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Abstract We prove that there does not exist an orthonormal basis {bn} for L2(R)

such that the sequences {μ(bn)}, {μ(̂bn)}, and {�(bn)�(̂bn)} are bounded. A higher
dimensional version of this result that involves generalized dispersions is also ob-
tained. The main tool is a time-frequency localization inequality for orthonormal se-
quences in L2(Rd). On the other hand, for d > 1 we construct a basis {bn} for L2(Rd)

such that the sequences {μ(bn)}, {μ(̂bn)}, and {�(bn)�(̂bn)} are bounded.
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1 Introduction

1.1 Preliminaries and Known Results

Let f ∈ L2(R), ‖f ‖2 = 1, then

μ(f ) =
∫

R
t |f (t)|2dt and �(f ) =

(∫

R
(t − μ(f ))2|f |2dt

)1/2

Communicated by John J. Benedetto.

The author is supported by the Research Council of Norway, grants 160192/V30 and 177355/V30.

E. Malinnikova (�)
Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491,
Trondheim, Norway
e-mail: eugenia@math.ntnu.no

mailto:eugenia@math.ntnu.no


984 J Fourier Anal Appl (2010) 16: 983–1006

are called the time mean of f and the time dispersion of f respectively. The Fourier
transform of f ∈ L2(R) is defined by

̂f (ξ) =
∫

R
f (x)e−2πiξxdx.

Then μ( ̂f ) and �( ̂f ) are called the frequency mean and frequency dispersion of f .
The classical Heisenberg uncertainty principle reads

�(f )�( ̂f ) ≥ 1

4π
(1)

for any f ∈ L2 with ‖f ‖2 = 1.
Clearly,

‖xf (x)‖2
2 = μ(f )2 + �2(f ).

The Heisenberg inequality may be also written in the form

‖xf (x)‖2
2 + ‖ξ ̂f (ξ)‖2

2 ≥ 1

2π
‖f ‖2

2, (2)

where f ∈ L2(R) is arbitrary. Various versions of the uncertainty principle can be
found in the survey articles [1, 10] and in the monograph [12].

In this article we consider uncertainty inequalities for orthonormal sequences and
bases. For some of the first results related to uncertainty inequalities for orthonor-
mal bases we refer the reader to [17] and the references therein. The construction of
Y. Meyer yields a wavelet basis {φn}∞n=1 for L2(R) such that

sup
n

�(φn)�(̂φn) < +∞.

A similar basis is obtained for L2(Rd) as well, see [17] for details. J. Bourgain proved
that there is an orthonormal basis {bn}∞n=1 for L2(R) such that

�(bn),�(̂bn) <
1

2
√

π
+ ε,

see [4]. This result was generalized recently by J. Benedetto and A. Powell [2]. The
technique was also used by A. Powell to construct orthonormal bases with other prop-
erties, see [18]. The result of J. Bourgain implies that for each ε > 0 there is an or-
thonormal basis such that

sup
n

�(bn)�(̂bn) <
1

4π
+ ε,

so inequality (1) can not be improved for an orthonormal basis.
On the other hand H. Shapiro proved a number of uncertainty inequalities for

orthonormal sequences that are stronger than corresponding inequalities for a single
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function. For example, using compactness argument, see [19], one can conclude that
for any orthonormal sequence {fn}∞n=1 in L2(R)

sup
n

‖xfn‖2
2 + ‖ξ ̂fn‖2

2 = +∞, (3)

so inequality (2) can be refined for an orthonormal sequence. It is also proved in [19]
that if φ,ψ ∈ L2(R), φ,ψ ≥ 0, then any orthonormal sequence {fn} that satisfies

|fn| ≤ φ, |̂fn| ≤ ψ, (4)

is finite. This statement is referred to as the Umbrella Theorem.
Quantitative versions of H. Shapiro’s results appeared in a recent article by

Ph. Jaming and A. Powell [14], which contains in particular the following sharp Mean
Dispersion inequality.

Let {ek}nk=0 be an orthonormal sequence in L2(R) then

n
∑

k=0

(

μ(ek)
2 + �2(ek) + μ(êk)

2 + �2(êk)
)

≥ (n + 1)2

2π
. (5)

The equality is attained for the sequence of Hermite functions, see [14]. This inequal-
ity implies (3). Further, using results of D. Slepian, H.O. Pollak, and H.J. Landau on
time-frequency localization, Ph. Jaming and A. Powell give a quantitative version of
the Umbrella Theorem and obtain a number of inequalities for orthonormal basis and
also for Riesz basis for L2(R).

1.2 Motivation

Our interest in the uncertainty principles for orthonormal bases was initiated by dis-
cussions with Yu. Lyubarskii and H. Führ that led to the following question:

Does there exist an orthonormal basis for L2(R) for which both time and frequency
means are bounded and the products of dispersions are bounded?

In many instances, it is the product of dispersions that has some “physical meaning”,
but we will not speculate on this here.

It is not difficult to construct an infinite orthonormal sequence with zero time and
frequency means and bounded product of dispersions (see Example 1 in Sect. 4.1).
However the following is true.

Theorem 1 There does not exist an orthonormal basis {bn}∞n=1 for L2(R) such that
the sequences {μ(bn)}∞n=1, {μ(̂bn)}∞n=1, and {�(bn)�(̂bn)}∞n=1 are bounded.

A number of results on time-frequency localization of orthonormal sequences and
bases have been obtained by J. Benedetto in [1] and A. Powell in [18]. In particular,
another example of a condition on means and dispersions which can be satisfied by an
infinite orthonormal sequence but never by an orthonormal basis is due to A. Powell.
It is proved in [18] that there is no orthonormal basis with bounded (both) disper-
sions and bounded time means. Theorem 1 can be derived from the Mean Dispersion
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inequality. We will not do it, instead we consider a more general problem in higher-
dimensional spaces.

1.3 Main Results

The main goal of this work is to give a version of time-frequency localization that
yields a number of precise uncertainty inequalities for orthonormal sequences and
bases. The results complement those in [13, 14, 18]; our approach is simple and
works in Rd for any d . We consider the operator that first time-limits the function
and then frequency-limits it, following [20]. However we don’t need the theory of
Prolate Spheroidal Wave Functions and the celebrated 2WT approximation theorem
that was used in [14]. Instead we use an elementary calculation of the trace of the
corresponding self-adjoint operator, which can be found for example in [9, 10]. We
obtain the following localization inequality.

