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Abstract In this paper we introduce a conjugate class of Riesz transforms in
the context of Laguerre polynomials. We prove their weak-type (1,1) and L7,
1 < p < oo, boundedness with respect to the Laguerre measure. A similar result
is known in the Hermite context, see Aimar et al. (Trans. Am. Math. Soc. 359(5),
2137-2154, 2007).
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1 Introduction: Conjugate Riesz-Laguerre Transforms of Order 1

Singular integrals, specially Riesz transforms, associated to orthogonal systems have
been a main topic of research since the 60’s. These orthogonal systems usually are
eigenfunctions of a Sturm-Liouville differential operator.
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In 2006, Nowak and Stempak [18] proposed a fairly general unified approach to
the theory of Riesz transforms and their conjugate in the setting of multi-dimensional
orthogonal expansions. In that paper they consider a second order differential oper-
ator L self-adjoint with respect to a measure du such that it has a decomposition of
the form

d
L= 5,
i=1

being §; and &7 differential operators of first order. They assume that the spectrum
of £ on L%(du) consists of a discrete set of eigenvalues {A;}72, with 0 < Ag <
A1 < -+ and lim;_, o, A; = 00. In order to define the conjugate Riesz transforms
they introduce, fori =1, ..., d, the operator M;, as being

M;=L+15, 8]
where [-, -] is the commutator defined as
[8:,8]1=8i8" — &876;.

Then they define in L? the Riesz transforms of order 1 associated to §; and their
conjugates, the Riesz transforms associated with &7, respectively as

Ri=&L7121;, fori=1,...,d

and
% w0 4—1/2 .
R =8M; '"IN;, fori=1,...,d; (L.1)

where I1; denotes the orthogonal projection onto the closed subspace spanned by the
eigenfunctions that are not in the kernel of either £ or M;.

Under broad assumptions they proved the boundedness of those operators on
L%(du). The theory includes the already classical expansions with Hermite, La-
guerre, Jacobi polynomials among others. The L?, 1 < p < oo, boundedness and
the weak-L! boundedness of the Riesz transforms associated to 8; were already very
well known for some systems. In particular, for Hermite polynomial expansions, the
boundedness of the Riesz transforms associated to §; were known and extended to
higher order Riesz transforms, see [3, 4, 6, 8—14, 19-21, 26], and [5]. The same is
known for the Laguerre polynomial expansions, see [15, 16, 23], and [7]. For Jacobi
polynomial expansions, only the L?, 1 < p < co, boundedness is known, see [17].

For the conjugate Riesz transforms in the Hermite context the only known result
for weak type (1, 1) is due to Aimar, Forzani, and Scotto [2] where they showed that
the conjugate Riesz transforms of all orders are weak-type (1, 1) and this came as a
surprise since this is not the case with the higher order Riesz transforms in the same
context. In fact, these last ones are weak-type (1, 1) if and only if their order is at
most 2.

In this paper we will investigate the boundedness of these conjugate Riesz trans-
forms in the context of Laguerre polynomial expansions. For « = («q, ..., og) with
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o > —1foralli =1,...,d the Laguerre operator

32 3
Ea=—2<xiﬁ+(ai+1 _xi)a_x,)

i=1 X

is self-adjoint with respect to du,

d
dig (x) = l—[xlfx"e_x" dx,

i=1

and it can be written as the sum of the composition of two first order differential
operators, which are in duality with respect to the Laguerre measure dju, that is

41
"‘\t/%z + /x;. From [18, p. 690] we have

558 LY =k LY, (1.2)

with §; = /x; 7 and 87 = —&; —

where L (x) = ]_[?:1 L‘,fi" (x;) is the d-dimensional Laguerre polynomial of degree
k| = Zflzl k; and of order « (see [25, p. 100]). Hence

Lol =|k|LT.
From [18, Lemma 5, p. 683], we also have
M; (8 LY) = |k|6; LY, (L.3)

and the definition of the conjugate Riesz transforms of order 1 in L?(d/) is given by
(1.1) and IT;, in this case, denotes the orthogonal projection onto the closed subspace
spanned by the system {§; Lg}{keZgO:pr}'

In order to extend this definition to L”(du,) and prove the corresponding bound-
edness of these Riesz-Laguerre transforms we need to define the conjugate Poisson
integrals associated with R} as:

~  _pon .
U/ =e Lo 'R, i=1,....d.

For f € L?(duy) they satisfy the following Cauchy-Riemann type differential sys-
tem:

0 ~:
Sfe’M"l/z’l'[,-fz—EU;f, i=1,....d; (1.4)

see [18, Sects. 6, 7.10].
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Let us call

o
/ sre~ M, fai,

t

uif =sup‘l7ff( = sup
t>0 t>0
where the second equality follows from (1.4).
For every multi-index o such as «; > 0 Vi =1,...,d the main results of this
paper are:

Theorem 1.1 Foreveryi=1,...,d, 17; is bounded from Ll(dua) into Ll’oo(d,ua).
Theorem 1.2 Foreveryi=1,...,d, l7j< is bounded on L? (duy) for 1 < p < oo.

