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Abstract In this survey article we overview transplantation theorems for several
types of continuous and discrete orthogonal expansions. These include: Hankel and
Dunkl transforms, and Fourier-Bessel, Jacobi and Laguerre expansions. We also dis-
cuss the idea of transference of transplantation and point out how a notion of conju-
gacy for orthogonal expansions may be interpreted as a generalized transplantation.
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1 Introduction

What is transplantation? Let {{φα
n }n∈N : α ∈ A}, cardA ≥ 2, be a family of orthonor-

mal bases in L2(X,dm), where (X,dm) is a (nice) measure space. The transplanta-
tion operator Tαβ , α,β ∈ A, is defined by the mapping

Tαβ : φβ
n �→ φα

n , n ∈ N,
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and then extended to a linear bounded operator on L2(X,dm), which explicitly means
that

Tαβf =
∑

n

〈f,φβ
n 〉φα

n , f =
∑

n

〈f,φβ
n 〉φβ

n ;

here 〈·, ·〉 denotes the canonical inner product in L2(X,dm). Obviously, Tαβ is an
isometric isomorphism on L2(X,dm), and Tαβ becomes the identity operator when
α = β (thus to avoid trivialities we frequently assume that α �= β).

We say that for a given p ∈ (1,∞), p �= 2 (or better, for every p ∈ (1,∞)), and
α �= β , a transplantation theorem holds provided we have

‖Tαβf ‖p ≤ Dαβ‖f ‖p, f ∈ L2 ∩ Lp(X,dm).

Then, Tαβ uniquely extends to a bounded operator on Lp(X,dm); to avoid a cum-
bersome notation we will sometimes denote this extension also by Tαβ .

How do we use transplantation theorems? Let k = {kn}n∈N be a bounded sequence
of numbers. By a multiplier operator associated to k we mean the operator

f �→ Mα
k f =

∑

n

kn〈f,φα
n 〉φα

n , f ∈ L2(X,dm),

which is obviously bounded on L2(X,dm). We write k ∈ Mα
p , 1 ≤ p < ∞, provided

‖Mα
k f ‖p ≤ C‖f ‖p, f ∈ L2 ∩ Lp(X,dm),

i.e., Mα
k extends (uniquely) to a bounded operator on Lp(X,dm).

Now, given 1 < p < ∞ and α,β ∈ A, assume that k ∈ Mα
p and transplantations

for both pairs, (α,β) and (β,α), hold, i.e.,

‖Tαβf ‖p ≤ Dαβ‖f ‖p, f ∈ L2 ∩ Lp(X,dm),

‖Tβαf ‖p ≤ Dβα‖f ‖p, f ∈ L2 ∩ Lp(X,dm).

Then we claim that k ∈ Mβ
p . Indeed, for every f = ∑

n anφ
β
n ∈ L2 ∩ Lp(X,dm),

∥∥∥∥∥
∑

n

knanφ
β
n

∥∥∥∥∥
p

≤ Dβα

∥∥∥∥∥
∑

n

knanφ
α
n

∥∥∥∥∥
p

≤ DβαC

∥∥∥∥∥
∑

n

anφ
α
n

∥∥∥∥∥
p

≤ DβαCDαβ

∥∥∥∥∥
∑

n

anφ
β
n

∥∥∥∥∥
p

.

Since the above reasoning may be reversed (with respect to α and β), it follows that

Mα
p = Mβ

p. (1.1)

More generally, if a transplantation theorem holds for any pair (α,β), then the mul-
tiplier spaces Mα

p are independent of α ∈ A, i.e. (1.1) holds for any α,β ∈ A.



410 J Fourier Anal Appl (2011) 17:408–430

Historically, the first transplantation theorem was proved by D.L. Guy [13] for
the Hankel transform on the positive half-line. This theorem was a tool to prove
a Marcinkiewicz’ type multiplier theorem for the Hankel transform (it is perhaps
interesting to note that this was not discrete but continuous case). Then the next step
was done by Askey and Wainger [2] (ultraspherical expansions) and Gilbert [11] (a
transplantation type theorem with assumptions that allow to include Fourier-Bessel
expansions).

In this article we overview transplantation theorems with some emphasis on the
role played in their proofs by the Calderón-Zygmund (frequently abbreviated to CZ)
operator theory. (The author must admit that certainly this is somewhat subjective
point of view.)

Throughout the paper we use a fairly standard notation. In the examples which we
discuss, X will be one of the spaces: R, R+ = (0,∞), (0,π), (0,1). The measure
dm, denoted by dx, will be then Lebesgue measure on the corresponding space. By a
weight on X we always mean a measurable and almost everywhere positive function
on X. For a weight w on X we write Lp(X,w), 1 ≤ p ≤ ∞, and L1,∞(X,w) to
denote the weighted Lp and the weighted weak L1 spaces (with respect to Lebesgue
measure dx) that consist of all functions f on X for which

‖f ‖p,w =
(∫

X

|f (x)w(x)|p dx

)1/p

< ∞

(with obvious modification for p = ∞), or

‖f ‖L1,∞(X,w) = sup
t>0

(
t

∫

{x∈X:|f (x)|>t}
w(x)dx

)
< ∞,

respectively. If w ≡ 1 we simplify the notation by writing Lp(X) and ‖ · ‖p, or
L1,∞(X) and ‖ · ‖L1,∞ . Sometimes, when it is completely clear from the context
what X is, we write simply L2 instead of L2(X). In the case when w is a power
weight, w(x) = xa , a ∈ R, (this situation does not include X = R), we write ‖ · ‖p,a

instead of ‖ · ‖p,xa . Similar convention obeys multiplier spaces Mα
p,w (to be defined

later on): we will write Mα
p,a when w(x) = xa . Given 1 ≤ p ≤ ∞, p′ denotes its

conjugate, 1/p + 1/p′ = 1. By 〈f,g〉 we always mean the canonical inner product in
appropriate L2 space under consideration. The symbol N is used to denote the set of
nonnegative integers {0,1,2, . . .}.

2 Transplantation Theorems

2.1 Hankel Transform

Given α > −1 and a suitable function f on (0,∞), its Hankel transform of order α

is defined by

Hαf (x) =
∫ ∞

0
(xy)1/2Jα(xy)f (y)dy, x > 0.
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Here Jα(x) denotes the Bessel function of the first kind of order α,

Jα(x) = (x/2)α
∞∑

n=0

(−1)n(x/2)2n

n!�(n + α + 1)
,

see [19, (5.3.2)] or [36]. Then (Hα ◦ Hα)f = f and ‖Hαf ‖2 = ‖f ‖2, for any f ∈
C∞

c (0,∞), the space of C∞ functions with compact support in (0,∞). These two
facts were known in the literature for α ≥ −1/2; in [4, Lemma 2.6] a proof valid for
any α > −1 was furnished. We shall use the same symbol Hα to denote the extension
of Hα to an isometric isomorphism of L2(R+). Since

J1/2(z) =
(

2

πz

)1/2

sin z, J−1/2(z) =
(

2

πz

)1/2

cos z, (2.1)

thus H−1/2 and H1/2 become the cosine and the sine transform on (0,∞), respec-
tively:

Cg(x) = (2/π)1/2
∫ ∞

0
g(y) cos(xy) dy, x > 0,

and

Sg(x) = (2/π)1/2
∫ ∞

0
g(y) sin(xy) dy, x > 0.