Theorem 2 Let {φn}Nn=1 be an orthonormal system in L2(Rd) and let T and W be
measurable subsets of Rd . Assume that

∫

T

|φn|2 = 1 − a2
n,

∫

W

|̂φn|2 = 1 − b2
n.

Then
N

∑

n=1

(

1 − 3

2
an − 3

2
bn

)

≤ |T ||W |.

This result provides a quantitative estimate for the Umbrella Theorem in Rd as
well as a number of inequalities for orthonormal sequences. For any p > 0 and φ ∈
L2(Rd) we define

τ
p
p (φ) =

∫

Rd

|x|p|φ(x)|2dx.

Clearly τp(φ) ∈ [0,+∞] and τp(φ) > 0 when φ �= 0. Hölder’s inequality implies
that τp(φ) ≤ τq(φ) when p < q and ‖φ‖2 = 1. The localization inequality implies
the following generalization of the Mean Dispersion inequality.

Theorem 3 Let p be positive and let {φn}n be an orthonormal sequence in L2(Rd).
Then

N
∑

n=1

(

τ
p
p (φn) + τ

p
p (̂φn)

) ≥ CN1+p/2d, (6)

where C depends on d and p only. Further,

∑

n

(

τp(φn) + τp(̂φn)
)−2d−ε

< +∞, (7)

for any ε > 0.
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It is well known that the Hermite functions are extremal in many problems con-
cerning the uncertainty principle, see for example [3, 10], and [14]. In Sect. 2.4 we
will use products of the Hermite functions to show that (6) is sharp up to a (multi-
plicative) constant and that (7) does not hold in general when ε = 0.

Another application of the localization principle gives a higher dimensional ver-
sion of Theorem 1. We prove the following:

Theorem 1′ Let p > d and let {bn}∞n=1 be an orthonormal basis for L2(Rd). If se-
quences {qn}∞n=1 ⊂ Rd and {rn}∞n=1 ⊂ Rd are bounded then

sup
n

∫

Rd

|x − qn|p|bn|2dx

∫

Rd

|ξ − rn|p|̂bn|2dξ = +∞.

Clearly Theorem 1 follows from Theorem 1′. The next theorem shows that the re-
striction p > d in Theorem 1′ is necessary.

Theorem 4 For p ≤ d there exists an orthonormal basis {bn}∞n=1 for L2(Rd) and
bounded sequences {qn}∞n=1 ⊂ Rd and {rn}∞n=1 ⊂ Rd such that

sup
n

∫

Rd

|x − qn|p|bn|2dx

∫

Rd

|ξ − rn|p|̂bn|2dξ < +∞. (8)

It follows from the prove that for any a > 0 we may choose such a basis with qn = 0
and |rn| ≤ a; however we will see below that no orthonormal basis satisfies (8) with
qn = rn = 0. We use an argument similar to one in [4] to prove the theorem for p < d ,
some additional technical details are needed to make the argument work for p = d .
The proof of the last theorem implies that

For d ≥ 2 there exists a basis for L2(Rd) with bounded time and frequency means
and bounded products of dispersions.

1.4 Other Uncertainty Inequalities

Various versions of the uncertainty principle are known for functions in L2(Rd). We
consider two particular inequalities. The first one is a multidimensional version of the
inequality of M.G. Cowling and J.F. Price and is due to J. Bnedetto [1]. For any a > 0
there exists K(a) > 0 such that

‖|x|af (x)‖2‖|ξ |a ̂f (ξ)‖2 ≥ K(a)‖f ‖2
2, (9)

whenever f ∈ L2(Rd). The second is a recent inequality of B. Demange [8]. Let

v(x) = |x1|α1 . . . |xd |αd , (10)

where α = (α1, . . . , αd), and αj > 0 for j = 1, . . . , d . There exists K(α) > 0 such
that

‖v(x)f (x)‖2‖v(ξ) ̂f (ξ)‖2 ≥ K(α)‖f ‖2
2, (11)
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for any f ∈ L2(Rd).
As we will show in Theorem 5, the localization inequality implies that for any

orthonormal basis {bn}∞n=1 for L2(Rd) and any a > 0

sup
n

‖|x|abn‖2‖|ξ |a ̂bn‖2 = +∞. (12)

We remark that the above statement holds for any a > 0 in contrast to Theorem 1′.
The reason is that we don’t allow any time-frequency shifts now, while in Theorem 1′
bounded shifts (qn, rn) are allowed.

Inequality (12) can be regarded as a version of the uncertainty inequality (9) for
orthonormal bases. If we consider (11) instead of (9) the situation becomes different.
We show that for any v of the form (10) there is an orthonormal basis {bn}∞n=1 for
L2(Rd), d > 1, such that

sup
n

‖v(x)bn‖2‖v(ξ)̂bn‖2 < +∞. (13)

Here our argument is a simple version of that of J. Bourgain, see [4].
The article is organized as follows. Time-frequency localization is discussed in

the next section, we prove Theorem 2 and obtain its various applications including
Theorem 3; at the end of the section we use the Hermite functions to show that The-
orem 3 is sharp. Section 3 is devoted to Theorem 1′; we use localization result to
show that there is no orthonormal basis with given properties, we also prove (12). In
the last section various orthonormal bases are constructed, we prove Theorem 4 and
show that there is a basis with bounded means and bounded products of dispersions
for L2(Rd) when d > 1; finally we construct a basis that satisfies (13).

2 Time-Frequency Localization

2.1 Proof of Theorem 2

Let T and W be two measurable subsets of Rd and {φn}Nn=1 be an orthonormal se-
quence in L2(Rd). Denote by χT and χW the characteristic functions of T and W ;
we consider the operators PT and PW on L2(Rd) defined by

PT (f ) = f χT , and PW(f ) = F −1(χW F f ),

where F stands for the Fourier transform, F : L2(Rd) → L2(Rd). Then PWPT is an
integral operator with the kernel (see [9, 10])

q(s, t) = χT (s)

∫

W

e2πi(s−t)·wdw.

A standard calculation in [10] shows that PWPT is a Hilbert-Schmidt operator and
‖PWPT ‖2

HS = |W ||T |. The corresponding self-adjoint operator

Q = (PWPT )∗PWPT = PT PWPT
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is of trace class (see also [9]) and

tr(Q) = ‖PWPT ‖2
HS = |W ||T |.

