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Abstract We study necessary and sufficient conditions for embeddings of Besov and
Triebel-Lizorkin spaces of generalized smoothness B

(n/p,�)
p,q (Rn) and F

(n/p,�)
p,q (Rn),

respectively, into generalized Hölder spaces �
μ(·)∞,r (R

n). In particular, we are able
to characterize optimal embeddings for this class of spaces provided q > 1. These
results improve the embedding assertions given by the continuity envelopes of
B

(n/p,�)
p,q (Rn) and F

(n/p,�)
p,q (Rn), which were obtained recently solving an open prob-

lem of D.D. Haroske in the classical setting.

Keywords Function spaces of generalized smoothness · Optimal embeddings
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1 Introduction

The aim of this paper is to improve the results obtained in [24], where the authors
computed the continuity envelopes (which are closely related to questions of sharp
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embeddings) for Besov and Triebel-Lizorkin spaces of generalized smoothness in a
limiting case—the so-called critical case s = n

p
. In this situation it was proven that

the optimal index is ∞. This assertion is surprising in comparison with all the previ-
ously known results, where the optimal index was always q for the Besov spaces and
p for the Triebel-Lizorkin spaces. In particular, in [24] the former result of Haroske
in [20, Theorem 9.10] was improved and the open question posed by her in [20, Re-
mark 9.11] was answered. However, it turns out now that in this critical situation
the continuity envelopes of the spaces mentioned above do not yield optimal em-
bedding results. A similar situation occurred in [16] and [17], but in the context of
Bessel-potential-type spaces in the limiting case. However, the technics used there
were completely different from the ones considered here.

In this paper we prove that

B
( n

p
,�)

p,q (Rn) ↪→ �
μ(·)∞,r (R

n), (1.1)

if, and only if,

sup
κ∈(0,1)

(∫ 1

κ

μ(t)−r dt

t

) 1
r
(∫

κ

0
�(s)−q ′ ds

s

) 1
q′

< ∞

(with the usual modification if r = ∞ and/or q ′ = ∞), provided that 0 < p ≤ ∞,
0 < q ≤ r ≤ ∞, � is a slowly varying function such that (�(2−j )−1)j∈N0 ∈ �q ′ and
μ ∈ Lr (see Theorem 3.2 and Remark 3.4 below and Sect. 2 for precise definitions).

In particular (cf. Corollary 3.3), when q > 1 and r ∈ [q,∞], the embedding (1.1)
with μ = λqr , where

λqr(t) := �(t)
q′
r

(∫ t

0
�(s)−q ′ ds

s

) 1
q′ + 1

r

, t ∈ (0,1],

is sharp with respect to the parameter μ, that is, the target space �
μ(·)∞,r (R

n) in

(1.1) and the space �
λqr (·)∞,r (Rn) (i.e., the target space in (1.1) with μ = λqr ) satisfy

�
λqr (·)∞,r (Rn) ↪→ �

μ(·)∞,r (R
n). The embedding with r = q and μ = λqr = λqq is optimal

(i.e., it is the best possible embedding among all the embeddings considered in (1.1)).
An interesting case is the one with p = ∞, concerning the space B

(0,�)∞,q (Rn).
For example, if �(t) ∼ (1 − ln t)α,

B
( n

p
,(1−ln t)α)

p,q (Rn) ↪→ �(1−ln t)−α+1

∞,q (Rn) ↪→ �(1−ln t)
−α+ 1

q′ + 1
r

∞,r (Rn),

provided 1 < q ≤ r ≤ ∞, 0 < p ≤ ∞ and α > 1
q ′ , where the first embedding is

optimal.
If 0 < q ≤ 1, we have 1

q ′ = 0, and in this case

B
( n

p
,(1−ln t)α)

p,q (Rn) ↪→ �(1−ln t)
−α+ 1

q

∞,q (Rn) ↪→ �(1−ln t)−α+ 1
r

∞,r (Rn),
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provided 0 < q ≤ r ≤ ∞, 0 < p ≤ ∞ and α > 0, where the first embedding is opti-
mal.

Note that when �(t) ∼ (1 − ln t)α with α < 1
q ′ , the space B

( n
p

,(1−ln t)α)

p,q (Rn) is
not embedded into L∞(Rn). Thus, it does not make sense to study embeddings into
Hölder-type spaces but rather into Lorentz-Zygmund-type spaces. We refer to [8],
where the authors dealt with this situation, and to [33] and [20] concerning the clas-
sical situation.

In terms of F-spaces we obtain similar results, with the usual replacement of q

by p.
The paper is organized as follows. Section 2 contains notation, definitions, prelim-

inary assertions and auxiliary results. In Sect. 3 we state our main results, providing
necessary and sufficient conditions for the embeddings to hold, and derive optimal
weights and sharp embedding assertions.

2 Preliminaries

2.1 General Notation

For a real number a, let a+ := max(a,0) and let [a] denote its integer part. For
p ∈ (0,∞], the number p′ is defined by 1/p′ := (1 − 1/p)+ with the convention
that 1/∞ = 0. By c, c1, c2, etc. we denote positive constants independent of ap-
propriate quantities. For two non-negative expressions (i.e. functions or functionals)
A, B, the symbol A � B (or A � B) means that A ≤ cB (or cA ≥ B). If A � B
and A � B, we write A ∼ B and say that A and B are equivalent. Given two quasi-
Banach spaces X and Y , we write X ↪→ Y if X ⊂ Y and the natural embedding is
bounded. Furthermore, Lp(Rn), with 0 < p ≤ ∞, is the usual Lebesgue space, with
respect to the Lebesgue measure, endowed with the usual quasi-norm ‖· | Lp(Rn)‖.
The space of all scalar-valued (real or complex), bounded and continuous functions
on R

n is denoted by CB(Rn), which is equipped with the L∞(Rn)-norm.

2.2 Slowly Varying Functions

Definition 2.1 A positive and measurable function � defined on the interval (0,1] is
said to be slowly varying if

lim
t→0+

�(st)

�(t)
= 1, s ∈ (0,1]. (2.1)

Example 2.2 The following functions are examples of slowly varying functions:

(i) �(x) = (1 + | logx|)a(1 + log(1 + | logx|))b , x ∈ (0,1], a, b ∈ R,

(ii) �(x) = exp(| logx|c), x ∈ (0,1], c ∈ (0,1).

We remark that the function in Example 2.2(i) is also an admissible function in
the sense of [12, 13], which means that � is a positive monotone function defined
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on (0,1] such that �(2−2j ) ∼ �(2−j ), j ∈ N. It can be proved that an admissible
function is, up to equivalence, a slowly varying function.

The proposition below collects some properties of slowly varying functions which
will be useful in what follows. We refer to the monograph [3] for details and further
properties.

Proposition 2.3 Let � be a slowly varying function.

(i) For any δ > 0 there exists c = c(δ) > 1 such that

1

c
sδ ≤ �(st)

�(t)
≤ cs−δ, t, s ∈ (0,1].

(ii) For each α > 0 there is a decreasing function φ and an increasing function ϕ

such that

t−α�(t) ∼ φ(t) and tα�(t) ∼ ϕ(t).

