J Fourier Anal Appl (2010) 16: 311-339
DOI 10.1007/s00041-009-9111-z

Boundedness of Schrodinger Type Propagators
on Modulation Spaces

Elena Cordero - Fabio Nicola

Received: 15 July 2008 / Revised: 7 May 2009 / Published online: 5 November 2009
© Birkhduser Boston 2009

Abstract It is known that Fourier integral operators arising when solving Schro-
dinger-type operators are bounded on the modulation spaces M”94, for 1 < p =
g < 0o, provided their symbols belong to the Sjostrand class M°!. However, they
generally fail to be bounded on M?¢ for p # q. In this paper we study several ad-
ditional conditions, to be imposed on the phase or on the symbol, which guarantee
the boundedness on M?4 for p # ¢, and between M”49 — M%P 1 <q < p < o0.
We also study similar problems for operators acting on Wiener amalgam spaces, re-
capturing, in particular, some recent results for metaplectic operators. Our arguments
make heavily use of the uncertainty principle.
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spaces - Short-time Fourier transform - Sjostrand’s algebra
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1 Introduction

The paper is concerned with the study of Fourier integral operators (FIOs) defined by

Tf(x)= /R [T Do () fayd, (1.1
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for, say, f € S(R?). The functions o and ® are called symbol and phase, respectively.
Here the Fourier transform of f is normalized to be f m=/[f (x)e~2mixngx If
o € L® and the phase @ is real, the integral converges absolutely and defines a
function in L*°.

The phase function & (x, n) fulfills the following properties:

(i) @ €C®RM);
(i1) there exist constants C, > 0 such that

10°® (x, )| < Co, YaeZ? |a|>2; (1.2)
(iii) there exists § > O such that

92
‘det( >
0x;0m; 1¢x,m)

Note that our phases differ from those (positively homogeneous of degree 1 in 1)
of FIOs arising in the solution of hyperbolic equations (see, e.g., [9, 19, 22, 23]).
Indeed, FIOs are a mathematical tool to study a variety of problems in partial differ-
ential equations, and our FIOs arise naturally in the study of the Cauchy problem for
Schrodinger-type operators (see, e.g., [5, 7, 8, 14, 17, 18]). Basic examples of phase
functions within the class under consideration are quadratic forms in the variables
x,n (see Example 5.3 below).

Continuing the study pursued in [7], we focus on boundedness results for these op-
erators, when acting on two classes of Banach spaces, widely used in time-frequency
analysis, known as modulation spaces and Wiener amalgam spaces, denoted by M 74
and W(FL?, L1), respectively, with 1 < p, g < co. To be definite, we recall the def-
inition of these spaces, introduced by H. Feichtinger (see [10, 16] and Sect. 2 below
for details).

In short, given a positive weight function m on R with m € & (Rz‘l ), we
say that a temperate distribution f belongs to MAY(R?), 1 < p,q < oo, if its
short-time Fourier transform (STFT) V, f(x,n), defined in (2.3) below, fulfills
Vo f (x,mm(x,n) € LP4(R*) = L4(RY, LP(RY)), with the norm

>8 V(x,n) eR*™. (1.3)

Iz =1 (Ve Hmll g r < 0. (1.4)

Here g is a non-zero (so-called window) function in S(R?), which in (2.3) is first
translated and then multiplied by f to localize f near any point x. Changing g €
S(R?) produces equivalent norms. Taking the two norms above in the converse order
yields the norm in W(FL?, L7)(RY):

WA lw@FELe.Lay = IVe fllppps < oo (1.5)

The spaces M5? (R?) and W(FLP, L1)(R?) are defined as the closure of S(R?) in
the M9 (R4) and W(FLP, L9) norm, respectively. For heuristic purposes, distrib-
utions in MP-4, as well as in W(FL4?, L?), may be regarded as functions which are
locally in FL? and decay at infinity like functions in L”. Among their properties, we
highlight the important relation W (FL?, LY) = F(MP1).
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The action on the spaces M? := MP-? of FIOs as above already appeared in [4,
7] (see also [1-3, 22]). It is a basic result that FIOs with symbols in the Sjostrand class
M1 (R??) extend to bounded operators on MP”(R%), 1 < p < co. Applications to
issues of classical analysis were also given in [9]. Moreover, it was observed in [7]
that boundedness generally fails on the spaces M4 (R?), with p # g, although it can
hold under an additional condition on the phase function. The present paper is devoted
to a more systematic study of the conditions which guarantee the boundedness on
MP4RY), for p #gq.

Our first result is in fact a generalization of [2, Theorem 11] and [7, Theorem 5.2]
to the case of rougher symbols.

Theorem 1.1 Consider a phase function ® satisfying (i), (ii), and (iii), and a symbol
o€ M1 (Rz‘i). Suppose, in addition, that

sup |V @(x, ) — Vi ®(x', )| < o0 (1.6)

x,x',neRd

Then, the corresponding Fourier integral operator T extends to a bounded operator
on Mp’q(Rd),for every 1 < p,q <oo.

The condition (1.6) is seen to be essential for the conclusion to hold. In fact it was
shown in [7, Proposition 7.1] that the pointwise multiplication operator by e~/ 2
(which has phase ®(x,n) =xn — % and symbol o = 1) is not bounded on any
MP4 with p # q (see also Theorem 6.1 below).

If we drop the condition (1.6), we need some further decay condition on the sym-
bol, as explained by the next result.

For s1,s2 € R, we define the weight function vy, s, (x,n) = (x)*1(n)%,
(x,n) e R¥,

Theorem 1.2 Consider a phase ® satisfying (i), (ii) and (iii), and a symbol o €

00,1 2d
M o1 R¥), 51,50 €R.

(1) Let 1 < p <o0.Ifs1,520 >0, T extends to a bounded operator on ./\/lp(Rd).
(i) Letl<g<p<oo.Ilfs1 > d(é — %), s2 >0, T extends to a bounded operator
on MP4(RY).
(iil)) Letl <p<qg<o0.lfs1>0,s; > d(% — é), T extends to a bounded operator
on MP4(RY).

In all cases,

ITfllmra S lloll oo o 1 M 1.7

Usy,sp

Although we do not exhibit a complete set of counterexamples for the thresholds
arising in Theorem 1.2, some examples are given in Sect. 6, and show that the thresh-
olds are in fact the expected ones (see Remark 6.5).

Results for boundedness of FIOs between weighted modulation spaces are attained
as well (see Sect. 4).
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We also turn our attention to the boundedness of FIOs as above from the modula-
tion space MP4(R4) into M4-P(R¥). This study is mostly suggested by the special
case of metaplectic operators (corresponding to a quadratic phase and symbol o = 1),
which was investigated in detail in [5]; see also Example 5.3 below.

Theorem 1.3 Let 1 < g < p < oo. Consider a phase ®(x,n) satisfying (i), (ii)
and (iii). Moreover, assume one of the following conditions:

(a) the symbol o € Moo’l(de) and, for some § > 0,

RRI
’det( >
(x,m)

0x;0x;
(b) the symbol & € M,jj(;gl(RZd), with's > d(} — ).

