)

]
(1 − s2

i )
e− q−(rx2,y2,s)

1−r

(1 − r)|α|+d+3/2
.

Since |yj − √
rxj sj | ≤ q

1/2
− (rx2, y2, s) and |x2

i − 2
√

rxiyisi | ≤ q−(x2, ry2, s), we
also obtain that

∣∣∣∣∣
∂Ki

∂yi

(x, y, s, t)

∣∣∣∣∣≤
C

q−(x2, y2, s)|α|+d+1/2
.

The gradient with respect to x is treated similarly. As for the boundedness
of |Ki (x, y, s, t)|(|∂yj

ϕ(x, y, s)| + |∂xj
ϕ(x, y, s)|) we use the boundedness of

|Ki (x, y, s, t)| together with the assumption on the boundedness of
|∇(x,y)ϕ(x, y, s)|. �

6 Proof of Theorem 1.2 and Proof of Corollary 1.1

For f ∈ L2(dμα), from the Cauchy-Riemann system, Ũ i
t f (x) = e−L1/2

α tR∗
i f (x) for

all x ∈ Rd+ and from this, Ũ i
t f converges to R∗

i f in L2(dμα). We also know that
Ũ i

t f converges to R̃∗
i f pointwise. Therefore R̃∗

i = R∗
i on L2(dμα). On the other

hand, from Proposition 2.1, Ũ i∗ is strong-type (2,2) and from Theorem 1.1, Ũ i∗ is
weak-type (1,1) with respect to μα , then from Marcinkiewicz’s Interpolation The-
orem we get that Ũ i∗ is bounded on Lp(dμα) for 1 < p ≤ 2. From this result, the
pointwise convergence of Ũ i

t f and Fatou’s Lemma we immediately obtain that R̃∗
i is

also bounded on Lp(dμα) for 1 < p ≤ 2.



872 J Fourier Anal Appl (2011) 17:854–878

As for 2 < p < ∞, let us take f ∈ Lp (= Lp ∩ L2) and g ∈ Lp′ ∩ L2, taking into
account that

|〈R̃∗
i f, g〉| = lim

t→0+ |〈Ũ i
t f, g〉|

and

〈Ũ i
t f, g〉 = 〈f,V i

t g〉
with V i

t g = e−M1/2
i tRig, Rig = δi L−1/2

α �0g, which is bounded on Lp(dμα) for
every 1 < p < ∞ (see [16, Theorem 13]) and the Maximal Theorem on Semigroups
proved in [24, p. 73], we have

|〈R̃∗
i f, g〉| ≤ ‖ sup

t>0
|V i

t g|‖p′ ‖f ‖p

≤ Cp′‖Rig‖p′ ‖f ‖p � ‖g‖p′‖f ‖p,

therefore,

‖R̃∗
i f ‖p � ‖f ‖p.

Now taking into account that Ũ i
t f (x) = e−L1/2

α t R̃∗
i f, and the Maximal Theorem on

Semigroups we get again that Ũ i∗ is bounded on Lp(dμα) for p > 2.
As for the weak-type (1,1) of R̃∗

i this follows, for f ∈ L1(dμα), from the inequal-
ity |R̃∗

i (x)| ≤ Ũ i∗f (x) for a.e. x ∈ R
d+ and Theorem 1.1.
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Appendix

In the proof of (3.2) the following estimates will be used:

|Lα
n(x)| ≤ �(α + n + 1)

�(n + 1)

ex/2

�(α + 1)
, for α ≥ 0, x ≥ 0 and n = 0,1,2, . . . , (7.1)

which can be found in [1]; and for kj ≥ 1 for all j = 1, . . . , d

⎛

⎝
d∏

j=1

�(kj + 1)

�(αj + kj + 1)

⎞

⎠
1/2 ∣∣∣∣

∂

∂xi

(δiL
α
k )(x)

∣∣∣∣

� (max(xi,1/xi))
1/2

d∏

j=1

exj /2 ki

αi + 1

⎛

⎝
d∏

j=1

(1 + [αj ] + 1)[αj ]+1

�(αj + 1)
k
[αj ]+1
j

⎞

⎠
1/2

≤ Cα(x)|k|(|α|+d)/2+1. (7.2)
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This last inequality is a consequence of (7.1) and the inequality �(α + n + 1) ≤
(1 + [α] + 1)[α]+1n[α]+1�(n + 1), for α ≥ 0 and n ≥ 1 where this latter inequality
is obtained taking into account that the Gamma function is strictly increasing on the
interval [2,∞).