(iii) If
∫ 1

0 �(s)ds
s

< ∞, then �̃ defined by �̃(t) = ∫ t

0 �(s)ds
s

, t ∈ (0,1], is a slowly
varying function such that

lim
t→0+

�̃(t)

�(t)
= ∞.

(iv) �r , r ∈ R, is a slowly varying function.
(v) If � is a slowly varying function as well, so is ��.

Remark 2.4 It follows easily from the last proposition that

�(t) ∼ �
(
2−j

) ∼ �
(
2−(j+1)

)
, t ∈ [

2−(j+1),2−j
]
, j ∈ N0.

The next proposition provides a very useful discretization method, which coin-
cides partially with [24, Proposition 2.5].

Proposition 2.5 Let � be a slowly varying function.

(i) Then ∫ 1

t

�(s)
ds

s
∼

[| log t |]∑
j=0

�
(
2−j

)
, t ∈ (0,2−1].

(ii) Moreover, if
∫ 1

0 �(s) ds
s

< ∞, then

∫ t

0
�(s)

ds

s
∼

∞∑
j=[| log t |]

�
(
2−j

)
, t ∈ (0,1].

A corresponding assertion holds if we replace the integral and the sum by suprema.

We complement the previous proposition by a discrete version of [29, (3.2)], also
cf. [24, Lemma 2.6].
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Lemma 2.6 Let 0 < u ≤ ∞ and � be a slowly varying function.

(i) Then ( ∞∑
j=k

2−ju�
(
2−j

)u

)1/u

∼ 2−k�
(
2−k

)
, k ∈ N (2.2)

(with the usual modification if u = ∞).
(ii) Furthermore, we have(

k∑
j=0

2ju�
(
2−j

)−u

)1/u

∼ 2k�
(
2−k

)−1
, k ∈ N (2.3)

(with the usual modification if u = ∞).

Proof Suppose that 0 < u < ∞. In order to prove (i) let ε ∈ (0, u). Using the fact that
tε�(t)u is equivalent to an increasing function, cf. Proposition 2.3(ii), we obtain for
k ∈ N,

∞∑
j=k

2−ju�
(
2−j

)u =
∞∑

j=k

2j (ε−u)
(
2−j

)ε
�

(
2−j

)u

�
(
2−k

)ε
�

(
2−k

)u
∞∑

j=k

2j (ε−u)

= 2−kε�
(
2−k

)u2k(ε−u)

∞∑
j=0

2j (ε−u)

� 2−uk�
(
2−k

)u
.

This completes the proof since the reverse inequality is clear. A corresponding proof
for (ii) can be found in [24, Lemma 2.6]. The proof in the case u = ∞ is analogous. �

2.3 Function Spaces of Generalized Smoothness

In the sequel, let S(Rn) stand for the Schwartz space of all complex-valued rapidly
decreasing C∞ functions on R

n and we denote by S ′(Rn) its topological dual, the
space of all tempered distributions. Let ϕ0 ∈ S(Rn) be a function such that

ϕ0(x) = 1 for |x| ≤ 1 and suppϕ0 ⊂ {
x ∈ R

n : |x| ≤ 2
}
. (2.4)

For each j ∈ N, we define

ϕj (x) := ϕ0
(
2−j x

) − ϕ0
(
2−j+1x

)
, x ∈ R

n. (2.5)

Then, since
∑∞

j=0 ϕj (x) = 1 for all x ∈ R
n, the sequence (ϕj )j∈N0 is a dyadic reso-

lution of unity. Given any f ∈ S ′, we denote by f̂ and f ∨ its Fourier transform and
its inverse Fourier transform, respectively.
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Definition 2.7 Let 0 < p,q ≤ ∞, s ∈ R and let � be a slowly varying function
according to Definition 2.1.

(i) Then B
(s,�)
p,q (Rn) is defined to be the set of all tempered distributions f ∈ S ′(Rn)

such that

∥∥f |B(s,�)
p,q

(
R

n
)∥∥ :=

( ∞∑
j=0

2jsq�
(
2−j

)q∥∥(ϕj f̂ )∨
∣∣Lp

(
R

n
)∥∥q

)1/q

(2.6)

(with the usual modification if q = ∞) is finite.
(ii) Let 0 < p < ∞. Then F

(s,�)
p,q (Rn) is defined to be the set of all tempered distrib-

utions f ∈ S ′(Rn) such that

∥∥f |F (s,�)
p,q

(
R

n
)∥∥ :=

∥∥∥∥∥
( ∞∑

j=0

2jsq�
(
2−j

)q |(ϕj f̂ )∨(·)|q
)1/q ∣∣∣∣Lp

(
R

n
)∥∥∥∥∥ (2.7)

(with the usual modification if q = ∞) is finite.

Remark 2.8 The above spaces were introduced by Edmunds and Triebel in [12, 13]
and also considered by Moura in [25, 26] when � is an admissible function. For
basic properties of the spaces above, like the independence of these spaces from the
resolution of unity (ϕj )j∈N0 , according to (2.4) and (2.5), in the sense of equivalent
quasi-norms, we refer to [14] in a more general setting. Taking � ≡ 1 bring us back to
the classical Besov and Triebel-Lizorkin spaces denoted by Bs

p,q(Rn) and F s
p,q(Rn),

respectively. If �(t) = (1 + | log t |)b , b ∈ R, we obtain the spaces considered by
Leopold in [22] and [23]. Denoting by A either B or F , we have for all ε > 0 the
following elementary embeddings between classical spaces and spaces of generalized
smoothness

As+ε
p,q

(
R

n
)
↪→ A(s,�)

p,q

(
R

n
)
↪→ As−ε

p,q

(
R

n
)
.

The next assertion on embeddings between Besov and Triebel-Lizorkin spaces
of generalized smoothness will enable us to handle embedding assertions involving
Triebel-Lizorkin spaces of generalized smoothness in a very simple way by using
the results for B-spaces. We refer to [9, Proposition 3.4, Example 3.5] for a proof in
the case of � being an admissible function and to [7, Lemma 1] for a more general
situation.

Proposition 2.9 Let � be a slowly varying function. Let 0 < p0 < p < p1 ≤ ∞,
0 < q ≤ ∞ and let s, s0, s1 ∈ R be such that s0 −n/p0 = s −n/p = s1 −n/p1. Then

B(s0,�)
p0,u

(
R

n
)
↪→ F (s,�)

p,q

(
R

n
)
↪→ B(s1,�)

p1,v

(
R

n
)

if, and only if, 0 < u ≤ p ≤ v ≤ ∞.

The following result gives a characterization of the Besov spaces of generalized
smoothness by means of Peetre’s maximal function. The proof runs in the same way
as that of [25, Theorem 1.7(i)] for � being an admissible function.
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Theorem 2.10 Let (ϕj )j∈N0 be a smooth dyadic resolution of unity as above. Let
0 < p,q ≤ ∞, s ∈ R and let � be a slowly varying function. Let a > n/p, then

∥∥f |B(s,�)
p,q

(
R

n
)∥∥∗ :=

( ∞∑
j=0

2jsq�
(
2−j

)q∥∥(
ϕ∗

j f
)
a

∣∣Lp

(
R

n
)∥∥q

)1/q

(with the usual modification if q = ∞) is an equivalent quasi-norm in B
(s,�)
p,q (Rn),

where the Peetre’s maximal function (ϕ∗
j f )a is defined by

(
ϕ∗

j f
)
a
(x) := sup

z∈R
n

|(ϕj f̂ )∨(x − z)|
(1 + 2j |z|)a for x ∈ R

n.