>8 V(x,n) eR¥, (1.8)

Then, the corresponding FIO T extends to a bounded operator MP-4(R%) —
MP(RY).

The additional assumptions (a) or (b) are essential to guarantee the bound-
edness. A counterexample in this connection is given in Proposition 6.7 below.
Moreover, even under those conditions, 7 generally fails to be bounded between
MP4 — MDPif g > p; see Proposition 6.6 below.

For the sake of brevity, in this Introduction we only established our results for
FIOs acting on modulation spaces. In the subsequent sections we shall provide cor-
responding results for Wiener amalgam spaces (Corollaries 3.9 and 5.2).

As in [7], the proof of our results relies on a formula expressing the Gabor ma-
trix of the FIO T in terms of the STFT of its symbol o (see (3.3) below). Here the
novelty is provided by the combination of this formula with Schur-type tests and the
uncertainty principle, in the form of Bernstein’s inequality and some generalizations.

The paper is organized as follows. In Sect. 2 we prove some preliminary results
of classical analysis and we also collect the basic definitions and properties of mod-
ulation and Wiener amalgam spaces. In Sect. 3 we recall from [7] a useful formula
for the Gabor matrix of the operator T', and use it to prove Theorems 1.1 and 1.2. In
Sect. 4 we study the action of a FIO T' on weighted modulation spaces. In Sect. 5
we prove Theorem 1.3. Finally, in Sect. 6 some examples related to the Schrodinger
operators are exhibited: they reveal to be useful tests for the sharpness of the above
results.

Notation We define |)c|2 =x - x, for x € R, where x - y = xy is the scalar product
on R?. The space of smooth functions with compact support is denoted by Cee RY),
the Schwartz class is S(R?), the space of tempered distributions S’ (R?). The Fourier
transform is normalized to be f(r/) =Ff(n) = f f(t)e 2T 4t Translation and
modulation operators (time and frequency shifts) are defined, respectively, by

T f(t)=f(t—x) and M,f(@t)=e""f(1).

We have the formulas (T, f'= M_, f, (M, f)'= T, f, and M, T, = e™*"T, M,).
The inner product of two functions f, g € LZ(R%) is (f, g) = fRd f()g(t)dt, and its
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extension to 8’ x S will be also denoted by (-, -). The notation A < B means A < cB
for a suitable constant ¢ > 0, whereas A =< B means ¢ 1A < B < cA, for some ¢ > 1.
The symbol B; < B> denotes the continuous embedding of the space Bj into B;.
The open ball in R? of center x and radius R will be denoted by B(x, R).

2 Preliminary Results

2.1 Bernstein Inequalities

The core of our proofs relies on the classical Bernstein’s inequality (see, e.g., [26])
and some of its generalizations, described in what follows. Recall that the ball of
center x € R and radius R > 0 is denoted by B(x, R).

Lemma 2.1 (Bernstein’s inequality) Ler f € S'(R?) such that f is supported in

B(0, R), and let 1 < p < q < 00. Then, there exists a positive constant C (indepen-
dent of f, R, p, q), such that

A9
I fllg =CR™P 27| fllp. 2.0
We shall use also the following generalizations of the Bernstein’s inequalities.

Lemma 2.2 Consider a mapping v : R? — R4 satisfying |v(x)| < |x|, Vx € RY.
Then, for any s > 0,

Sup{(ﬂ_slf(v(X))I}§/<X)_S|f(X)|dx,

xeRd

for every function f € S'(RY), such that f is supported in B(no, 1), for some
d
no € R?.

Proof Take a Schwartz function g, satisfying gm) =1for|n <. If f is supported
in B(no, 1) we have f = f T, g. Hence

O f )] < /(X)”If(y)llg(v(X) —yldy. 2.2)

Now we have

(3 Sy —v@) W) Sy —vx)) (x)°,
so that

() g) — I < (1)) — )V < 0) S wlx) — y) V.

Using this inequality in (2.2), with N > s, we attain the desired conclusion. O

We recall from [26, Proposition 5.5] the following localized version of Bernstein’s
inequality.
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Lemma 2.3 Let N > 1 be an integer and ¢(x) = (1 + |x|2)_N. For R>0,x R4,
let o (V) = (*5~), v E RY. There exists Cn > 0 such that

sup |f(M| = Cn p(B(x, R))_I/ @x, RV f (V)] dv,
yeB(x,R) R4

for every f e S'(R?) such that f is supported in B(ng, 1/R), for some ng € RY,
where w is the Lebesgue measure.

2.2 Schur-Type Tests

The next proposition collects Schur-type tests assuring the boundedness of integral
operators on the mixed-norm spaces L7 LY := L4 (Rg; LP(R9)), 1< p,q < o0.

Proposition 2.4 Consider an integral operator A on R*?, given by

A7) = / / K0 x,0) £ (e ) dx .

(i) IfK € L,;‘OLJI,L;?L}C, then A is continuous on L}?L;O.
(ii) IfK € L;’?L%LEOL}C,, then A is continuous on L‘,’IOL}C.
(i) If K € LLLL®LL N LXLYL®LY, and, moreover, K € L% ,L1 N
n Ty X TX [/ e . x5L,nTx,
L Ll ., then the operator A is continuous on Lqu, orevery 1 < p,q < oo.
X.n"xn n
(v) IfK e L L}

. : 1700 ooyl
oy Lx xr then A is continuous Lan — L,7 L.

Proof The proof of all items, but (iv), is just a repetition, with obvious changes, of
that of [7, Proposition 5.1], where a discrete version was presented.
Let us now prove (iv). We have

IAf I op1, = sup/ f/K(x’,n’;x,n)f(x,n)dxdn dx’
n x ' eRd Rf/
< sup ff/ |K(x',n"s x,m) f(x,n)|dxdx"dn
U/ERd Rifjxﬂn

IA

sup / sup If(x,n)I//IK(X’,n/;x,n)ldde’dn
R

n'eRd J RE xeRd

= IKllp LY, ||f||L}]L§°
nn X, X
This concludes the proof. O
2.3 Modulation Spaces

See [10-13, 16, 25]. For s € R, we denote by (-)* = (1 + |- |?)*/2. In what follows we
limit ourselves to the class of weight functions vy, 5, (x, n) = Ax)*1()%2, 5; € R, i =
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1,2, 0n R? or m(x,n,z,¢) = (x)*1(n)2 = (v5,.5, ® 1)(x, 1,2, ), on R¥. In order
to define such spaces, we make use of the following time-frequency representation:
the short-time Fourier transform (STFT) V, f of a function/tempered distribution f €
S'(R?) with respect to the window g € S(R?) is defined by

Ve f(x,m)=(f, M,;T.g) =/Rde*2”""yf(y)g(y —x)dy, (2.3)

i.e., the Fourier transform F applied to f Ty g.