Now for f € L! (dug) we define

Dk £ 1: ryi
1= i 0

which exists almost everywhere. Indeed, the claim follows taking into account Theo-
rem 1.1 and the facts that for k; > 0, there exists

o
lim 0] (5iLg)(x)=t1in5/ 5re WIS, Lo (x)di
— —0J;

= lim ¢~ ¥I""1 L&Lg ()
t—0 |k|1/2

= WLg(X),

and the span of {6; L{} {kezd i =0) is dense in L'(dug). The boundedness properties

of ﬁf are given in the following corollary:

Corollary 1.1 Foreveryi=1,...,d, ﬁl* =R on L*(dpa), El* is weak-type (1, 1),
and it is bounded on L? (duy) for 1 < p < oo.

In order to achieve the first result, we prove the L?(dy)-boundedness of l7fk in
Sect. 2 and we simplify the notation and give an expression for the kernel in L? in
Sect. 3. Then the proof of Theorem 1.1 is based upon the usual decomposition of the
kernel of the singular operator into a local part, where we can use an adaptation of
the Calderén-Zygmund theory to the Laguerre measure (Sect. 5), and in a global part,
where we obtain good estimates of the kernel (Sect. 4). Section 6 will be devoted to
the proof of Theorem 1.2 and within the proof of this theorem we will also have the
proof of Corollary 1.1. Some proofs are given in the Appendix.

Throughout this paper the symbol a < b means a < Cb for some constant C that
may be different on each occurrence. And we will write a ~ b whenever a < b and
b<a.
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2 L>-Boundedness

Let us prove the Lz(d,ua)—boundedness of ﬁi

Proposition 2.1 Foreveryi=1,...,d, 17; is bounded on Lz(d,ua).
Proof The boundedness

IR f 2y < 120 @1

follows from [18].

.. ~. 1/2 .
Now taking into account that U. f = sup,- le=La 1 R? f| then from the Maximal
Theorem on Semigroups proved in [24, p. 73] and from (2.1) we get that

~: _pl2
NV fllz2 ey = | Sugle L "RY FUl2dpe) S IRE FllL2dug) SN2 0
1>

3 Kernel of U? f in L2(dp,)

Let f € L?>(dug), then ﬁt‘ f satisfies the Cauchy-Riemann type differential system
(1.4) and therefore

Ul fx)= /Oosz‘e*Mfl/Z’nif(x)dz.

t

As a consequence,

~. 1, Tlogr
b f ) = / / Ty L ) dma(), B
R4 Jo NG

with w(r) = ( llogr)l/2

T, y.r) = 1 STXYi (X — \JTYisi)
! 7 o + 1/2 [71,1]d (1 — r)|"“+d+5/2

(ai + 1) /ryi -
‘W}(l sP)e * M (s) ds
::/ ﬁf‘(x,y,r,s)l_[a(S)ds (3.2)
(1,1

. (1=sH® 2
belng Q—(X,y,s)zzj l(x/ +y/ _2\/xjyj I) H (S) 1_[] 1r(a7+1/2)[~(]/2)»

and dmy(y) = ]_[?:1 e¥idpy(y). See the Appendix for the proof of how to obtain
kernel (3.2).
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Thus (3.1) can be written in the following way

2

e4lo°r ~ dr
Ul fx)= /d/ w(r)U,"‘(x,y,r,S)— SOy (s)ds dmg(y).
R J[-1,1)4 Jr

(3.3)

In order to pass from the Laguerre context into a Gaussian-like context, we are

going to perform a change of coordinates in Ri. Let W : Ri — Ri be defined as

W(x) = x2, where for x € Ri, x=(x1,...,xq), x2 = (xlz, e xﬁ). Letdiiy =dug o

W~ be the pull-back measure from d,. Then the modified Laguerre measure djiq
is given by

djig (x) = e diiig (x),

where 71, is the polynomial measure on Ri defined as

ity (x) = 2¢ ]_[ 205 g
j=1

The map f — Uy f = f o W is an isometry from L7(duy) onto L9 (dfiy) and from
L7*°(dpug) onto L9-°°(dfiy), for every ¢ in [1, o0]. So we may reduce the problem
of studying the weak-type (1, 1) of U I to the study of the same boundedness for the
modified maximal conjugate Poisson integrals U; =Uy U*L{\I, with respect to the
measure dfiy. Thus

Ul f(x)

2

e410§>r dr N
= sup / / / w(r)US (x,y,r,5)— | Ma(s)dsf (y)dima (y)
z>o R J[-1,114 JT Jr

with

Uf(x,y,r,s)= (71-“()62, y2,r,s)

_c |:\/7xiYi(xi —ryisi) (i +D/ryi }

(1 — p)lel+d+5/2 (] — p)lal+d+3/2
2 _q,(rxz,yz,s)
x(I—si)e” = . (3.4)

Due to the isometry Uy the proof of Theorem 1.1 is a consequence of

Theorem 3.1 The conjugate Poisson integrals U,i are bounded from L'(djiy) into
L' (fia).
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In order to prove Theorem 3.1 we need to apply the usual technique in this field:
first we define the local region

C
er{(x,y,s)eR‘j_xRix[—l,l]d:ql/z(xz,yz,s)f 1+t| |}, >0
X

and then we divide the operator into the local and global operators by using a cut-off
function

1 if(x,y,s)€N;

X, y,8)= .
p.s) {0 if (¥, y,5) & N

. 1
Wlth ) € COO, O < [ < 1, and |V(x,y)g0(x, y, S)| 5 m
We define the global operator as being:

Ui,globalf(x) = sup

t>0

'/Rd'/[ ]l]dEi(X,y,S,f)(l_(P(x,}’as))na(s)dsf(y)dﬁia(y)
4 Ji-1.

with
2
— 1 o logr o dr
Ki(x,y,s,t)= U (x,y,r,5)—. 3.5
i(x,y,s,1) /Oﬁw(r),(XyrS)ﬁ (3.5
The local operator will be:
Uf;’lom[f(x) = sup / / K,- (x,y,5, Do, y, )y (s)dsf (y)dmg (y)|,
>0 [JRL J[—1.11
(see for example [23]). Hence
U,if(x) = Ui,localf(x) + Ui,glohalf(x)’ (3'6)
and also
U:;,localf(x) = U}kf(x) + Uﬂi,globalf(x)' (3.7

From inequality (3.6) Theorem 3.1 will be a consequence of Lemmas 3.1 and 3.2 that
deal with the boundedness of the operator on each part.