An important tool in our later considerations is the characterization of the spaces
of generalized smoothness by means of atomic decompositions. We state this here for
the B-spaces only.

We need some preparation. As for Z
n, it stands for the lattice of all points in R

n

with integer components, Qνm denotes a cube in R
n with sides parallel to the axes

of coordinates, centred at 2−νm = (2−νm1, . . . ,2−νmn), and with side length 2−ν ,
where m = (m1, . . . ,mn) ∈ Z

n and ν ∈ N0. If Q is a cube in R
n and r > 0 then rQ is

the cube in R
n concentric with Q and with side length r times the side length of Q.

Definition 2.11 Let s ∈ R, 0 < p ≤ ∞, K ∈ N0, L+1 ∈ N0 and d > 1. The complex-
valued function a ∈ CK(Rn) is said to be an (s,p,�)K,L-atom if for some ν ∈ N0

the following assumptions are satisfied

(i) suppa ⊂ dQνm for some m ∈ Z
n,

(ii) |Dαa(x)| ≤ 2−ν(s− n
p

)+|α|ν
�(2−ν)−1 for |α| ≤ K , x ∈ R

n,
(iii)

∫
R

n xβa(x)dx = 0 for |β| ≤ L.

If conditions (i) and (ii) are satisfied for ν = 0, then a is called an 1K -atom.

Remark 2.12 In the sequel, we will write aνm instead of a, to indicate the localization
and size of an (s,p,�)K,L-atom a, i.e. if suppa ⊂ dQνm. If L = −1, then (iii)
simply means that no moment conditions are required.

We define the relevant sequence spaces.

Definition 2.13 Let 0 < p,q ≤ ∞ and λ = {λνm ∈ C : ν ∈ N0,m ∈ Z
n}. Then

bp,q =
{

λ : ‖λ|bp,q‖ =
( ∞∑

ν=0

( ∑
m∈Z

n

|λνm|p
)q/p)1/q

< ∞
}

(with the usual modification if p = ∞ and/or q = ∞).

The following theorem provides an atomic characterization.
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Theorem 2.14 Let 0 < p,q ≤ ∞, s ∈ R and � be a slowly varying function. Let
d > 1, K ∈ N0 and L + 1 ∈ N0 with

K ≥ (
1 + [s])+ and L ≥ max

(−1, [σp − s])
be fixed, where σp = n( 1

p
− 1)+. Then f ∈ S ′(Rn) belongs to B

(s,�)
p,q (Rn) if, and only

if, it can be represented as

f =
∞∑

ν=0

∑
m∈Z

n

λνmaνm, convergence being in S ′(
R

n
)
, (2.8)

where aνm are 1K -atoms (ν = 0) or (s,p,�)K,L-atoms (ν ∈ N), according to Defi-
nition 2.11, and λ ∈ bp,q . Furthermore

inf‖λ|bp,q‖, (2.9)

where the infimum is taken over all admissible representations (2.8), is an equivalent
quasi-norm in B

(s,�)
p,q (Rn).

The previous theorem coincides with [25, Theorem 1.18(ii)] in case of � be-
ing an admissible function. The general case is covered by [14, Theorem 4.4.3] and
[4, Theorem 2.3.7(i)]. We refer as well to [15] and [32] for the classical situation.

The next result characterizes the embedding of B
(n/p,�)
p,q (Rn) and F

(n/p,�)
p,q (Rn)

into CB(Rn). The case of � being an admissible function is covered by [8, Proposi-
tion 3.13]. We refer to [5, Corollary 3.10 & Remark 3.11] and to [7, Proposition 4.4]
for a more general situation.

Theorem 2.15 Let 0 < p,q ≤ ∞ and � be a slowly varying function.

(i) Then

B
(n/p,�)
p,q

(
R

n
)
↪→ CB

(
R

n
)

if, and only if,
(
�

(
2−j

)−1)
j∈N0

∈ �q ′ .

(ii) Assume 0 < p < ∞. Then

F
(n/p,�)
p,q

(
R

n
)
↪→ CB

(
R

n
)

if, and only if,
(
�

(
2−j

)−1)
j∈N0

∈ �p′ .

For each f ∈ CB(Rn), ω(f, ·) stands for the modulus of continuity of f and it is
defined by

ω(f, t) := sup
|h|≤t

sup
x∈R

n

|�hf (x)| = sup
|h|≤t

∥∥�hf |L∞
(
R

n
)∥∥, t > 0,

with �hf (x) := f (x + h) − f (x), x,h ∈ R
n.

Let r ∈ (0,∞] and let Lr be the class of all continuous functions λ : (0,1] →
(0,∞) such that

(∫ 1

0

1

λ(t)r
dt

t

) 1
r

= ∞ (2.10)
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and (∫ 1

0

t r

λ(t)r
dt

t

) 1
r

< ∞ (2.11)

(with the usual modification if r = ∞).

Definition 2.16 Let 0 < r ≤ ∞ and μ ∈ Lr . The generalized Hölder space �
μ(·)∞,r (R

n)

consists of all functions f ∈ CB(Rn) for which the quasi-norm

‖f |�μ(·)∞,r (R
n)‖ := ‖f |L∞(Rn)‖ +

(∫ 1

0

[
ω(f, t)

μ(t)

]r dt

t

) 1
r

is finite (with the usual modification if r = ∞).

Standard arguments show that the space �
μ(·)∞,r (R

n) is complete, cf. [28, The-
orem 3.1.4]. Conditions (2.10) and (2.11) are natural. In fact, if (2.10) does not
hold, then �

μ(·)∞,r (R
n) coindices with CB(Rn). If (2.11) does not hold, then the space

�
μ(·)∞,r (R

n) contains only constant functions.

If r = ∞, we can assume without loss of generality in the definition of �
μ(·)∞,r (R

n)

that all the elements μ of Lr are continuous increasing functions on the interval (0,1]
such that lim

t→0+ μ(t) = 0 (cf. [17]).

The space �
μ(·)∞,∞(Rn), cf. [27, Proposition 3.5], coincides with the space

C0,μ(·)(Rn) defined by

‖f |C0,μ(·)(Rn)‖ := sup
x∈R

n

|f (x)| + sup
x,y∈R

n, 0<|x−y|≤1

|f (x) − f (y)|
μ(|x − y|) < ∞.

If μ(t) = t , t ∈ (0,1], then �
μ(·)∞,∞(Rn) coincides with the space Lip(Rn) of the Lip-

schitz functions. If μ(t) = tα , α ∈ (0,1], then the space �
μ(·)∞,r (R

n) coincides with
the space C0,α,r (Rn) introduced in [1]. Furthermore, if μ(t) = t | log t |β , β > 1

r
(with

β ≥ 0 if r = ∞), the space �
μ(·)∞,r (R

n) coincides with the space Lip(1,−β)∞,r (Rn) of
generalized Lipschitz functions presented and studied in [10, 11, 19].

2.4 Hardy Inequalities

In the sequel, discrete weighted Hardy inequalities will be indispensable for our
proofs. There is a vast amount of literature concerning this topic. We merely rely
on results as can be found in [18, pp. 17–20], adapted to our situation. In this context
we refer as well to [2, Theorem 1.5] and [30].

