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Abstract Some fundamental formulas and relations in signal analysis are based on
the amplitude-phase representations s(t) = A(t)eiϕ(t) and ŝ(ω) = B(ω)eiψ(ω), where
the amplitude functions A(t) and B(ω) and the phase functions ϕ(t) and ψ(ω) are
assumed to be differentiable. They include the amplitude-phase representations of the
first and second order means of the Fourier frequency and time, and the equivalence
between two forms of the covariance. A proof of the uncertainty principle is also
based on the amplitude-phase representations. In general, however, signals of finite
energy do not necessarily have differentiable amplitude-phase representations. The
study presented in this paper extends the classical formulas and relations to general
signals of finite energy. Under the formulation of the phase and amplitude derivatives
based on the Hardy-Sobolev spaces decomposition the extended formulas reveal new
features, and contribute to the foundations of time-frequency analysis. The estab-
lished theory is based on the equivalent classes of the L2 space but not on particular
representations of the classes. We also give a proof of the uncertainty principle by
using the amplitude-phase representations defined through the Hardy-Sobolev spaces
decomposition.
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1 Introduction

The work presented in this paper was motivated by the recent study on the relations
between the Fourier frequency and the analytic frequency of a signal [4–7, 11, 13, 16,
23], and especially on the relations between their respective positivities. For a signal
s of finite energy, we say that its Fourier frequency is of the positivity property if
ŝχ− = 0, where ŝ is the Fourier transform of s and χ− is the characteristic (indicator)
function of the set (−∞,0). In the case s is also be said to possess or to be of only
positive Fourier frequencies. In contrast, we say that its analytic frequency is of the
positivity property if its analytic phase derivative ϕ′ (analytic frequency) is a non-
negative measurable function, where ϕ is defined (if it could be, see next section)
through the analytic signal associated with s, viz. s(t)+ iHs(t), where H stands for
Hilbert transformation, defined by (see also the basic result 4 stated in Sect. 2)

Hs(t) � 1

π
lim
ε→0

∫
|t−u|>ε

s(u)

t − u
du. (1.1)

The terminology analytic phase derivative will be often abbreviated as phase deriva-
tive. In this paper, when one side of an equality is defined through the other side, we
write “�” instead of “=”.

The function s + iHs is the boundary value of an analytic function in the upper-
half complex plane, and thus possesses only positive Fourier frequencies (see the
basic results 3 and 4 in Sect. 2). One thought that the positivity of the Fourier fre-
quency would imply the positivity of the analytic frequency, but it is not true. While
outer functions in the upper-half complex plane (signals of minimum phase and mini-
mum energy delay) are of only positive Fourier frequencies, they have negative phase
derivatives on sets of positive Lebesgue measure [19]. The wrong thought is caused
by mixing up the two different kinds of frequencies. The result (1.2) given in Theo-
rem 1.1, however, indicates that they indeed have some relations.

In the sequel we always assume the signal under study is of unit energy, that is

‖s‖2
2 =

∫ ∞

−∞
|s(t)|2dt = 1.

A precise version of a result proved in [4] is as follows.

Theorem 1.1 Let s(t) = A(t)eiϕ(t) ∈ L2(R), A(t) = |s(t)|. Assume that the classi-
cal derivatives dA

dt
,

dϕ
dt

and ds
dt

all exist and are Lebesgue measurable, and ds
dt

is in
L2(R). Then there holds

〈ω〉 =
∫ ∞

−∞
dϕ(t)

dt
|s(t)|2dt, (1.2)
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where 〈ω〉 is defined by

〈ω〉 �
∫ ∞

−∞
ω|ŝ(ω)|2dω.

The formula (1.2) shows that if the mean of the Fourier frequency is positive then
the mean of the analytic frequency dϕ(t)

dt
is also positive, and vice versa. In particular,

if s is taken to be an analytic signal, that is, s = s1 + iHs1 for some signal s1 ∈ L2(R),

then s is of only positive Fourier frequencies and the above formulas imply

0 < 〈ω〉 =
∫ ∞

0
ω|ŝ(ω)|2dω =

∫ ∞

−∞
dϕ(t)

dt
|s(t)|2dt. (1.3)

In such a case, however, there does not necessarily hold dϕ(t)
dt

≥ 0, a.e.
For a real-valued signal s1 and s = s1 + iHs1 = Aeiϕ, if the phase derivative

dϕ
dt

≥ 0, a.e., then the (analytic) instantaneous frequency of s1 is said to exist, and

defined to be dϕ
dt

. We call a real-valued signal mono-component if and only if it has
such defined instantaneous frequency, or, equivalently, the associated analytic signal
possesses positive (non-negative) phase derivative [18]. Note that in this set of defi-
nitions the phase derivative dϕ

dt
should be suitably defined and the definition is given

in Sect. 3. The positivity of the analytic phase derivative and its related issues have
been the subject of much controversy. The positivity requirement for the frequency
is supported by physics science. We now provide more background information in
relation to time-frequency analysis for the interest in positive phase derivative.

As in Theorem 1.1, let s(t) = A(t)eiϕ(t) ∈ L2(R), A(t) = |s(t)|, and ŝ(ω) =
B(ω)eiψ(ω), B(ω) = |ŝ(ω)|. One usually requires that a time-frequency distribution
P(t,ω) of s should satisfy the positivity condition

P(t,ω) ≥ 0 (1.4)

and the usual edge distribution conditions

PF (ω) �
∫ ∞

−∞
P(t,ω)dt = |ŝ(ω)|2 and PT (t) �

∫ ∞

−∞
P(t,ω)dω = |s(t)|2.

(1.5)

It is also reasonable to require

〈ω〉t � 1

PT (t)

∫ ∞

−∞
ωP(t,ω)dω = dϕ(t)

dt
, (1.6)

and

〈t〉ω � 1

PF (ω)

∫ ∞

−∞
tP (t,ω)dt = −dψ(ω)

dω
. (1.7)

The left-hand-side of (1.6) is the conditional mean of the Fourier frequency at the
time moment t, while that of (1.7) is the conditional mean of the time at the fre-
quency ω. The Wigner-Ville distribution, for instance, satisfies the conditions (1.5),
(1.6) and (1.7), but not (1.4).
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We also expect the weak finite support property (see [4]), that is

ŝχ− = 0 implies P(t, ·)χ− = 0, ∀t. (1.8)

The Wigner-Ville distribution has this property. It is now interesting to observe that
if the existence of a time-frequency distribution P(t,ω) that satisfies (1.8), (1.4)
and (1.6) is assured, then the positivity of Fourier frequency implies the positivity of
analytic frequency. Because of the already mentioned fact that outer functions have
only positive Fourier frequencies but have negative analytic frequencies on sets of
positive measures, such distributions possibly exist only under additional conditions.

The positivity of phase derivative is crucial for defining meaningful instantaneous
frequency function. The observation on outer functions tells that one cannot expect
positivity of analytic phase derivative in general. What one could do would be to de-
compose signals of only positive Fourier frequencies into sums of mono-components
[18]. Fourier series is the classical example of such a decomposition. Expansions in
Takenaka-Malmquist systems as generalizations of Fourier series belong to the same
category [1, 3, 10]. Now comes the concept adaptive mono-component decomposi-
tion where adaptivity refers to fast convergence of the decomposition [20, 21]. In an
adaptive decomposition intrinsic mono-components of the given signal are extracted.
The present work will not pursue this direction. The interested reader is referred
to [18–20].

To pursue the study of positive phase derivative, we should first define the notion
phase derivative. The present paper is set to generalize, with appropriate formula-
tions, the classical and fundamental formulas such as (1.2), (1.9) and (1.10), while
the classical phase derivatives dϕ

dt
and dψ

dω
may not exist. For all purposes the right

formulation of phase derivative should be first done. In general cases eiϕ(t) can be de-
fined by s/|s|. By doing so, however, the phase function ϕ(t) is not uniquely defined:
it has infinitely many representations. A general s may not be a smooth function, and
when it is, Hs may not be smooth, and ϕ(t) may not have a smooth representation.