Lemma 3.1 The operator U ; is bounded from L' (dfig) into LV (dfig).

*,globa
and
Lemma 3.2 The operator Ui,local is bounded from L' (djiy) into L (djiy) .

These lemmas will be proved in Sects. 4 and 5 respectively.

Remark 3.8 Let us recall that g+ (x, y,s) = Z‘;zl(xj +y; £2./x;y;s;) and since
there will be some calculations involving g+ (x2, y2,s) it is convenient to think of
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this expression as being a distance between vectors in a space of a higher dimension.
Namely, let n = (ny,...,n4) € N and let X = X1,...,.Xp)and Y = (Yy,...,Yy)
be two vectors in R with X;, ¥; € R such that | X;| = x; and |Y;| = y;, for every
i=1,...,d. Let ¢; be the angle between X; and Y;. Calling s; = cos ¢;, we have

ge(x3 Y ) =X £ Y
= |x|? + |y[* £ 2/x]|y| cosf

where the symbol in the first equality stands for the Euclidean distance in R/l and
[xllylcos = 325y xjyss).

In the proof of the lemmas above we will use some inequalities, some of them
were already proven in [7]. For the sake of completeness we will write them all.

1 —
d < C onthe interval (0, 1), (3.9)
—logr
Ixi — Vryisil < g2 (2 ry? ), (3.10)
Vrxiyi(l = s < g_(x2,ry%,s), (3.11)
1
Vryi(l=s2) < Jryi) (1 =s2) < g2 (2, 2, s). (3.12)

Let us prove (3.10). g_(x2,ry% s) > xl-2 + ryl-2 — 2/rx;iyisi > xi2 + rsizyi2 —
2rxiyisi = |xi — /ryisi |2. Here the first inequality is immediate from the defi-
nition of ¢_ and the second one is due to s; € [—1, 1].

Let us prove now (3.11): g_ (x%, ry2,s) = |x —/ry|? +2\/?Z;{:1 xjyj(1—s) >
Vrxiyi2(1 = s;) = /rxiyi(1 — s?), since x;, y; > 0.

Finally let us prove (3.12): g_(x2,ry%,s) = |x|> + r|y|* — Z?:l 2xjryjsj =

d d

2 iy = (P i i =r 350 v (= s7) 2 i = 7).

Now we are going to define the global region and write out inequalities on every
subregion in which this global region is split. These inequalities will be used in the

proof of U’ globar-OUNdedness.

Letuscall G = Rff_ x [—1, 119\ Ny the global region, being Ny the section of N
at a fixed level x,i.e. Nj ={(y,5): (x,y,s5) € Ny}.
We divide the global region as G = R} U Ry U R3 U Ry, with

Ry ={(y,s) ¢ Nj :cosf <0},

Ry ={(y,s) & Ny :cos6 >0, |y| < |x]},

Ry ={(y,s) ¢ Ny :cos6 >0, [x| < [y| <2xl},
Ry ={(y,s) ¢ Ny :cos6 >0, |y| >2[xl[}.

For 0 </ <1 let us define

g—((1=Dx2,y%,5)

u(l) = 1
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Then
u(ty = == zl)x2,y2,s) (3.13)
= |x|2-l|—|y|2 - \/?2|x||y|0059—|x|2 (3.14)
_ q_<x2,(11—l>y2,s> ENEINGS (3.15)

By doing the same computations as in [12, p. 849, Proposition 2.1, with t =/ and
to = lp] we have on G that

e—u(l) e o

sup —— ~ —— (3.16)
0<l<1 Jlal+d l(\)ot|+d

with ug = u(lp) and Iy € (0, 1]. By setting a = |x|> + |y|? and b = 2|x||y|cos@ and

considering b > 0 we obtain that /g ~ —“i#. Since g— =a — b, g+ =a + b, then
a~ g4 and

lo~ |—. (3.17)

Moreover, since /g+q— > ||x|* — |y,

2 2 1/2
X _
u(l) > o = u(lo) = |y — |x] +(q+q )
2 2
(q+q-)"% + x> — |y
=y =+ 5
> |y — Ix?, (3.18)
and also
uo < (g+q-)"">. (3.19)
And from [5] we will use inequality (10):
1 dl e~ Vo
1/2 —vu(l) < )
/0 (e AR S 13/2 ) (3.20)
In region R
u(l) > ; —x? and a>e. 3.21)

Indeed, the first inequality follows from (3.14) since cos@ < 0 on Rj. On the other
hand, taking into account again that cosé < 0 on Ry, the second inequality follows
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from the reasoning below

2a = |xI?+ |y + x> + 12 =[x + [y1> = 2x][ylcos = g—(x%, ¥, 5)
C? C? C?
> > > .
I+ 1xD2 =20+ 1x1?) = 2(1 +a)