Let 0 < q, r ≤ ∞ and (bn)n∈N0 , (dn)n∈N0 be non-negative sequences. Consider
the inequalities ( ∞∑

j=0

(
j∑

k=0

akdk

)r

bj
r

) 1
r

�
( ∞∑

n=0

a
q
n

) 1
q

for all non-negative sequences (an)n∈N0 (2.12)
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and

( ∞∑
j=0

( ∞∑
k=j

akdk

)r

bj
r

) 1
r

�
( ∞∑

n=0

a
q
n

) 1
q

for all non-negative sequences (an)n∈N0

(2.13)

(with the usual modification if r = ∞ or q = ∞).

Theorem 2.17

(i) Let 0 < q ≤ r ≤ ∞. Then, (2.12) is satisfied if, and only if,

sup
N≥0

( ∞∑
j=N

bj
r

) 1
r
(

N∑
k=0

dk
q ′

) 1
q′

< ∞ (2.14)

and, furthermore, (2.13) is satisfied if, and only if,

sup
N≥0

(
N∑

j=0

bj
r

) 1
r
( ∞∑

k=N

dk
q ′

) 1
q′

< ∞ (2.15)

(with the usual modification if r = ∞ or q ′ = ∞).
(ii) Let 0 < r < q ≤ ∞. Then, (2.12) is satisfied if, and only if,

{ ∞∑
N=0

( ∞∑
j=N

bj
r

) u
q

br
N

(
N∑

k=0

dk
q ′

) u
q′ } 1

u

< ∞ (2.16)

and, furthermore, (2.13) is satisfied if, and only if,

{ ∞∑
N=0

(
N∑

j=0

bj
r

) u
q

br
N

( ∞∑
k=N

dk
q ′

) u
q′ } 1

u

< ∞ (2.17)

(with the usual modification if q ′ = ∞), where 1
u

:= 1
r

− 1
q

.

3 Main Results

We start by providing extremal functions, which will play a key role for proving
necessity in the main theorem below. For related assertions, but different, see [33,
pp. 220–221], [6, Proposition 2.4] and [24, Proposition 3.1].

Proposition 3.1 Let 0 < p,q ≤ ∞ and let � be a slowly varying function. Further-

more, let h be a compactly supported C∞ function on R defined by h(y) = e
− 1

1−y2
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for |y| < 1 with
∫

R
h(y)dy = 0 and h(y) ≤ 0 for |y| ≥ 1. For each b = (bj )j∈N0 ∈ �q ,

let fb be defined by

fb(x) :=
∞∑

j=0

bj�
(
2−j

)−1
n∏

k=1

h
(
2j xk

)
, x = (xk)

n
k=1 ∈ R

n. (3.1)

(i) Then fb ∈ B
(n/p,�)
p,q (Rn) and

∥∥fb |B(n/p,�)
p,q

(
R

n
)∥∥ ≤ c1‖b|�q‖ (3.2)

for some c1 > 0 independent of b.
(ii) If bj ≥ 0, j ∈ N0, then

ω(fb,2−k)

2−k
≥ c22k

∞∑
j=k

bj�
(
2−j

)−1
, k ∈ N0, (3.3)

and

ω(fb,2−k)

2−k
≥ c3

k∑
j=0

bj 2j�
(
2−j

)−1
, k ∈ N0, (3.4)

for some c2, c3 > 0 depending only on the function h.

Proof Since the functions

aj (x) := �
(
2−j

)−1
n∏

k=1

h
(
2j xk

)
, x = (xk)

n
k=1 ∈ R

n, j ∈ N0,

are (up to constants, independently of j ) 1K -atoms (j = 0) or (n/p,p,�)K,0-atoms
(j ∈ N), for some fixed K ∈ N with K > n/p, and b ∈ �q , then (3.2) is an immediate
consequence of the atomic decomposition theorem, cf. Theorem 2.14.

Let us now prove (ii). Let k ∈ N0 and let η ∈ (0,1) be fixed. Then, putting tem-
porarily c = ∏n

k=2 h(0), we obtain

ω(fb,2−k)

2−k
≥ 2k

(
fb(0) − fb

(−η2−k,0, . . . ,0
))

= 2k

∞∑
j=0

bj�
(
2−j

)−1(
h(0) − h

(−η2j−k
)) · c

≥ 2k

∞∑
j=k

bj�
(
2−j

)−1(
h(0) − h

(−η2j−k
)) · c

≥ c22k
∞∑

j=k

bj�
(
2−j

)−1
. (3.5)
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The second last estimate above holds true, since h(0) − h(−η2j−k) > 0 for j < k.
The last inequality above follows from the fact that h(0) − h(−η2j−k) ≥
h(0) − h(−η) > 0 for all j ≥ k. This shows the estimate (3.3).

The proof of (3.4) is similar. We estimate

ω(fb,2−k)

2−k
≥ 2k

∞∑
j=0

bj�
(
2−j

)−1(
h(0) − h

(−η2j−k
)) · c

≥ 2k
k∑

j=0

bj�
(
2−j

)−1(
h(0) − h

(−η2j−k
)) · c

= 2k
k∑

j=0

bj�
(
2−j

)−1 · η2j−k · h′(ξjk) · c ≥ c3

k∑
j=0

bj 2j�
(
2−j

)−1
,

(3.6)

for some ξjk ∈ (−η2j−k,0), observing that for j ≤ k, ξjk ∈ (−η,0) and hence
h′(ξjk) ≥ c1 > 0 for some c1 which is independent of j and k. �

The following theorem characterizes optimal embeddings of Besov spaces with
generalized smoothness into generalized Hölder spaces in the limiting case when
s = n

p
. In this context we also refer to [16, Theorem 4] and [17, Theorem 1.6, Corol-

lary 1.7], where the authors obtained similar embedding results for Bessel-potential-
type spaces in the limiting case. There, the technics were completely different from
the ones considered here.

Theorem 3.2 Let 0 < p ≤ ∞, 0 < q, r ≤ ∞, μ ∈ Lr , and let � be a slowly varying
function with (

�
(
2−j

)−1)
j∈N0

∈ �q ′ .

(i) If 0 < q ≤ r ≤ ∞, then

B
( n

p
,�)

p,q (Rn) ↪→ �
μ(·)∞,r (R

n), (3.7)

if, and only if,

sup
N≥0

(
N∑

j=0

∫ 2−j

2−(j+1)

μ(t)−r dt

t

) 1
r
( ∞∑

k=N

�
(
2−k

)−q ′
) 1

q′
< ∞ (3.8)

(with the usual modification if r = ∞ and/or q ′ = ∞).
(ii) If 0 < r < q ≤ ∞, then

B
( n

p
,�)

p,q (Rn) ↪→ �
μ(·)∞,r (R

n), (3.9)
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if, and only if,

{ ∞∑
N=0

(
N∑

j=0

∫ 2−j

2−(j+1)

μ(t)−r dt

t

) u
q (∫ 2−N

2−(N+1)

μ(t)−r dt

t

)

×
( ∞∑

k=N

�(2−k)
−q ′

) u
q′ } 1

u

< ∞ (3.10)

and

{ ∞∑
N=0

( ∞∑
j=N

2−jr

∫ 2−j

2−(j+1)

μ(t)−r dt

t

) u
q

· 2−Nr

(∫ 2−N

2−(N+1)

μ(t)−r dt

t

)

×
(

N∑
k=0

2kq ′
�(2−k)

−q ′
) u

q′ } 1
u

< ∞ (3.11)

(with the usual modification if q ′ = ∞), where 1
u

:= 1
r

− 1
q

.