Similar queries arise from the study of signals of minimum phase and minimum
energy delay in relation to all-pass filters (see [14, 15]). In the complex analysis ter-
minology, signals of minimum phase and minimum energy delay are outer functions
and all-pass filters are inner functions in the corresponding domains. The related re-
sults in signal analysis are only interplay relations between the two types of analytic
functions. To the authors’ knowledge, before [19], no literature gave a valid proof for
the fact that outer functions are of minimum phase, or, equivalently, inner functions
are of positive “phase derivatives” on the boundary, and no literature gave a rigorous
definition of the notion boundary phase derivative of the Z-transform of a general
signal. The technicalities in the literature were only valid for proving the positivity
of the phase derivatives of finite Blaschke products and of singular inner functions
induced by a finite linear combination of shifted Dirac point measures. In [19], the
existence and positivity of the well defined phase derivatives of the boundary values
of inner functions are reduced to the classical Julia-Wolff-Carathéodory Theorem,
and the existence and zero-mean property of the phase derivatives of the boundary
values of a class of outer functions are proved.
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In this paper, based on the definition of the phase and amplitude derivatives for
functions in the Hardy-Sobolev spaces, we give generalizations of (1.2) and the fol-
lowing relations:

σ 2
ω =

∫ ∞

−∞

(
dA(t)

dt

)2

dt +
∫ ∞

−∞

(
dϕ(t)

dt
− 〈ω〉

)2

A2(t)dt, (1.9)

and

Covtω �
〈
t
dϕ(t)

dt

〉
− 〈t〉〈ω〉 = −

〈
ω

dψ(ω)

dω

〉
− 〈t〉〈ω〉, (1.10)

where
〈
t
dϕ(t)

dt

〉
�

∫ ∞

−∞
t
dϕ(t)

dt
A2(t)dt, and

〈
ω

dψ(ω)

dω

〉
�

∫ ∞

−∞
ω

dψ(ω)

dω
B2(ω)dω

.(1.11)

Our contribution in this paper is two-fold: (i) We generalize the concept “phase
derivative”, dϕ

dt
, to non-smooth square-integrable signals in the Sobolev space; and

(ii) As application of the new notion of amplitude and phase derivatives, we show
that the formulas (1.2), (1.9), (1.10) can be extended to general signals with appro-
priate forms. We also give a proof of the classical uncertainty principle by using the
generalized phase derivatives.

Throughout the paper we assume that s is complex-valued. In applications we
usually assume s is real-valued, and the Hilbert transform Hs contributes the pure
imaginary part to form the associated analytic signal s + iHs. The generalizations
of the phase and amplitude derivatives are achieved via the Hardy-Sobolev spaces
decomposition of functions in the Sobolev space.

Throughout the paper we denote by R the real axis, by C the complex plane, and
by C

+ and C
− the upper- and lower-half complex planes, respectively. We proceed

to introduce the Hardy spaces in the upper- and the lower-half complex planes. For
1 ≤ p < ∞ the totality of the analytic functions in the upper-half complex plane C

+
under the norm

‖s‖p � sup
y>0

(∫ ∞

−∞
|s(t + iy)|pdt

)1/p

< ∞ (1.12)

forms a Banach space. For 0 < p < 1, the totality of the analytic functions in C
+

satisfying (1.12) under the distance

d(s, u) � sup
y>0

∫ ∞

−∞
|s(t + iy) − u(t + iy)|pdt < ∞

forms a complete metric space. For p = ∞ the totality of the analytic functions in
C

+ under the norm

‖s‖∞ = sup{|s(z)| : z ∈ C
+} < ∞
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forms a Banach space. In all the three cases we denote the space by Hp(C+), and call
it a Hardy space. Similarly one defines the Hardy spaces Hp(C−) for the lower-half
complex plane.

The Hardy spaces have a well developed theory connecting complex analysis and
harmonic analysis. The latest developments of the Hardy spaces mainly concern the
real-Hardy spaces with the index region 0 < p ≤ 1, and mainly via real analysis
methods. For our purpose we concentrate on the complex Hardy spaces H 2(C±).

We adopt the notation L2
n(R) for the Sobolev spaces [24], that is

L2
n(R) =

{
s(t) ∈ L2(R) :

(
d∗

dt

)n

s(t) ∈ L2(R)

}

with the norm defined by √
‖s‖2

2 +
∥∥∥∥
(

d∗
dt

)n

s

∥∥∥∥
2

2
,

where ( d∗
dt

)ns(t) denotes the n-th distributional derivative of s.

Throughout this paper we assume signals s under study satisfy

s ∈ L2(R), ωŝ(ω) ∈ L2(R). (1.13)

Signals satisfying the condition (1.13) belong to L2
1(R) (see Lemma 2.5).

If s ∈ L2(R), then we usually perform the Hardy spaces decomposition s =
s+ + s−, s± = (1/2)(s ± iHs), and s± are, respectively, the boundary values of
the analytic functions

s±(z) = ±1

2πi

∫ ∞

−∞
s(u)

u − z
du = 1√

2π

∫ ∞

−∞
eitωχ±(ω)e−yωŝ(ω)dω, z = t +iy ∈ C

±.

The last equal relation is a consequence of (2.4), where χ± = χR± , R
+ = (0,+∞)

and R
− = (−∞,0), and, in general, χE is the characteristic function of the Lebesgue

measurable set E that takes value 1 on E and 0 otherwise. If s satisfies the conditions
in (1.13), that is s ∈ L2

1(R), then

s± ∈ H±L2
1(R) =

{
s ∈ H 2(C±) : d∗s

dt
∈ H 2(C±)

}
,

where H±L2
1(R) are called the Hardy-Sobolev spaces in the upper- and lower-half

complex planes, respectively. Thus, we have the decomposition

L2
1(R) = H+L2

1(R) ⊕ H−L2
1(R).

The spaces H+L2
1(R) and H−L2

1(R) are mutually orthogonal. We note that in the
function space notations we mix up the analytic functions in the respective domains
with their boundary values due to certain isometric isomorphism relations in the re-
spective contexts.
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It is for the functions in the Hardy-Sobolev spaces that we are able to define the
phase and amplitude derivatives. They are defined to be the non-tangential boundary
limits of the same quantities in the respective domains in which the functions are
analytic. The details will be given in Sect. 3.

Both the Hardy and Sobolev spaces have been well studied, and have long histories
with ample applications. The Hardy-Sobolev spaces in recent years have undergone
a new phase of development [2, 12]. To the authors’ knowledge, no applications in
signal analysis have been noted.

In Sect. 2 we discuss the useful relations between some five types of derivatives,
and in Sect. 3 we define the amplitude and phase derivatives for s+ and s−. In Sect. 4
we deal with the first and second order means of the Fourier frequency. In Sect. 5
we give the results on the mean of the time and the duration. In Sect. 6 we study
the covariance, and in Sect. 7 we give a proof of the uncertainty principle that is all
based on the generalized phase-amplitude representations. In Sect. 8 we draw the
conclusions and give some remarks.

2 Technical Preparations

For any α > 0, define the α-cone 
+
α (t) at t ∈ R by


+
α (t) � {(x, y) : |x − t | < αy,0 < y < ∞}.

For an analytic function s in C
+ define its α-non-tangential maximal function by

M+
α s(t) � sup

z∈
+
α (t)

|s(z)|.

Note that M+
α s is a function defined on R. It is a fundamental result that M+

α s ∈
L2(R) if and only if s ∈ H 2(C+) [9]. This result presents the equivalence between
the two statements of which one is dependent of α while the other is not. This shows
that the condition M+

α s ∈ L2(R) is independent of α. In other words, if for one α0 ∈
(0,∞) there holds M+

α0
s ∈ L2(R), then M+

α s ∈ L2(R) holds for all α ∈ (0,∞). One
defines the α-non-tangential maximal function for analytic functions in the lower-half
complex plane C

− in the same way through the α-cone 
−
α (t) symmetric to 
+

α (t)

with respect to the real-axis. The theory for the lower-half complex plane is parallel
to that for the upper-half complex plane. We write 
(t) for either 
+

α (t) or 
−
α (t)

for some α ∈ (0,∞) depending on the context. To indicate a non-tangential limit σ

being independent of α > 0, we adopt the notation

lim

: z→t

s(z) � σ.

This, in fact, holds for all s ∈ H 2(C±). Here we allow the limit σ to be ∞, including
±∞. In the context this value σ is denoted by s(t). The correspondence between
s(z) ∈ H 2(C±) and its boundary value s(t) ∈ L2(R) is one to one with equal norms
in their respective spaces. For meromorphic functions in the respective domains, we
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use the same limit notation but for truncated α-cones. Recall that a function is mero-
morphic in a domain if it is analytic throughout the domain except at its poles. This
is exactly what is needed in defining the phase and amplitude derivatives (see Theo-
rem 3.1).