Guy [13] showed that the size of the Hankel transform of any suitable function,
when measured in the power weighted Lp norm, remains the same whatever the
order of the Hankel transform is. More precisely, given α,γ ≥ −1/2, 1 < p < ∞
and −1/p < a < 1 − 1/p, there is a constant C = C(α,γ,p, a) such that for every
appropriate function f

C−1‖Hγ f ‖p,a ≤ ‖Hαf ‖p,a ≤ C‖Hγ f ‖p,a. (2.2)

In a different way, (2.2) may be expressed as

‖(Hα ◦ Hγ )f ‖p,a ≤ C‖f ‖p,a.

Another proof of Guy’s transplantation theorem was delivered by Schindler [27].
She found an explicit expression for the integral kernel of the transplantation opera-
tor

Tαγ = Hα ◦ Hγ .

Due to a singularity along the diagonal, the corresponding integral was understood in
the principal value sense. More precisely, in the case α,γ ≥ −1/2, α �= γ,

Tαγ f (x) = P.V.

∫ ∞

0
Kαγ (x, y)f (y)dy + Cαγ f (x), f ∈ C∞

c (0,∞), (2.3)
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where Cαγ = cos((α − γ )π/2) and, for 0 < y < x, Kαγ (x, y) is given by

2�((α + γ + 2)/2)

�(γ + 1)�((α − γ )/2)
x−(γ+3/2)yγ+1/2

· 2F1

(
α + γ + 2

2
,
γ − α + 2

2
;γ + 1;

(
y

x

)2)
,

while, for 0 < x < y, Kαγ (x, y) equals

2�((α + γ + 2)/2)

�(α + 1)�((γ − α)/2)
xα+1/2y−(α+3/2)

· 2F1

(
α + γ + 2

2
,
α − γ + 2

2
;α + 1;

(
x

y

)2)

here 2F1 denotes the Gauss hypergeometric function.
In [29] Guy’s result was enhanced by enlarging the range of admissible parameters

α and γ to α > −1 and γ > −1, and extending the range of power weight exponent a

to −(α +1/2)−1/p < a < (γ +3/2)−1/p. The result was obtained by transferring
Muckenhoupt’s transplantation theorem for Jacobi expansions to the Hankel trans-
form setting. In the restricted range α ≥ −1/2, γ ≥ −1/2, Schindler’s explicit kernel
representation was used to obtain the same conclusion. This was done by splitting the
integration into the three regions: 0 < y < x/2, x/2 < y < 3x/2 and 3x/2 < y < ∞.
The splitting brought an advantage: while on both outer regions Hardy’s integral in-
equalities were applied, the integration on the inner region was treated by using local
versions of the Hardy-Littlewood maximal function and the Hilbert transform.

Nowak and Stempak [24] investigated the Hankel transform transplantation oper-
ator Tαγ by means of a suitably established local version of the CZ operator theory.
This approach delivered weighted norm inequalities with weights more general than
previously considered power weights. Moreover, it also allowed to obtain weighted
weak type (1,1) inequalities, which were new even in the unweighted setting.

It is easy to check by a direct computation that the (Schindler’s) kernel Kαγ (x, y)

(associated to Tαγ in an appropriate sense for any α,γ > −1) is a standard Calderón-
Zygmund kernel if α,γ ≥ 1/2, but it fails to satisfy the appropriate smoothness con-
dition (leading to Hörmander’s condition) when either α < 1/2 or γ < 1/2. In these
cases problems occur on the regions 0 < y < x/2 and 3x/2 < y < ∞. Therefore
in [24] the operator Tαγ was split according to these regions:

Tαγ = T 1
αγ + T 2

αγ + T 3
αγ ,

where the kernels Ki
αγ defining the integral operators T i

αγ , i = 1,2, are given by

K1
αγ (x, y) = χ{(x,y):0<y<x/2}Kαγ (x, y),

K2
αγ (x, y) = χ{(x,y):0<3x/2<y}Kαγ (x, y).
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Then it occurred that T 1
αγ and T 2

αγ were easy to handle by means of weighted Hardy’s

inequalities. To treat T 3
αγ a notion of a local Calderón-Zygmund operator was intro-

duced.
To state the main results of [24] we need some additional preparations. Given a

weight function w(x) on (0,∞), consider the following set of conditions:

sup
r>0

(∫ ∞

r

w(x)px−p(γ+3/2) dx

)1/p(∫ r

0
w(x)−p′

xp′(γ+1/2) dx

)1/p′

< ∞, (2.4)

sup
r>0

(∫ r

0
w(x)pxp(α+1/2) dx

)1/p(∫ ∞

r

w(x)−p′
x−p′(α+3/2) dx

)1/p′

< ∞, (2.5)

sup
0<u<v<2u

1

v − u

(∫ v

u

w(x)p dx

)1/p(∫ v

u

w(x)−p′
dx

)1/p′

< ∞. (2.6)

We admit 1 ≤ p ≤ ∞ when considering (2.4) and (2.5), and 1 ≤ p < ∞ when con-
sidering (2.6). Here and later on, for p = 1 or p = ∞, integrals of the form appearing
in (2.4)–(2.6) have the usual interpretation. For example, when p = 1, the second
factor in (2.4) is taken as ess supx∈(0,r)[w(x)−1xγ+1/2].

Theorem 2.1 ([24]) Let α,γ > −1, α �= γ , and 1 < p < ∞ if |α − γ | �= 2k for every
k ∈ N, or 1 ≤ p ≤ ∞ if |α − γ | = 2k for some k ∈ N. Let w(x) be a weight on
R+ that satisfies: condition (2.4) if α = γ + 2k for some k ∈ N; condition (2.5) if
γ = α + 2k for some k ∈ N; conditions (2.4), (2.5) and (2.6) if |α − γ | �= 2k for every
k ∈ N. Then

‖Tαγ f ‖p,w ≤ C‖f ‖p,w, f ∈ L2 ∩ Lp(R+,w). (2.7)

Consequently, for 1 ≤ p < ∞, Tαγ extends to a bounded linear operator on
Lp(R+,w).

It may be seen that for a power weight function w(x) = xa , a ∈ R, (2.4) is satisfied
if and only if a < − 1

p
+ (γ + 3

2 ), (2.5) is satisfied if and only if a > −(α + 1
2 ) − 1

p

and (2.6) is satisfied for each a ∈ R.

Corollary 2.2 Let α,γ > −1, α �= γ , and 1 < p < ∞. If −min{α,γ }−1/p−1/2 <

a < 3/2 − 1/p + min{α,γ }, then the inequalities

‖Tαγ f ‖p,a ≤ C‖f ‖p,a and ‖Tγαf ‖p,a ≤ C‖f ‖p,a

hold with C independent of f ∈ L2 ∩ Lp(R+, xa).