Proof In the sequel we shall always assume that q and r are finite, since the limit-
ing situations (q = ∞ and/or r = ∞) are proven in the same way with the obvious
modifications.

Step 1: In order to prove sufficiency in (i), assume that (3.8) holds.
Let f ∈ B

(0,�)∞,q (Rn) and let a > 0. Then, by Theorem 2.15(i), we can make use of
the following estimate which can be found in [31, 2.5.12 formulas (8), (9)], stating
that for |h| ≤ 2−j ,

‖�hf |L∞(Rn)‖ �
j∑

k=0

2k−j
∥∥(

ϕ∗
k f

)
a
|L∞(Rn)

∥∥

+
∞∑

k=j+1

∥∥(
ϕ∗

k f
)
a
|L∞(Rn)

∥∥ (3.12)

(the constant involved is independent of f ). Using the fact that ω(f, ·) is monotoni-
cally increasing, together with (3.12), we have

(∫ 1

0

[
ω(f, t)

μ(t)

]r dt

t

) 1
r

∼
( ∞∑

j=0

∫ 2−j

2−(j+1)

ω(f, t)rμ(t)−r dt

t

) 1
r

�
( ∞∑

j=0

ω
(
f,2−j

)r
∫ 2−j

2−(j+1)

μ(t)−r dt

t︸ ︷︷ ︸
=:mj

) 1
r
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�
( ∞∑

j=0

mj

[
j∑

k=0

2k−j
∥∥(

ϕ∗
k f

)
a
|L∞

∥∥

+
∞∑

k=j+1

∥∥(
ϕ∗

k f
)
a
|L∞

∥∥]r) 1
r

�
( ∞∑

j=0

2−jrmj

[
j∑

k=0

2k
∥∥(

ϕ∗
k f

)
a
|L∞

∥∥]r) 1
r

︸ ︷︷ ︸
=(I )

+
( ∞∑

j=0

mj

[ ∞∑
k=j

∥∥(
ϕ∗

k f
)
a
|L∞

∥∥]r) 1
r

︸ ︷︷ ︸
=(II )

. (3.13)

Setting

bj := 2−jmj
1
r , ak := �

(
2−k

)∥∥(
ϕ∗

k f
)
a
|L∞

∥∥, and

dk := 2k�
(
2−k

)−1
,

(3.14)

an application of Theorem 2.17(i) to the first term of (3.13), yields

(I ) �
( ∞∑

n=0

�
(
2−n

)q∥∥(
ϕ∗

nf
)
a
|L∞

∥∥q

) 1
q

∼ ‖f |B(0,�)∞,q ‖ for all f ∈ B(0,�)∞,q (Rn).

(3.15)

This can be seen as follows. Condition (3.8) gives∫ 2−N

2−(N+1)

μ(t)−r dt

t
� �

(
2−N

)r
for all N,

which together with (2.3) and (2.2) yields

sup
N≥0

( ∞∑
j=N

2−jrmj

) 1
r
(

N∑
k=0

2kq ′
�

(
2−k

)−q ′
) 1

q′

∼ sup
N≥0

( ∞∑
j=N

2−jrmj

) 1
r

2N�
(
2−N

)−1

� sup
N≥0

( ∞∑
j=N

2−jr�
(
2−j

)r

) 1
r

2N�
(
2−N

)−1

� 2−N�
(
2−N

)
2N�

(
2−N

)−1 � 1 < ∞ (3.16)
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and (2.14) is satisfied. For the second term of (3.13), we put

bj := mj

1
r , ak := �

(
2−k

)∥∥(
ϕ∗

k f
)
a
|L∞

∥∥, and dk := �
(
2−k

)−1
. (3.17)

An application of Theorem 2.17(i) gives

(II) �
( ∞∑

n=0

�
(
2−n

)q∥∥(
ϕ∗

nf
)
a
|L∞

∥∥q

) 1
q

∼ ∥∥f |B(0,�)∞,q

∥∥ for all f ∈ B(0,�)∞,q (Rn),

(3.18)

since, by (3.8),

sup
N≥0

(
N∑

j=0

mj

) 1
r
( ∞∑

k=N

�
(
2−k

)−q ′
) 1

q′

= sup
N≥0

(
N∑

j=0

∫ 2−j

2−(j+1)

μ(t)−r dt

t

) 1
r
( ∞∑

k=N

�
(
2−k

)−q ′
) 1

q′
< ∞ (3.19)

and (2.15) is satisfied. Now, (3.13), together with (3.15), (3.18) and Theorem 2.15(i),
yields

B(0,�)∞,q (Rn) ↪→ �
μ(·)∞,r (R

n).

Since, by Proposition 2.9,

B
(n/p,�)
p,q (Rn) ↪→ B(0,�)∞,q (Rn),

we have the desired embedding

B
(n/p,�)
p,q (Rn) ↪→ �

μ(·)∞,r (R
n).

Step 2: Concerning sufficiency in (ii) again we have (3.13). Let 1
u

:= 1
r

− 1
q

. Ap-
plying (2.16), using (3.14) we obtain for the first integral (I) the estimate (3.15), since

{ ∞∑
N=0

( ∞∑
j=N

2−jr

∫ 2−j

2−(j+1)

μ(t)−r dt

t

) u
q

2−Nr

(∫ 2−N

2−(N+1)

μ(t)−r dt

t

)

×
(

N∑
k=0

2kq ′
�(2−k)

−q ′
) u

q′ } 1
u

< ∞
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is bounded by (3.11). For the second integral (II) in (3.13), an application of (2.17)
yields (3.18), since inserting (3.17) we obtain{ ∞∑

N=0

(
N∑

j=0

∫ 2−j

2−(j+1)

μ(t)−r dt

t

) u
q
(∫ 2−N

2−(N+1)

μ(t)−r dt

t

)

×
( ∞∑

k=N

�
(
2−k

)−q ′
) u

q′ } 1
u

< ∞,

which is bounded by (3.10).

Step 3: Concerning necessity in (i) and (ii), assume we have the embedding

B
( n

p
,�)

p,q (Rn) ↪→ �
μ(·)∞,r (R

n), 0 < q, r ≤ ∞,

which means that(∫ 1

0

(
ω(f, t)

μ(t)

)r dt

t

) 1
r

� ‖f |B( n
p

,�)

p,q ‖ for all f ∈ B
( n

p
,�)

p,q (Rn).