Applying Theorem 5.6 from Chap. IV, [11], we obtain

N
∑

n=1

〈Qφn,φn〉 ≤ tr(Q) = |W ||T |.

On the other hand,

〈Qφn,φn〉 = 〈PWPT φn,PT φn〉
= 〈φn,φn〉 − 〈φn − PT φn,φn〉 − 〈PT φn,φn − PWφn〉

− 〈PWPT φn,φn − PT φ〉.
Hence 〈Qφn,φn〉 ≥ 1 − 2an − bn and

N
∑

n=1

(1 − 2an − bn) ≤ |W ||T |.

If we consider the operator Q̃ = (PT PW )∗PT PW , we get similarly

N
∑

n=1

(1 − an − 2bn) ≤ |T ||W |.

And the desired time-frequency localization inequality follows.

2.2 Inequalities for Orthonormal Sequences

In this subsection we follow the ideas of [14], where various inequalities for ortho-
normal sequences were derived from a one-dimensional localization principles. We
apply the time-frequency localization proved in the previous section to obtain rather
accurate inequalities.

The following corollary is an immediate consequence of Theorem 2.

Corollary 1 Let {φn}Nn=1 be an orthonormal system in L2(Rd) such that φn is ε-
concentrated on a ball {|x| < r0} and ̂φn is ε-concentrated on a ball {|ξ | < ρ0}, for
each n = 1, . . . ,N , i.e.

∫

|x|<r0

|φn|2 ≥ 1 − ε2,

∫

|ξ |<ρ0

|̂φn|2 ≥ 1 − ε2.

Then

N ≤ πdrd
0 ρd

0

(1 − 3ε)�(d
2 + 1)2

.
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Another immediate application of the localization inequality is a quantitative ver-
sion of Shapiro’s Umbrella Theorem. We employ localization on arbitrary measurable
subsets. Let ε be positive and ω ∈ L2(Rd), define

Kω(ε) = inf

{

|T | :
∫

Rd\T
|ω|2 ≤ ε2

}

.

Corollary 2 Let φ,ψ be non-negative functions in L2(Rd) and let {fn}Nn=1 be an
orthonormal sequence that satisfies

|fn| ≤ φ, |̂fn| ≤ ψ.

Then N ≤ (1 − 3ε)−1Kφ(ε)Kψ(ε) for each ε ∈ (0, 1
3 ).

Proof Let ω be a non-negative function in L2(Rd),we denote by ω∗ its non-
increasing rearrangement defined on [0,+∞). For each ε > 0 there exist Tω(ε),

{ω > ω∗(Kω(ε))} ⊂ Tω(ε) ⊂ {ω ≥ ω∗(Kω(ε))},
such that |Tω(ε)| = Kω(ε) and

∫

Rd\Tω(ε)

|ω|2 = ε2.

Then for each n we obtain
∫

Tφ(ε)

|fn|2 ≥ 1 − ε2,

∫

Tψ(ε)

|̂fn|2 ≥ 1 − ε2.

Thus by Theorem 2, N(1 − 3ε) ≤ Kφ(ε)Kψ(ε). �

2.3 Proof of Theorem 3

Let {φn}n be an orthonormal sequence in L2(Rd). For each k ∈ Z we define

Pk = {n : max{τp(φn), τp(̂φn)} ∈ [2k−1,2k)}.
Then

∫

Rd

|x|p|φn(x)|2dt ≤ 2kp and
∫

Rd

|ξ |p|̂φn(ξ)|2dξ ≤ 2kp,

whenever n ∈ Pk . This implies that φn is 1
4 -concentrated on the ball B(0,2k+ 2

p )

both in time and frequency. From Corollary 1 we get that the number of elements
in

⋃k
j=1 Pj is less than c1(p, d)4dk , where c1(p, d) is a constant that does not de-

pend on k. In particular, we see that there exists k0 such that Pk is empty for all
k < k0. (The last statement follows also from a theorem of M. Cowling and J. Price,
see [7].)
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For given N > 2c1(p, d) choose k such that 2c1(p, d)4dk ≥ N > 2c1(p, d)4d(k−1).
Then at least half of {1, . . . ,N} does not belong to

⋃k−1
j=1 Pj and we obtain

N
∑

n=1

(τ
p
p (φn) + τ

p
p (̂φn)) ≥ N

2
2(k−1)p ≥ a(p,d)N1+p/2d .

For N < 2c1(p, d) we have
∑N

n=1(τ
p
p (φn) + τ

p
p (̂φn)) ≥ N2(k0−1)p and (6) follows.

In order to prove (7) we note that

∑

n

(

τp(φn) + τp(̂φn)
)−2d−ε ≤

∞
∑

k=k0

∑

n∈Pk

2(1−k)(2d+ε)

≤
∞
∑

k=k0

c(p, d)4dk2(−k)(2d+ε) < +∞.

2.4 Hermite Functions and Sharpness of Theorem 3

The Hermite functions are defined by

hk(t) = 21/4

√
k!

(

− 1√
2π

)k

eπt2 dk

dtk
e−2πt2

, k = 0,1,2, . . . .

These functions form an orthonormal basis for L2(R) and satisfy ̂hk = i−khk ,

μ(hk) = μ(̂hk) = 0, �(hk) = �(̂hk) =
√

2k + 1

4π
.

Remind that (see, for example, [10])

xhk(x) =
√

k + 1

2
√

π
hk+1(x) +

√
k

2
√

π
hk−1(x).

Note that τ 2n
2n (hk) = ‖xnhk(x)‖2

2 for each positive integer n. Then using the orthogo-
nality of the Hermite functions, we obtain that there exists cn such that

c−1
n (k + 1)n ≤ τ 2n

2n (hk) ≤ cn(k + 1)n, (14)

for each k ≥ 0. By Hölder’s inequality, we have also τp(hk) ≤ τ2n(hk) for 0 < p <

2n. Thus for each p > 0 there exist κp such that

τp(hk) ≤ κp

√
k + 1, k ≥ 0.

We consider the following orthonormal sequence in L2(Rd)

φI (x) = hi1(x1)hi2(x2) . . . hid (xd), where I = (i1, . . . , id ), im ≥ 0.



992 J Fourier Anal Appl (2010) 16: 983–1006

For p > 0 we have

τ
p
p (φI ) = τ

p
p (̂φI ) ≤ c

d
∑

m=1

τ
p
p (him) ≤ C

(

d
∑

m=1

(im + 1)

)p/2

,

where C depends on p and d only. We consider

Mj = {I = (i1, . . . , id ) ∈ Nd : |I | = i1 + · · · + id = j}
and note that

Nj = |Mj | =
(

j + d − 1

d − 1

)

≤ c1j
d−1.