Given a non-zero window g € § (Rd), a weight function m as those quoted above,
and 1 < p, g < oo, the modulation space M,ﬁ’q(]Rd ) consists of all tempered distrib-
utions f € S’ (R9) such that Vof € L4 (R2d) (weighted mixed-norm spaces). The
norm on M54 is

q/p
||f||M5’q=||ng||Lgﬂ=</ (/ Ing(x,n)IPm(x,n)”dX> dn)
R \JR4

(with obvious changes when p = oo or g = 00). If p = ¢, we write M}, instead of
MPP and if m(z) =1 on R, then we write MP-9 and MP for ML'? and MP?,
respectively. Then M} 9 (R¥) is a Banach space whose definition is independent of
the choice of the window g. For the properties of these spaces we refer to the literature
quoted at the beginning of this subsection.
We define by M5 7 (RY) the closure of S(R?) in the M}?-norm. Observe that
D% = M7, whenever the indices p and g are finite. They enjoy the duality prop-

1/p

erty: (Mh?)* = Mf//’rz,, with 1 < p,q < 00, and p’, ¢’ being the conjugate expo-
nents.

We recall the inversion formula for the STFT (see, e.g., [16, Corollary 3.2.3]: if
llgllz2 =1 and, for example, u € L?(R%), it turns out

u =f Vou(x,n)MyT,gdxdn. 2.4)
R2d

The following inequality, proved in [16, Lemma 11.3.3], is useful for changing
windows.

Lemma 2.5 Let go, g1, y € S(RY) such that (y, g1) # 0 and let f € S'(RY). Then,

1
[Vgo f(x,m)| < mﬂvglﬂ * Vg D(x, ),

forall (x,n) e R*.
The complex interpolation theory for these spaces reads as follows (see, e.g., [13]).

Proposition 2.6 Let0 <6 < 1, p;,q; € [1, 00] and mj be v-moderate weight func-
tions (i.e., mj(x +y) < Cv(x)m;(y), v being a submultiplicative weight), j =1, 2.
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Set
1 1-6 6 1 1-6 6 1—0 o

= +—. - = +—, m=m; “my,
P p1 P2 q q1 q2

then

(M RD), MR R0 = My (RY).

Remark 2.7 We observe that our results are established as the existence of a bounded
extension MP-9 — MP-4 of a class of FIOs T with symbols o in a weighted space
M,C,’f ’1, m > 1. It is important to observe that such an extension follows from a uni-
form estimate of the type

ITflpia < Cllollyeorllflimra,  Vf e S(RY). 2.5

Indeed, this estimate shows that T extends to a bounded operator M”49 — M 2
In order to prove that this extension takes values in M?-4, it suffices to verify that
Tf e MP4 when f is a Schwartz function. This follows from [7, Theorem 6.1].
Indeed, if f € M!, then Tf € M'.

Hence in the subsequent proofs we will prove estimates of the type (2.5).

Boundedness results dealing with FIOs having symbols in weighted modulation
spaces and acting on unweighted modulation spaces could be rephrased as bound-
edness results for FIOs with symbols in unweighted spaces and acting on weighted
spaces, as explained below.

Proposition 2.8 Let T be a FIO with symbol o and T a FIO with the same phase as
T and symbol

G, n) =)o, M2, x,neR? s;eR, i=1,2.

Then,

(i) the operator T is bounded from MP-4 into MP4 if and only if the operator T is
bounded from /\/l{')’(;z2 into M&ZI,O'

(ii) It holds true

ceM®! L RY) = &eM>'RY) (2.6)

Usy.59

Proof The proof is an immediate consequence of [24, Theorem 2.2, Corollary 2.3].
Indeed, they guarantee that the vertical arrows of the following commutative diagram
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define isomorphisms:

(D)2 pointwise product by (x)*1 2.7

P9 T
Mpa T ompa
Moreover, the product by the weight function no(x, n, 1, £2) = (x)*1(n)*2, x,n,
{1, 0 € R4, defined on R* | is a isomorphism from M;’O’l ®l (R to M>-1(R2),
Sl,SZ
that is (ii). O

2.4 Wiener Amalgam Spaces

See [10, 12, 15]. For 1 < p < 0o, s € R, we denote by L (RY) := L{’,)S(Rd).
Let FL?(R?) be the space of f € S'(RY) such that f € LY (R?). Let g € S(RY)
be a non-zero window function. For 1 < p, g, < oo, the Wiener amalgam space
W(FLL, LL)(RY) with local component FL! and global component LY, s; € R,
i =1, 2, is defined as the space of all functions or distributions for which the norm

q/p 1/4
I lw Fr ne) = (/Rd (/Rd |FCf - Teg) P ()P dn> (x)1 dx)

is finite. Analogously to modulation spaces, we define by W(FLY | LL)(RY) the

closure of S(RY) with respect to the W (F LY, L{))-norm.
The properties of Wiener amalgam spaces are similar to those of modulation
spaces, since we have the following relation:

]-"(M{,’S'l‘{xz) =W(FLL LY, sieR,i=1,2. (2.8)
We recall from [6, Lemma 5.3] the following auxiliary result.

n\x\z
Lemma 2.9 For a,b e R, a > 0, set G41ip(x) = (a + ib)_d/ze_m, and choose

the Gaussian g(y) = e~y

follows that

as window function. Then, for every 1 < q,r < 00, it

— _ - [(ala+1)+b3)|n|>+2bxn+(a+1)|x|?]
GarisTxg ()] = (@ + 1) + b3~ e @r?es? ,

(2.9)

(@12 4605 GD sk
1GasivTesllFro = e iR, (2.10)

g% (a(a+1)+b>%
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and
24 p25G D)
((@+1)2+b)2a
del 15"
a® (a(a+1) 452067

|GativllwFLa,Lry < 2.11)

Lemma 2.10 Let o € Mf’q ®1(R2d), s;i €R, i =1,2, and consider its adjoint o*
51,52
defined by

o*,m) =0, x), (x,n)eR¥. 2.12)

* p.q 2d
Then, o* € MU.&Q.51®1(R ).

Proof Fix a window function g € S(R?). By a direct computation,

Vga*(21,22;§1,§2)=/e_zni(y'g'ﬂz{”o()’z,yl)g()’1 — 21,2 —22)dy1dy:

_ /e—2ni(v2C1+v1§2)U(vl, v2) g(v2 — 21, V1 — &) dvy dvy
= Vigo (22,215 §2, §1)

where we used the notation ‘g(y1, y2) := g(y2, y1). Since & € Mli’l?YZ@l(RZd), the

result immediately follows by the independence of the window function for the com-
putation of the modulation space norm. g

3 Boundedness of FIOs on MP?>4

In the following we assume that the phase function & satisfies the assumptions (i), (ii)
and (iii) in the Introduction, so that we shall repeatedly use the following property.

Remark 3.1 1t follows from the assumptions (i), (ii) and (iii) and Hadamard’s global
inversion function theorem (see, e.g., [21]) that the mappings

X+ V,®(x,n)
and
77 > qu)(-xv 77)

are global diffeomorphisms of R, and their inverse Jacobian determinant are uni-
formly bounded with respect to all variables.

The proof of our results relies on a formula, obtained in [7, Sect. 6], which ex-

presses the Gabor matrix of the FIO T in terms of the STFT of its symbol o. Namely,
choose a non-zero window function g € S(R?), and define

Wiy (3, 0) =27 @ 8) (v, 0),  (v,¢) eR¥M (3.1)
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with

(y,C)"‘.

o!