Now we list five types of derivatives. Assume that s ∈ L2(R).

(i) The distributional or weak derivative d∗s
dt

. Based on the distribution theory this
type of derivative always exists.

(ii) The classical or strong derivative ds
dt

. It may or may not exist.
(iii) The Fourier transform derivative. It is defined to be the inverse Fourier trans-

form of iωŝ(ω) in L2(R). It exists if s ∈ L2
1(R).

(iv) The analytic derivatives. Further assuming s ∈ L2
1(R), and decomposing s into

the sum s = s+ + s−, where s± are the non-tangential boundary values of the
associated analytic functions s±(z) in the Hardy spaces H 2(C±), one can show
that s±′

(z) are also in H 2(C±), respectively, and the non-tangential limits

lim

:z→t

s±′
(z) � s±′

(t), z ∈ C
±,

exist, and are called analytic derivatives.
(v) The boundary derivative. They are defined through the non-tangential boundary

limits

lim

:z→t

s±(z) − s±(t)

z − t
� s±′

(t),

provided that the non-tangential boundary values s±(t) exist, and the non-
tangential limits on the left-hand-side exist.

In order to define the phase and amplitude derivatives for s ∈ L2
1(R) a close study on

the relations between the five types of derivatives is now necessary.
The Fourier transform of s ∈ L1(R) is defined by

ŝ(ω) � 1√
2π

∫ ∞

−∞
e−itωs(t)dt. (2.1)

If ŝ is also in L1(R), then the inversion formula holds, that is

s(t) = 1√
2π

∫ ∞

−∞
eitωŝ(ω)dω, a.e. (2.2)

There holds the Plancherel Theorem

‖ŝ‖2
2 = ‖s‖2

2, s ∈ L1(R) ∩ L2(R).

Through a density argument, both the Fourier transformation and its inverse can be
extended to L2(R) in which the Plancherel Theorem still holds. When we use the
formulas (2.1) and (2.2) for L2(R) functions, we keep in mind that the convergence
of the integrals is in the L2 sense.

Now we summarize the results that are often recalled and regarded as basic results
throughout the paper (see also [9, 22]).
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1. s belongs to H 2(C±) if and only if M±
α s belongs to L2(R), α > 0. Such s and

M±
α s are of equivalent norms in their respective spaces.

2. If s ∈ H 2(C±), then the non-tangential boundary limit or non-tangential bound-
ary value

lim

:z→t

s(z) = s(t)

exists for a.e. t ∈ R. We use the notation s for both s(z) and s(t). They are of
equal norms in their respective spaces.

3. If s ∈ L2(R), then s = s+ + s−, ˆs± � χ±ŝ, s± ∈ H 2(C±), where

s±(t) = ±1√
2π

∫ ±∞

0
eitωŝ(ω)dω and s±(z) = ±1

2πi

∫ ∞

−∞
s(u)

u − z
du, z ∈ C

±.

(2.3)

The decomposition is orthogonal and unique.
4. For s ∈ L2(R) we have the Plemelj Theorem

lim
y→±0

1

2πi

∫ ∞

−∞
s(u)

u − (t + iy)
du = 1

2
s(t) ± i

2
Hs(t) = s±(t), a.e.,

where Hs is the Hilbert transform of s,

Hs(t) = 1

π
p.v.

∫ ∞

−∞
s(u)

t − u
du = −i√

2π

∫ ∞

−∞
eitωsgn(ω)ŝ(ω)dω,

where p.v. stands for the principal value of the integral defined through (1.1) and
sgn(ω) is the signum function that takes value 1 for ω > 0 and value −1 for ω < 0.

5.

H 2 = −I (I being the identity operator), ‖Hs‖L2(R) = ‖s‖L2(R),

and the adjoint operator of H is −H.

6. The following inverse Fourier transforms play important roles: For z = x +
iy, ±y > 0,

[
1

(·) − z

]∨
(ω) = ±√

2πiχ±(ω)eixωe−yω. (2.4)

The following result shows that, in the Hardy spaces, the existence of the analytic
derivative implies the existence of the Fourier transform derivatives of the same and
lower orders, and vice versa.

Lemma 2.1 Let s ∈ H 2(C±) and n a positive integer. Then

(i) s(n) ∈ H 2(C±) if and only if ωnŝ ∈ L2(R).

(ii) s(n) ∈ H 2(C±) implies s(k) ∈ H 2(C±), k = 1, . . . , n − 1.

Proof of Lemma We only prove the lemma for H 2(C+). For H 2(C−) the proof is
similar.
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(i) For s ∈ H 2(C+), denote sy(t) = s(t + iy). By invoking the basic results 3
and 6, and the Plancherel Theorem, we have

sy(t) = 1

2πi

∫ ∞

−∞
s(u)

u − (t + iy)
du

= 1√
2π

∫ ∞

0
eitωe−yωŝ(ω)dω.

Therefore,

(sy)ˆ(ω) = χ+(ω)e−yωŝ(ω).

As a consequence,

(s(n)
y )ˆ(ω) = (iω)nχ+(ω)e−yωŝ(ω).

By the Plancherel Theorem,
∫ ∞

−∞
|s(n)(t + iy)|2dt =

∫ ∞

0
ω2ne−2yω|ŝ(ω)|2dω. (2.5)

Therefore, s(n) ∈ H 2(C+) if and only if ωnŝ(ω) ∈ L2(R). The assertion (ii) is well
known in the Sobolev space theory whose proof is omitted. �

Definition 2.2 We say that s has the non-tangential boundary derivative or, in brief,
boundary derivative s′(t) at t ∈ R, if a finite limit s(t) = lim
:z→t s(z) exists, and

lim

:z→t

s(z) − s(t)

z − t
� s′(t). (2.6)

The limit allows the infinite values. Replacing s with s(k) in the above definition, we
can inductively define the (k + 1)-order non-tangential boundary derivative s(k+1).

So far the notation s′(t) has two meanings: one is the boundary derivative defined
by (2.6), and the other is the limit

lim

:z→t

s′(z) (2.7)

(the fourth type derivative, or analytic derivative). Thanks to the following lemma the
notation does not cause confusion.

Lemma 2.3 Let s ∈ L2
1(R). Then

(i) Analytic derivative s′ defined by (2.7) exists.
(ii) Boundary derivative s′ defined by (2.6) exists as a function in L2(R) that coin-

cides with the analytic derivative.

Proof of Lemma By invoking (i) of Lemma 2.1, the assertion (i) is a consequence
of the basic result 2. To prove (ii) we use the same method as in the proof for the
counterpart result in the disc (see [17, p. 79]). �



46 J Fourier Anal Appl (2011) 17: 36–64

Combining (ii) of Lemma 2.1 with Lemma 2.3, we have

Corollary 2.4 Let s and s(n) belong to H 2(C±), n ≥ 1. Then

(i) All the boundary derivatives s′, . . . , s(n) defined through (2.6) exist.
(ii) The boundary derivatives coincide with the corresponding analytic derivatives

defined through (2.7), and they all belong to L2(R).

Let s ∈ L2(R). As a temperate distribution, s has a distributional derivative d∗s
dt

.

What is interesting is the case when the temperate distribution d∗s
dt

belongs to L2(R).

The latter means that there exists a function h ∈ L2(R) such that for all φ ∈ S, the
Schwarz class of rapidly decreasing functions, there holds

〈h,φ〉 = −〈s,φ′〉,
and d∗s

dt
= h(t). We have the following result.

Lemma 2.5 Let s ∈ L2(R) and n a positive integer. Then the following conditions
are equivalent.

(i) ωnŝ ∈ L2(R).

(ii) ( d∗
dt

)ns exists in L2(R).

When they hold, we have (( d∗
dt

)ns)ˆ(ω) = (iω)nŝ(ω).

This result is well known and proved by standard techniques [25]. Below we pro-
vide a proof by using the Hardy spaces decomposition.

Proof of Lemma We first show (i) implies (ii). Assume ωnŝ ∈ L2(R). Then both
ωn ˆs+ and ωn ˆs− are in L2(R), where s± ∈ H 2(C±). Due to (2.5), we have, for all
y > 0,

∫ ∞

−∞
|s+(n)

(t + iy)|2dt =
∫ ∞

0
ω2ne−2yω|ŝ(ω)|2dω

≤
∫ ∞

0
ω2n|ŝ(ω)|2dω

< ∞.