We see also that

N =
K

∑

j=1

Nj =
K

∑

j=1

(

j + d − 1

d − 1

)

=
(

K + d

d

)

≥ c2K
d.

Then we obtain

∑

|I |≤K

(τ
p
p (φI ) + τ

p
p (̂φI )) ≤ 2C

K
∑

j=1

(

j + d − 1

d − 1

)

(j + d)p/2 ≤ C1K
d+p/2

≤ C2N
1+p/2d .

Thus inequality (6) is sharp up to a multiplicative constant.
Now we look at (7). Let p < 2n then

∑

I

(

τp(φI ) + τp(̂φI )
)−a ≥

∑

I

(

τ2n(φI ) + τ2n(̂φI )
)−a

.

By (14) the last sum is finite if and only if

∑

I

(|I | + d)−a/2 =
∑

j

(

j + d − 1

d − 1

)

(j + d)−a/2

is finite, which holds if and only if a > 2d . Thus
∑

I

(

τp(φI ) + τp(̂φI )
)−2d = +∞.

3 Unbounded Product of Dispersions

3.1 Preliminary Lemmas

Our proof of Theorem 1′ formulated in the Introduction is based on the following
lemmas.
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Lemma 1 Let p be a positive number and {φn}Nn=1 be an orthonormal system in
L2(Rd) that satisfies τp(φn) ≤ J and τp(̂φn) ≤ K . Then

N ≤ c0(p, d)(JK)d . (15)

Proof Clearly, each φn is ε-concentrated on the ball {|x|p ≤ ε−2Jp} and each ̂φn is
ε-concentrated on the ball {|ξ |p ≤ ε−2Kp}. Applying Corollary 1 with ε = 1

4 , we
obtain N ≤ c0(p, d)(JK)d . �

We note that for d = 1 and p = 2 the Mean Dispersion inequality (5), see [14],
implies (15) with c0(2,1) = 2π . The results of Ph. Jaming and A. Powell on one-
dimensional time-frequency localization give also an estimate on N when d = 1 and
p > 0.

Another lemma we need is known, it follows for example from Chap. 3.2.5B in
[12] or [5, pp. 822–823], we give a proof here for the convenience of the reader.

Lemma 2 Let b and c be positive numbers, there exists a nonzero function f in
L2(Rd) such that f (x) = 0 when |x| ≤ b, and ̂f (ξ) = 0 when |ξ | ≤ c.

Proof It is enough to consider d = 1, if g is a required function for d = 1 (and
appropriate b1 and c1) we take f (x) = g(x1) . . . g(xn).

Let PWc be the space of f ∈ L2(R) such that ̂f (ξ) = 0 when |ξ | ≥ c. There exists
a such that

‖f ‖2 ≤ a‖f χ{|x|>b}‖2, (16)

for any f ∈ PWc , see e.g. [15]. The last inequality implies that the traces of functions
from PWc on {|x| > b} form a closed subspace in L2({|x| > b}) which is obviously
not the whole space. Thus there exists f ∈ L2({|x| > b}) such that

∫

|x|>b

f (x)g(x)dx = 0,

for any g ∈ PWc. We extend f by zero on {|x| ≤ b} in order to get the required
function. �

Functions discussed in Lemma 2 are called the Sonine functions (at least when
d = 1) and explicit constructions of such functions are due to J.-P. Kahane and
J.-F. Burnol, we refer the reader to [5] and [6] for details. Inequality (16) can be
also considered as a simple case of the Logvinenko–Sereda theorem, see [12] and
references therein. An improvement of constants in Logvinenko–Sereda theorem is
due to O. Kovrijkine, [16].

3.2 Proof of Theorem 1′

Let f ∈ L2(Rd), p > 0, and a ∈ Rd . We define

τ
p
p (f, a) =

∫

Rd

|x − a|p|f (x)|2dx.
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Assume that {bn}∞n=1 is an orthonormal basis, and the sequences {qn}∞n=1, {rn}∞n=1,

and {τp(bn, qn)τp(̂bn, rn)}∞n=1 are bounded for some p > d . Let

D2 = sup
n

τp(bn, qn)τp(̂bn, rn), and M = max
{

sup
n

|qn|, sup
n

|rn|
}

.

We consider

Sk = {bn : τp(bn, qn) ∈ (D2−k,D2−k+1]},
where k ∈ Z. Clearly, {bn}∞n=1 = ⋃

k Sk. Note that τp(̂bn, rn) ≤ 2kD for bn ∈ Sk . For
bn ∈ Sk we have

τp(bn) ≤ τp(bn, qn) + |qn| ≤ 2−k+1D + M and τp(̂bn) ≤ 2kD + M.

It follows from Lemma 1 that Sk is finite, and if Nk is the number of elements in Sk

then

Nk ≤ c0(p, d)(2|k|+1D + M)d(D + M)d ≤ a(p,d)2d|k|(D + M)2d . (17)

Let R be a positive number, we take a function f ∈ L2(Rd), ‖f ‖2 = 1, that van-
ishes on {|x| < M + R}, and whose Fourier transform vanishes on {|ξ | < M + R},
see Lemma 2. Then we have

1 = ‖f ‖2 =
∑

k

∑

bn∈Sk

|〈f,bn〉|2. (18)

Now if bn ∈ Sk , k > 0 then

|〈f,bn〉| ≤
∫

|x|>M+R

|f (x)||bn(x)|dx ≤ R−p/2
∫

Rd

|x − qn|p/2|f (x)||bn(x)|dx

≤ R−p/2‖f ‖2τ
p/2
p (bn, qn) ≤

(

D

2k−1R

)p/2

. (19)

Similarly, for bn′ ∈ Sk′ , k′ ≤ 0, we have

|〈f,bn′ 〉| = ∣

∣〈 ̂f , ̂bn′ 〉∣∣ ≤
(

2k′
D

R

)p/2

. (20)

Combining the inequalities (17), (18), (19), and (20), we obtain

1 ≤
∞
∑

k=1

(

D

2k−1R

)p

Nk +
∞
∑

k=0

(

D

2kR

)p

N−k ≤ A(p,d,D,M)

Rp

∞
∑

k=0

2k(d−p).