In order to obtain weak type (1,1) inequalities for the transplantation operator
Tα,γ assumptions similar to those in (2.4) and (2.5) must be imposed. We refer the
reader to [24] where a relevant theorem is stated and proved.
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As was already pointed out, Kαγ is a standard CZ kernel whenever α,γ ≥
1/2, |α − γ | �= 2k, k = 0,1,2, . . . . Consequently, in such a case further mapping
properties of Tαγ follow by a general theory, cf. [8, Chap. 6]. For instance, Tαγ ex-
tends to a bounded operator from H 1(R+) to L1(R+), where H 1(R+) denotes the
real Hardy space on R+. It is worth noting that Kanjin [16] has recently proved a
stronger result: Tαγ extends to a bounded operator on H 1(R+) whenever α ≥ −1/2
and γ > −1/2. His proof was based on Schindler’s explicit integral representation
of Tαγ , atomic decomposition of H 1-functions and a molecular characterization of
H 1(R+).

Moreover, Kanjin [17] applied the Hankel transform transplantation operator Tαγ

to define and investigate Cesàro operators Cα
γ for the Hankel transform proving their

boundedness on Lp and H 1 spaces under appropriate assumptions on α and γ .
As was already mentioned in the introductory section, a typical application of

transplantation theorems is for multipliers. In the context of Hankel transform we say
that a bounded measurable function m on R+ is an Lp(R+,w) multiplier for Hα ,
α > −1, and we write m ∈ Mα

p,w , provided

‖Hα(mHαf )‖p,w ≤ C‖f ‖p,w, f ∈ L2 ∩ Lp(R+,w). (2.8)

Repeating an argument from Sect. 1 that led to justification of (1.1) and using Corol-
lary 2.7 shows the following.

Proposition 2.3 Let α > −1 and 1 < p < ∞. If

−α − 1/p − 1/2 < a < 3/2 − 1/p + α,

then

Mα
p,a = Mγ

p,a, γ > α.

In particular, for α = −1/2 one has M−1/2
p,a = Mγ

p,a for any γ > − 1
2 and − 1

p
<

a < 1 − 1
p

. Consequently, we are enabled to derive weighted Lp multiplier results

with power weight xa , − 1
p

< a < 1 − 1
p

, for the Hankel transform of an arbitrary

order γ > − 1
2 , by applying known results (for instance those in [23]) for the Fourier

transform, modified in an obvious way to the cosine transform that corresponds to
α = − 1

2 , see [23, Corollary 2.3].
The modified Hankel transform Hα , α > −1, is defined for any suitable function

f on (0,∞) by

Hαf (x) =
∫ ∞

0

Jα(xy)

(xy)α
f (y)y2α+1dy, x > 0.

When α = n−2
2 , n ≥ 1, Hα becomes the radial part of the Fourier transform on R

n,

Fng(x) = (2π)−n/2
∫

Rn

g(y)e−ixydy, x ∈ R
n,
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in the sense that H(n−2)/2f (|x|) = Fng(x), 0 �= x ∈ R
n, where g(y) = f (|y|),

y ∈ R
n. In particular,

H−1/2f (|x|) = H−1/2f (|x|) = F1g(x) = Cg(x), x ∈ R, x �= 0.

For any α > −1 one has

Hαf (x) = xα+1/2Hα((·)−(α+1/2)f (·))(x),

for any appropriate f , and Hα extends to an isometric isomorphism of L2(R+, dμα),
dμα(x) = x2α+1dx.

Multiplier spaces Mα
p,w associated to the transform Hα may be defined in a sim-

ilar way as Mα
p,w , i.e. by (2.8) with replacement of Hα by Hα and Lp(R+,w) by

Lp(R+,wdμα). It occurs, however, that in order to relate both classes of multipliers
a modification has to be done in the definition (2.8) and its Hα counterpart, by replac-
ing the testing function space L2 ∩ Lp(R+,w) by Hα(C∞

0 ), the image of C∞
0 under

Hα , and similarly, L2 ∩ Lp(R+,wdμα) by Hα(C∞
0 ). This approach was undertaken

by Stempak and Trebels [32]. With modifications described above, one has

Mα
p,b = Mα

p,b+(2α+1)( 1
p

− 1
2 )

,

α ≥ −1/2, b ∈ R, 1 < p < ∞, and, what is also important, Hα(C∞
0 ) is dense in

Lp(R+, xb) provided b > − 1
p

− (α + 1
2 ), while Hα(C∞

0 ) is dense in Lp(R+, xbdμα)

provided b > − 2
p
(α + 1). (See Theorem 4.7 and Corollary 4.8 in [32] with regard to

different notation used there.)

2.2 Dunkl Transform

The Dunkl transform is an integral transform that generalizes the Euclidean Fourier
transform in a framework of some symmetries on R

d related to a finite reflection
group. For details see references in [26]. The simplest case of such a situation occurs
when d = 1 and the reflection group is isomorphic with Z2. The only (nontrivial) re-
flection is then given by x �→ −x and the so called multiplicity function is represented
by a number parameter. In what follows we restrict our attention to this simplest case
of the Dunkl transform.

Given α > −1 and a suitable function f on R, its Dunkl transform Dαf is defined
by

Dαf (λ) =
∫

R

f (x)
1

2(xλ)α

(
Jα(xλ) − iJα+1(xλ)

) |x|2α+1 dx, λ ∈ R. (2.9)

See [26] for details concerning this convenient representation of the discussed trans-
form and for an explanation why α > −1 (rather than α ≥ −1/2) is admitted. A sim-
ple calculation based on the identities (2.1) shows that D−1/2 = F1.

We will express Dα in terms of Hankel transforms of orders α and α + 1. For a
function f on R we denote by fe and fo the restrictions to R+ of its even and odd



416 J Fourier Anal Appl (2011) 17:408–430

parts, respectively, i.e. the functions on R+ defined by

fe(x) = 1

2

(
f (x) + f (−x)

)
, fo(x) = 1

2

(
f (x) − f (−x)

)
, x > 0.

A short computation then shows that given α > −1, we have

Dαf (λ) = |λ|−(α+1/2)
(

Hα

(
(·)α+1/2fe

)
(|λ|)

− i(sgnλ)Hα+1
(
(·)α+1/2fo

)
(|λ|)). (2.10)

Nowak and Stempak [26] introduced the following definition suggested by (2.10).

Definition 2.1 For α > −1 and a suitable function f on R we define Dαf by

Dαf (λ) = Hα(fe)(|λ|) − i(sgnλ)Hα+1(fo)(|λ|), λ ∈ R, (2.11)

and call it the modified Dunkl transform of f of order α.