This shows that s+(n) ∈ H 2(C+), and therefore (s+(n)
)y has a L2(R) limit, h+, as

y → 0+ [9, p. 57]. By the definition of distributional derivative, for every y > 0 and
φ ∈ S,

〈(s+(n)
)y, φ〉 = 〈(s+)y, (−1)nφ(n)〉.

Passing to the L2-limits of (s+(n)
)y and (s+)y, we obtain

〈h+, φ〉 = 〈s+, (−1)nφ(n)〉.
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This shows that ( d∗
dt

)ns+ = h+ ∈ L2(R). Similarly we can show that there exists h− ∈
L2(R) such that ( d∗

dt
)ns− = h− ∈ L2(R). Therefore, we have ( d∗

dt
)ns = h+ + h− �

h ∈ L2(R). Although the proof that (ii) implies (i) is direct, we prefer to include it for
the completeness. We assume that ( d∗

dt
)ns exists in the L2(R). There holds

〈(
d∗

dt

)n

s,φ

〉
= 〈s, (−1)nφ(n)〉. (2.8)

Using Parseval’s identity, we have

〈((
d∗

dt

)n

s

)ˆ
, φ̂

〉
= 〈ŝ, (−i(·))nφ̂〉 = 〈(i(·))nŝ, φ̂〉. (2.9)

Since φ̂ runs over all S, the boundedness of the left-hand-side shows (i(·))nŝ ∈
L2(R). This proves that (ii) implies (i), and (( d∗

dt
)ns)ˆ(ω) = (iω)nŝ(ω). �

Lemma 2.6 Let s ∈ L2(R) and n a positive integer. Then the following assertions
hold.

(i) ωnŝ(ω) ∈ L2(R) if and only if ωn ˆs+(ω) ∈ L2(R) and ωn ˆs−(ω) ∈ L2(R).

(ii) ( d∗
dt

)ns ∈ L2(R) if and only if ( d∗
dt

)ns+ ∈ L2(R) and ( d∗
dt

)ns− ∈ L2(R).

(iii) tns(t) ∈ L2(R) if and only if tns+(t) ∈ L2(R) and tns−(t) ∈ L2(R).

Proof of Lemma (i) is a consequence of ˆs± = χ±ŝ. (ii) is a consequence of (i) and
Lemma 2.5. Now we prove (iii). If tns(t) ∈ L2(R), then by Lemma 2.5, ( d∗

dω
)nŝ(ω) ∈

L2(R), and hence χ+(ω)( d∗
dω

)nŝ(ω) and χ−(ω)( d∗
dω

)nŝ(ω) ∈ L2(R). We show that we
can exchange the order of multiplying by χ± and taking the distributional derivative
( d∗
dω

)n. Let h ∈ L2(R) be such that

〈h, ϕ〉 = 〈(−1)nŝ, ϕ(n)〉, ϕ ∈ S. (2.10)

It is easy to show

〈χ±h, ϕ〉 = 〈h, χ±ϕ〉
and

〈(−1)nŝ, (χ±ϕ)(n)〉 = 〈(−1)nŝ, χ±ϕ(n)〉 = 〈(−1)nχ±ŝ, ϕ(n)〉.
In order to show

〈χ±h, ϕ〉 = 〈(−1)nχ±ŝ, ϕ(n)〉, ϕ ∈ S,

that is equivalent to the exchange rule

χ±
(

d∗

dω

)n

ŝ =
(

d∗

dω

)n

(s±)̂, (2.11)

it suffices to show

〈h, χ±ϕ〉 = 〈(−1)nŝ, (χ±ϕ)(n)〉, ϕ ∈ S. (2.12)
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Note that χ±ϕ ∈ L2
n(R). Since the Schwarz class is dense in the Sobolev space L2

n(R)

[24, p. 122], there exists a sequence of functions ψk in the Schwarz class S such that
in the L2 convergence sense

ψk → χ±ϕ and ψ
(n)
k → (χ±ϕ)(n)

simultaneously. In (2.10) let ϕ = ψk and take limit k → ∞, we obtain (2.12). By
taking Fourier transform and using the Plancherel Theorem on the right-hand-side
of (2.11), we obtain tns+(t), tns−(t) ∈ L2(R). Conversely, if tns+(t), tns−(t) ∈
L2(R), by adding them up we obtain tns(t) ∈ L2(R). �

3 Definition of Phase and Amplitude Derivatives

Now we proceed to define the phase and amplitude derivatives. We first have
the following observations. Let s(z) be an analytic function in C

± and s(z) =
Ay(t)e

iϕy(t), z = t + iy, ±y > 0. Taking the partial derivative with respect to t and
dividing s(t + iy) on both sides, we obtain

Im

(
s′(z)
s(z)

)
= ∂ϕy(t)

∂t
,

Ay(t)Re

(
s′(z)
s(z)

)
= ∂Ay(t)

∂t
.

For a signal in the Sobolev space L2
1(R) these relations do not hold on R in general.

However, it suggests the following formulation.
Let s(z) be a function analytic in C

±. If t0 ∈ R, we denote

D±
p s(t0) � lim


:z→t0
Im

(
s′(z)
s(z)

)
,

and

D±
a s(t0) � lim


:z→t0
A±

y (t)Re

(
s′(z)
s(z)

)
,

provided that the limits exist.

Theorem 3.1 If s, s′ ∈ H 2(C±), then both D±
p s and D±

a s are well defined measur-
able functions, and

D±
p s(t) = Im

(
s′(t)
s(t)

)
, D±

a s(t) = A±(t)Re

(
s′(t)
s(t)

)
, a.e. (3.1)

Proof of Theorem We will only prove the result for s, s′ ∈ H 2(C+). If the non-
tangential limit of s(z) as z tends to t exists, then the non-tangential limit

A(t) = lim

:z→t

Ay(t) = lim

:z→t

|sy(t)|
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also exists. Noticing that s′/s is meromorphic, it suffices to show (i) the non-
tangential boundary limits s(t) and s′(t) both exist a.e.; and (ii) s(t) is a.e. non-zero.
The assertion (i) follows upon the fact that s(z) and s′(z) are in the Hardy space
H 2(C+). The assertion (ii) is guaranteed by the result that the non-tangential bound-
ary value of a function in the Hardy H 2(C±) is a.e. non-zero [9, p. 65]. �

Definition 3.2 If s, s′ ∈ H 2(C±), then s has non-tangential boundary limit s(t) =
A±(t)eiϕ±(t). According to Theorem 3.1, D±

p s and D±
a s both exist as measurable

functions. The analytic amplitude derivative (amplitude derivative) and the analytic
phase derivative (phase derivative) are, respectively, defined by

A±′
(t) � D±

a s(t), ϕ±′
(t) � D±

p s(t). (3.2)

Remark 3.3 Note that although the phase derivatives ϕ±′
(t) have been defined, the

phase functions ϕ±(t) are not yet defined. The unimodular functions eiϕ±(t) are de-
fined by s±(t)/|s±(t)|. This does not mean there exist appropriate parametrizations

ϕ±(t) such that dϕ±(t)
dt

are defined in the classical sense. Nevertheless, in the sense
specified in Definition 3.2, Theorem 3.1 asserts the existence of the phase and am-
plitude derivatives of s+ and s−, if s ∈ L2

1(R). If it happens that the function s has
an analytic continuation across an open interval containing t0, then the above defined
A±′

(t0) and ϕ±′
(t0) coincide with the respective classical derivatives at t0 (also see

[19]).

The results proved in this and the last section are summarized as follows.

Proposition 3.4 Let n be a positive integer. We have

(i) If s, s(n) ∈ H 2(C±), then s(n), as boundary derivative defined by (2.6), exists,
and coincides with the analytic derivative s(n) defined by (2.7) from inside C

±.

It also coincides with the distributional derivative ( d∗
dt

)ns. These derivatives are
all in L2(R).

(ii) The conditions assumed in (i) are equivalent to the conditions supp ŝ ⊂
[0,±∞), and ŝ(ω), ωnŝ(ω) ∈ L2(R).

(iii) If the conditions of (i) hold, then the same conclusions hold for all positive
integers less than n.