Choosing R large enough, we get a contradiction. The theorem is proved.
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3.3 Another Unbounded Product

We complete this section by proving (12).

Theorem 5 If {bn}∞n=1 is an orthonormal basis for L2(Rd) and p is positive then

sup
n

τp(bn)τp(̂bn) = ∞.

Proof Assume that there exists an orthonormal basis such that τp(bn)τp(̂bn) ≤ C2.
Let

Ak = {bn : τp(bn) ∈ (2−kC,2−k+1C]},
where k is integer. Clearly for bn ∈ Ak we have τp(̂bn) ≤ C2k . Then each bn ∈ Ak

is 1
4 -concentrated on the ball {|x|p < C2−k} and ̂bn is 1

4 -concentrated on the ball
{|ξ |p < C2k}. Thus, by Corollary 1, the number of elements in Ak is bounded by a
constant that does not depend on k. Let once again use Lemma 2, we take a function
f in L2(Rd), ‖f ‖2 = 1, that vanishes on B(0,R) with its Fourier transform. When
k ≥ 0 and bn ∈ Ak we get

|〈f,bn〉|2 ≤ R−pτ
p
p (bn) ≤ 2CR−p2−kp.

When k < 0 and bn ∈ Ak similarly

|〈f,bn〉|2 = ∣

∣〈 ̂f , ̂bn〉
∣

∣

2 ≤ CR−p2kp.

As above
∑

n |〈f,bn〉|2 = 1 and choosing R large enough we get a contradiction. �

4 Existence of Some Orthonormal Bases for L2(Rd)

4.1 Orthonormal Sequences in One Dimension

We start with two examples of orthonormal sequences in L2(R).

Example 1 Let φ be a real-valued even C∞-function, supp(φ) ⊂ [−2,−1] ∪ [1,2]
and ‖φ‖2 = 1. Then �(φ),�(̂φ) < +∞. Consider φn(x) = 2n/2φ(2nx), where n is
integer, then {φn}n form an orthonormal sequence such that

μ(φn) = μ(̂φn) = 0, �(φn)�(̂φn) = c.

This is an example of an infinite orthonormal sequence with zero means and bounded
products of dispersions.

Example 2 There exists a real function ψ and a corresponding wavelet basis
ψm,n(t) = 2m/2ψ(2mt − n); such that �(ψ) < +∞ and �(̂ψ) < +∞, see [1, 17].
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One has

μ(ψm,n) = 2−m(μ(ψ) + n); μ(̂ψm,n) = 2mμ(̂ψ);
�(ψm,n) = 2−m�(ψ); �(̂ψm,n) = 2m�(̂ψ).

Thus �(ψm,n)�(̂ψm,n) = c and μ(̂ψm,n) = 0, since ̂ψ(−ξ) = ̂ψ(ξ). So we have an
example of an orthonormal basis for L2(R) with zero frequency means and bounded
products of dispersions. However the time means μ(ψm,n) are unbounded.

4.2 Some Orthonormal Sequences in Higher Dimensions

In this section we obtain preliminary results that we use later to prove Theorem 4.
First we construct an orthonormal sequence with required properties that is large in
some sense.

Let χ be the characteristic function of the cube

{x = (x1, . . . , xd) : 5/2 < xm < 7/2,m = 1, . . . , d}

and ω be a smooth radial function supported in B(0,1/2). Then φ = χ ∗ω is a smooth
non-negative function, define ψ(x) = φ(x)1/2. Then

〈ψ(x), e2πix·bψ(x)〉 = ̂φ(b) = χ̂ (b)ω̂(b) = 0

whenever b ∈ Zd, b �= 0. Further define �(x) = aψ(4x), where a is chosen such that
‖�‖2 = 1. Clearly,

supp(�) ⊂ {x = (x1, . . . , xd) : 1/2 < xm < 1}.

We have

〈�(x), e2πix·b�(x)〉 = a24−d〈ψ(t), e2πit ·b/4ψ(t)〉 = a24−d
̂φ(b/4) = 0 (21)

when b ∈ 4Zd , b �= 0. For every positive integer s we define

�j,s(x) = 2−ds/2e2πij ·2−sx�(2−sx), where j = (j1, . . . , jd) ∈ 4Zd , |jl | ≤ 2s .

(22)

Lemma 3 Let �j,s be defined as above. Then

supp(�j,s) ⊂ {x = (x1, . . . , xd) : 2s−1 < xm < 2s ,m = 1, . . . , d}, (23)

the sequence {�j,s}j,s is orthonormal, and for each p > 0 there exist C1,C2 > 0
such that

τp(�j,s) = 2sC1, τp( ̂�j,s,2−sj) = 2−sC2. (24)
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Proof The supports of �j,s and �j ′,s′ are disjoint when s �= s′. When s = s′ and
j �= j ′ we have by (21)

〈�j,s,�j ′,s〉 = 2−ds〈�(2−sx), e2πi(j ′−j)·2−sx�(2−sx)〉 = 0.

Further, for any p > 0,

τ
p
p (�j,s) =

∫

Rd

|x|p2−ds |�(2−sx)|2dx = 2spτ
p
p (�) = 2spC

p

1 .

Clearly ̂�j,s = 2ds/2
̂�(2sξ − j) and

τ
p
p ( ̂�j,s,2−sj) =

∫

Rd

|ξ − 2−sj |p| ̂�j,s(ξ)|2dξ = 2−sp

∫

Rd

|η|p|̂�(η)|2dη

= 2−spτ
p
p (̂�). �

Remark We enumerate j for fixed s ≥ 2 as {j (n, s)}Js

n=1, where

Js = (2s−1 + 1)d > 2−d2sd

and write �n,s = �j(n,s),s for n = 1, . . . , Js .

Lemma 4 Let �j,s satisfy (22), where supp� ⊂ [−1,1]d and let q be a positive
integer. Then there exists A(q,�) such that for any s and any R(x) = ∑

j αj�j,s the
following inequality holds

‖∂q
mR‖2

2 ≤ A(�,q)
∑

j

|αj |2,

here m ∈ {1, . . . , d} and ∂m denotes the partial derivative with respect to xm.

Proof By (22) we have R(x) = 2−sd/2P(2−sx)�(2−sx), where P(y)=∑

j αj e
2πij ·y

is a trigonometric polynomial. We have

‖∂q
mR‖2

2 = 2−2sq‖∂q
m(P�)‖2

2 ≤ 2−2sqA(q)

q
∑

r=0

‖∂r
mP∂

q−r
m �‖2

2.