1
i 0=2 Y [ = na o+ 1o (32)

|or|=2
Moreover, let
gy = (MyTeg) (1), t,x,neR%
Proposition 3.2 It turns out
(T gx.ns & )l = Va, o (X ), (f = Vi@ (X', ), x = V, @', m))]. (3.3)

Remark 3.3 Observe that the window W, ,y of the STFT above depends on the
pair (x’, ). However, the assumptions (1.2) imply that these windows belong to a
bounded subset of the Schwartz space, i.e. the corresponding seminorms are uni-
formly bounded with respect to (x/, 1).

In this section we focus on the proofs of Theorems 1.1 and 1.2. We first prove
Theorem 1.1. We need the following auxiliary results.

Lemma 3.4 Let Wy € S(R*) with |[Woll,2 = 1 and Wy, be defined by (3.1),
(', m) €eR™ and g € S(R?). Then,

/R sup IV\p(X,_n) Yo (w)|dw < oo. (3.4)

(! )R
Proof We shall show that
V.., Wow)| < Cw)~+D v, ) e R¥. (3.5)
Using the switching property of the STFT:
(Vyg) (e, m) = e~ (Vy f)(—x, =),

we observe that |V\y(x,yﬂ>\llo(w1, w2)| = [Vyy W p(—w1, —w2)|, and by the even
property of the weight (-), relation (3.5) is equivalent to

|V Wy (w)] < Clw) " @D 0w’ ) e R, (3.6)

Now, the mapping Vy, is continuous from S (R to S(R*) (see [16, Chap. 11]),
which combined with the Remark (3.3) yields (3.6). O

Lemma 3.5 With the notation of Lemma 2.3, for every R > 0 there exists Cg such
that

/ / 02 & (V) f(v) dvdx = Cr / Fx)dx,

for every measurable function f > 0.

BIRKHAUSER



322 J Fourier Anal Appl (2010) 16: 311-339

Proof The proof is just an application of Fubini’s theorem on the exchange of inte-
grals, since ]goX,R(v)dx = Cg is independent of v. O

Proposition 3.6 Let Wy € S(R*?) supported in the ball B(0, 1/R). Then

sup | Vg,0(u; 21 +v,zz)l5CNM(B(Zl,R))_lfwzl,R(v)lV%a(u;v,zz)ldv,
veB(O,R)

for every u € R, Z1,22 € R4,

Proof Tt suffices to apply Proposition 2.3 to the function RY 5 v — V0 (u; v, 22).
Indeed, setting u = (u1,us) € R4 x RY, its Fourier transform has support contained
in the ball B(u1, 1/R). Il

Proof of Theorem 1.1 Since the boundedness on MP = MP-P 1 < p < 00, was
already proved in [7, Theorem 6.1], see also [4, Theorem 2.1], the desired result will
follow by interpolation from the cases (p, g) = (0o, 1) and (p, g) = (1, 00). To prove
them, we observe that the inversion formula (2.4) for the STFT gives

Ve(Tu)(x', ") = / (Tgxy> &',y ) Voulx,m)dx dn.

R2d

By Remark 2.7, the desired estimate therefore follows if we prove that the map K7
defined by

KrG o) = / (Twys gy G e ) dx

R2d

is continuous on L}]Lﬁo and L‘,;OL }C By Proposition 2.4 it suffices to prove that its
integral kernel

Kr (', n's,m) =(T8x.n» 8a/.y)

satisfies

Kr e L‘,;OL}],L;?L}C, (3.7)
and

Kr e L‘,’;?L}?L;OL}C,. (3.8)
Let us verify (3.7). By (3.3) we have

K7 (' 0’5 x| =1V, o @& 0", x,m)l,

where

2 x, )=, = Ve @ n), x — V@', ).

By Lemma 2.5 for g = y = Wy, ¥y € S(R??), ||Wyll2 = 1 and sup Wy C B(0, 1/R),
where R > 0 will be chosen later, we have

Vw0 @] < (Vayo! x|V, WD), zeRY,
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so that

/ /
Ve 0@, x, ’7))||Lg°L,'7,L;?L;

< / | Vyyo (z(x',n', x,n) — Wlpeopt poept sup [V, Wow)|dw
n Ly s
7 e

/ /
=< sup ||V\I/00(Z(x,U,xaﬁ)—w)”LooLl,Lo?L)lC/ sup |V, Wo(w)|dw.
weR4 T (', )R

In view of Lemma 3.4 we are therefore reduced to proving the estimate
Ve GG 5o m) = )l g1 oot < Cliollygeen,
n XX

uniformly with respect to w € R*¢. Since,

Voo &' x ) —w)l < sup Vg, o, 20 0’ x,n, w2))l,
ueR2d

with
20 x, wa) = () = Ve d (', ), x =V, ®(x, ) —wa,  w = (wy, wy) € R*,

we shall prove that

sup Vo, 206", x, m, w2)) | =Cloly~r, (39
v LR

uniformly with respect to wy € R?. A translation shows that the left-hand side in
(3.9) is indeed independent of w,, and coincides with

sup /Rd sup /Rd sup |Vigyo (u;n' — Vi@ (x', ), x = V, @', )| dxdn’.
n X

neRd  x'eR4 ueR2d

Here we perform the change of variables x — x — V, ¢ (x’, ). The last expression
will be

< sup /d/ sup sup |Vy,o (u;n' — Ve ®(x', ), x)|dxdn'.
RY, JR
n

neRd 4 ueR2d x'cR4
Now we observe that
Vi@, n) =V @0,n) + AW, n),

where, by the assumption (1.6), |A(x’, )| < R for some R > 0. By Proposition 3.6
we can continue the majorization as

SSUP/ / Sup/ @y —v, .. RV V,o (u; v, x) | dvdx dny’.
RY, JRY RY

neRd ueR2d
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Now we bring the supremum with respect to u inside the more interior integral and
perform the change of variables ' —> 1’ — V¢ (0, 1), obtaining

5/ / / @y (W) sup Voo (u;v,x)|dvdxdy’.
Rz/ Rz Rﬁ MERZd

Finally we exchange the two more interior integral and apply Lemma 3.5. The last
expression is seen to be

=CR/ /d sup |Vy,0(u; ', x)|dxdn’ = Cgrllo| oo
R

¢ ueR2d

We now prove (3.8). Here we will use repeatedly the Remark 3.1. By arguing as
above we are reduced to proving that

supf sup/ Sup |Vayor s 1f' — Vi@ (x', ). x — Vy® (', )| do’ dy
neRd JRY xeRd /uede

< Cllo|lppee.1. (3.10)

By performing the change of variables x’ —> V,®(x’, n) and a subsequent transla-
tion, the left-hand side in (3.10) is seen to be

< Sup/ Sup/ sup |Vgyo (u;n' — Vi ®(B(x' 4+ x,m), ), x| dx"dn,
]Rd

n'eR4 xeRd R;J/ ueR?d
for a suitable function B coming from the inverse change of variables. Now, by the

assumption (1.6) we have V,® (B’ + x,n),n) = V. ®(0, n) + A'(x,x’, n), with
|A’(x,x’,n)| < R for a suitable R > 0. It turns out that the last expression is