(iv) If s, s′ ∈ H 2(C±), then for the non-tangential boundary value s(t) =
A(t)eiϕ(t), the analytic amplitude and phase derivatives can be defined through
non-tangential boundary values of the same quantities from inside of the domain
C

±, as

A′ = Das and ϕ′ = Dps. (3.3)

(v) ( d∗
dt

)ns ∈ L2(R) if and only if ( d∗
dt

)ns+ ∈ L2(R) and ( d∗
dt

)ns− ∈ L2(R). In the

case, ( d∗
dt

)ns = ( d∗
dt

)ns+ + ( d∗
dt

)ns−.

(vi) tns(t) ∈ L2(R) if and only if tns+(t) ∈ L2(R) and tns−(t) ∈ L2(R).
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(vii) If s ∈ L2(R), then ( d∗
dt

)ns exists in ∈ L2(R) if and only if ωnŝ(ω) ∈ L2(R), and

in the case (( d∗
dt

)ns)ˆ(ω) = (iω)nŝ(ω).

4 Mean and Variance of Fourier Frequency in Terms of Analytic Phase and
Amplitude Derivatives

Definition 4.1 Let s be a square-integrable signal and |ŝ(ω)|2 the density of the
Fourier frequency, then we can define the mean of the Fourier frequency by

〈ω〉 �
∫ ∞

−∞
ω|ŝ(ω)|2dω, (4.1)

the Fourier bandwidth by

B2 = σ 2
ω �

∫ ∞

−∞
(ω − 〈ω〉)2|ŝ(ω)|2dω (4.2)

= 〈ω2〉 − 〈ω〉2, (4.3)

and the mean of any Fourier frequency function g(ω) by

〈g(ω)〉 �
∫ ∞

−∞
g(ω)|ŝ(ω)|2dω, (4.4)

provided that the right-hand sides of (4.1), (4.2) and (4.4) are well defined integrals.
Below we also use the notation

〈g(ω)〉± �
∫ ∞

−∞
g(ω)|ŝ±(ω)|2dω, (4.5)

where ŝ±(ω) are defined through (5.7).

With the preparations made in the proceeding section the following theorem is
straightforward.

Theorem 4.2 Assume s, d∗
dt

s ∈ L2(R). With the decomposition s = s+ + s−, (s±)ˆ =
χ±ŝ, s±(t) = A±(t)eiϕ±(t), the mean Fourier frequency defined by (4.1) is identical
with

〈ω〉 =
∫ ∞

−∞
ϕ+′

(t)A+2
(t)dt +

∫ ∞

−∞
ϕ−′

(t)A−2
(t)dt, (4.6)

where ϕ±′
(t) are defined by (3.2).

Proof of Theorem Since s, d∗
dt

s ∈ L2(R), (vii) of Proposition 3.4 implies ŝ(ω),
ωŝ(ω) ∈ L2(R). Hölder’s inequality implies ω|ŝ(ω)|2 ∈ L1(R), and hence 〈ω〉 is well
defined. The assertions (v) and (ii) of Proposition 3.4 imply that s±, s±′ belong to
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H 2(C±), respectively. The assertions (i) and (iv) of Proposition 3.4 further imply
that the boundary values s±′ and the phase derivatives ϕ±′ all exist. There holds the
decomposition

〈ω〉 = 〈ω〉+ + 〈ω〉−,

where

〈ω〉± � ±
∫ ±∞

0
ω|ŝ(ω)|2dω = −

∫ ∞

−∞
is±′

(t)s±(t)dt

= −i

∫ ∞

−∞
s±′

(t)

s±(t)
|s±(t)|2dt

=
∫ ∞

−∞
Im

{
s±′

(t)

s±(t)

}
|s±(t)|2dt

=
∫ ∞

−∞
ϕ±′

(t)|s±(t)|2dt, (4.7)

where the fact that the boundary values s± are a.e. non zero [9, p. 65] justifies the
division by s±(t). As a consequence,

〈ω〉 =
∫ ∞

−∞
ϕ+′

(t)|s+(t)|2dt +
∫ ∞

−∞
ϕ−′

(t)|s−(t)|2dt. �

Example 4.3 Let s(t) = 2
1+t2 . It has the decomposition s = s+ + s− = 1

1−it
+ 1

1+it
.

Then

A±2
(t) = |s±(t)|2 = 1

1 + t2
∈ L2(R), s±′

(t) = ±i

(1 ∓ it)2
∈ L2(R),

ˆs±(ω) = √
2πχ±(ω)e−|ω|, ω ˆs±(ω) = √

2πωχ±(ω)e−|ω| ∈ L2(R),

and s± as analytic functions in C
±, respectively, have analytic continuations, and

thus have smooth phase derivatives. Precisely,

s±(t) = 1

1 ∓ it
= 1√

1 + t2
e±i arctan t ,

with

ϕ±(t) = ± arctan t and ϕ±′
(t) = ±1

1 + t2
.

At the same time, we also have

lim
y→0+ϕ±

y
′
(t) = lim


:z→t
Im

(
s±′

(z)

s±(z)

)
= lim


:z→t
Im

( ±i

1 ∓ iz

)
= ±1

1 + t2
,

justifying the existence of the phase derivative defined in Definition 3.2. Since s it-
self is real-valued, s(t) = 2

1+t2 eiϕ(t) with ϕ(t) = 2πk for any integer k. Therefore,
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s satisfies all the conditions assumed in Theorem 1.1 and Theorem 4.2. By using
Theorem 1.1,

〈ω〉 =
∫ ∞

−∞
ϕ′(t)A2(t)dt =

∫ ∞

−∞
0

(
2

1 + t2

)2

dt = 0.

This can also be obtained directly from the definition of 〈ω〉 and the property
ŝ(−ω) = ŝ(ω) for real valued signals. By using Theorem 4.2, we have

〈ω〉 = 〈ω〉+ + 〈ω〉−

=
∫ ∞

−∞
ϕ+′

(t)A+2
(t)dt +

∫ ∞

−∞
ϕ−′

(t)A−2
(t)dt

= 0.

The results obtained from Theorem 1.1 and Theorem 4.2 coincide.

The following theorem gives a similar formula for 〈ω2〉.

Theorem 4.4 Assume s, d∗
dt

s ∈ L2(R). With the decomposition s = s+ + s−, (s±)ˆ =
χ±ŝ, s±(t) = A±(t)eiϕ±(t), there follows

〈ω2〉 =
∫ ∞

−∞
[(A+′

(t))2 + (A−′
(t))2]dt

+
∫ ∞

−∞
[(A+(t)ϕ+′

(t))2 + (A−(t)ϕ−′
(t))2]dt. (4.8)

Proof of Theorem Since s, d∗
dt

s ∈ L2(R), (ii) of Proposition 3.4 implies ωŝ(ω) ∈
L2(R), and thus ω2|ŝ(ω)|2 ∈ L1(R). 〈ω2〉 is therefore well defined. The assertion (v)
and (ii) of Proposition 3.4 imply that s±, s±′ belong to H 2(C±), respectively. The
assertion (i) and (iv) of Proposition 3.4 further imply that the boundary values s±′
and the phase derivatives ϕ±′ all exist. There then holds the decomposition

〈ω2〉 = 〈ω2〉+ + 〈ω2〉−

with

〈ω2〉± � ±
∫ ±∞

0
ω2|ŝ(ω)|2dω

= −
∫ ∞

−∞
is±′

(t)−is±′(t)dt

=
∫ ∞

−∞

∣∣∣∣ s
±′

(t)

s±(t)

∣∣∣∣
2

|s±(t)|2dt
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=
∫ ∞

−∞
Re2

{
s±′

(t)

s±(t)

}
|s±(t)|2dt +

∫ ∞

−∞
Im2

{
s±′

(t)

s±(t)

}
|s+(t)|2dt

=
∫ ∞

−∞

[
A±′

(t)
]2

dt +
∫ ∞

−∞

[
A±(t)ϕ±′

(t)
]2

dt,

where, again, the fact that the boundary values s± are a.e. non zero [9, p. 65] justifies
the division by s±(t). Therefore,

〈ω2〉 =
∫ ∞

−∞
[(A+′

(t))2 + (A−′
(t))2]dt

+
∫ ∞

−∞
[(A+(t)ϕ+′

(t))2 + (A−(t)ϕ−′
(t))2]dt. �

Corollary 4.5 Assume s, d∗
dt

s ∈ L2(R). With the decomposition s = s++s−, (s±)ˆ =
χ±ŝ, s±(t) = A±(t)eiϕ±(t), the bandwidth