Now supp(�) ⊂ Q = [−1,1]d , the functions e2πij ·y are orthogonal on this cube and
have the same norms. We obtain

‖∂r
mP∂

q−r
m �‖2

2 ≤ A1‖χQ∂r
mP ‖2

2 ≤ A2

∑

j

|αj (2πjm)r |2 ≤ A322sr
∑

j

|αj |2,

where A1,A2,A3 depend on q and � . The required inequality follows. �
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4.3 Proof of Theorem 4. Case I: p < d

We use the construction described in [4] to replace an orthonormal sequence by a
basis, we repeat the details of the construction for the convenience of the reader.

Let a sequence {fk}∞k=1 of smooth functions with compact supports be dense on
the unit sphere in L2(Rd). The basis {bn}∞n=1 is obtained as

⋃

k Bk , where each Bk

is a finite orthonormal system. Suppose that a finite orthonormal system of smooth
functions B1, . . . , Bk−1 with compact supports is already obtained, let Bk−1 be the
linear span of these functions, we also put B0 = {0}. We define

f = fk − PBk−1fk.

Then f is a smooth function with compact support and Ip(f ), Ip( ̂f ) < +∞, where

Ip(f ) =
∫

Rd

(|x| + 1)p|f (x)|2dx. (25)

We take s large enough such that (i) the supports of �j,s defined by (22) do not
intersect the supports of f and of functions in Bk−1, (ii) the following inequality
holds

Js ≥ 2−d2ds > max{Ip(f ),2spIp( ̂f )}. (26)

Remark The condition p < d is used here.

We enumerate �j,s as in the Remark before Lemma 4. Following [4] further,
define

β1 = θ√
Js

f + γ1�1,s ,

β2 = θ√
Js

f + σ1�1,s + γ2�2,s ,

β3 = θ√
Js

f + σ1�1,s + σ2�2,s + γ3�3,s , (27)

· · ·
βJs = θ√

Js

f + σ1�1,s + · · · + σJs−1�Js−1,s + γJs �Js,s ,

here θ ∈ (0,1/3) will be specified later. Clearly, βl are orthogonal to Bk−1. The con-
stants σ1, . . . , σJs−1 and γ1, . . . , γJs are chosen to make {βl}Js

l=1 an orthonormal se-
quence. Thus

γ 2
l = 1 − θ2

Js

‖f ‖2
2 −

l−1
∑

n=1

σ 2
n , σlγl = −θ2

Js

‖f ‖2
2 −

l−1
∑

n=1

σ 2
n . (28)
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Clearly, |γl | < 1 and, by induction, one has

|γl | ≥ |γl |2 ≥ 1 − 2θ2

Js

and |σl | ≤ θ

Js

. (29)

We take θ = 1/4 and estimate τp(βl) first

τ
p
p (βl) ≤ 3

16Js

∫

Rd

|x|p|f |2dx + 3
∫

Rd

|x|p|�l,s |2dx + 3
∫

Rd

|x|p
∣

∣

∣

∣

∣

l−1
∑

n=1

σn�n,s

∣

∣

∣

∣

∣

2

dx.

The first term is bounded by Ip(f )J−1
s < 1 < 2sp , the second term is less than

2spconst, see (24). To estimate the last term, note that supp(�) ∈ [−1,1]d and (22)
implies

∫

Rd

|x|p
∣

∣

∣

∣

∣

l−1
∑

n=1

σn�n,s

∣

∣

∣

∣

∣

2

dx = 2sp

∫

Rd

|y|p
∣

∣

∣

∣

∣

l−1
∑

n=1

σne
2πij (n,s)·y

∣

∣

∣

∣

∣

2

|�(y)|2dy

≤ 2spdp/2
∫

Rd

∣

∣

∣

∣

∣

l−1
∑

n=1

σne
2πij (n,s)·y

∣

∣

∣

∣

∣

2

|�(y)|2dy

= 2spdp/2
l−1
∑

n=1

|σn|2 < 2spdp/2.

Thus τp(βl) ≤ C2s , where C depends on p,d , and on � .
For the Fourier transform we estimate τp(̂βl,2−sjl), where jl = j (l, s) was de-

fined in Remark in Sect. 4.2. We have

τ
p
p (̂βl,2−sjl) =

∫

Rd

|ξ − 2−sjl |p|̂βl |2dξ ≤ 3

16Js

∫

Rd

(|ξ | + 1)p| ̂f |2dξ

+ 3
∫

Rd

|ξ − 2−sjl |p|̂�l,s |2dξ

+ 3
∫

Rd

|ξ − 2−sjl |p
∣

∣

∣

∣

∣

l−1
∑

n=1

σn
̂�n,s

∣

∣

∣

∣

∣

2

dξ. (30)

The first term is bounded by Ip( ̂f )J−1
s and is less than 2−sp due to our choice of s.

Identity (24) implies that the second term is less than 2−spC2. We want to show that
the third term is small enough. We have

∫

Rd

|ξ − 2−sjl |p
∣

∣

∣

∣

∣

l−1
∑

n=1

σn
̂�n,s

∣

∣

∣

∣

∣

2

dξ ≤ A(d)

∫

Rd

(

1 +
d

∑

m=1

ξ2d
m

)

|̂Rl |2dξ, (31)
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where Rl(x) = ∑l−1
n=1 σn�n,s(x). Clearly,

‖̂Rl‖2
2 = ‖Rl‖2

2 =
l−1
∑

n=1

|σn|2 ≤ J−1
s < 2d−sd . (32)

Further,

d
∑

m=1

∫

Rd

ξ2d
m |̂Rl |2dξ = (2π)−2d

d
∑

m=1

‖∂d
mRl‖2

2. (33)

Using Lemma 4, we obtain

‖∂d
mRl‖2

2 ≤ A(�,d)

l−1
∑

n=1

|σn|2 ≤ A1(�,d)2−sd . (34)

Finally we get

τ
p
p (̂βl,2−sj) ≤ C(�,d)2−sp.

Thus τp(βl)τp(̂βl,2−sj) < C. We set Bk = {β1, . . . , βJs } and continue the procedure.
We want to check that the resulting orthonormal sequence is complete, once again

we follow [4]. First,

PBk
fk = PBk−1fk +

Js
∑

l=1

〈f,βl〉βl

and

‖PBk
fk‖2 ≥ ‖fk − f ‖2

2 + 1

16
‖f ‖4

2 ≥ 1

16
.