And from this a > c.
In Region R», from (1) of [7, p. 263] we know that

1
lx[>c>0, gi+~Ix*, and (94+/9-)7 S Ixf (3.22)

On the other hand from (3.18) we obtain that

( _)1/2
ug = |y|2 - |3C|2 + 76]#12 (3.23)
In Region R3 we have
c|x|*sin 0
Uy = |y|2_|X|2+ - s MOZC>O, (324)
Iy — |x|2 + |x]||y|sin®
(see (3.4) of [7]) and
(@1g )" ~ 1y = x> + Ix]ly|sin6 > |y* — [x|> + [x[* sin6, (3.25)

(see (3.3) of [7]). Using the fact that in Rz, |x| < |y| <2|x|, (3.19), and the second
inequality of (3.24) we get

g+ < Clx|> and g+q— >c>0. (3.26)
In R4 the following inequalities hold, their proofs can be found in page 265 of [7]:
2 2 2 2, sin*0
q-=clyl”, g+ S Iyl% up=c>0, and wuo=|[yl” —[x["+——Ix|"
(3.27)

r7i
4 Boundedness of U +.global

In this section we are going to prove Lemma 3.1 and the L?-boundedness of U ; global
for 1 < p <oo.
Let us observe that

Ui,globalf(x)S/ / X6 (v, )IKi (x, y, 8, 0)|Ta (s)ds| £ (3)|diita (y),
R J[-1.11¢

then Lemma 3.1 is a consequence of the following propositions:
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Proposition 4.1
1K, v, 5.1 S e,y s)e P
on the global region G with

P

e 2, (y,8) € Ry,

1/2
| [2le2d g—elxlg (2 20),
K*(x,y,5) = et
2 2d e |ylF=Ix|=+sin6|x|
|x 2l LA swrmr T |- (0, 5) € R3,
(Iy12—=Ix|?+sin6|x|?) 2

(v,8) € Ry,

(1 + |x|)e—sin? Ok, (v,s) € Ra.

Proposition 4.2 The operator K* defined as
2 ~
K@= [ et K s F ).
+ -1,

is of weak type (1, 1) with respect to the measure [iy.

The proof of Proposition 4.2 is given in [7, Proposition 2.2], except for the region
R but the operator on this region turns out to be bounded on L! (dfiy) as can be
verified easily.

Proof of Proposition 4.1 By definition (3.5) of C;(x,y,s,t), definition (3.4) of
Ui“ (x, y,s,t) and taking into account inequalities (3.9)—(3.12) we obtain that

_ g (2225

1
. X 231 o 1C - dr
|Kl(x7y7sat)|§/0 \/;ylxl(l_si)lxl_\/;ylsl|(l_r)‘a|+d+5/2\/;

g x2)2)

e T=r dr
(1 — r)lal+d+3/2 ﬁ

_ g—(rx2y2.5)

1 I=r dr
< 2 .02 32 ¢
N/O (@- (= ry" 5) (1 —r)lal+d+5/2 /p

1
+f N
0

q—x2)%)

! T=r dr
2 2 12 ¢
+/O (g—(x~,ry,s)) RISy

In these last integrals we make the change of variables / = 1 — r and taking into
account (3.13) and (3.15) we have

T : 2 232, ¢ "0 dl
|ICi(x,y,s,t)|§/(; AV @@+ = 1y1» )Wl——l. 4.1

Now, we have the following lemmas, whose proofs can be found in the Appendix.
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Lemma 4.3 Forv > 0 and m > 0 we have

AV ) + |x|2 _ |y|2)m)e—vu(l) < ele\ze—v|y\2.
Lemmad4.4 ForO<n<1 q (x y2,5) > 1+|x\’ cos@ > 0and |x| > |y|, we have

1 —nu()
€ d |x|2|ot|+2d
0 lla|+d+1¢—~ ’

Lemma 4.5 For ug defined in (3.18) with ug 2 1, we have

: 2 3/2y_¢ O dl
/(; AV @@+ x| _|Y| ) )l|“|+d+lﬁ
(|| +d)/2
< eu|x|2e—v\y|2 (6]_+> e/ e~ (1—1uo
~Y q7 b

. _ 1
with v = T ETIE

We prove now the boundedness of |C; (x, y, s, 1)| on each region R;j,j=1,2,3,4.
Region Ry: Using Lemma 4.3 with m = 3/2 and v = 1/2 and taking into account
(321): 4 —|x|> <u(l) and a > ¢, we have
e dl
flel+d+1 T ]

_a
2 fleat 2 dl R
<e: _— ¢ 2
~ 0 l‘ClH'd-‘r] 1T—1

o jal+d IR
Selles / e <2U + 1) v e i S e T 42
0 v+ 5/

1
/ AV () + 2 = 1yP)?)
0

where we made the change of variables v = 5; — 5. Therefore for (y,s) € Ry we

have
IK(x,y,9)| < elx‘le*(x, Yy, s)e_ly‘z.

Region R;: In order to prove the boundedness in R, we need to consider the cases
uo S 1and ug 2 1 separately.