In particular, for each non-negative sequence (an)n∈N0 , using the function fa con-
structed in (3.1), Propostion 3.1, we have

‖a|�q‖ �
(∫ 1

0

(
ω(fa, t)

μ(t)

)r dt

t

) 1
r

∼
( ∞∑

k=0

∫ 2−k

2−(k+1)

(
ω(fa, t)

t

)r
t r−1dt

μ(t)r

) 1
r

�
( ∞∑

k=0

(
ω(fa,2−k)

2−k

)r ∫ 2−k

2−(k+1)

μ(t)−r t r−1dt

) 1
r

�
( ∞∑

k=0

(
2k

∞∑
j=k

aj�
(
2−j

)−1

)r ∫ 2−k

2−(k+1)

μ(t)−r t r−1dt

) 1
r

∼
( ∞∑

k=0

( ∞∑
j=k

aj�
(
2−j

)−1

)r ∫ 2−k

2−(k+1)

μ(t)−r dt

t

) 1
r

, (3.20)

where we used the fact that ω(f,t)
t

is equivalent to a monotonically decreasing func-
tion and the estimate (3.3). Putting

dj = �
(
2−j

)−1
and bk =

(∫ 2−k

2−(k+1)

μ(t)−r dt

t

) 1
r

, (3.21)
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from (3.20) we obtain

‖a|�q‖ �
( ∞∑

k=0

( ∞∑
j=k

aj dj

)r

bk
r

) 1
r

for all non-negative sequences (an)n∈N0,

(3.22)

which is the Hardy-type inequality (2.13). Now the necessary conditions (3.8) and
(3.10) follow from Theorem 2.17. If we apply the estimate (3.4) instead of (3.3) in
(3.20), we obtain

‖a|�q‖ �
( ∞∑

k=0

(
k∑

j=0

aj�
(
2−j

)−1
2j

)r

2−kr

∫ 2−k

2−(k+1)

μ(t)−r dt

t

) 1
r

(3.23)

for all non-negative sequences (an)n∈N0 . Now setting

dj = �
(
2−j

)−1
2j and bk = 2−k

(∫ 2−k

2−(k+1)

μ(t)−r dt

t

) 1
r

, (3.24)

we obtain

‖a|�q‖ �
( ∞∑

k=0

(
k∑

j=0

ajdj

)r

bk
r

) 1
r

for all non-negative sequences (an)n∈N0 , (3.25)

which is the Hardy-type inequality (2.12). Theorem 2.17 now yields (3.11). This
finally completes the proof. �

In terms of optimal weights we have the following result.

Corollary 3.3 Let 1 < q ≤ ∞, 0 < p, r ≤ ∞, μ ∈ Lr , and let � be a slowly varying
function with (

�
(
2−j

)−1)
j∈N0

∈ �q ′ .

Furthermore, let λqr ∈ Lr be defined by

λqr(t) := �(t)
q′
r

(∫ t

0
�(s)−q ′ ds

s

) 1
q′ + 1

r

, t ∈ (0,1]. (3.26)

We consider the embedding

B
( n

p
,�)

p,q (Rn) ↪→ �
μ(·)∞,r (R

n). (3.27)
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(i) If 1 < q ≤ r ≤ ∞, then (3.27) holds if, and only if,

sup
N≥0

(
∑N

j=0

∫ 2−j

2−(j+1) μ(t)−r dt
t
)

1
r

(
∑N

j=0

∫ 2−j

2−(j+1) λqr (t)
−r dt

t
)

1
r

< ∞ (3.28)

(with the usual modification if r = ∞).
(ii) If 0 < r < q ≤ ∞ and q > 1, then (3.27) holds if, and only if,

{ ∞∑
N=0

(
∑N

j=0

∫ 2−j

2−(j+1) μ(t)−r dt
t
)u/q

(
∑N

j=0

∫ 2−j

2−(j+1) λqr (t)
−r dt

t
)u/r

∫ 2−N

2−(N+1)

μ(s)−r ds

s

} 1
u

< ∞ (3.29)

(with the usual modification if q = ∞), where 1
u

:= 1
r

− 1
q

.
(iii) Let r ∈ [q,∞]. Among the embeddings in (3.27), that one with μ = λqr , is sharp

with respect to the parameter μ.
(iv) Among the embeddings in (3.27), that one with μ = λqq and r = q , i.e.,

B
( n

p
,�)

p,q (Rn) ↪→ �
λqq(·)
∞,q (Rn), (3.30)

is optimal.

Proof Concerning (i) Theorem 3.2 shows that (3.27) holds if, and only if,

sup
N≥0

(
N∑

j=0

∫ 2−j

2−(j+1)

μ(t)−r dt

t

) 1
r
( ∞∑

k=N

�
(
2−k

)−q ′
) 1

q′
< ∞,

which is equivalent to

sup
κ∈(0,1/2)

(∫ 1

κ

μ(t)−r dt

t

) 1
r
(∫ 2κ

0
�(s)−q ′ ds

s

) 1
q′

< ∞. (3.31)

Since

(∫ 1

κ

λqr(t)
−r dt

t

)− 1
r

=
(∫ 1

κ

�(t)−q ′
(∫ t

0
�(s)−q ′ ds

s

)− r
q′ −1

dt

t

)− 1
r

∼
(∫

κ

0
�(t)−q ′ dt

t

) 1
q′

∼
(∫ 2κ

0
�(t)−q ′ dt

t

) 1
q′

for all κ ∈
(

0,
1

2

]
, (3.32)

and as singularities of functions in question are only at 0, this means that (3.31) is
equivalent to (3.28).
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Turning towards (ii) the same argument used above shows that (3.10) is equiva-
lent to (3.29). Now, necessity follows from Theorem 3.2(ii). Let 1

u
:= 1

r
− 1

q
. As for

sufficiency, we observe that

A1 :=
{∫ 1/2

0

(∫ 1

κ

μ(t)−r

t
dt

) u
q

· μ(κ)−r

κ
·
(∫ 1

κ

λqq(t)−q

t
dt

)− u
q

dκ

} 1
u

�
{∫ 1

0

(∫ 1

κ

μ(t)−r

t
dt

) u
q

· μ(κ)−r

κ
·
(∫

κ

0
�(t)−q ′ dt

t

) u
q′

dκ

} 1
u

�
{ ∞∑

N=0

(∫ 1

2−(N+1)

μ(t)−r dt

t

) u
q
(∫ 2−N

0
�(t)−q ′ dt

t

) u
q′

×
∫ 2−N

2−(N+1)

μ(κ)−r dκ

κ

} 1
u

(3.33)

is bounded by (3.10). But now, since ω(f, ·) is increasing, [21, Proposition 2.1(ii)]
implies

�
λqq(·)
∞,q (Rn) ↪→ �

μ(·)∞,r (R
n).

This and (3.27) (with μ = λqq and r = q , which follows from part (i)), yield

B
( n

p
,�)

p,q (Rn) ↪→ �
λqq(·)
∞,q (Rn) ↪→ �

μ(·)∞,r (R
n), 0 < r < q ≤ ∞, q > 1. (3.34)

This completes the proof of (ii).
Let us now prove (iii). We need to show that the target space �

μ(·)∞,r (R
n) in (3.27)

and the space �
λqr (·)∞,r (Rn) (that is, the target space in (3.27) with μ = λqr ) satisfy

�
λqr (·)∞,r (Rn) ↪→ �

μ(·)∞,r (R
n). (3.35)

Indeed, since ω(f, ·) is increasing, this last embedding holds if

sup
κ∈(0, 1

2 )

(
∫ 1

κ
μ(t)−r dt

t
)

1
r

(
∫ 1

κ
λqr(t)

−r dt
t
)

1
r

< ∞ (3.36)

(cf. [21, Proposition 2.1(i)], see also [17, Theorem 3.6(i)]), which is equivalent
to (3.28). The proof of (iii) is complete.