Observe that for α = −1/2 we have D−1/2 = D−1/2 = F1 and one recovers in
(2.11) the decomposition

F1f (λ) = Cfe(|λ|) − i(sgnλ)Sfo(|λ|),
where C and S are the cosine and sine transforms on R+, respectively. The inverse
Dunkl and inverse modified Dunkl transforms of order α is defined by

Ďαf (λ) = Dαf (−λ), Ďαf (λ) = Dαf (−λ), λ ∈ R.

It is known that for α > −1 and any f ∈ C∞
c (R \ {0}) we have

‖Dαf ‖L2(R) = ‖f ‖L2(R), ‖Dαf ‖L2(R, dμα) = ‖f ‖L2(R, dμα), (2.12)

and

Ďα(Dαf ) = Dα(Ďαf ) = f, Ďα(Dαf ) = Dα(Ďαf ) = f. (2.13)

In the sequel we will use the same symbols Dα, Ďα, Dα, Ďα , to denote the exten-
sions of the relevant transforms and inverse transforms to isometric isomorphisms on
L2(R) or L2(R, dμα), respectively.

In this subsection we work simultaneously with functions on R and R+ therefore
to avoid possible collisions we shall write Lp(R,w), Lp(R,wdμα) and Lp(R+,w),
Lp(R+,wdμα) to distinguish Lp weighted spaces on both domains.

Similarly to the Hankel transform setting, given α,γ > −1, α �= γ , we shall call
the operator

Tαγ = Ďα ◦ Dγ

the Dunkl transform transplantation operator. Note that Tαγ is a well defined isomet-
ric isomorphism on L2(R). Nowak and Stempak [26] related a weighted inequality
for the Hankel transform transplantation operator

‖Tαγ g‖Lp(R+,w) ≤ Cαγ ‖g‖Lp(R+,w), g ∈ L2 ∩ L
p

Lp(R+,w)
, (2.14)
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with that for Tαγ .

Proposition 2.4 ([26]) Let α,γ > −1, α �= γ , 1 ≤ p < ∞ and a weight w on R+ be
given. Then

‖Tαγ f ‖Lp(R,w(|·|)) ≤ C‖f ‖Lp(R,w(|·|)), f ∈ L2 ∩ Lp(R,w(| · |)), (2.15)

holds if and only if (2.14) and the analogous inequality with α and γ replaced by
α + 1 and γ + 1 are satisfied (w(| · |) denotes the weight w(|x|) on R).

The result of [24, Theorem 2.1] specified to power weights w(x) = xa , x > 0,
a ∈ R, one of the indices α �= γ equal to ±1/2 and p > 1 gives the following: if
α = −1/2, then − 1

p
< a < γ +3/2− 1

p
is sufficient for (2.14) to hold with w(x) = xa

and, similarly, if α = 1/2, then −1 − 1
p

< a < γ + 5/2 − 1
p

is sufficient for (2.14)
to hold with w(x) = xa and γ replaced by γ + 1; if γ = −1/2, then −(α + 1/

2) − 1
p

< a < 1 − 1
p

is sufficient for (2.14) to hold with w(x) = xa and, similarly,

if γ = 1/2, then −(α + 3/2) − 1
p

< a < 2 − 1
p

is sufficient for (2.14) to hold with
w(x) = xa and α + 1 replacing α. Therefore, as a consequence of Proposition 2.4 we
obtain the following (note that the case of α = −1/2 is trivially included).

Corollary 2.5 Let 1 < p < ∞, α > −1. Then

‖Tα,−1/2f ‖Lp(R,|x|a) ≤ C‖f ‖Lp(R,|x|a), f ∈ L2 ∩ Lp(R, |x|a),

provided that −(α + 1/2) − 1
p

< a < 1 − 1
p

, and

‖T−1/2,αf ‖Lp(R,|x|a) ≤ C‖f ‖Lp(R,|x|a), f ∈ L2 ∩ Lp(R, |x|a),

provided that − 1
p

< a < α + 3/2 − 1
p

.

Analogously to the situation of Hankel multipliers we incorporate the following
definition of Dunkl multipliers. Let α > −1, 1 ≤ p < ∞ and a weight w on R be
given. We say that a bounded measurable function m on R is an:

(i) Lp(R,w dμα) multiplier for Dα provided that

∥∥Ďα(mDαf )
∥∥

Lp(R,wdμα)
≤ A‖f ‖Lp(R,wdμα), f ∈ L2 ∩ Lp(R,wdμα);

(2.16)
(ii) Lp(R,w) multiplier for Dα provided that

∥∥Ďα(mDαf )
∥∥

Lp(R,w)
≤ B‖f ‖Lp(R,w), f ∈ L2 ∩ Lp(R,w). (2.17)

It is now clear that the spaces of weighted (modified) Dunkl multipliers are indepen-
dent of α > −1 for any given 1 < p < ∞ and an appropriate weight w. Consequently,
Corollary 2.5 leads to the following.
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Corollary 2.6 Let α > −1, 1 < p < ∞ and

−min{0, α + 1/2} − 1/p < a < 1 − 1/p + min{0, α + 1/2}.
Then m is an Lp(R, |x|a) multiplier for Dα if and only if m is an Lp(R, |x|a) multi-
plier for the Fourier transform F1.

Finally, it may be easily noted that m is an Lp(R,w) multiplier for Dα if and only
if m is an Lp(R,w∗dμα) multiplier for Dα , where w∗(x) = w(x)|x|−(2α+1)(1/p−1/2).
Thus, known multiplier results for the Fourier transform deliver also multiplier results
the Dunkl transform Dα , α > −1.

2.3 Fourier-Bessel Expansions

Given ν > −1 let λn,ν , n = 1,2, . . . , denote the sequence of successive positive zeros
of the Bessel function Jν(z). Then the functions

ψν
n (x) = dn,ν(λn,νx)1/2Jν(λn,νx), dn,ν = √

2|λ1/2
n,ν Jν+1(λn,ν)|−1,

n = 1,2, . . . , form a complete orthonormal system in L2((0,1), dx). In particular,

ψ
−1/2
n (x) = √

2 cos(π(n − 1/2)x), ψ
1/2
n (x) = √

2 sin(πnx),

for n = 1,2, . . . . Given a function f on (0,1), we associate its Fourier-Bessel series

f (x) ∼
∞∑

1

cν
n(f )ψν

n (x), cν
n(f ) =

∫ 1

0
f (x)ψν

n (x) dx,

provided that the coefficients cν
n(f ) exist (i.e., the defining integrals are absolutely

convergent). A comprehensive study of Fourier-Bessel expansions is contained in
Chap. XVII of Watson’s monograph [36].

Given μ > −1, ν > −1, we define the transplantation operator Tμν on L2((0,1),

dx) by

Tμνf =
∞∑

n=1

〈f,ψμ
n 〉ψν

n , f ∈ L2((0,1), dx).

A transplantation theorem for Fourier-Bessel expansions is contained in Theo-
rem A of Gilbert’s paper [11]. This theorem states a general result of transplanta-
tion type for operators with kernels satisfying a number of “natural” conditions. The
Fourier-Bessel expansions fit into that frame and, moreover, a proper modification of
Gilbert’s argument leads to a more general weighted result with Ap weights involved,
cf. [12].