If ug < 1, taking into account Lemma 4.3 withm = 3/2,0 < v < 1 and Lemma 4.4
with n =1 — v, (3.22) and (3.23) we obtain that

di

: 2 2,3/2 e @
/0(1\/(u(l)+|x| —yI9) )Wﬁ

1 —(—vyu()
< 2y [ € d
~ 0 l\a|+d+l /1 Iy
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2 a2
Sev\xl e v]y| |x|2\a|+2d

2 _ 2 —(1—
Sev\xl eVl |x|2\01|+2de (I=v)ug

2 2 U-wrg)'?
< [Pl 2d lel? g Iy? = S

2 2 . 1/2
< ||l plxl? o= Iy g=elxlg ",

From inequality (4.1) and this last estimate, |KC; (x, y, s, )| < e'x‘le*(x, v, s)e"y‘z.
If ug 2 1, from inequality (4.1), Lemma 4.5, (3.22) and (3.23) we get

K.y, 5.0)] S e vl | Platt2d g=(1=viuo

< x| HlelH2d gl =l g—e(qrq-) '

< |l +2d P g =y melrla”” _ ol jox v, s)e PP
Region Rj3: Taking into account inequality (4.1), Lemma 4.5, (3.24), (3.26) and
(3.25), we have

[y2=lx|2+x||y| sin@

+d)/2 clx4sin? 0
i (x. y. 5.0 e eIoP (q+><“' e =)
1 LA R ~

e
q-—
(|01H—d)/2 E\x|4 sin2 0
— e\xlze—IY\2 (q_+ e IyP—Ix2+xllylsine
q-
| +d Gx4sin? 0

T2 24 0x i
e IyIP=lxI2+lxllylsing
2 = Iy? 9+
— e

@4 (g,q.)

2Jal+2d—1
7

_ Elxl4 sin2 9
e IYP—IxZ+xllylsing

2 2
< LHlx17 =yl 2|e|+2d
~e e x| 2Jal+2d—1 *

(Iy1? = |x[?> +sinf|x|?) " 2

On the other hand taking into account the first inequality above and (3.26), it is im-
mediate this other inequality:

— L
IKi(x, y,5,0)] < x|Hel+2d X o=I17,

Thus, for (y, 5) € Rs, [Ki(x, y, 5,0 S e’ K*(x, y, s)e P
Region R4: Using Lemma 4.5 and (3.27) we get

e~ (I=v)uo

_ 2 2
K (x, y, 5)] S el el (q—+

(le|+d)/2
-

2 _vi2 _,qn? 2 2 _1vl2
< Iy gmesin® Ox® _ el jox (e oy, 0

Now we prove the L?-boundedness of ﬁ; global’
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Theorem 4.1 For 1 < p < o0, the operator Ui,global is bounded on LP (dfiy).

Proof Region Ri: By Lemma 4.3 with m = % and0<v<l1/p

1 2 2\3/2 e? d_
/(lv(u(l)—i-lxl = 1yI%) )Wm
—vu(l) d/
2 3/2 —(1 vu) __
f AV @@+ IxP* =1y )l\a\+d+l J1—1

< v\xlz—vlv\z e—(]—v)u(l) dl
~¢€ o [t T

By using that % — |)c|2 < u(l) and then the change of variables v = w —(1—v)a,
the fact that a > ¢, and following similar estimates as the ones done in (4.2) we obtain
that

1 ,—(1- !
ev|x\27v\y|2/ e IMD AL i
0

et T—] S

So on R
i (x, v, 8,0 < o (efafv)mz) eI

and the L”(dfiy)-boundedness of U global N region R; follows. Indeed, for f €
LP(dfiy), since pv — 1 <0, we obtam that

10 giopat ks Doy S 1€ ool FlLr@zo S 1 1Lr@ze-
Region G\ R;: From the proof of Proposition 4.1 we get the following inequality
_a-0x2y%)
T=r dr

_qf(rx B

1
oy & T dr
+/0 Vryid Sl)(l_r)\a|+d+3/2ﬁ

_a-xy%)

e T=r dr
(1 — r)lal+d+5/2 ﬁ

“C (x,y,s,1)] </ \/—ylxt(l S; )|-xl x/—yzSz

1
< / (g—(x2,ry?, 5))%?
0

Cg—x2yls)
I—-r

1
2 .2 p2_¢
+/0 (g—(x",ry",s)) (1 _r)\a|+d+3/2dr

_q—(d— l)r2 x2 )

3/2¢ ! dl
/ (462 =0y P e o

Birkhauser




868 J Fourier Anal Appl (2011) 17:854-878

g ((=Dx2y%5)

, d
/(q (2, (1= Dy2, 5) /22
Jlel+d+3/2 /T_]
=I1+11.
Let us set
_(x2, (1 = Dy?,
i =1 @, (L =Dy*s).

l
From (3.15) i(l) = u(l) + |x|*> — |y|?, we can rewrite  and I as

_ sp e "0l G2y
1= /(u(l» llalﬂmm wPobP,

—i(l

e dl S
”_/ @) Jaltd+l =7 ¢ e

We bound I and /1 separately.
Let us observe that by an adaptation of the proof of Lemma 4.3 in [12] withm =3
(exchanging x with y) we get

P =1y gt (.0 L 400, X, 8)

<
Ise T

Iy12—|x[?

with uo(x, y, s) = + @42 By using (3.17), (3.19) and the fact that for
cosf >0, g+q— > c (see [12, p. 863]) we obtain that

le|+d

Tz 2ix NV
= <q_+) 2 (Q+Q—)1/267(M+%)
q—

172

|a|+d 1/2, 7(”‘ Sl ERCEL S ) (4.3)

(q+9-)
On the other hand by an adaptation of the proof of Proposition 2.2 in [12] (exchanging
x with y) we have

la|+d

12
115<q_+) T
q—

2.2 1/2
la|+d _(M —Ix| +(q+q7> )
< q+ e 2 2 .