< sup / / sup sup |Vy,o(u;n' — Ve ®(0,n) + v, x")|dx"dn.
n'eRd JR " ueR2d veB(0,R)

By the Proposition 3.6 this is

< sup / / [ o=, 00,1, R (V) Vo (u; v, x") | dvdx'dn.
U,GRd /MERZd

Now we perform the change of variable n — V,®(0, 1), and a subsequent transla-
tion, obtaining

< / / sup / 01, ()| Voo (u; v, x) dv dx’ d.
Rd Rd/uERZd ‘,f

Finally we can bring the supremum with respect to « inside the more interior integral,
exchange the integrals with respect to v and n’ and apply Lemma 3.5, obtaining
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<CR// sup |V, (u; 1, x")|dx"dn = Crllo || yyee.1,
Rd

U cR2d

as desired. O

We now prove Theorem 1.2. To this end, we first consider the cases (p,q)
= (00, 1) (Theorem 3.7) and (p, g) = (1, 00) (Theorem 3.8).

Theorem 3.7 Consider a phase ® satisfying (i), (ii) and (iii), and a symbol o €
v O®1 (R24), with s > d. Then the corresponding FIO T extends to a bounded op-

erator M (RY) — M1 (RY).

Proof By arguing as at the beginning of the proof of Theorem 1.1, we see that it
suffices to prove the estimate

SUP/ Sup/ Vgoo (X' 30 = Vi@ (X', ), x =V, @', n)|dxdn’
d

neR4 RZ/ x'eRd JR
<Cllo 1
191

The left-hand side of this estimate is seen to be

< sup/ sup/ sup  {(x/)7*
neRd RZ/ x'eRd JRY (uy,up)eR2d
X [(u1)* Voo (ui,uz;n’ — Vi@ (X', ), x — V@ (x', m)ldxdy’,

which coincides with

sup / sup / sup  {(x/)7*
neRd Rd/ x’eRd R (uy,up)eR2d

x (1) Voo (i, uz; n' — Vi @', n), x)| dx dn’

< sup / / sup  (u1)* sup (x/)”*
neRd RS, IR (uy,up)eR¥ x/eRd
X | Voo (u1,uz;n' — Ve ®(x', ), x) | dx dn'.

Now we apply Lemma 2.2 to the function

f(g) = V\DOU(M] , U2; 77/ - qu)(oa 77) - ;‘a .X)
with v(x') = Vi@ (', n) — Vi ®(0,m) (so that f(v(x") = Vy,o(ur,uz;n’ —
V. ®(x’, n), x)). The assumptions are indeed satisfied uniformly with respect to all
parameters; in particular

() = V@', 1) = Vi @(0, )| < Clx'|

for every (x', ) € R¥ by (ii).
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It follows that we can continue our majorization as

< sup/ / sup ul)S/ (xy™s

neRd JRY, IR (4 up)eRM R,

X Voo (ur,uz;n' — Vi ®(0, ) —x', x)|dx"dx dy’
< sup/ ’_Y/ / sup  (up)*

ne]Rd R (uy,up)eR2d

X [Vigyo (ur,uz;n' — Ve ®(0, 1) — x’, x)|dx dn' dx'.

By performing the translation ' — ' — V,®(0, ) — x” and using the integrability
condition s > d one sees that this last expression is

—C/ / sup  (u1)’ Voo (ur, uz; ', x)|dxdn' = Cllo|| e .
R V5,081

(uy,uz)eRM

This concludes the proof. O
Theorem 3.8 Consider a phase ® satisfying (i), (ii), and (iii) and a symbol o €
vo ®1(R2d) with s > d. Then, the corresponding FIO T extends to a bounded

operator MH®(R?) — MO (RY).

Proof By arguing as at the beginning of the proof of Theorem 3.7, we see that it
suffices to prove the estimate

sup / sup fd Voo (X' ;0 = Vi@ (X', n), x — V, ®(x', )| dx"dn
Rd "

n' eRd xeRd /R
<Cl|lo 1
I e,

The left-hand side of this estimate is seen to be
< sup / sup / sup  (n)~*
n'eRd IRY xeRAIRY, () up)eR
X [(u2)* Voo (ui, uz; ' — Vi @', ), x — Vy @(x', )| dx’ dn.

By performing the change of variables x’ —> V, ®(x’, n) (see Remark 3.1) and a
subsequent translation, we obtain

< sup f sup / sup  (n)*
7' eRd Ri%xe]Rd R (uy,up)eR2d
X [(u2)* Voo (ui, uz; ' — Vi ®(B(x +x',n), n), x")|dx’dn,
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for a suitable function B(x’, n) coming from the inverse change of variables. Bringing
the supremum over 5’ inside,

=< / sup / sup (n)"°
RY xeRd JRY, (u),up)eR>

X (u2)* sup |Vw,o(ui,uz;n’ — Ve®@(B(x +x',n),n),x")|dx"dn. (3.11)
n' R4

Using Bernstein’s inequality (2.1):
sup £GP < [ 1700 1d
7' eR4 R4

for f (') = V,o (uy,uz;n’ — Vi ®(B(x +x', 1), n), x), and the translation invari-
ance of the Lebesgue measure dn’, the expression (3.11) is less than

/ // sup  (u2)*|Vgyo (uy,uz;n', x") | dx"dn'.
RY IR (uyup)eRM

Using the integrability condition s > d, this last expression is equal to

/ / sup  {u2)'| Voo (ur,uzin', )l dx’ dy = Cllo | o
R v0,s

(uy,ur)€R2d

as desired. O

Proof of Theorem 1.2 Ttem (i) was already proved in [7, Theorem 6.1], see also
[4, Theorem 2.1].

Items (ii)—(iii). By Proposition 2.8, the conclusion in Theorem 1.2 is equivalent
to saying that any FIO T, with phase ® satisfying (i), (ii) and (iii) and symbol & €
M1 (R??), extends to a bounded operator M{;Oz (R — /\/lv_vl 0(]Rd), for s1, s
as in the statement, and moreover

T a < C|&] yeo. a .
1T Flaggs = Cla st 1 pags

Since this was already proved for (p, g) = (o0, 1), for all 1 < p =¢g < o0, and for
(p,q) = (1, 00), the desired result follows from Proposition 2.6. O

Theorem 1.2 has the following counterpart in the framework of Wiener amal-
gam spaces. Of course, we are interested in W(FL?, L?), with p # g, since
W(FLP,LP)y=MP.

Corollary 3.9 Consider a phase ® and a symbol o as in Theorem 1.2.

(1) Let 1 <g < p<oo.Ilfs > d(— — —) 52 >0, T extends to a bounded operator
on W(FLP, L9)(RY).

BIRKHAUSER



328 J Fourier Anal Appl (2010) 16: 311-339

(i) Let 1 < p<g <oc0.lfs1 >0, 52 > d(— — —) T extends to a bounded operator
on W(FLP, L9)(R?).