In [5] Ciaurri and Stempak proved a transplantation result for Fourier-Bessel series
by following Muckenhoupt’s approach from [22]. This approach allowed to consider
power weights. In [6] the authors used the theory of CZ operators to include general
weights. To be precise, the transplantation operator Tμν occurred to be a Calderón–
Zygmund operator only for μ,ν ≥ 1/2. Since the Fourier-Bessel expansions should
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be treated as discrete analogues of the Hankel transforms it is also interesting to note
that the approach used in [6] was a natural counterpart to the approach developed
in [24] for the Hankel transform.

The main results of [6] reads as follows.

Theorem 2.7 ([6]) Let μ,ν > −1, μ �= ν, and 1 < p < ∞. Let w(x) be a weight on
(0,1) that satisfies the conditions (2.4) and (2.5) modified by replacing ∞ by 1, and
(2.6) modified by replacing 2u by min{1,2u}. Then

‖Tμνf ‖p,w ≤ C‖f ‖p,w, f ∈ L2 ∩ Lp((0,1),w). (2.18)

Consequently, Tμν extends uniquely to a bounded linear operator on Lp((0,1),w)

and, using the same symbol Tμν to denote this extension, for f ∈ Lp((0,1),w),

〈Tμνf,ψν
n 〉 = 〈f,ψμ

n 〉, n = 1,2, . . . . (2.19)

2.4 Jacobi expansions

Given α > −1, β > −1, consider the orthonormalized Jacobi polynomials

φ(α,β)
n (θ) = t (α,β)

n P (α,β)
n (cos θ) sinα+1/2(θ/2) cosβ+1/2(θ/2), n ∈ N,

(seemingly more appropriate term “Jacobi functions” would be, alas, confusing),
where

t (α,β)
n =

(
(2n + α + β + 1)�(n + 1)�(n + α + β + 1)

�(n + α + 1)�(n + β + 1)

)1/2

(for n = 0 and α + β = −1 the product (2n + α + β + 1)�(n + α + β + 1) must
be replaced by �(α + β + 2)). The functions φ

(α,β)
n (θ), n = 0,1, . . . , form a com-

plete orthonormal system in L2((0,π), dθ). They are also the eigenfunctions of the
symmetric in L2((0,π), dθ) differential operator

Lα,β = d2

dθ2
+

{
1/4 − α2

4 sin2(θ/2)
+ 1/4 − β2

4 cos2(θ/2)

}
, (2.20)

cf. [33, (4.24.2)], with eigenvalues −μ2
n, μn = n + α+β+1

2 , i.e.,

Lα,βφ(α,β)
n (θ) = −μ2

nφ
(α,β)
n (θ). (2.21)

Given (α,β) and (γ, δ) with α,β, γ, δ ∈ (−1,∞), we define the transplantation op-
erator T = T (α,β),(γ,δ) on L2((0,π), dx) by the convergent in L2((0,π), dx) series

Tf =
∞∑

n=0

〈f,φ
(γ,δ)
n 〉φ(α,β)

n .

Clearly, T is an L2 isometry which becomes the identity operator when (α,β) =
(γ, δ).
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A transplantation theorem for Jacobi expansions was first obtained by Askey [1]
following an earlier result for ultraspherical expansions [2]. Then Muckenhoupt [22]
substantially enhanced Askey’s result in several directions: by considering the largest
possible range of Jacobi parameters, admitting fairly general class of weights for Lp

estimates (a class which is different from the usual Ap class), introducing a shift
in the order parameter of Jacobi orthonormalized polynomial, adding a multiplier
sequence, and, eventually, by assuming moment conditions.

For the sake of convenience we now state a simplified version of Muckenhoupt’s
transplantation theorem; in [22, Theorem (1.14)] we choose s = d = M = N = 0 and
g(n) ≡ 1.

Theorem 2.8 ([22]) Let α,β, γ, δ ∈ (−1,∞), 1 < p < ∞, and w(x) be a weight on
(0,π) such that

(∫ v

u

[
w(x)xα+1/2(π − x)β+1/2]p dx

)1/p

×
(∫ v

u

[
w(x)−1xγ+1/2(π − x)δ+1/2]p′

dx

)1/p′

≤ C(v − u)vα+γ+1(π − u)β+δ+1, 0 ≤ u < v ≤ π. (2.22)

Then, given f ∈ Lp((0,π),w) and 0 < r < 1, the series

Trf (x) =
∞∑

n=0

rn〈f,φ
(γ,δ)
n 〉φ(α,β)

n (x)

converges for every x ∈ (0,π), the inequality

(∫ π

0

∣∣Trf (x)w(x)
∣∣p dx

)1/p

≤ C

(∫ π

0
|f (x)w(x)|p dx

)1/p

holds with C independent of r and f , and there is a function Tf ∈ Lp((0,π),w)

such that Trf converges to Tf in Lp((0,π),w) as r → 1−. If it is also assumed that
∫ π

0

[
w(x)−1xα+1/2(π − x)β+1/2]p′

dx < ∞, (2.23)

then

〈Tf,φ(α,β)
n 〉 = 〈f,φ

(γ,δ)
n 〉.

Note that if wa,b is a double power weight of the form

wa,b(x) = xa(π − x)b or wa,b(x) = sina(x/2) cosb(x/2),

a, b real, then for such a weight condition (2.22) is equivalent to

− α − 1/2 − 1/p < a < γ + 3/2 − 1/p,

− β − 1/2 − 1/p < b < δ + 3/2 − 1/p,
(2.24)
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see [22, Corollary 17.11], whereas condition (2.23) holds if and only if a < α + 3/

2−1/p and b < β +3/2−1/p. Note also that for α = β = γ = δ = −1/2, condition
(2.22) becomes simply the usual Ap condition for wp .

Recently Miyachi [20] extended Muckenhoupt’s result to the setting of weighted
Hardy spaces H

p
a,b(0,1) on the interval (0,1), 0 < p ≤ 1, a, b ∈ R. He proved that

for 0 < p ≤ 1, −1 < a,b < p − 1 and α,β, γ, δ > −1/2 + 2([1/p]− 1), the operator
T (α,β),(γ,δ) extends to a bounded operator on H

p
a,b(0,1). In [21] Miyachi enhanced

his previous result by introducing a shift in the order parameter of Jacobi orthonor-
malized polynomial, adding a multiplier sequence, by assuming moment conditions
(according to Muckenhoupt’s general theorem) and, eventually, by simplifying argu-
ments from the former proof.

In [7] Ciaurri, Nowak and Stempak reinvestigated Muckenhoupt’s transplantation
theorem by means of a suitable variant of Calderón-Zygmund operator theory. An
essential novelty of that paper was weak type (1,1) estimate for the Jacobi transplan-
tation operator, located in a fairly general weighted setting. Moreover, Lp estimates
were proved for a class of weights that contains the class admitted in Muckenhoupt’s
theorem.