B2 = 〈ω2〉 − 〈ω〉2

=
∫ ∞

−∞
[(A+′

(t))2 + (A−′
(t))2]dt

+
∫ ∞

−∞
[(ϕ+′

(t) − 〈ω〉)2A+2
(t) + (ϕ−′

(t) − 〈ω〉)2A−2
(t)]dt. (4.9)

Proof of Corollary Based on the expressions of 〈ω〉, 〈ω2〉 obtained in Theorem 4.2
and Theorem 4.4, we have

B2 = 〈ω2〉 − 〈ω〉2

= 〈ω2〉 − 2〈ω〉(〈ω〉+ + 〈ω〉−) + 〈ω〉2
∫ ∞

−∞
|s(t)|2dt

=
∫ ∞

−∞
[(A+′

(t))2 + (A−′
(t))2]dt +

∫ ∞

−∞
[(A+(t)ϕ+′

(t))2 + (A−(t)ϕ−′
(t))2]dt

−
[

2
∫ ∞

−∞
〈ω〉ϕ+′

(t)|s+(t)|2dt + 2
∫ ∞

−∞
〈ω〉ϕ−′

(t)|s−(t)|2dt

]

+
[∫ ∞

−∞
〈ω〉2|s+(t)|2dt +

∫ ∞

−∞
〈ω〉2|s−(t)|2dt

]

=
∫ ∞

−∞
[(A+′

(t))2 + (A−′
(t))2]dt

+
∫ ∞

−∞
[(ϕ+′

(t) − 〈ω〉)2A+2
(t) + (ϕ−′

(t) − 〈ω〉)2A−2
(t)]dt. �

Alternatively, the bandwidth can be obtained directly by the same steps as in the proof
of Theorem 4.4.
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Remark 4.6 If the signal s(t) satisfies the assumptions of Theorem 1.1, then the de-
composition s = s+ + s− can be performed, and the steps in the proofs of Theo-
rem 4.2, Theorem 4.4 and Corollary 4.5 can be followed. The steps to prove the
classical results (1.2), (1.9) and

〈ω2〉 =
∫ ∞

−∞

[
dA(t)

dt

]2

dt +
∫ ∞

−∞

[
A(t)

dϕ(t)

dt

]2

dt (4.10)

can also be followed (see [4]). Therefore, in the case, the quantities 〈ω〉, 〈ω2〉 and B2

have the alternative representations, and Theorem 4.2, Theorem 4.4 and Corollary 4.5
are indeed generalizations of (1.2), (4.10) and (1.9).

5 Mean and Variance of Time in Analytic Phase and Amplitude Derivatives
of Fourier Transform of the Signal

We have written the bandwidth and the mean of the Fourier frequency in terms of the
phase and amplitude derivatives of the signal. The same idea can be used to derive
the mean of time and the duration in terms of the phase and amplitude derivatives of
the Fourier transform of the signal.

Definition 5.1 Assume s ∈ L2(R). Define the mean of time by

〈t〉 �
∫ ∞

−∞
t |s(t)|2dt, (5.1)

the duration by

T 2 = σ 2
t �

∫ ∞

−∞
(t − 〈t〉)2|s(t)|2dt, (5.2)

and the mean of any time function g(t) by

〈g(t)〉 �
∫ ∞

−∞
g(t)|s(t)|2dt, (5.3)

provided that the right-hand-sides of (5.1), (5.2) and (5.3) are, respectively, well de-
fined integrals. Below we will also use the notation

〈g(t)〉± �
∫ ∞

−∞
g(t)|s±(t)|2dt. (5.4)

Classical results associated with the amplitude-phase representation of the Fourier
spectrum ŝ include (see [4])

〈t〉 = −
∫ ∞

−∞
dψ(ω)

dω
|ŝ(ω)|2dω (5.5)
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and

T 2 = σ 2
t =

∫ ∞

−∞

(
dB(ω)

dω

)2

dω +
∫ ∞

−∞

(
dψ(ω)

dω
+ 〈t〉

)2

B2(ω)dω, (5.6)

where ŝ(ω) = B(ω)eiψ(ω). Under the classical setting, these results are proved based
on the pointwise (strong) differentiability.

Assume s(t) ∈ L2(R) and ts(t) ∈ L2(R). Then ŝ(ω) ∈ L2(R) and ŝ(ω) =
ŝ+(ω) + ŝ−(ω), where

ŝ+(ω) = [
χ−s

]∧
(ω), ŝ−(ω) = [

χ+s
]∧

(ω). (5.7)

Being similar to the case of the amplitude-phase representation of the signal s, we
now have ŝ±(ω) = B±(ω)eiψ±(ω) ∈ L2(R), where B±′

(ω) and ψ±′
(ω) are defined

in the same way as in Theorem 3.1 and Definition 3.2. We have the following two
results.

Theorem 5.2 Assume s(t) ∈ L2(R) and ts(t) ∈ L2(R). With the decomposition
ŝ(ω) = ŝ+(ω) + ŝ−(ω), ŝ±(ω) = [χ∓s]∧(ω), ŝ±(ω) = B±(ω)eiψ±(ω), the mean
time defined by (5.1) is identical with

〈t〉 = −
∫ ∞

−∞
ψ−′

(ω)B−2
(ω)dω −

∫ ∞

−∞
ψ+′

(ω)B+2
(ω)dω.

Theorem 5.3 Assume s(t) ∈ L2(R) and ts(t) ∈ L2(R). With the decomposition
ŝ(ω) = ŝ+(ω) + ŝ−(ω), ŝ±(ω) = [χ∓s(·)]∧(ω), ŝ±(ω) = B±(ω)eiψ±(ω), the du-
ration defined by (5.2) is identical with

σ 2
t =

∫ ∞

−∞
[(B−′

(ω))2 + (B+′
(ω))2]dω +

∫ ∞

−∞
[(ψ−′

(ω)

+ 〈t〉)2B−2
(ω) + (ψ+′

(ω) + 〈t〉)2B+2
(ω)]dω.

The proofs of Theorem 5.2 and Theorem 5.3 are omitted as they are similar to
those of Theorem 4.2 and Theorem 4.4.

6 Covariance Under the Hardy-Sobolev Spaces Decomposition

It is well known that the correlation between frequency and time is measured by the
covariance given in the following definition.

Definition 6.1 [4] Let s(t) = A(t)eiϕ(t) and ts(t) ∈ L2(R), where A(t) = |s(t)|. As-
sume that the classical derivatives dA(t)

dt
,

dϕ(t)
dt

and ds(t)
dt

all exist as Lebesgue mea-
surable functions, and ds

dt
is in L2(R). The covariance is defined by

Covtω =
〈
t
dϕ(t)

dt

〉
− 〈t〉〈ω〉. (6.1)
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This definition is based on the existence of the classical derivatives dA
dt

, ds
dt

and
dϕ
dt

. The following is an extension of the above definition to general cases.

Definition 6.2 Assume s, d∗
dt

s and ts(t) ∈ L2(R). With the decomposition

s = s+ + s−, (s±)ˆ(ω) = χ±ŝ(ω), s±(t) = A±(t)eiϕ±(t), the covariance is defined
by

Covtω = 〈tϕ+′
(t)〉+ + 〈tϕ−′

(t)〉− − 〈t〉〈ω〉. (6.2)

Proposition 6.3 Assume that signal s satisfies the conditions in Definition 6.1. Then
it also satisfies the conditions in Definition 6.2, and the right-hand-side of (6.2) is
reduced to the right-hand-side of (6.1).

Proof of Proposition Since strong differentiability implies weak differentiability (see
Remark 8.3), the signal s(t) also satisfies the conditions in Definition 6.2. The phase

derivatives ϕ±′
(t) = Im{ s±′

(t)
s±(t)

} are well defined, and

〈tϕ±′
(t)〉± =

∫ ∞

−∞
tϕ±′

(t)|s±(t)|2dt

= Im
∫ ∞

−∞
s±′

(t)ts±(t)dt

= Im
∫ ∞

−∞
iω(s±)ˆ(ω)i(s±)

′̂
(ω)dω

= Im
∫ ∞

−∞
ω(s±)ˆ(ω)(s±)

′̂
(ω)dω.