Proof of (3.2) Before getting involved with the calculation of the kernel we are going
to write out the kernel of the one-dimensional heat-diffusion semigroup associated
with the Laguerre expansions.

Ma
1(η,ϕ, r) :=

∞∑

n=0

rnLa
n(η)La

n(ϕ)
�(n + 1)

�(a + n + 1)

= (rηϕ)− a
2

1 − r
e− r(η+ϕ)

1−r Ia

(
2
√

rηϕ

1 − r

)

for 0 < r < 1, a > −1, η, ϕ > 0 and Ia being the modified Bessel function of the first
kind.

Taking into account that for a > −1/2

Ia(z) = (z/2)a

�(a + 1/2)�(1/2)

∫ 1

−1
(1 − s2)a−1/2ezsds,

then

Ma
1(η,ϕ, r) =

∫ 1

−1

e− r(η+ϕ)−2
√

rηϕs

1−r

(1 − r)1+a
�a(s)ds

=
∫ 1

−1

e− q1−(rη,ϕ,s)

1−r

(1 − r)1+a
�a(s)dseϕ,

with q1−(η,ϕ, s) = η + ϕ − 2
√

ηϕs and �a(s) = (1−s2)a−1/2

�(a+1/2)�(1/2)
.

In order to prove (3.2) let us first calculate the kernel of the integral operator
associated with the diffusion semigroup

e−Mi t�if (x) =
∑

k:ki>0

e−|k|t 〈f, δiL
α
k 〉

‖δiL
δ
k‖2

2

δiL
α
k (x)

=
∑

k:ki>0

e−|k|t

ki

d∏

j=1

�(kj + 1)

�(αj + kj + 1)
〈f, δiL

α
k 〉δiL

α
k (x)

=
∫

R
d+

Mi (x, y, e−t )f (y)dμα(y),

with
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Mi (x, y, e−t ) =
∏

j =i

∞∑

kj =0

e−kj tL
αj

kj
(xj )L

αj

kj
(yj )

�(kj + 1)

�(αj + kj + 1)

×
⎛

⎝
∞∑

ki=1

e−ki t
√

xi
√

yiL
αi+1
ki−1 (xi)L

αi+1
ki−1 (yi)

�(ki)

�(αi + ki + 1)

⎞

⎠

=
∏

j =i

∞∑

kj =0

e−kj tL
αj

kj
(xj )L

αj

kj
(yj )

�(kj + 1)

�(αj + kj + 1)

×
⎛

⎝
∞∑

ki=0

e−ki t e−t√xiyiL
αi+1
ki

(xi)L
αi+1
ki

(yi)
�(ki + 1)

�(αi + 1 + ki + 1)

⎞

⎠ .

We set r = e−t then for all αj > −1/2,

Mi (x, y, r) = r1/2
∏

j =i

Mαj

1 (xj , yj , r)
√

rxiyi Mαi+1
1 (xi, yi, r)

= r
√

xiyi

∏

j =i

∫ 1

−1

e− q1−(rxj ,yj ,sj )

1−r

(1 − r)1+αj
�αj

(sj )dsj e
yj

×
∫ 1

−1

e− q1−(rxi ,yi ,si )

1−r

(1 − r)2+αj
�αi+1(si)dsie

yi

= r
√

xiyi

αi + 1/2

∫

[−1,1]d
(1 − s2

i )
e− q−(rx,y,s)

1−r

(1 − r)|α|+d+1
�α(s)ds

d∏

j=1

eyj

with q−(rx, y, s) =∑d
j=1 q1−(rxj , yj , sj ) and �α(s) =∏d

j=1 �αj
(sj ).