In all cases,

ITfllwFLr,Lay S ||0||Mool o Il flhwFLr,La)- (3.12)
Us1.5

Proof The result easily follows from Theorem 1.2. Indeed, consider an operator 7,
with symbol o and phase &, satisfying the assumptions of Corollary 3.9. Conjugating
with the Fourier transform yields the operator

Tfx)=FoToF ' fx).

Since MP4 = F~YW(FLP, L9), it suffices to prove that T extends to a bounded
operator on MP?-9, By duality and an explicit computation this is equivalent to veri-
fying that the operator

P o = fR OO0 fn d

extends to a bounded operator on MP4 . Since ¢ € MU . ®1(R2d ) implies that
o*(x,n)=0(n,x) € Mf)’o’l ol (R%) by Lemma 2.10, the desued result is attained
.Yz.Sl

from Theorem 1.2. U

4 Boundedness of FIOs on Weighted AM7-4

Thanks to the commutativity of the diagram (2.7), the results of Theorem 1.2 may be
equivalently stated as the action of a FIO T on weighted modulation spaces. Namely,
we have the following result.

Theorem 4.1 Consider a phase ® satisfying (i), (ii) and (iii), and a symbol o €
MOO,I(RZZ’).

) Ifl<g<p<oo, s < d(1 1) and sp > 0, then T extends to a bounded
operator from Mﬁ)‘f (RY) to ./\/lvs 0(]Rd)

) Ifl<p<g<o0,51<0,and sy > d(— — —) T extends to a bounded operator
from ./\/lvoé (RY) to ./\/lvs 0 RY).

In both cases,

ITflpaps | S Mo llpgort 1F I pazee -
S1 .59

One can easily rephrase the results of Corollary 3.9 in term of weighted Wiener
amalgam spaces.
We now study the weighted cases not contained above.
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Theorem 4.2 Consider a phase © satisfying (i), (ii) and (iii), and a symbol o €
M>®V(R2). Then, the corresponding FIO T extends to a bounded operator between
the following spaces:

s d s d s d d
MO RY) > MPTRY),  MPPRY) - MRS,
with s < —d, and its norm is bounded from above by C |0 || yye0.1, for a suitable C > 0.

Proof To prove the boundedness of T from M !(R?) to ij’(‘)’;_l (R9), we have to
show that the integral kernel ’

Kr(x',n'sx,m) = (Tgx.n g p) ()
satisfies K1 € L‘;OL}’,L)OC?L}C. The arguments are similar to those of Theorem 3.7, we

sketch them for sake of clarity. The quantity

SUP/ sup / Voo (', m;5 0 = Ve @ (X', ), x — V@', m)[(n')* dx dnyf
neRd RZ/ x'eRd JRY
can be controlled from above by

CSHP/ Sup/ sup Vo (ur,uz; 0’ — Vo @', m), ) (n') dx df,
R4

neRd R‘;/ x'eRd JRY (uq,u)eR2d

<C sup/ sup /R sup sup |V, 0o (u1,uz; &, x)|{n "dxdny

neRd Rd/ x'eR4 (u1,ur)eR2d ¢ eR4

SUP/ Sup/ sup /IVwoa(ul,uz;C,X)Idé(n’fdxdn/,
]Rd
§

neRd /R o x'eRd (uq,u)eR2d

where in the last estimate we applied Bernstein’s inequality (2.1) to the function
f (&)= Vy,0(ui,u; ¢, x). The last estimate, since s < —d, is dominated from above
by |lo||3r0.1, as desired.
. . . 1’ 1 . . .
Similarly, to show 7: M — M, %, is equivalent to proving that the integral
kernel
Krx',n'sx,m) =(Tguy, 8o ) (X)°

satisfies K7 € L;?L}’Lf;oL )IC ,. The arguments are quite similar to those of Theorem

3.8. Again, we sketch the proof for sake of clarity. By performing the change of
variables n —> V, ®(x’, ), the quantity

SHP/ / sup |Vg,o (x',min' = Vi @', ), x — V@ (', ) [(x") dndx’
7' eRd RY R‘éxeRd

is less than

sup/ / sup  sup  |Vg,o(ui,uz;n,x — V@', B(x',n+ 1))l
n'eRd JR Rng]R" (uy,up)eR2d

x (x"Ydx"dn,
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for a suitable function B(x’,n) coming from the inverse change of variables. The
result is attained using Bernstein’s inequality (2.1): sup, cpa | f(x)] S fRd | f(x)|dx,
for f(x) = Vy,0 (41, u2; n, x), and the condition s < —d. O

Since the boundedness of the FIO T on M? is provided by Theorem 1.2, the
complex interpolation with the preceding results yields:

Theorem 4.3 Consider a phase ® satisfying (i), (ii) and (iii), a symbol o €
M L(RY).

() Ifl<g<p<oo,s1>0,and s < —d(é — %), then T extends to a bounded

operator from M5 (RY) to ME? (RY),

Usl ,0 UO,SZ

) If1<p<g<o0,s < —d(% — é), and sy > 0, then T extends to a bounded
operator from M5 (RY) to ./\/155'1({0 (RY).

UO,S2

In both cases the norm of T is bounded from above by C| o || ys.1, for a suitable
C>0.

The results for Wiener amalgam spaces are obtained by similar arguments as those
in Corollary 3.9 and left to the reader.

5 Boundedness of FIOs MP?1 — M%P p>gq

In this section we shall prove the boundedness of an operator T between MP?-9 —
M?P  namely Theorem 1.3. As a byproduct, conditions for the boundedness from
W(FL?P, LT) to W(FL4, L?) are attained as well (Corollary 5.2). By using complex
interpolation, as in the proof of Theorem 1.2, we see that it suffices to prove the
desired results for (p, g) = (o0, 1):

Theorem 5.1 Consider a phase ®(x, n) satisfying (i) and (ii). Moreover, assume one
of the following conditions:

(a) the symbol o € M LR and, for some § > 0,

ERL
det
8)(, a.x] (x’n)

(b) the symbol o € ij(;g LR, with s > d.

>8 V(x,n) eR*, (5.1)

Then, the corresponding FIO T extends to a bounded operator M>®'(R?) —
MR,

Proof We argue as in the first part of the proof of Theorem 1.1. We see that it suffices
to prove that the map K7 defined by

KrG(x',n')= / (Tgx.n 8v.y)G(x,n)dxdn

RrR2d
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is continuous L}7L;’° — L;’OL}C. By Proposition 2.4 it suffices to prove that its integral
kernel

Kr(x',n'sx,m) = (Tgx.n, &x'.yy)
satisfies
KreLy¥ Ly .. (5.2)

(a) The same arguments as in the proof of Theorem 1.1 show that it is enough to
verify the estimate

sup // sup |[Vg,o(u;n' — Vi ®@(x', ), x — V,®(x', n)|dx dx’
(n,n)eRx Rii/ ueR

< Cllo|lppoe.1- (5.3)