Therefore,

〈tϕ+′
(t)〉+ + 〈tϕ−′

(t)〉− = Im
∫ ∞

−∞
ω(s+)ˆ(ω)(s+)

′̂
(ω)dω

+ Im
∫ ∞

−∞
ω(s−)ˆ(ω)(s−)

′̂
(ω)dω

= Im
∫ ∞

0
ωŝ(ω)ŝ′(ω)dω + Im

∫ 0

−∞
ωŝ(ω)ŝ′(ω)dω

= Im
∫ ∞

−∞
ωŝ(ω)ŝ′(ω)dω.

Since s satisfies the assumptions in Definition 6.1, dϕ(t)
dt

is well defined and identical

with Im{ s′(t)
s(t)

}. Therefore,

〈
t
dϕ(t)

dt

〉
=

∫ ∞

−∞
t
dϕ(t)

dt
|s(t)|2dt
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= Im
∫ ∞

−∞
s′(t)ts(t)dt

= Im
∫ ∞

−∞
iωŝ(ω)iŝ(ω)

′
(ω)dω

= Im
∫ ∞

−∞
ωŝ(ω)ŝ′(ω)dω

and

〈tϕ+′
(t)〉+ + 〈tϕ−′

(t)〉− =
〈
t
dϕ(t)

dt

〉
.

Thus the right-hand-side of (6.2) is identical with the right-hand-side of (6.1). �

The covariance defined in Definition 6.2 is in the time domain, where the Fourier
frequency ω is replaced with the analytic phase derivative ϕ±′

(t). One can alterna-
tively define the covariance in the frequency domain, where the time t should be
replaced with the group delay −ψ±′

(ω). The following question arises: If we define
the covariance by

Covtω = −〈ωψ+′
(ω)〉+ − 〈ωψ−′

(ω)〉− − 〈t〉〈ω〉, (6.3)

are the two definitions equivalent? The following theorem gives the positive an-
swer.

Theorem 6.4 Assume s(t), d∗
dt

s and ts(t) ∈ L2(R). With the decomposition s =
s+ + s−, (s±)ˆ = χ±ŝ, s±(t) = A±(t)eiϕ±(t), ŝ(ω) = ŝ+(ω) + ŝ−(ω), ŝ±(ω) =
[χ∓s]∧(ω) and ŝ±(ω) = B±(ω)eiψ±(ω), there holds

〈tϕ+′
(t)〉+ + 〈tϕ−′

(t)〉− = −〈ωψ+′
(ω)〉+ − 〈ωψ−′

(ω)〉−.

Proof of Theorem 6.4 Since s(t), d∗
dt

s, and ts(t) ∈ L2(R), the phase deriv-
atives of s±(t) and ŝ±(ω), viz. ϕ±′

(t) and ψ±′
(ω), all exist, and ϕ±′

(t) =
Im{ s±′

(t)
s±(t)

}, ψ±′
(ω) = Im{ ŝ±′

(ω)
ŝ±(ω)

}.
We have

∫ ∞

−∞
tϕ±′

(t)|s±(t)|2dt

= Im
∫ ∞

−∞
s±′

(t)ts±(t)dt

= Im
∫ ∞

−∞
[χ+(t)s±(t) + χ−(t)s±(t)]′ t[χ+(t)s±(t) + χ−(t)s±(t)]dt

= Im
∫ ∞

−∞
χ+(t)s±′

(t)t[χ+(t)s±(t)]dt + Im
∫ ∞

−∞
χ+(t)s±′

(t)t[χ−(t)s±(t)]dt
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+ Im
∫ ∞

−∞
χ−(t)s±′

(t)t[χ+(t)s±(t)]dt + Im
∫ ∞

−∞
χ−(t)s±′

(t)t[χ−(t)s±(t)]dt

= Im
∫ ∞

−∞
χ+(t)s±′

(t)t[χ+(t)s±(t)]dt + Im
∫ ∞

−∞
χ−(t)s±′

(t)t[χ−(t)s±(t)]dt

= Im
∫ ∞

−∞
iω(χ+s±)

∧
(ω)i(χ+s±)∧′(ω)dω

+ Im
∫ ∞

−∞
iω(χ−s±)

∧
(ω)i(χ−s±)∧′(ω)dω

= Im
∫ ∞

−∞
ω(χ+s±)

∧
(ω)(χ+s±)∧′(ω)dω

+ Im
∫ ∞

−∞
ω(χ−s±)

∧
(ω)(χ−s±)∧′(ω)dω,

where the cross terms vanish because of the relation χ+χ− = 0. Denote

∫ ∞

−∞
ω(χ+s±)

∧
(ω)(χ+s±)∧′(ω)dω +

∫ ∞

−∞
ω(χ−s±)

∧
(ω)(χ−s±)∧′(ω)dω � f ±.

Note that,

∫ ∞

−∞
ωψ±′

(ω)|ŝ±(ω)|2dω

= Im
∫ ∞

−∞
ω(ŝ±)′(ω)ŝ±(ω)dω

= Im
∫ ∞

−∞
ω[(χ∓s+)∧(ω) + (χ∓s−)∧(ω)]′(χ∓s+)∧(ω) + (χ∓s−)∧(ω)dω

= Im
∫ ∞

−∞
ω(χ∓s+)∧′

(ω)(χ∓s+)∧(ω)dω

+ Im
∫ ∞

−∞
ω(χ∓s+)∧′

(ω)(χ∓s−)∧(ω)dω

+ Im
∫ ∞

−∞
ω(χ∓s−)∧′

(ω)(χ∓s+)∧(ω)dω

+ Im
∫ ∞

−∞
ω(χ∓s−)∧′

(ω)(χ∓s−)∧(ω)dω.

By adding

∫ ∞

−∞
ωψ+′

(ω)|ŝ+(ω)|2dω and
∫ ∞

−∞
ωψ−′

(ω)|ŝ−(ω)|2dω,
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the cross terms are canceled out. In fact,
∫ ∞

−∞
ω(χ−s+)∧′

(ω)(χ−s−)∧(ω)dω +
∫ ∞

−∞
ω(χ+s+)∧′

(ω)(χ+s−)∧(ω)dω

=
∫ ∞

−∞
[ω(χ−s+)∧′

(ω) + ω(χ+s+)∧′
(ω)][(χ−s−)∧(ω) + (χ+s−)∧(ω)]dω

−
∫ ∞

−∞
ω(χ−s+)∧′

(ω)(χ+s−)∧(ω)dω −
∫ ∞

−∞
ω(χ+s+)∧′

(ω)(χ−s−)∧(ω)dω

=
∫ ∞

−∞
ω(s+)∧′

(ω)(s−)∧(ω)dω

−
∫ ∞

−∞
−itχ−(t)s+(t)−iχ+(t)s−′(t)dt

−
∫ ∞

−∞
−itχ+(t)s+(t)−iχ−(t)s−′(t)dt

= 0.

Similarly,
∫ ∞

−∞
ω(χ−s−)∧′

(ω)(χ−s+)∧(ω)dω +
∫ ∞

−∞
ω(χ+s−)∧′

(ω)(χ+s+)∧(ω)dω = 0.

Therefore, with the notation
∫ ∞

−∞
ω(χ∓s+)∧′

(ω)(χ∓s+)∧(ω)dω +
∫ ∞

−∞
ω(χ∓s−)∧′

(ω)(χ∓s−)∧(ω)dω � g±,

we have∫ ∞

−∞
ωψ+′

(ω)|ŝ+(ω)|2dω +
∫ ∞

−∞
ωψ−′

(ω)|ŝ−(ω)|2dω = Im(g+ + g−).

It then follows

f + + f − = g+ + g−.

Therefore,

Im(f + + f −) = −Im(g+ + g−).

As a consequence,
∫ ∞

−∞
tϕ+′

(t)|s+(t)|2dt +
∫ ∞

−∞
tϕ−′

(t)|s−(t)|2dt

= −
∫ ∞

−∞
ωψ+′

(ω)|ŝ+(ω)|2dω −
∫ ∞

−∞
ωψ−′

(ω)|ŝ−(ω)|2dω,

that is,

〈tϕ+′
(t)〉+ + 〈tϕ−′

(t)〉− = −〈ωψ+′
(ω)〉+ − 〈ωψ−′

(ω)〉−. �
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7 Uncertainty Principle Under the Hardy-Sobolev Spaces Decomposition

Next we present a proof of the uncertainty principle by using the Hardy-Sobolev
spaces decomposition.

Theorem 7.1 Assume s(t), d∗
dt

s and ts(t) ∈ L2(R). Then there holds

σtσω ≥ 1

2

√
1 + 4Cov2

tω.