Suppose that the orthonormal sequence
⋃∞

k=1 Bk is not complete; let B be its closed
span. Then there exists g ∈ L2(Rd) such that ‖g‖2 = 1 and g is orthogonal to B . For
some k we have ‖g − fk‖2 < 1/4 since {fk} is a dense sequence on the unit sphere
of L2(Rd). Then we obtain a contradiction

1

16
≤ ‖PBk

(fk)‖2
2 ≤ ‖PBfk‖2

2 = ‖PB(fk − g)‖2
2 ≤ ‖fk − g‖2

2 <
1

16
.

4.4 Proof of Theorem 4. Case II: p = d

Our argument in the preceding section does not work when p = d . We use strict
inequality when on each step we take a function fk , construct f = fk − PBk−1fk and
choose s that satisfies (26). We will adjust the argument to prove the result for p = d .

As before, we start with a sequence {fk}∞k=1 of smooth functions with compact
supports that is dense on the unit sphere in L2(Rd). The basis {bn} is obtained as
⋃

k Bk , where Bk is a finite orthonormal system; but this time we will have

Bk =
Tk
⋃

t=1

Ct,k.
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Suppose that an orthonormal system of functions B1, . . . , Bk−1, C1,k, . . . , Ct−1,k with
compact supports is obtained, let Bt,k−1 be the linear span of these functions. We
define

gt = fk − PBt,k−1fk.

As before, gt is a smooth function with compact support and using notation (25) we
have Id(gt ), Id(ĝt ) < +∞. We define also

I (gt ) =
d

∑

m=1

∫

Rd

|ξm|2d |ĝt (ξ)|2dξ,

then we have Id(ĝt ) ≤ c(d)(1 + I (gt )).
We take s big enough so that the supports of �j,s do not intersect the supports of

gt and of functions in Bt,k−1 and also

Js ≥ 2sd−d > Id(gt ).

Further we repeat construction (27–29) with f = gt and

θ = θt = (9 + I (gt ))
−1/2 ∈ (0,1/3).

We set Ct,k = {β1, . . . , βJs }.
As earlier βl are orthogonal to Bt,k−1. We estimate τd(βl) as above, τd(βl) ≤ C2s .

For the Fourier transform we once again estimate τd(̂βl,2−sjl). We have as before

τd
d (̂βl,2−sjl) =

∫

Rd

|ξ − 2−sjl |d |̂βl |2dξ ≤ 3θ2

Js

∫

Rd

(|ξ | + 1)d |ĝt |2dξ

+ 3
∫

Rd

|ξ − 2−sjl |d |̂�l,s |2dξ

+ 3
∫

Rd

|ξ − 2−sjl |d
∣

∣

∣

∣

∣

l−1
∑

n=1

σn
̂�n,s

∣

∣

∣

∣

∣

2

dξ.

The first term is bounded by 3θ2
t Id(ĝt )J

−1
s . Using our choice of θt and repeating

estimates for the second and third terms from Case I, we get

τd(̂βl,2−sj) ≤ C(�)2−s .

Thus τd(βl)τd(̂βl,2−sj) < C.
Now, in contrast to Case I, the projection of fk onto the subspace spanned by

B1, . . . , Bk−1, C1,k, . . . , Ct−1,k, Ct,k could be small if θt is small. So we use the same
function fk again to continue the procedure. Note that

gt+1 = fk − PBt+1,k−1fk = gt −
Js

∑

n=1

〈gt , βn〉βn = gt − θt√
Js

‖gt‖2
2

Js
∑

n=1

βn.
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And, inserting formulas for βn, we obtain

gt+1 = gt (1− θ2
t ‖gt‖2

2)−
Js

∑

n=1

θt√
Js

‖gt‖2
2(γn + (Js −n)σn)�n,s = λtgt +

Js
∑

n=1

κn�n,s,

where λt = 1 − θ2‖gt‖2
2 < 1 and

|κn| = θt√
Js

‖gt‖2
2|γn + (Js − n)σn| < 2θt√

Js

‖gt‖2
2. (35)

We have

I (gt+1) =
d

∑

m=1

∫

Rd

|ξm|2d |ĝt+1|2dξ = (2π)−2d

d
∑

m=1

‖∂d
mgt+1‖2

2.

According to our choice of s the support of gt does not intersect the supports of �n,s .
Then

I (gt+1) = λ2
t I (gt ) + (2π)−2d

d
∑

m=1

∥

∥

∥

∥

∥

∂d
m

(

Js
∑

n=1

κn�n,s

)∥

∥

∥

∥

∥

2

2

.

Now Lemma 4 implies

∥

∥

∥

∥

∥

∂d
m

(

Js
∑

n=1

κn�n,s

)∥

∥

∥

∥

∥

2

2

≤ A(d,�)

Js
∑

n=1

|κn|2.

Combining the last two inequalities with (35), we obtain

I (gt+1) ≤ λ2
t I (gt ) + B(d,�)θ2

t ‖gt‖4
2 ≤ I (g1) + B(d,�)

t
∑

u=1

θ2
u‖gu‖4

2.

We note also that

1 ≥ ‖PBt+1,k−1fk‖2
2 = ‖fk − gt+1‖2 = ‖fk − gt‖2

2 + θ2
t ‖gt‖4

2

= ‖fk − g1‖2
2 +

t
∑

u=1

θ2
u‖gu‖4

2.

Thus I (gt+1) ≤ I (g1) + B(d,�) and θ2
t > (9 + I (g1) + B(d,�))−1 for each t . We

take Tk > 9 + I (g1) + B(d,�) and for Bk = BTk,k−1 we get

‖PBk
fk‖2

2 = ‖fk − g1‖2
2 +

Tk
∑

u=1

θ2
u‖gu‖4

2.

If for each u we have ‖gu‖2 > 1/2, then

‖PBk
fk‖2

2 ≥ Tk

16
(9 + I (g1) + B(d,�))−1 >

1

16
.
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If ‖gu‖2 < 1/2 for some u, then

‖PBk
fk‖2

2 ≥ ‖fk − gu‖2
2 ≥ 1

4
.

We let Bk = ⋃Tk

t=1 Ct and finish the proof as above.