Under a subordination formula we can write e−M1/2
i t in terms of e−Mi t = rMi :

e−M1/2
i t f (x) = t

2
√

π

∫ 1

0

e
t2

4 log r

r(− log r)3/2
rMi f (x)dr

=
∫

R
d+

∫ 1

0

t

2
√

π

e
t2

4 log r

r(− log r)3/2
Mi (x, y, r)drf (y)dμα(y).

At this point we are ready to calculate out the kernel associated with the integral
operator Ũ i

t . Indeed,

Ũ i
t f (x) =

∫ ∞

t

δ∗
i e−M1/2

i lf (x)dl
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=
∫ ∞

t

δ∗
i

∫

R
d+

∫ 1

0

l

2
√

π

e
l2

4 log r

r(− log r)3/2
Mi (x, y, r)drf (y)dμα(y)dl

=
∫ ∞

t

∫

R
d+

∫ 1

0

l

2
√

π

e
l2

4 log r

r(− log r)3/2
δ∗
i Mi (x, y, r)drf (y)dμα(y)dl

=
∫

R
d+

∫ 1

0

e
t2

4 log r

√
πr(− log r)1/2

δ∗
i Mi (x, y, r)drf (y)dμα(y)

=
∫

R
d+

∫ 1

0

e
t2

4 log r

√
π

w(r)
δ∗
i Mi (x, y, r)√

r
√

1 − r

dr√
r
f (y)dμα(y). (7.3)

To justify the interchanging of δ∗
i and the double integral we should prove that

I =
∫

R
d+

∫ 1

0

l

2
√

π

e
l2

4 log r

r(− log r)3/2

∣∣∣∣
∂Mi

∂xi

(x, y, r)

∣∣∣∣dr|f (y)|dμα(y)

is finite for every x ∈ R
d+. By applying Schwarz’s inequality we get that

I ≤
∫ 1

0

l

2
√

π

e
l2

4 log r

r(− log r)3/2

(∫

R
d+

∣∣∣∣
∂Mi

∂xi

(x, y, r)

∣∣∣∣
2

dμα(y)

)1/2

dr‖f ‖L2(dμα).

By using estimates (7.1) and (7.2) one can prove that

∑

k:ki>0

r |k|

ki

d∏

j=1

�(kj + 1)

�(αj + kj + 1)

∣∣∣∣
∂

∂xi

(δiL
α
k )(x)

∣∣∣∣ |δiL
α
k (y)|

is finite for every x and r < 1, therefore

∂Mi

∂xi

(x, y, r) =
∑

k:ki>0

r |k|

ki

d∏

j=1

�(kj + 1)

�(αj + kj + 1)

∂

∂xi

(δiL
α
k )(x)δiL

α
k (y).

Then

∥∥∥∥
∂Mi

∂xi

(x, ·, r)
∥∥∥∥

L2(dμα)

=
⎛

⎝
∑

k:ki>0

r2|k|

ki

d∏

j=1

�(kj + 1)

�(αj + kj + 1)

∣∣∣∣
∂

∂xi

(δiL
α
k )(x)

∣∣∣∣
2
⎞

⎠
1/2

≤
∑

k:ki>0

r |k|

k
1/2
i

⎛

⎝
d∏

j=1

�(kj + 1)

�(αj + kj + 1)

⎞

⎠
1/2 ∣∣∣∣

∂

∂xi

(δiL
α
k )(x)

∣∣∣∣

≤ Cα(x)
∑

k:ki>0

|k| |α|+d
2 +1r |k|.
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This last bound is a consequence of the estimate (7.2). Therefore

I ≤ Cα(x)
∑

k:ki>0

|k| |α|+d
2 +1

∫ 1

0

l

2
√

π

e
l2

4 log r

r(− log r)3/2
r |k|dr‖f ‖L2(dμα)

= Cα(x)
∑

k:ki>0

|k| |α|+d
2 +1e−|k|1/2l‖f ‖L2(dμα).