To this end, we first perform the translation x — x — Vnd>(x’ , 1) in the left-hand side
of (5.3), obtaining

sup // sup |Vy,0(u;n' — Vi@ (x', ), x)|dx dx’.
R

(,n)eR2 J IR, eR2

Then we perform the change of variables x’ —> V,®(x’, ) (followed by a trans-
lation) which by Remark 3.1 is a global diffeomorphism of R?, and whose inverse
Jacobian determinant is uniformly bounded with respect to all variables. Hence the
last expression is seen to be

5/4/ sup |Vig,o (u; x', x)|dx dx’ = ||| pyoo.1.
RY,

R{ yeRM

X

(b) Similar arguments as above show that the result is attained once we prove the
estimate

sup f/ Voo (X' p3n = Vi@ (X', n), x — V, ®(x', )| dx dx’
()R J IR,

=Cloll 1 . 54

U&O®l

For s > 0, and performing the change of variables x — x — V,,dD(x’ , 1), the left-
hand side above is controlled by

< sup // (X7 sup  (u)*|Vayo(ui,uz;n' — Ve ®(x', n), x)|dx dx’
(r)er2 JIRY, (u1,u2)€R

< sup // (N7 sup (ug)*
n'eR4 Rzijx/ (uq,ur)eR2d

x sup |Vy,o(ui,uz;n’ — Vie® (', n), x)|dxdx’.
neRd

BIRKHAUSER



332 J Fourier Anal Appl (2010) 16: 311-339

Now we apply Lemma 2.2 to the function
f(g) = V\I’Oa(ula us; T’/ - qu)(xl’ O) - C,X)

with v(n) = Vi@, n) — Ve ®(x',0) (so that f(v(n) = V,0ui,us;

n — Vy®(x’,n),x)). The assumptions are indeed satisfied uniformly with respect

to all parameters; in particular |v(n)| < C|n|, for every (x’, n) € R by (ii).
Continuing our majorizations, we obtain

< / / sup ul)s/ (xy~S
n E]Rd R (u1,u2)eR2d R;i/

X | Voo (uy, uz;n' — Ve ®(x',0) — 0, x)|dndx’ dx

< sup/ (Y™ /Rd/R sup ul)S|V\p00(u1,u2; n, x)|dndxdx’

n'eRd JR (uy,up)eR2d

where in the last row we perform the translation (up to a sign) n —> n’ —

V,®(x’,0) — n and using the integrability condition s > d one sees that this last

expression is dominated by ||| 001 . O
vxy()®l

From Theorem 1.3 and using the same arguments as in Corollary 3.9, one can
prove the following result.

Corollary 5.2 Let 1 < g < p < 0o. Consider a phase ®(x,n) satisfying (i), (ii)
and (iii). Moreover, assume one of the following conditions:

(a) the symbol o € M L(R2) and, for some § > 0,

(E hE”l 7}>
()C )

(b) the symbol o € M;’g;}@l(RM), with s > d(é — %).

>8 V(x,n) eR¥, (5.5)

Then, the corresponding FIO T extends to a bounded operator W(FL?, L9)(RY) —
W(FL4, LP)(RY).

Example 5.3 (Metaplectic operators) Consider the particular case of quadratic
phases, namely phases of the type

1 1
D(x,n) = —Ax x+ Bx - n+2Cn n+mno-x—xo-n, (5.6)
where xq, g € R4, A, C are real symmetric d x d matrices and B is areal d x d
nondegenerate matrix.

It is easy to see that, if we take the symbol o = 1 and the phase (5.6), the corre-
sponding FIO T is (up to a constant factor) a metaplectic operator. This can be seen
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by means of the easily verified factorization
T =My UsDpF 'UcFTy,, (5.7)

where U, and Uc are the multiplication operators by e™/4** and ¢™/¢"" respec-
tively, and Dp is the dilation operator f — f(B-). Each of the factors is (up to a
constant factor) a metaplectic operator (see e.g. the proof of [20, Theorem 18.5.9]),
so T is. We refer to [5, Proposition 2.7(ii)] and [7, Sect. 7] for details about the sym-
plectic matrix which yields such an operator.

We see that the assumptions (i) and (ii) in the Introduction are clearly satisfied,
whereas the hypotheses (iii) in the Introduction, (1.8) and (5.5) are equivalent to
det B # 0, det A # 0 and det C # O respectively. In particular, the first part of Corol-
lary 5.2 generalizes [5, Theorem 4.1].

6 Some Counterexamples Related to the Schrodinger multiplier

In this section, we study the action of the Scrodinger multiplier
fr— F! (eiﬂl‘lzf) ,

that is the multiplier with symbol /™ |’7|2, on the Wiener amalgam spaces
W (FL?, LY). Equivalently, we study the action of the pointwise multiplication op-
erator

Af() =™ P Fx), xeRrd 6.1)
on the modulation spaces Mﬁ;fﬁ. This will provide useful examples to test the sharp-
ness of the thresholds arising in our results. Notice that A is the FIO with phase

dx,n)=xn+ % and symbol o = 1. In particular, it satisfies (1.8).

It was shown in [7, Proposition 7.1] that A is bounded on M”49 (if and) only if
p = g (for a proof of the positive results see [2, 5, 7]). It is natural to wonder whether
for suitable negative values of s it is bounded as an operator M”49 — Mﬁ;ﬁ. The
next result deals with the optimal range of s for this to happen.

Proposition 6.1 If the operator A in (6.1) is bounded as an operator MP4(R?) —
Mﬁ;ﬁ(Rd),for some 1 < p,qg <o0o,s €R, then p>gq and s < —-d(1/q — 1/p).

Moreover, if p =00 and g < 0o, then s < —d/q.

Proof We will prove later on that p > ¢q. Let us verify now the remaining conditions.
We test the estimate

1Af Naggs S 1F Naara 62)

on the family of functions f3 (x) = e~ ™** A > 0. Applying Lemma 2.9 with a = A,
b =0 we see that

4
I fillmra < NGagivllwFre.Lay <A~ 2, asi—0F. (6.3)
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On the other hand, with the notation of Lemma 2.9, we have
|| Af)u ”]1450‘1Y = ” Ga+ib ” W(fLP,Lg)

with a = A, b = —1. We now estimate this last expression. We see that, by (2.10),

_ malx?
1GativTigllFrLr <e 2 A <1,

Let u = A/(1 + 2+ A2) (observe that y ~ A and log i ~ log A as A — 07). Then, for
q < 00,

1/q
_ 2
1Gativlwrrr 1oy < ( / e TN (1 4 X)) dx)

d 1/q
=u (/ e (] 4 e dx) . (64

. 1 2 _1
First, assume s < 0. If u2 < |x| <1 we have e 9" > 1 and 1 4+ p~2|x| <

1 .
21~ 2|x|. Hence the last expression turns out to be

_d 2 1 . 1/a
>t (/ e (1 4 2 dx)
"

2<x|<1

1/q
</ |x|7* dx) .
n2<|x|<l1

On the other hand, using polar coordinates one sees that, as © — ot,

SEd

d
2

1 if sq > —d,

/% 1 lx|?dx =< { [logu| ifsq=—d,
=[x[= d | s

n2=<x|< ,u,7+7q 1fsq -—d

Secondly, assume s > 0 in (6.4). Since 1 + yf% |x| > ,u’% |x|, we have

d _ s

||Ga+ib||w(]-‘Lp,L§?) Z w2,

Hereby, we deduce, as A — 0+,

d _s
A 22 if sqg > —d,
IAfillyps 2 Y25 3 loghld  if sq = —d. (6.5)
1 if sq < —d.