4.5 Classical Means and Dispersions

We remark that in Theorem 4 we don’t claim that qn and rn are generalized means
of bn and ̂bn respectively, for the definition of generalized means we refer the reader
to [14]. However for p = 2 the construction above yields

Corollary 3 For d ≥ 2 there exists a basis {bn}∞n=1 for L2(Rd) such that the se-
quences {μ(bn)}∞n=1, {μ̂(bn)}∞n=1 and {�(bn)�(̂bn)}∞n=1 are bounded.

Proof We repeat the construction described in the previous sections, but start with
a function �(e) = 1√

2
(�(x) + �(−x)). Then �

(e)
j,s has the same properties as �j,s

above with (23) replaced with

supp(�
(e)
j,s ) ⊂ {x = (x1, . . . , xd) : 2s−1 < |xm| < 2s ,m = 1, . . . , d}.

In addition we get |�(e)
j,s (x)| = |�(e)

j,s (−x)| and

μ(�
(e)
j,s ) =

∫

Rd

x|�(e)
j,s (x)|2dx = 0. (36)

Now for d ≥ 2 and any βl in (27) we have

|μ(̂βl)| ≤
∫

Rd

|ξ ||̂βl(ξ)|2dξ ≤
∫

Rd

(2 + |ξ − 2−sjl |2)|̂βl(ξ)|2dξ ≤ C1.

Clearly,

�(βl)�(̂βl) ≤
∫

Rd

|x|2|βl(x)|2dx

∫

Rd

|ξ − 2−sj |2|̂βl(ξ)|2 ≤ C2.

Finally, to estimate μ(βl) we use (36)

|μ(βl)| = |μ(βl) − μ(γl�
(e)
l,s )| ≤ θ2

Js

∫

Rd

|x||f (x)|2dx

+
∫

Rd

|x|
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

l−1
∑

n=1

σn�
(e)
n,s(x) + γl�

(e)
l,s (x)

∣

∣

∣

∣

∣

2

− |γl�
(e)
l,s (x)|2

∣

∣

∣

∣

∣

dx.
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The first term is bounden by J−1
s I2(f ) ≤ 1. (Here gt should replace f for the case

d = 2.) We estimate the second term by

(1 + 2s)

∫

Rd

|x|
∣

∣

∣

∣

∣

l−1
∑

n=1

σn�
(e)
n,s(x)

∣

∣

∣

∣

∣

2

dx + 2−s

∫

Rd

|x|
∣

∣

∣γl�
(e)
l,s (x)

∣

∣

∣

2
dx

≤ (1 + 2s)2s

∫

[−1,1]d
|y|

∣

∣

∣

∣

∣

l−1
∑

n=1

σne
2πij (n,s)·y �(e)(y)

∣

∣

∣

∣

∣

2

dy

+
∫

[−1,1]d
|y|

∣

∣

∣�
(e)(y)

∣

∣

∣

2
dy

≤ 22s+1
√

d

l−1
∑

n=1

|σn|2 + √
d ≤ √

d(1 + 22s+1J−1
s ) < C3.

Thus μ(βl) are bounded. �

4.6 Degenerate Homogeneous Weights

We now consider uncertainty inequalities with homogeneous weights in Rd , obtained
by B. Demange, see [8]. We describe a simple construction of a bases of functions
which have uniformly bounded weighted norms with there Fourier transforms. The
construction is once again based on the argument form [4]. This time a simple version
of the argument implies

Lemma 5 Let u,v be non-negative functions on Rd . Suppose that there exists an
orthonormal sequence {φj }∞j=1 in L2(Rd) of compactly supported smooth functions
such that

∫

Rd

u(x)|φj (x)|2dx ≤ C2
1 and

∫

Rd

v(ξ)|̂φj (ξ)|2dξ ≤ C2
2 ,

for each j . We assume also that the supports of φj form a locally finite family of sets;
i.e. each compact set intersects only finite number of these supports.

Suppose also that there is a sequence {fk}∞k=1 that is dense in the unit sphere of
L2(Rd) and such that the functions fk are smooth, have compact supports, and

∫

Rd

u(x)|fk(x)|2dx < ∞ and
∫

Rd

v(ξ)|̂fk(ξ)|2dξ < ∞, (37)

for each k.
Then for each ε > 0 there is an orthonormal basis {bn}∞n=1 for L2(Rd) such that

∫

Rd

u(x)|bn(x)|2dx ≤ (C1 + ε)2 and
∫

Rd

v(ξ)|̂bn(ξ)|2dξ ≤ (C2 + ε)2 ,

for each n.
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Using this lemma we prove the following.

Theorem 6 Let d > 1 and α1, . . . , αd > 0 then there exists an orthonormal basis for
L2(Rd) such that

sup
n

(∫

Rd

|x1|α1 . . . |xd |αd |bn(x)|2dx +
∫

Rd

|ξ1|α1 . . . |ξd |αd |̂bn(ξ)|2dξ

)

< ∞.

Proof First, there exists a dense sequence {fk}∞k=1 in the unit sphere of L2(Rd) that
consist of smooth functions with compact supports; it satisfies (37) for

u(x) = v(x) = |x|α1 . . . |xd |αd .

To apply the lemma above we need to construct an orthonormal sequence bounded
with their Fourier transforms in L2(Rd , u(x)). Let φ be a smooth function such that
its support is contained in the unit cube [−1,1]d and ‖φ‖2 = 1. We define

φj (x) = 2
j
2 (

α1
α2

−1)
φ(2−j x1 − 3,2

jα1
α2 x2, x3, . . . , xd).

Then clearly ‖φj‖2 = 1 and the support of φj is contained in the set

Ej = {x ∈ Rd : x1 ∈ [2j+1,2j+2], |x2| ≤ 2
−j

α1
α2 , |xs | ≤ 1, s = 3, . . . , d},

these sets are disjoint and hence the sequence {φj } is orthogonal. Further,
∫

Rd

u(x)|φj (x)|2dx =
∫

Ej

|x1|α1 . . . |xd |αd |φj (x)|2dx ≤ 2(j+2)α1 2−jα1‖φj‖2
2 ≤ 22α1 .

The Fourier transforms satisfy

̂φj (ξ) = e−2j+13πiξ1 2
j
2 (1− α1

α2
)
̂φ(2j ξ1,2

−j
α1
α2 ξ2, . . . , ξd).

Thus
∫

Rd

u(ξ)|̂φj (ξ)|2dξ =
∫

Rd

|ξ1|α1 |ξ2|α2 . . . |ξd |αd |̂φ(ξ)|2dξ = C.

The theorem follows. �
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