We turn our attention towards (iv). We need to show that the target space

�
μ(·)∞,r (R

n) in (3.27) and the space �
λqq(·)
∞,q (Rn) (that is, the target space in (3.27) with

μ = λqq and r = q) satisfy

�
λqq(·)
∞,q (Rn) ↪→ �

μ(·)∞,r (R
n). (3.37)
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Since ω(f, ·) is increasing, this last embedding holds, for q ≤ r , if

sup
κ∈(0, 1

2 )

(
∫ 1

κ
μ(t)−r dt

t
)

1
r

(
∫ 1

κ
λqq(t)−q dt

t
)

1
q

≈ sup
κ∈(0, 1

2 )

(
∫ 1

κ
μ(t)−r dt

t
)

1
r

(
∫ 1

κ
λqr(t)

−r dt
t
)

1
r

< ∞ (3.38)

(cf. [21, Proposition 2.1(i)], see also [17, Theorem 3.6(i)]), which is equivalent to
(3.28). In the case r < q we obtained (3.34) when proving (ii), which gives the desired
embedding. �

Remark 3.4

(i) Theorem 3.2 could be improved as follows. If we had

∞∑
j=N

2(N−j)r

∫ 2−j

2−(j+1)

μ(t)−r dt

t
�

N∑
j=0

∫ 2−j

2−(j+1)

μ(t)−r dt

t
, (3.39)

for all μ ∈ Lr , N ∈ N, then (3.10) implies (3.11) and therefore (3.11) could be
omitted. In particular, (3.39) seems to be natural since it holds true for functions

μ(t) = tα, α > 0 and μ(t) = λqr(t),

defined in (3.26) with 1 < q ≤ ∞ and 0 < r ≤ ∞.
(ii) Note that condition (3.8) is equivalent to the following integral version,

sup
κ∈(0,1)

(∫ 1

κ

μ(t)−r dt

t

) 1
r
(∫

κ

0
�(s)−q ′ ds

s

) 1
q′

< ∞ (3.40)

(with the usual modification if r = ∞ and/or q ′ = ∞).
(iii) If 1 < q ≤ ∞, using the terminology of [24], the authors obtained in [24, The-

orem 3.4] that (
λq∞(t)

t
,∞) is the continuity envelope of B

( n
p

,�)

p,q (Rn), which
means in this situation that

B
( n

p
,�)

p,q (Rn) ↪→ �
λq∞(·)
∞,r (Rn)

only holds when r = ∞. Note that this also follows from Corollary 3.3, because
condition (3.28) is not satisfied when μ = λq∞ and r < ∞ (this follows by
applying l’Hôpital rule to the quotient in (3.38) and by Proposition 2.3(iii)), but
it is satisfied with μ = λq∞ and r = ∞. Moreover, from Corollary 3.3(iv), (3.37)
and (3.38),

B
( n

p
,�)

p,q (Rn) ↪→ �
λqq(·)
∞,q (Rn) ↪→ �

λq∞(·)
∞,∞ (Rn).

Therefore, in this limiting case, we have an instance of the phenomenon where
the continuity envelope does not yield the optimal embedding, since Theo-
rem 3.2 provides an even better result. A similar situation occurs for Bessel-
potential-type spaces in the limiting case, cf. [16, Theorem 4, Remark 5] and
[17, Theorem 1.6, Corollary 1.7].
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(iv) If 0 < q ≤ 1, which is not considered in Corollary 3.3, similar results can be ob-
tained from Theorem 3.2 provided we impose, for instance, that the derivative
of � is negative on the open interval (0,1) and limt→0+ �(t) = ∞. We refer to
the end of the introduction for an example. Under this circuntances, the contin-

uous envelope of B
( n

p
,�)

p,q (Rn) was obtained in [24, Theorem 3.5]. Furthermore,
if � ≡ 1, condition (3.8) implies the violation of condition (2.10). Note that if
(2.10) is not satisfied, then �

μ(·)∞,r (R
n) = L∞(Rn).

In terms of the Triebel-Lizorkin spaces our results read as follows.

Corollary 3.5 Let 0 < p < ∞, 0 < q, r ≤ ∞, μ ∈ Lr , and let � be a slowly varying
function with (

�
(
2−j

)−1)
j∈N0

∈ �p′ .

(i) If 0 < p ≤ r < ∞ and p < r if r = ∞, then

F
( n

p
,�)

p,q (Rn) ↪→ �
μ(·)∞,r (R

n), (3.41)

if, and only if,

sup
N≥0

(
N∑

j=0

∫ 2−j

2−(j+1)

μ(t)−r dt

t

) 1
r
( ∞∑

k=N

�
(
2−k

)−p′
) 1

p′
< ∞ (3.42)

(with the usual modification if r = ∞ and/or p′ = ∞).
(ii) If 0 < r < p < ∞, then

F
( n

p
,�)

p,q (Rn) ↪→ �
μ(·)∞,r (R

n), (3.43)

if, and only if,

{ ∞∑
N=0

(
N∑

j=0

∫ 2−j

2−(j+1)

μ(t)−r dt

t

) u
p
(∫ 2−N

2−(N+1)

μ(t)−r dt

t

)

×
( ∞∑

k=N

�(2−k)
−p′

) u
p′ } 1

u

< ∞ (3.44)

and

{ ∞∑
N=0

( ∞∑
j=N

2−jr

∫ 2−j

2−(j+1)

μ(t)−r dt

t

) u
p

2−Nr

(∫ 2−N

2−(N+1)

μ(t)−r dt

t

)
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×
(

N∑
k=0

2kp′
�(2−k)

−p′
) u

p′ } 1
u

< ∞ (3.45)

(with the usual modification if p′ = ∞), where 1
u

:= 1
r

− 1
p

.

Proof Using Proposition 2.9 together with Theorem 3.2 we have

B
( n

p2
,�)

p2,p (Rn) ↪→ F
( n

p
,�)

p,q (Rn) ↪→ B
( n

p1
,�)

p1,p (Rn) ↪→ �
μ(·)∞,r (R

n),

yielding the desired result. �

Remark 3.6 In particular, it turns out that for the F -spaces our results are independent
of the parameter q .

Corollary 3.3 can now be reformulated as follows.

Corollary 3.7 Let 1 < p < ∞, 0 < r,q ≤ ∞, μ ∈ Lr , and let � be a slowly varying
function with (

�
(
2−j

)−1)
j∈N0

∈ �p′ .