Taking into account that g;+g— > ¢ on G \ R; we conclude that this last kernel is
bounded also by the kernel (4.3).

Therefore both integrals I and /1 are bounded by the kernel K" for m = 3 of [7]
(kernel defined within proof of Theorem 8). So by Theorem 8 of the same paper, we
have the L”-boundedness, for 1 < p < oo with respect to the measure f[iy. O
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5 Local Part—Proof of Lemma 3.2

In order to prove the weak-type (1, 1) of U ! all we need to know is the Lz(d/la)-

*,local’ )
boundedness of U ; locas @0d suitable gradient estimates for the kernel of U, ;...
Ki(x,y,s,t)q)(x,y,s). .

Indeed, the weak-type (1, 1) of U fk locar With respect to the measure i, follows
from the proof of Theorem 5 in [23] where in that proof we have to replace Proposi-
tion 6 of [22] by

Proposition 5.1 Let us assume o is a multi-index such that o; > 0 for all i =
1,...,d. Let {Tt};~0 be a family of linear operators defined on Lz(Rd ,dmg) such
that Ty f (x) = sup,_o |T; f (x)| is bounded on Lz(Ri, dmiy). Let us assume also that
there exists a function k = k(x, y, s, t) defined on Rf{_ X Ri x [—1,1]¢ x (0, 00) that
satisfies

(i) k is of class C' on the variables x and y and there exists C > 0 such that

C

|V(x y)k(-x»yss»t)l = 1 .
s N
g2, )2 )

(ii)
Tzf(x)=/d / k(x,y,s, t)g(s)dsf (y)dmig(y).
RL J[-1,114

Then Ty can be extended to a bounded operator on LP (Ri, dmy) for 1 < p < oo and
of weak-type (1, 1).

The proof of Proposition 5.1 follows essentially from the technique developed by
E. Sasso in [22, Proposition 6].

In our case we have to take k(x, y,s,t) = E-(x, v, 8, )¢(x,y,s). Now we are
going to prove the claims stated at the beginning of this section.

From Sect. 2 and taking into account the isometry {/y defined in Sect. 3 we get
the boundedness of Uj; on L2(dfiy). The L%(d/i,)-boundedness of Ui,global is a con-

*
sequence of Theorem 4.1. Therefore from (3.7) the Lz(d/la)-boundedness of Ui local
follows.

Finally let us obtain suitable estimates on the local region N5 for both the kernel
E- (x,y,s,)e(x,y,s) and its gradients with respect to x and y.

Lemma 5.2 For (y, s) € N5, we have the following estimates

Koy, Dle(x, y.8) < 1K@,y 5.0] < —oiyyama

Ve i (v, )0 06,y )| < gy Sy
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Proof Letus remark that there exists a constant C > 0 such that C “l<elx P=lyp? <C
for every (y,s) € N;. Also for (y,s) € Ny

_oa=trhnts) - - c1=G2 )
e 1—r e I—r

Indeed, according to Remark 3.8

q-(x*,ry* ) =X — Y|
=1X—YP+ (1 —V)PIYP+200—V/NY - (X =)
> X =Y =201-n)Y||X - Y|
=q-(x% % 5) =201 = )lylg 2 (2 y2 )
>q_(x*,y%5) —c(l—7),

since on Ny, |x| ~ |y|. Again from the proof of Proposition 4.1 and taking into ac-
count that (y, s) € N5, we have

g 22

e T=r dr
(1 — r)lel+d+5/2 ﬁ

_qf(rxz,yz.S)

e T=r dr
(1 — r)lel+d+3/2 ﬁ

I L)

< /l g2yt )\ e T dr
~1Jo 1—r (1 —p)lel+d+l /fr

1 2 2 12 —astrn?s
+/ 4-(x7,ry7,s) ¢ = dr PPy
0 1—r (1 — p)lel+d+1 fr

1
IKi(x,y,5,0] < /0 (g—(x*,ry?, )2

1
+ f (g- (2, ry?, sH/?
0

1 cq—(xz.ryz,s) 7Cq_(x2,y2.s)
< e a-r) dr |)C‘27|y|2 < e 1-r r
- e - @
~ 0 (1— r)|a|+d+l ﬁ ~ 0 1- r)|a|+d+1 ﬁ
C

< .
g (x2, y2, 5)lel+d

Now, we may consider the derivatives. If j #1i,

8Ei( f fl e Hlogr ( )ana( ) dr
—(x,y,5,1) = w(r X, V,F,8)——
j 0o VT dy;j NG

1
e yj —/rxjs; dr
=-2 Uf(x,y,rs)—————+—,
L e e
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Thus, since |y; — /7x;s;] < ¢/ > (rx2, y2,9),

3/2 127 _e=02a?
o q—(xzaryZNY) / q_(xz,ryz,s) / e I—r
|U; (x,y,r,9)| S - +
L—r 1—r (1 — r)lal+d+1

and taking into account the above inequalities, we can conclude as before that

K, - C
T q-(x2, y2, s)leltd /2
On the other hand,
— [2
aIC,-( 9 /lew ()aU{"( )dr
X,y,8, 1) = wr)—=(x,y,r,s)—
dyi 0 T 3y Jr
with
aU¥
—(x,y,r,s)==2U{(x,y,r, s) fxls,
ay; —-r
g—(rx2y2.5)
2fx,y,s, e~ I

Since |yj — «/rxjs;j| < ql/z(rx2, y2,s) and |xi2 —2rxivisil < qg-(x%,ry?,s), we
also obtain that

C
q—(-xzv yzss)la‘+d+]/2.