The procedure applied in [7] consisted of the following. It is easily seen that the
operator

Trf (x) =
∞∑

n=0

rn〈f,φ
(γ,δ)
n 〉φ(α,β)

n (x), f ∈ L2((0,π), dx), x ∈ (0,π),

0 < r < 1, is an integral operator with the kernel

Lr(x, y) =
∞∑

n=0

rnφ(α,β)
n (x)φ

(γ,δ)
n (y), x, y ∈ (0,π),

that is

Trf (x) =
∫ π

0
Lr(x, y)f (y) dy, x ∈ (0,π).

It was then proved in [7, Proposition 3.3] that the limit

L(x, y) = lim
r→1− Lr(x, y)

exists for every x �= y, 0 < x,y < π (a Darboux type asymptotic formula of higher
order for Jacobi polynomials was used as a crucial tool) and satisfies relevant esti-
mates (inherited from those proved earlier for Lr(x, y)). These estimates consist of
the usual growth and smoothness conditions for comparable x and y, and another
estimates (which fit into Hardy’s integral operators) in the regions of 0 < x,y < π ,
where x and y are not comparable. Finally, it was shown, [7, Proposition 3.4] that
L(x, y) is associated with T in the sense of CZ theory. It has to be stressed that for
α,β, γ, δ ≥ 1/2, L(x, y) is a usual CZ kernel and then T is a (usual) CZ operator.
But if one of the parameters α,β, γ, δ is in (−1,1/2), then T is only a double local
CZ operator (a notion introduced in [7]). Nevertheless treating T as a double local
CZ operator brings an advantage by allowing more weights.
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It is instructive to see an explicit formula of L(x, y) in some particular cases
of the parameters α,β, γ, δ. For instance, for (α,β) = (−1/2,−1/2) and (γ, δ) =
(1/2,1/2) we have

L(x, y) =
√

2 − 1

π
siny + 1

π
cosy

siny

cosy − cosx
.

Also, for (γ, δ) = (β,α), α,β > −1, one has

L(α,β),(β,α)(x, y) = 2�((α + β + 2)/2)

�(α + 1)�((β − α)/2)

(
�(x,y)

)α+1/2(
�(y,x)

)−(α+3/2)

× 2F1

(
α + β + 2

2
,
α − β + 2

2
;α + 1;

(
�(x,y)

�(y, x)

)2)
,

where �(x,y) = 2 sin(x/2) cos(y/2). It is also worth to point out that there is a
striking coincidence between L(α,β),(β,α) and the Hankel transform transplantation
kernel Kαβ . Namely, we have

L(α,β),(β,α)(x, y) = Kαβ

(
�(x,y),�(y, x)

)
.

2.5 Laguerre Expansions

Let Lα
n denote the nth Laguerre polynomial of order α > −1, see [19, p. 76]. The

Laguerre functions Lα
n(x) are then defined by

Lα
n(x) =

(
n!

�(n + α + 1)

)1/2

e−x/2 xα/2Lα
n(x), n ∈ N.

{Lα
n}n∈N is a complete orthonormal system in L2(R+, dx). According to general pro-

cedure, for α,γ ∈ (−1,∞) consider the Laguerre transplantation operator

Tαγ f =
∞∑

n=0

〈f, Lγ
n 〉Lα

n.

In the sequel, given α,γ > −1 we denote τ = min(α, γ ).
The following theorem was proved by Kanjin.

Theorem 2.9 ([14]) Let α,γ > −1 and 1 < p < ∞. If τ ≥ 0, then

‖Tαγ f ‖p ≤ C‖f ‖p, f ∈ L2 ∩ Lp(R+).

In the case τ < 0 the above inequality holds in the restricted range (1 + τ
2 )−1 <

p < − 2
τ

.

A comment is probably in order to explain why each of the two inequalities in the
assumption (1+τ/2)−1 < p < −2/τ is natural in the case when τ < 0. Firstly, if α ≥
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0, then {Lα
n : n ∈ N} ⊂ Lp(R+) for all 1 ≤ p ≤ ∞, but for −1 < α < 0 the inclusion

holds if and only if 1 ≤ p < −2/α. Secondly, if γ ≥ 0 and 1 ≤ p ≤ ∞, then the
coefficients 〈f, Lγ

n 〉, n ∈ N, do exist for every f ∈ Lp(R+), but if −1 < γ < 0, then
the last statement remains true if and only if p > (1 + γ /2)−1. Now, fix 1 < p < ∞.
Assuming Tαγ has a bounded extension on Lp(R+) it would be natural to expect
that the extension still sends Lγ

n to Lα
n . But this simply requires the inclusion of both

systems, Lα
n and Lγ

n , n ∈ N, in Lp(R+). Hence p < −2/τ is demanded when τ < 0.
Moreover, it would be desirable to know that the extended operator still possesses the
property

〈Tαγ f, Lα
n〉 = 〈f, Lγ

n 〉, n ∈ N, (2.25)

for every f ∈ Lp(R+), as it was (trivially) in the initial case for every f ∈ L2(R+).
Proving (2.25) requires the assumption (1 + τ/2)−1 < p when τ < 0. Indeed, fix
f ∈ Lp(R+) with p satisfying (1 + τ/2)−1 < p when τ < 0, and choose fk ∈ L2 ∩
Lp(R+) such that fk → f in Lp(R+), k → ∞. Then, for any n ∈ N, 〈fk, Lγ

n 〉 →
〈f, Lγ

n 〉 (Lγ
n ∈ Lp′

(R+)!) and 〈Tαγ fk, Lα
n〉 → 〈Tαγ f, Lα

n〉 (Lα
n ∈ Lp′

(R+)!), where
Tαγ f is, by the very definition, the limit of Tαγ fk in Lp(R+). The claim follows.

Kanjin’s theorem was enhanced by Stempak and Trebels to a weighted setting.

Theorem 2.10 ([31]) Let α,γ > −1 and 1 < p < ∞. Then

‖Tαγ f ‖p,a ≤ C‖f ‖p,a, f ∈ L2 ∩ Lp(R+, xa),

where − 1
p

< a < 1 − 1
p

if τ ≥ 0, and − τ
2 − 1

p
< a < 1 − 1

p
+ τ

2 if τ < 0.

Finally, the above result was refined by Garrigos, Harboure, Signes, Torrea and
Viviani and took its final form in the power weight setting.

Theorem 2.11 ([9]) Let α,γ > −1, 1 < p < ∞ and − τ
2 − 1

p
< a < 1− 1

p
+ τ

2 . Then

‖Tαγ f ‖p,a ≤ C‖f ‖p,a, f ∈ L2 ∩ Lp(R+, xa).

We now briefly comment why the restriction on a in the above theorem is natural
and optimal at the same time. Firstly, given 1 < p < ∞, the inclusion {Lα

n : n ∈ N} ⊂
Lp(R+, xa) holds true provided −α

2 − 1
p

< a. Together with the analogous inclusion

for Lγ
n , this requires − τ

2 − 1
p

< a. Secondly, to guarantee (2.25) for the bounded

extension of Tαγ onto Lp(R+, xa) to hold, requires Lα
n, Lγ

n ∈ Lp′
(R+, x−a), n ∈ N,

to be satisfied. This forces the inequality a < 1 − 1
p

+ τ
2 .