Furthermore, let λpr ∈ Lr be defined by

λpr(t) := �(t)
p′
r

(∫ t

0
�(s)−p′ ds

s

) 1
p′ + 1

r

, t ∈ (0,1]. (3.46)

We consider the embedding

F
( n

p
,�)

p,q (Rn) ↪→ �
μ(·)∞,r (R

n). (3.47)

(i) If 1 < p ≤ r < ∞ and 1 < p < r if r = ∞, then (3.47) holds if, and only if,

sup
N≥0

(
∑N

j=0

∫ 2−j

2−(j+1) μ(t)−r dt
t
)

1
r

(
∑N

j=0

∫ 2−j

2−(j+1) λpr (t)
−r dt

t
)

1
r

< ∞ (3.48)

(with the usual modification if r = ∞).
(ii) If 0 < r < p < ∞ and p > 1, then (3.47) holds if, and only if,

{ ∞∑
N=0

(
∑N

j=0

∫ 2−j

2−(j+1) μ(t)−r dt
t
)u/p

(
∑N

j=0

∫ 2−j

2−(j+1) λpr(t)
−r dt

t
)u/r

∫ 2−N

2−(N+1)

μ(s)−r ds

s

} 1
u

< ∞, (3.49)

where 1
u

:= 1
r

− 1
p

.
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(iii) Let r ∈ [p,∞]. Among the embeddings in (3.47), that one with μ = λpr , is sharp
with respect to the parameter μ.

(iv) Among the embeddings in (3.47), that one with μ = λpp and r = p, i.e.,

F
( n

p
,�)

p,q (Rn) ↪→ �
λpp(·)
∞,p (Rn), (3.50)

is optimal.

References

1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Pure and Applied Mathematics, vol. 140, 2nd edn.
Elsevier/Academic Press, Amsterdam (2003)

2. Bennett, G.: Some elementary inequalities. III. Q. J. Math. Oxf. Ser. (2) 42(166), 149–174 (1991)
3. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Encyclopedia of Mathematics and its

Applications, vol. 27. Cambridge University Press, Cambridge (1989)
4. Bricchi, M.: Tailored Besov spaces and h-sets. Math. Nachr. 263/264, 36–52 (2004)
5. Caetano, A.M., Farkas, W.: Local growth envelopes of Besov spaces of generalized smoothness.

Z. Anal. Anwend. 25(3), 265–298 (2006)
6. Caetano, A.M., Haroske, D.D.: Continuity envelopes of spaces of generalised smoothness: a limiting

case; embeddings and approximation numbers. J. Funct. Spaces Appl. 3(1), 33–71 (2005)
7. Caetano, A.M., Leopold, H.-G.: Local growth envelopes of Triebel-Lizorkin spaces of generalized

smoothness. J. Fourier Anal. Appl. 12(4), 427–445 (2006)
8. Caetano, A.M., Moura, S.D.: Local growth envelopes of spaces of generalized smoothness: the critical

case. Math. Inequal. Appl. 7(4), 573–606 (2004)
9. Caetano, A.M., Moura, S.D.: Local growth envelopes of spaces of generalized smoothness: the sub-

critical case. Math. Nachr. 273, 43–57 (2004)
10. Edmunds, D.E., Haroske, D.D.: Spaces of Lipschitz type, embeddings and entropy numbers. Diss.

Math. (Rozprawy Mat.) 380, 43 (1999)
11. Edmunds, D.E., Haroske, D.D.: Embeddings in spaces of Lipschitz type, entropy and approximation

numbers, and applications. J. Approx. Theory 104(2), 226–271 (2000)
12. Edmunds, D.E., Triebel, H.: Spectral theory for isotropic fractal drums. C. R. Acad. Sci. Paris Sér. I

Math. 326(11), 1269–1274 (1998)
13. Edmunds, D.E., Triebel, H.: Eigenfrequencies of isotropic fractal drums. In: The Maz’ya Anniversary

Collection, vol. 2, Rostock, 1998. Oper. Theory Adv. Appl., vol. 110, pp. 81–102. Birkhäuser, Basel
(1999)

14. Farkas, W., Leopold, H.-G.: Characterisations of function spaces of generalised smoothness. Ann.
Mat. Pura Appl. (4) 185(1), 1–62 (2006)

15. Frazier, M., Jawerth, B.: Decomposition of Besov spaces. Indiana Univ. Math. J. 34(4), 777–799
(1985)

16. Gogatishvili, A., Neves, J.S., Opic, B.: Sharpness and non-compactness of embeddings of Bessel-
potential-type spaces. Math. Nachr. 280(9–10), 1083–1093 (2007)

17. Gogatishvili, A., Neves, J.S., Opic, B.: Optimal embeddings of Bessel-potential-type spaces into gen-
eralized Hölder spaces involving k-modulus of smoothness. Potential Anal. 32, 201–228 (2010)

18. Gol’dman, M.L.: Hardy type inequalities on the cone of quasimonotone functions. Research Report
98/31, Computing Centre FEB Russian Academy of Sciences, Khabarovsk (1998)

19. Haroske, D.D.: On more general Lipschitz spaces. Z. Anal. Anwend. 19(3), 781–799 (2000)
20. Haroske, D.D.: Envelopes and Sharp Embeddings of Functions Spaces. Research Notes in Mathemat-

ics, vol. 437. Chapman & Hall/CRC, Boca Raton (2007)
21. Heinig, H.P., Stepanov, V.D.: Weighted Hardy inequalities for increasing functions. Can. J. Math.

45(1), 104–116 (1993)
22. Leopold, H.-G.: Limiting embeddings and entropy numbers. Preprint Math/Inf/98/05, Univ. Jena,

Germany (1998)
23. Leopold, H.-G.: Embeddings and entropy numbers in Besov spaces of generalized smoothness. In:

Hudzig, H., Skrzypczak, L. (eds.) Function Spaces: The Fifth Conference. Lecture Notes in Pure and
Appl. Math., vol. 213, pp. 323–336. Marcel Dekker, New York (2000)



800 J Fourier Anal Appl (2011) 17:777–800

24. Moura, S.D., Neves, J.S., Piotrowski, M.: Continuity envelopes of spaces of generalized smoothness
in the critical case. J. Fourier Anal. Appl. 15, 775–795 (2009)

25. Moura, S.D.: Function spaces of generalised smoothness. Diss. Math. (Rozprawy Mat.) 398, 88
(2001)

26. Moura, S.D.: Function spaces of generalised smoothness, entropy numbers, applications. PhD thesis,
University of Coimbra, Portugal (2001)

27. Neves, J.S.: Extrapolation results on general Besov-Hölder-Lipschitz spaces. Math. Nachr. 230, 117–
141 (2001)

28. Neves, J.S.: Fractional Sobolev-type spaces and embeddings. PhD thesis, University of Sussex, UK
(2001)

29. Neves, J.S.: Lorentz-Karamata spaces, Bessel and Riesz potentials and embeddings. Diss. Math.
(Rozprawy Mat.) 405, 46 (2002)

30. Opic, B., Kufner, A.: Hardy-Type Inequalities. Pitman Research Notes in Mathematics Series,
vol. 219. Longman Scientific & Technical, Harlow (1990)

31. Triebel, H.: Theory of Function Spaces. Monographs in Mathematics, vol. 78. Birkhäuser, Basel
(1983)

32. Triebel, H.: Fractals and Spectra, Related Fourier Analysis and Function Spaces. Monographs in
Mathematics, vol. 91. Birkhäuser, Basel (1997)

33. Triebel, H.: The Structure of Functions. Monographs in Mathematics, vol. 97. Birkhäuser, Basel
(2001)


	Optimal Embeddings of Spaces of Generalized Smoothness in the Critical Case
	Abstract
	Introduction
	Preliminaries
	General Notation
	Slowly Varying Functions
	Function Spaces of Generalized Smoothness
	Hardy Inequalities

	Main Results
	References