AK;
S(x,y. s, | <
dy;

The gradient with respect to x is treated similarly. As for the boundedness
of |IC,-(x,y,s,t)|(|8yj<p(x,y,s)| + |8xj<p(x,y,s)|) we use the boundedness of
IKi(x,y,s,t)| together with the assumption on the boundedness of
IV, me(x, y, )l O

6 Proof of Theorem 1.2 and Proof of Corollary 1.1

For f € L*>(duy), from the Cauchy-Riemann system, ﬁt’ fx)= e‘ﬁfyz’ R} f(x) for
aﬂl X € Ri and frorE this, l7;f converges to Ri‘f in L2(dje). We also know that
U! f converges to R? f pointwise. Therefore R = R on L?(djg). On the other
hand, from Proposition 2.1, ﬁ I is strong-type (2,2) and from Theorem 1.1, ﬁ L s
weak-type (1, 1) with respect to pq, then from Marcinkiewicz’s Interpolation The-
orem we get that U g bounded on LP(duy) for 1 < p < 2. From this result, the
pointwise convergence of U ! f and Fatou’s Lemma we immediately obtain that R* is
also bounded on L? (dpuy) for l<p<2.
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Asfor2 < p <oo,letustake f € LP? (=LPNL?) and g € L?' nL2, taking into
account that

(RF £.8)1 = lim (U} f. )|
and
(U f.8)= £V}

. 1/2 —
with Vig = e~ Mi"'Rig, Rig = 8:Lq"*Tlog, which is bounded on LP(djuy) for
every 1 < p < oo (see [16, Theorem 13]) and the Maximal Theorem on Semigroups
proved in [24, p. 73], we have

(REf, )l < lIsup Vi gl I £l »
t>0

SCplRiglpllfllp SNglp L fllps
therefore,
IR fllp SNflp-

Now taking into account that 17; fx)= e’d’/zt ﬁf f, and the Maximal Theorem on
Semigroups we get again that ﬁ; is bounded on L”(duq) for p > 2.

As for the weak-type (1, 1) of R} this follows, for f € L' (djg), from the inequal-
ity |§;‘(X)| < ﬁif(x) fora.e. x € R’i and Theorem 1.1.

Acknowledgements The authors would like to thank the referees for their helpful comments and sug-
gestions to improve the presentation of this paper.

Appendix

In the proof of (3.2) the following estimates will be used:

Fa+n+1) /2

ILy (x)| < T ,
n+1) T(a+1)

foro« >0,x>0andn=0,1,2,..., (7.1)

which can be found in [1]; and for k; > 1 forall j =1,...,d

4 1/2

k; +1 d
Hﬂ — (8 LY)(x)
AT (aj+ki+ 1) 0Xx;
j=1

1/2
d d 41
oy ki (1+T[o;1+ DL 1440

< 1 /x; 1/2 xXj/2 ! J k-
< (max(xi, 1/x7) Ee o ]Ul SO
< Co(x) k| lIH/24T, (7.2)
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This last inequality is a consequence of (7.1) and the inequality I'(e +n + 1) <
(1 + [a] + DR+ P G 4 1), for @ > 0 and n > 1 where this latter inequality
is obtained taking into account that the Gamma function is strictly increasing on the
interval [2, 00).

Proof of (3.2) Before getting involved with the calculation of the kernel we are going
to write out the kernel of the one-dimensional heat-diffusion semigroup associated
with the Laguerre expansions.

o0

Mm@, r) =) r"Lim)Li ()
n=0

rn@)”% _rose (2\/rn<p>
_ ) e

C(n+1)
Fa+n+1)

1—r 1—r

forO<r <1,a>—1,n,¢ > 0and I, being the modified Bessel function of the first
kind.
Taking into account that for a > —1/2

_ (z/2) L 212
]"(Z)_F(a+1/2)r(1/z)/_1(] s Retds,

then

_ rint+e)—2/rngs

1 =
e T—r
M?(nﬂ(pvr)Z/;] (1—}")1+—a Ha(s)ds
aLon.p.
1 e_ 1—r
:/ ml—[a(s)dse‘p,
—1 —

. _2ya—1/2
with ¢! (7, 0, 5) =n+ ¢ — 2. /m@s and T1,(s) = W

In order to prove (3.2) let us first calculate the kernel of the integral operator
associated with the diffusion semigroup

o

—M;t _ — |kt (fL8LE) ¢

e I f(x) = E e " ———=5-8i Ly (x)
kik;i>0 18: LN

—lklr 4 Tk +1
e J + )
= E | | (fs8i LE)8i Ly (x)
Pl ki izl Claj+kj+1)

2/ Mi(x,y,e™) fF() dua(y),
R
with
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Tkj+1)

Mit e =TT 2 eV LG enly 0D s =

j#ikj=0
—kit aj+1 a,+1 L’Q)
,;"’ VI DL O R
o T(kj+1)
—]"[Z LY ()L )
T P75k VT a4k + 1)

'k +1)
Mai+1+k+1)

o0

kit — i+1 i+1
Ze kit o t«/xi)’iLZi—i_ ()Ci)LZ[,.+ i)
k._

We set r = e~ then for all o; > —1/2,

Mi(x,y.r) =r' PTIMY @ yj ) i My @ i)