Consider the system of Laguerre functions of Hermite type,

ϕα
n (x) = Lα

n(x2)
√

2x =
(

2n!
�(n + α + 1)

)1/2

e−x2/2 xα+1/2Lα
n(x2),

which is a complete orthonormal system in L2(R+, dx). There are several reasons to
claim that this system of Laguerre functions is more friendly in dealing with than the
previous one.
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Let Sf (x) = √
2xf (x2) be the operator defined on functions living on (0,∞).

Then S intertwines the settings of {Lα
n} and {ϕα

n } expansions in the sense that S is an
isometric isomorphism of L2(R+, dx) such that SLα

n = ϕα
n , n ∈ N. Moreover, if T L

αγ

and T
ϕ
αγ denote the transplantation operators for {Lα

n} and {ϕα
n } systems, respectively,

then

T ϕ
αγ ◦ S = S ◦ T L

αγ .

Consequently, the estimate

‖T ϕ
αγ f ‖Lp(R+,U) ≤ C‖f ‖Lp(R+,U), f ∈ Lp(R+,U),

is equivalent to the bound

‖T L
αγ f ‖Lp(R+,Ũ ) ≤ C‖f ‖Lp(R+,Ũ ), f ∈ Lp(R+, Ũ ),

where Ũ (x2) = U(x)x
1
2 − 1

p , x > 0.
Thus, the result of Theorem 2.11 is equivalent with the following statement con-

cerning the {ϕα
n }-expansions.

Proposition 2.12 Assume α,γ > −1, 1 < p < ∞, and −τ − 1
p

− 1
2 < a < 3

2 − 1
p

+τ .
Then

‖T ϕ
αγ f ‖p,a ≤ C‖f ‖p,a, f ∈ L2 ∩ Lp(R+, xa).

Note that there is a striking coincidence of the restriction imposed above on a

with that required for a for the weighted Hankel transplantation theorem to hold with
power weight xa , see Corollary 2.2. This coincidence together with the transference
result contained in Theorem 3.2, strongly suggested a necessity of enlarging the usual
Ap interval (− 1

p
,1− 1

p
) of admissible exponents to the larger one, (− τ

2 − 1
p
,1− 1

p
+

τ
2 ) (when τ > 0) in Proposition 2.12 and thus in Theorem 2.11.

It would be challenging to furnish a proof of the Laguerre transplantation theorem
in the context of {ϕα

n }-expansions, α > −1, based on kernel estimates.
Finally we add that a multi-dimensional (unweighted) transplantation theorem for

expansions with respect to tensor products of Laguerre functions of Hermite type was
considered by Thangavelu [34, 35]. The multi-dimensional case of Lp estimate was
first reduced to the one-dimensional situation and then further reduced to a weighted

setting of {Lα
n}-expansions with power weight x

1
4 − 1

2p involved; all this was done

with the restriction α,γ ≥ −1/2. Note that the case of the weight x
1
4 − 1

2p was later
included as a special case in weighted transplantation theorems mentioned above.

For applications of weighted Laguerre transplantation see [10].

3 Transference of Transplantation

It was interesting to observe that there are relations between different transplanta-
tions. This is not surprising once we realize that a transplantation theorem is some-
thing “more” than a multiplier theorem. Transference of multiplier results was known



J Fourier Anal Appl (2011) 17:408–430 425

for a long time; for example, a transference of multipliers from either Jacobi or La-
guerre expansion setting to Hankel transform context was proved in [15, 28].

With the notation ‖ · ‖p,a,b = ‖f ‖Lp(wa,b), where wa,b(x) = sina(x/2) cosb(x/2),
the following transference result between Jacobi and Hankel transplantations was
proved.

Theorem 3.1 ([29]) Let 1 < p < ∞, a, b ∈ R, and α,β, γ, δ > −1. If the Jacobi
transplantation inequality

∥∥∥∥∥

∞∑

0

〈f,φ
(γ,δ)
n 〉φ(α,β)

n

∥∥∥∥∥
p,a,b

≤ C‖f ‖p,a,b, f ∈ C∞
c (0,π),

holds, then the Hankel transplantation inequality

‖(Hα ◦ Hγ )f ‖p,a ≤ C‖f ‖p,a, f ∈ C∞
c (0,∞),

is also satisfied (with the same constant C).

Similarly, transference between Laguerre and Hankel transplantations was estab-
lished.

Theorem 3.2 ([29]) Let 1 < p < ∞, a ∈ R, and α,γ > −1. If the Laguerre trans-
plantation inequality

∥∥∥∥∥

∞∑

0

〈f,ϕ
γ
n 〉ϕα

n

∥∥∥∥∥
p,a

≤ C‖f ‖p,a, f ∈ C∞
c (0,∞),

holds, then the Hankel transplantation inequality

‖(Hα ◦ Hγ )f ‖p,a ≤ C‖f ‖p,a, f ∈ C∞
c (0,∞),

is also satisfied (with the same constant C).

Finally, transference between Fourier-Bessel and Hankel transplantations was de-
rived by Betancor and Stempak.

Theorem 3.3 ([4]) Let 1 < p < ∞, a ∈ R, and ν,μ > −1. If the Fourier-Bessel
transplantation inequality

∥∥∥∥∥

∞∑

n=1

〈f,ψμ
n 〉ψν

n

∥∥∥∥∥
p,a

≤ C‖f ‖p,a, f ∈ C∞
c (0,1),

holds, then the Hankel transplantation inequality

‖(Hν ◦ Hμ)f ‖p,a ≤ C‖f ‖p,a, f ∈ C∞
c (0,∞),

is also satisfied (with the same constant C).
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It should be stressed that functions defined by the series appearing in the right-
hand sides of the transplantation inequalities in Theorems 3.1–3.3 are understood
as pointwise sums of the relevant series: smoothness and support compactness of f

ensure everywhere convergence. Also Hν(Hμf ) is well defined for f ∈ C∞
c (0,∞);

for details concerning an explanation of the last claim, see [4, 28].
Main tools used in the proofs of Theorems 3.1 and 3.2 were Hilb’s asymptotic

formulae, [33, Theorems 8.22.4, 8.21.12], written in the form:

• ϕα
n (t) = √

2t Jα(2n1/2t) +
{

O(tn−3/4), cn−1/2 ≤ t ≤ ω,

O(tα+1/2nα/2−1), 0 < t < cn−1/2;

• ψ
(α,β)
n (t) = (nt)1/2Jα(nt) +

{
O(t), cn−1 ≤ t ≤ π − ε,

O(tα+1/2nα−1/2), 0 < t < cn−1.