This last bound not only guarantees that indeed I is finite but also that we can apply
Fubini’s Theorem to justify equality (7.3).

Now calling Ũα
i (x, y, r) = δ∗

i Mi (x,y,r)√
r
√

1−r

∏d
j=1 e−yj , and after a series of calcula-

tions we get kernel (3.2). �

Proof of Lemma 4.3 From (3.18), u(l) + |x|2 − |y|2 ≥ u0 + |x|2 − |y|2 ≥ 0, then

e−νu(l) ≤ e−νu0 ≤ e−ν(|y|2−|x|2)

and

(u(l) + |x|2 − |y|2)me−νu(l) = (u(l) + |x|2 − |y|2)me−ν(u(l)+|x|2−|y|2)eν(|x|2−|y|2)

� eν(|x|2−|y|2).

And the proof of Lemma 4.3 follows. �

Proof of Lemma 4.4 Let us notice that conditions |x − y| ≥ q
1/2
− (x2, y2, s) > C

1+|x|
and |x| ≥ |y| imply |x| ≥ c > 0.

Now let us write

∫ 1

0

e−ηu(l)

l|α|+d+1

dl√
1 − l

=
∫ 1

2|x|2

0
+
∫ 1/2

1
2|x|2

+
∫ 1

1/2
= I + II + III.

It is immediate the boundedness of III by a constant. On the other hand

II ≤
∫ 1/2

1
2|x|2

dl

l|α|+d+1
� |x|2|α|+2d .

Regarding I let us observe that by using Remark 3.8 we obtain the following inequal-
ity:

q
1/2
− ((1 − l)x2, y2, s) = |√1 − lX − Y |

≥ |X − Y | − (1 − √
1 − l)|X|

≥ |X − Y | − l|X|
= q

1/2
− (x2, y2, s) − l|x|. (7.4)
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Since 0 ≤ l ≤ 1/(2|x|2), then 2l|x| ≤ 1
|x| ≤ C

1+|x| < q
1/2
− (x2, y2, s) and therefore by

applying this to (7.4) we have q
1/2
− ((1 − l)x2, y2, s) ≥ q

1/2
− (x2,y2,s)

2 . Thus, u(l) ≥
q−(x2,y2,s)

4l
and

I �
∫ 1

2|x|2

0

e− ηq−(x2,y2,s)

4l

l|α|+d+1
dt � 1

q
|α|+d
− (x2, y2, s)

� |x|2|α|+2d .
�

Proof of Lemma 4.5 From Lemma 4.3 with m = 3/2 and ν = 1
4(|α|+d)

, (3.16), (3.20),
and (3.17) we have

∫ 1

0
(1 ∨ (u(l) + |x|2 − |y|2)3/2)

e−u(l)

l|α|+d+1

dl√
1 − l

�
∫ 1

0
eν|x|2e−ν|y|2 e−(1−ν)u(l)

l|α|+d+1

dl√
1 − l

� eν|x|2e−ν|y|2

u
1/2
0

∫ 1

0
(u(l))1/2 e−(1−ν)u(l)

l|α|+d+1

dl√
1 − l

� eν|x|2e−ν|y|2
∫ 1

0

(
e−u(l)

l|α|+d

)1−2ν

u1/2(l)
e−νu(l)

l3/2

dl√
1 − l

� eν|x|2e−ν|y|2
(

e−u0

l
|α|+d
0

)1−2ν
e−νu0

l
1/2
0

= eν|x|2e−ν|y|2 e−(1−ν)u0

l
|α|+d
0

� eν|x|2e−ν|y|2
(

q+
q−

)(|α|+d)/2

e−(1−ν)u0 . �
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