J#i
q (rx vj r,)
=r./xiyi 1_[/ ﬁﬂa](s,)ds je’s
1 ( )
JF#
7(rxi. Vi »5i)
1 e_q 1—;‘ i
- . . 1
* /_1 (= pyrray et (i) dsie
_qf(lrxw,vm d
X e - _
RAVAIRE : 7Ha(s)dsl_[ey1
1/2 _ l]d 5i r)|0t|+a'+l 1
j=1
. d d
withg_(rx,y,s) = ZFI ql(rxj, yj,sj)and I (s) = ]_[j:1 Mg, (s7)-
.. . 2, ) .
Under a subordination formula we can write e =i’ in terms of e~ Mif = M.
e
M2 e Floe .
M Py = PMif () dr

27 Jo r(—log ;’)3’/2

e4logr
/R/ T T Tog M Y DA it (),

At this point we are ready to calculate out the kernel associated with the integral
operator U, . Indeed,

0l fx) = f Tt M o
t
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e4logr
- [ /R/ S o T M )4 ) Ao ()

e4log; *
f fRdf e MU A ) ()

e410§>r
/I.Qd/ J_r(—logr)l/zg‘ Mi(xﬂy’r)drf(y)dﬂa(y)

/ / emgr R (x 2o & —= ) dia (). (1.3)

To justify the interchanging of §7 and the double integral we should prove that

i(x,y,r> drlf () dpa(y)

64100;
I —
/I‘R" f 2/7 r(—logr)3/2

is finite for every x € R‘i. By applying Schwarz’s inequality we get that

2
I</1 l ¢ Flogr /
~Jo 27 r(—logr)3/2

By using estimates (7.1) and (7.2) one can prove that

rlkl Tkj+1) N
Z ki }_[F(aj+k +1)‘_(5L /)

k:ki>0

oM,

0x;

5 172
—(x,y,7) dﬂa(y)) drll il 2 dpg)-

18i L ()]

is finite for every x and r < 1, therefore

aM, Pk L Tki+1) 9
Swyn= )0 k—i]l_[m8 B L8 LE ().

k:ki>0
Then
4 1/2
H IM; o) _ rllkll_[ Lkj+1) 3
oxi e \ihZo ki T@i+ki+D) ax;

Y 12
r Tk +1) 9
= 2 l_[ ‘8—)%(31'14%)()6)

j=1 Caj +kj+1)

k:k; >0 1

< Ca) Y KN

k:k; >0
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This last bound is a consequence of the estimate (7.2). Therefore
12

1 T
\a|+d l e4log;
I<Colx) Y Ik *a

(X)kk>0| | /o 2ﬁr(—10gr)3/2r P20

H»d (12
= Cy(x) Z k| 2 Flelk l”f”Lz(d,ua)
k:ki>0

This last bound not only guarantees that indeed I is finite but also that we can apply

Fubini’s Theorem to justify equality (7.3).

Now calling ﬁi‘" (x,y,r)= % ]_[‘;:1 e~ Y/, and after a series of calcula-

tions we get kernel (3.2). O
Proof of Lemma 4.3 From (3.18), u(l) + |x|> — |y|* = uo + |x|*> — |y|> = 0, then

_ _ _ 2_ 1412
o) < gm0 < G=v(lyP—lx?)

and

WD)+ 1xP = [y ™D = @) + [x]2 = [y[2)" e WOHE P =)

< eV P=Iy1%).
And the proof of Lemma 4.3 follows. g

Proof of Lemma 4.4 Let us notice that conditions |x — y| > ql_/z (x2,y%,5) > %IX\
and |x| > |y| imply |x| > ¢ > 0.
Now let us write

1 ,—nu() 2\x|2 1/2
=1+1+1.
/0 lloz\+d+1 / f / //2

It is immediate the boundedness of 171 by a constant. On the other hand

1/2 dl
< 11 2lal+2d
”5/L farrarT ~ X1 :

21x|2
Regarding I let us observe that by using Remark 3.8 we obtain the following inequal-
ity:
(1 =122,y ) = VT =X — V|
> X-Y|-(1-v1I-=-D[X]
>|X -Y|-1|X]
=q (2 y2 ) — llx. (7.4)
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Since 0 <1 < 1/(2]x|?), then 2I|x| < ﬁ < %IXI < qi/z(xz, y2,s) and therefore by

/2, 2 2
applying this to (7.4) we have ¢"/((1 = D)x2, y2,5) = =529 Thys, u(l) >
g-(x%,y2,5)
—a and

1 _ ng— (% ,y%.5) 1
W e ar
! 5/ : Jlal+d+1 dr's la|+d < |x e,
0 g= " (x2, y2,5) O

Proof of Lemma 4.5 From Lemma 4.3 withm =3/2 and v = m (3.16), (3.20),
and (3.17) we have

! 2 232, ¢ "0 di
v -

-1
1 —(1— l
</ bl ooy € Y dl
~Jo

flel+d+1 /1]

<ev|xze—v|y2/1( (l))l/ze‘“‘”)“(” d
— u
0

~ u(l)/Z Jlal+d+1 m
1-2v
1 —u(l —vu(l
NN B K N
~ 0 la|+d 13/2 T=1
—ug 1-2v —vug
< VP vy [ £ ¢
~ llaH-d J172
0 0
—(1=v)ug
— oVl vy
l|(¥\+d
0

2 _ 2 {4+ —(1—
< VIR o] <_ o= (=g

(la|+d)/2
-
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