In the first formula above α > −1, and c and ω are arbitrarily fixed positive constants,
while in the second one, α,β > −1, and c and ε < π are fixed positive constants. In
the proof of Theorem 3.3 a natural connection between the functions ψν

n and the
Bessel function Jν , together with an asymptotic of the sequence of zeros λn,ν , was
used.

A detailed analysis of different aspects of transference between Fourier-Bessel
expansions and Hankel transform was presented by Betancor in the survey article [3].

4 Generalized Transplantation and Conjugacy

In this section we shall consider an extension of the notion of transplantation dis-
cussed in Sect. 1. As in the beginning of the article let {{φα

n }n∈N : α ∈ A} be a family
of orthonormal bases in L2(X,dm). Assume also that d ∈ Z and a bounded sequence
g(n) (usually satisfying in addition a smoothness condition) are fixed. Consider the
generalized transplantation operator T

d,g
αβ given by the mapping

T
d,g
αβ : φβ

n �→ g(n)φα
n+d , n ∈ N,

and then extended by linearity to a bounded operator on L2(X,dm). Here we use
the convention: φα

n+d ≡ 0 for n + d /∈ N. This is indeed a rich generalization that
includes:

• usual transplantation operator if g(n) ≡ 1 and d = 0;
• shift operators if g(n) ≡ 1, d = ±1 and α = β;
• multiplier operator if d = 0 and α = β;
• some conjugacy operators if d = ±1 and a relation between α and β holds.

The first generalized transplantation theorem was proved in the context of Jacobi
expansions by Muckenhoupt, cf. [22, Theorem (1.14)]. The theorem says that given
α,β, γ, δ > −1, d ∈ Z, and a sequence g(n) that satisfies

g(n) =
J−1∑

j=0

cj (n + 1)−j + O((n + 1)−J ),
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with some constants cj and a sufficiently large J , the operator given by the mapping

T
d,g

(α,β),(γ,δ)
: φ(γ,δ)

n �→ g(n)φ
(α,β)
n+d , n ∈ N,

extends to a bounded operator on Lp((0,π),w), 1 < p < ∞, for a fairly large class
of admissible weights w.

As a (basic) example of a situation where a conjugacy operator may be seen as a
generalized transplantation operator, consider a family of the two complete orthonor-
mal systems in L2(0,π):

• φ
(1)
n (x) = (2/π)1/2 sin((n + 1)x), n ∈ N;

• φ
(2)
0 (x) = (1/π)1/2, φ

(2)
n (x) = (2/π)1/2 cosnx, n ≥ 1.

The M. Riesz inequality for the classic conjugate operator given by the mapping
sinnx �→ cosnx, n ≥ 1,

∫ π

0

∣∣∣∣∣
∑

n≥1

bn cosnx

∣∣∣∣∣

p

dx ≤ C
p
p

∫ π

0

∣∣∣∣∣
∑

n≥1

bn sinnx

∣∣∣∣∣

p

dx,

1 < p < ∞, may be viewed as the transplantation inequality

∥∥∥∥∥

∞∑

n=0

anφ
(2)
n+1

∥∥∥∥∥
p

≤ Cp

∥∥∥∥∥

∞∑

n=0

anφ
(1)
n

∥∥∥∥∥
p

for the generalized transplantation operator determined by the mapping φ
(1)
n �→ φ

(2)
n+1.

As an other example consider the conjugacy operator for Jacobi expansions deter-
mined by

φ(α,β)
n �→ (n(n + α + β + 1))1/2

n + (α + β + 1)/2
φ

(α+1,β+1)

n−1 , n ∈ N, (4.1)

which was defined and investigated in [30]. Definition (4.1) was motivated by an
attempt to relate both, the appropriately defined Poisson and the conjugate Poisson
integrals of a given function f , into generalized Cauchy-Riemann type equations. It
was proved in [30], by using Muckenhoupt’s general transplantation theorem, that for
α,β > −1 and 1 < p < ∞, the mapping given by (4.1) extends to a bounded operator
on Lp((0,π),wa,b),

∥∥∥∥∥

∞∑

n=0

(n(n + α + β + 1))1/2

n + (α + β + 1)/2
anφ

(α+1,β+1)

n−1

∥∥∥∥∥
Lp(wa,b)

≤ C(α,β)
p

∥∥∥∥∥

∞∑

n=0

anφ
(α,β)
n

∥∥∥∥∥
Lp(wa,b)

,

(4.2)
provided a and b satisfy

−(α + 3/2) − 1/p < a < (α + 3/2) − 1/p,

−(β + 3/2) − 1/p < b < (β + 3/2) − 1/p.
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Note that

φ
(−1/2,−1/2)
n = φ(2)

n , φ
(1/2,1/2)
n = φ(1)

n , n ∈ N,

hence for (α,β) = (−1/2,−1/2) one recovers the complementary classic conjugacy
operator given by the mapping

cosnx �→ sinnx, n ≥ 0,

that acts on functions living on (0,π). More precisely, this operator should be con-
sidered (up to the multiplicative constant −i) as a restriction to the space of odd
functions on (−π,π) of the indeed classic conjugate operator given by einθ �→
(−i) sgnneinθ . (In the same way, the abovementioned mapping sinnx �→ cosnx,
n ≥ 1, should be considered as a restriction to the space of even functions on (−π,π)

of the classic conjugate operator.) Moreover, (4.2) specified to α = β = −1/2,
a = b = 0, reads

∥∥∥∥∥

∞∑

n=0

anφ
(1)
n−1

∥∥∥∥∥
p

≤ Cp

∥∥∥∥∥

∞∑

n=0

anφ
(2)
n

∥∥∥∥∥
p

,

which includes the complementary M. Riesz inequality for the classic conjugate op-
erator given by the mapping cosnx �→ sinnx, n ≥ 1,

∫ π

0

∣∣∣∣∣
∑

n≥1

bn sinnx

∣∣∣∣∣

p

dx ≤ C
p
p

∫ π

0

∣∣∣∣∣
∑

n≥1

bn cosnx

∣∣∣∣∣

p

dx.

In [25] a conjugacy operator for expansions with respect to the Laguerre function
system {ϕα

n }, and determined by

ϕα
n �→ −2

(
n

4n + 2α + 2

)1/2

ϕα+1
n−1 , (4.3)

was defined and investigated (actually, in [25] the multi-dimensional situation was
considered). Again this may be viewed as generalized transplantation operator with
d = −1 and g(n) = −2(n/(4n+ 2α + 2))1/2. It was proved in [25, Theorem 3.4] that
for α ≥ −1/2 the operator initially defined on L2(R+) by (4.3), extends to a bounded
operator on Lp(R+,w) if 1 < p < ∞, and to a bounded operator from L1(R+,w) to
L1,∞(R+,w) if p = 1, for a large class of weights w.

It would be desirable to furnish a proof of a general transplantation theorem for
the systems {ϕα

n }, α > −1, with the above result as a consequence.
We hope this article showed transplantation theorems as a beautiful and active

area of pure mathematics. Nevertheless, in the authors opinion it is unlikely to find
applications in “real life”, in particular in transplantology [18].
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