Proof of Theorem 7.1 For the signal s(t), the new signal defined by

snew(t) = e−i〈ω〉(t+〈t〉)s(t + 〈t〉)
has the same shape in both time and frequency as s(t) does, except that it has been
translated in time and frequency such that the means become zero. Conversely, if we
have a signal snew that has zero mean time and zero mean frequency and we want
a signal s(t) of the same shape but with the particular mean time 〈t〉 and the mean
frequency 〈ω〉, then

s(t) = ei〈ω〉t snew(t − 〈t〉).
So we may assume 〈t〉 = 0, 〈ω〉 = 0, and the bandwidth is

σ 2
ω =

∫ ∞

−∞
ω2|ŝ(ω)|2dω =

∫ ∞

−∞

∣∣∣∣d
∗

dt
s(t)

∣∣∣∣
2

dt

and the duration is

σ 2
t =

∫ ∞

−∞
t2|s(t)|2dt.

By using Hölder’s inequality and (v) and (vi) of Proposition 3.4, we have

σ 2
t σ 2

ω =
∫ ∞

−∞
t2|s(t)|2dt ×

∫ ∞

−∞

∣∣∣∣d
∗

dt
s(t)

∣∣∣∣
2

dt

≥
∣∣∣∣
∫ ∞

−∞
ts(t)

d∗

dt
s(t)dt

∣∣∣∣
2

=
∣∣∣∣
∫ ∞

−∞
t[s+(t) + s−(t)][s+′

(t) + s−′
(t)]dt

∣∣∣∣
2

=
∣∣∣∣
∫ ∞

−∞
ts+(t)s+′

(t)dt +
∫ ∞

−∞
ts−(t)s−′

(t)dt

∣∣∣∣
2

.

With s+(t + iy) = s+
y (t) = A+

y (t)eiϕ+
y (t), y > 0, the product rule of classical deriva-

tive gives

ts+
y (t)s+

y
′
(t) = tA+

y (t)A+
y

′
(t) + itA+

y
2
(t)ϕ+

y
′
(t)
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= 1

2
(tA+

y
2
(t))′ − 1

2
A+

y
2
(t) + itA+

y
2
(t)ϕ+′

y(t). (7.1)

Below the main effort is devoted to justifying the integrability of (7.1) and passing
to the limit y → 0. To show that ts+

y is dominated by a L2(R) function independent

of y, it suffices to show that zs+(z) = (t + iy)s+
y (t) is a function in H 2(C+). To

prove this we start by showing that the Fourier transform of ts+(t) is supported in
[0,∞). A basic result of Fourier transform gives

[(·)s+(·)]ˆ(ω) = i
d∗

dω
(χ+s)ˆ(ω) = iχ+(ω)

d∗

dω
ŝ(ω),

where the validity of interchanging the order of the multiplication by χ+ and the
operation of taking distributional derivative is proved in the proof of Lemma 2.6(iii).
Thus the Fourier transform of ts+(t) is supported in [0,∞), and hence ts+(t) is the
boundary value of a function g(z) in H 2(C+). We are to show g(z) = zs+(z). The
Hardy function g(z) is given by

g(z) = 1

2πi

∫ ∞

−∞
xs+(x)

x − (t + iy)
dx

= 1

2πi

∫ ∞

−∞

√
2πieiωt e−ωyχ+(ω)[(·)s+(·)]ˆ(ω)dω

= i√
2π

∫ ∞

−∞
eiωt e−ωyχ+(ω)

d∗

dω
[s+(·)]ˆ(ω)dω.

Since the multiplication by χ+ can commute with d∗
dω

, and since eiωt e−ωy, as a func-
tion of ω, is in the Schwarz class, we have

g(z) = i√
2π

∫ ∞

−∞
eiωt e−ωy d∗

dω
[s+(·)]ˆ(ω)dω

= − i√
2π

∫ ∞

−∞
[eiωt e−ωy]′ω[s+(·)]ˆ(ω)dω

= z√
2π

∫ ∞

−∞
eiωt e−ωy[s+(·)]ˆ(ω)dω

= zs+(z).

Therefore, zs+(z), and so ts+
y (t) as well, are dominated by a non-tangential max-

imal function in L2(R) independent of y. The function s+′
(z) = s+

y
′
(t) belongs to

H 2(C+) and is also dominated by the corresponding non-tangential maximal func-

tions in L2(R). Therefore, the product ts+
y (t)s+

y
′
(t) on the left-end of (7.1) is dom-

inated by a function in L1(R) that is independent of y. It is easy to show that the
terms

A+
y

2
(t) and tA+

y
2
(t)ϕ+′

y(t)
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are also dominated by L1(R) functions independent of y. In fact,

A+
y

2
(t) = |s+

y |2 and tA+
y

2
(t)ϕ+′

y(t) = t |s+
y (t)|2Im

(
(s+

y )′(t)
s+
y (t)

)
.

Therefore, all the terms on the left-end and the right-end of the equation chain (7.1)
are dominated by L1(R) functions independent of y. Now the integrability of tA+

y
2
(t)

implies
∫ M

−N

(tA+
y

2
(t))′dt = (tA+

y
2
(t))M−N → 0

for suitably choosing M,N → ∞. From (7.1) we have
∫ ∞

−∞
ts+

y (t)s+
y

′
(t)dt = −1

2

∫ ∞

−∞
A+

y
2
(t)dt + i

∫ ∞

−∞
tA+

y
2
(t)ϕ+′

y(t)dt.

By using Lebesgue’s dominated convergence theorem, we have
∫ ∞

−∞
ts+(t)s+′

(t)dt = −1

2

∫ ∞

−∞
A+2

(t)dt + i〈tϕ+′
(t)〉+.

Therefore,
∫ ∞

−∞
ts+(t)s+′

(t)dt +
∫ ∞

−∞
ts−(t)s−′

(t)dt = −1

2

∫ ∞

−∞
A+2

(t)dt + i〈tϕ+′
(t)〉+

− 1

2

∫ ∞

−∞
A−2

(t)dt + i〈tϕ−′
(t)〉−

= −1

2
+ i[〈tϕ+′

(t)〉+ + 〈tϕ−′
(t)〉−]

= −1

2
+ iCovtω.

Thus,

σ 2
t σ 2

ω ≥ 1

4
+ Cov2

tω. �

8 Conclusions and Remarks

In this paper we show that the analytic phase and amplitude derivatives may be de-
fined for signals in the Hardy-Sobolev spaces H±L2

1(R). As application, formulas
(1.2), (1.9) and (1.10) can be extended in the appropriate forms to signals in the
Sobolev space L2

1(R). The classical uncertainty principle has a natural proof by
means of the Hardy-Sobolev spaces decomposition.

Remark 8.1 There has been unfaded interest in the concept analytic signal since Ga-
bor introduced it [8]. There have been temptations to define analytic instantaneous
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frequency based on this concept. Any new clarification and development in relation
to the phase derivative and analytic instantaneous frequency would lead to a deeper
understanding of the subject.

Remark 8.2 The developed theory and results are valid for both complex- and real-
valued signals. Since for real-valued signals there holds ŝ(−ω) = ŝ(ω), we always
have 〈ω〉 = 0 (see Example 4.3). For a real-valued signal the mean 〈ω〉 is often re-
placed by 〈ω〉+ that presents a meaningful mean of the Fourier frequency. The latter
corresponds to s+ in the Hardy-Sobolev spaces decomposition s = s+ + s−.

Remark 8.3 In the generalized function theory it is well known that the existence
of the strong derivative ds

dt
as a function in L1

loc(R) implies the existence of the

weak derivative d∗s
dt

. The converse also holds: if s, d∗s
dt

∈ L2(R), then there exists

an absolutely continuous function s̃ such that s(t) = s̃(t) a.e., and ds̃
dt

= d∗s
dt

[25].
Therefore, the absolutely continuous function s̃(t) is a representative of the Lebesgue
equivalent class of s in the Sobolev space. There is then the question whether we can
use such an absolutely continuous function as an representative for the equivalent
class s for which d∗s

dt
∈ L2(R)? The answer is “no”, for a signal analysis result should

be based on the equivalent classes but not on particular representatives. Indeed, the
amplitude and phase derivatives are based on s± being defined through formulas (2.3)
that are independent of particular representatives s in the equivalent class.
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