By combining this estimate with (6.2) and (6.3) and letting A — 0" we deduce the
desired conclusion, when g < co. An easy modification of the above arguments yields
also the case p =g = o0.
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Let us now prove the condition p > ¢. By duality, it suffices to prove that if the
inequality
IAf gt < CUFN s Y € SR, (6.6)
O

holds true for some s € R, then p > ¢g. To see this, we test the estimates on the
Schwartz functions f;, 0 < A < 1, already used before. It follows from (6.5), in par-
ticular, that

d_

IAfll ot 22 2, 0O<A<I. 6.7)
On the other hand, by (2.9) witha =X, b =0,

d
1GasinTegll =<2~ ™0 <a <1,

whereu:k/(k2+k)x1for0<k§1.Hence
_d
Nl g SA 2, O0<A<L
M”O,s

This estimate, combined with (6.6) and (6.7) and letting A — 0% yields p’ < ¢/,
namely p > q. g

Here is a related example.

Example 6.2 Let us show the unboundedness of the operator A between M (R¥)
and M4 (R?), for every g < oo. Consider the tempered distribution &, defined by
(8, ) = ¢(0), for every p € S (R?). Then, for a fixed non-zero window g € S(R?),
the STFT V,8(x,n) = (8, My Ty g) = g(—x) € LV (R3?), that is, § € M1>°(RY).
Now,

Vo (A8)(x, ) = (8, ™ M, T, g) = g(—x) ¢ L9 (R2), (6.8)

for every g < oo.
This also shows the unboundedness of the operator A between M (R9) and
Ml?oos (RY), for every s > 0. Indeed, using the inclusion relations

1
M,?g’x CM>®1, s>,

we see that, if A were bounded between M°° and My % for some s > 0, then the
operator A would be bounded between M and M q as well, and this is false, as
shown by (6.8).

Proposition 6.3 If the operator A in (6.1) is bounded as an operator MP 4 (R?) —
va(Rd) for some 1 < p,qg <00, s €R, then s < —d(1/q — 1/p). Moreover, if
p=ooandq < oo, thens <—d/q.

We need the following elementary result
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Lemma 6.4 Let ay,az, Co € Rwith 0 <aj < Co, Cy' < |az| < Co. Then

fR e eyt dn 2 (),

where the constant implicit in the notation 2, only depends on d, Cy and s.

2 _
Proof Let us observe that e=%! Intaxx|” > =1 for n € B(—axx,a, 1/2). Hence

/ el (s g > / o, (v —ax)*dy Z (arx)’ [ iy () ~Fldy,
R4 B(0,a; /%) B(0,a; "/

which gives the conclusion by the assumptions on a; and a;. 0

Proof of Proposition 6.3 In view of what we proved in Proposition 6.1, it suffices to
verify that if the estimate

1Af g < Clflamra. Y € SR,

holds true, then (6.2) holds as well, at least for all f(x) = f,.(x) = e‘”’\mz, 0<A
< 1. Hence we are left to prove that

(VA BYTEAR VA FVTER
or equivalently that

||Ga+ih||w(]-‘L§”Lq) Z ||Ga+ih||w(]-‘Lp,Lg),

with a = A, b = —1 (see the notation of Lemma 2.9). To this end, observe that by
(2.9) we have, for p < oo,

I Ga+ithg”]-‘L_f

2 2 d 4 771(a+1)|r|
=((a+ 1%+ b>) "4 @22

1
___px 242 2 9p v
5 (/e LI (@l x'7]<n>psdn>

_malx>

—((a+1) +b2) df4,~ a(a+1)+b2

/ 2 P
X (fe ("+”2+”2| alathb " it (u+1)+b i (mr d’7>

Since a =X < 1 and b = —1 an application of Lemma 6.4 gives

aalxl?

IGativTegllprp 2 € 1 (x)* < GarinTegll Lo (x)°,
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where for the last estimate we used (2.9).
Similarly one treats the case p = oc. g

Remark 6.5 By duality, the assumption in Theorem 6.1 could be rephrased as the
boundedness of A itself between M5 4 (R?) — Mp/’q/(Rd). Hence, as a conse-

V0, —s
quence of Proposition 2.8 and Proposition 6.1, we see that the threshold for s, arising
in Theorem 1.2(iii) (with s; = 0) is essentially sharp; namely, it is sharp for p =1,
whereas when p > 1 only the case of equality remains open.
Similarly, Proposition 6.3 shows that the threshold for s arising in Theorem 1.2(ii)

(with s = 0) is essentially sharp.
The following result shows that the conclusion in Theorem 1.3 generally fails if
q > p.

Proposition 6.6 If the operator A in (6.1) is bounded as an operator MP4 (R?) —
MPRY) for some 1 < p, g < 0o, then g < p.

Proof We test the estimate
IAflmar ST flmra, Y f € SRY,

on the family of Schwartz functions f) (x) =e™™ M)“z, A > 0. Applying Lemma 2.9
with a = A, b = 0 we see that

iy
2

4
| fillmra <N GavivllwFLe,Lay < 2% as A — +o0. (6.9)

On the other hand, with the notation of Lemma 2.9 with a = A, b =1, we have

d
2p

[N

IASo Ml pgar < NGativllwFra,Lry < A as A — +o00.

Hence it turns out g < p. O

Finally we present a counterexample related to Theorem 1.3.

Proposition 6.7 The Schridinger multiplier f —> F~ (e”’"'zfA) is not bounded as
an operator MP4(RY) — MIP(RY) if p #q.

Proof 1Tt suffices to prove that the pointwise multiplication operator A in (6.1) is not
bounded as an operator W(FL?, L1)(RY) — W(FL4, LP)(R?) if p #q.
We test the estimate

IAf IwFLe.Ley < ClflwFLe Loy, Vf € S(RY),

on the family of Schwartz functions f; (x) =e™ " M"'z, A >0.
By applying Lemma 2.9 with a = 1/A and b = 0 we obtain

d
_ A2 O0<a<l,
| frlbwFLe,Lay =2 d/2||Ga+ib||W(.7-'Ll’,Lq) =\ _a
A2 A>1.
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. . . _ )\. _ ]
Similarly we have, with a = 7777, b = 5777,
2, 2\d/4 A 0<a<l,
IAfllwFLe,Lry = (@ + b)) NGatiblwFLe.Lry < | _ o
A2 >,
Letting A — 0T and A — +00 one deduces a contradiction unless p = q. 0

Notice that this multiplier is the FIO with phase ®(x, n) =xn + # and symbol
o = 1, so that neither (1.8) nor condition (b) is satisfied (whereas (5.5) is). Indeed,
foro=1,g¢ S(R2), we have

Voo (z, O =1g()| ¢ L'(R2, L (R2)), Vs> 0.

Vs,0
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