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Abstract We define a scale of Lq Carleson norms, all of which characterize the
membership of a function in BMO. The phenomenon is analogous to the John–
Nirenberg inequality, but on the level of Carleson measures. The classical Carleson
condition corresponds to the L2 case in our theory.

The result is applied to give a new proof for the Lp-boundedness of paraproducts
with a BMO symbol. A novel feature of the argument is that all p ∈ (1,∞) are cov-
ered at once in a completely interpolation-free manner. This is achieved by using the
L1 Carleson norm, and indicates the usefulness of this notion. Our approach is cho-
sen so that all these results extend in a natural way to the case of X-valued functions,
where X is a Banach space with the UMD property.

Keywords Bounded mean oscillation · Square function · Conical · Carleson
embedding

Mathematics Subject Classification (2000) Primary: 42B35 · Secondary: 42B20 ·
42B25 · 46E40

Communicated by Fulvio Ricci.

T. Hytönen was supported by the Academy of Finland (project 114374 “Vector-valued singular
integrals”). L. Weis was supported by DFG grant WE 284711-2.

T.P. Hytönen (�)
Department of Mathematics and Statistics, University of Helsinki, Gustaf Hällströmin katu 2b,
00014 Helsinki, Finland
e-mail: tuomas.hytonen@helsinki.fi

L. Weis
Institut für Analysis, Universität Karlsruhe, Kaiserstraße 89, 76133 Karlsruhe, Germany
e-mail: lutz.weis@math.uni-karlsruhe.de

mailto:tuomas.hytonen@helsinki.fi
mailto:lutz.weis@math.uni-karlsruhe.de


496 J Fourier Anal Appl (2010) 16: 495–513

1 Introduction

In order to describe properties of a function f on R
n, it is often fruitful to consider

its resolution F(x, t) = f ∗ ψt(x), where ψ is an appropriate auxiliary function and
ψt(x) := t−nψ(t−1x). Then the value of F(x, t) tells something about the behaviour
of f near the point x ∈ R

n and at the length scale of t ∈ (0,∞).
It is well known that, for appropriate ψ , the membership of f in various function

spaces is encoded in a useful form in the size properties of F , which typically involve
some kind of a quadratic norm in the scale variable t . For instance, the Lp norms in
the reflexive range p ∈ (1,∞) satisfy

‖f ‖Lp(Rn) �

(∫
Rn

[∫ ∞

0
|F(x, t)|2 dt

t

]p/2

dx

)1/p

�

(∫
Rn

[∫∫
|y−x|<t

|F(y, t)|2 dy dt

tn+1

]p/2

dx

)1/p

, (1.1)

where we refer to the first quadratic expression as a “vertical”, and to the second as a
“conical” square function, for obvious geometric reasons.

For the end-point space BMO there holds in turn

‖f ‖BMO(Rn) � sup
B

(
1

|B|
∫

B

∫ r(B)

0
|F(x, t)|2 dt

t
dx

)1/2

� sup
B

(
1

|B|
∫

B

∫∫
|y−x|<t<r(B)

|F(y, t)|2 dy dt

tn+1
dx

)1/2

, (1.2)

where the supremum is taken over all balls B ⊂ R
n and r(B) is the radius of B . Ob-

serve that, as opposed to (1.1) which really states two different non-trivial theorems,
the equivalence of the “vertical” and “conical” forms in (1.2) is completely elemen-
tary. The finiteness of the middle term in (1.2) is the so-called Carleson condition for
the measure dμ(x, t) = |F(x, t)|2 dx dt/t .

When looking for generalizations of these results for Banach space-valued func-
tions f : R

n → X, it has been known for some time that the quadratic norms
should be reformulated in a “randomized” way (which we explain in more detail
in Sect. 2.2 below), and the Banach space X should satisfy the so-called uncondition-
ality property of martingale differences (UMD). For such spaces, descriptions of the
Lp(Rn;X) norm in terms of discrete versions of the randomized vertical square func-
tions date back to the works of Bourgain [2] and McConnell [15] in the 80’s. More re-
cently, also continuous-parameter quadratic estimates for f ∈ Lp(Rn;X) have been
developed, both in the vertical [8, 13, 14] and the conical [10] forms.

The aim of the present paper is to take up the BMO aspect of things in the vector-
valued, continuous-parameter setting. Before turning to this, we recall that a discrete
square function characterization of the vector-valued BMO has been previously given
in [7] in terms of wavelet expansions. Moreover, one-sided inequalities (as opposed
to the two-sided norm equivalence as in (1.2)) between the BMO norm, and variants
of the Carleson norm, have been related to the uniform convexity and smoothness of
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the underlying Banach space norm by Ouyang and Xu [17] in a continuous-parameter
setting, and by Jiao [12] in a discrete martingale framework. Jiao also obtains a certain
two-sided estimate in the case of UMD Banach lattices (rather than all UMD spaces,
with which we work in the present paper), and Professor Xu communicated to us that
it was also known to him in the situation of [17].

While the two forms of the square function in (1.2) are comparable, it will make a
difference for vector-valued functions whether we take one or the other as the basis of
the randomization procedure. Here we have chosen to work with the conical version,
since it seems that this leads to the most satisfactory analogy with the classical results
as presented e.g. in [20]. As the exponent 2 plays no particular rôle for Banach space-
valued functions F : R

n+1+ → X, we define in Sect. 3 a family of “Carleson-type”
quantities Cq(F )(x), with x ∈ R

n and q ∈ (0,∞), in such a way that C2(F )(x), for a
scalar-valued F , reduces to the right side of (1.2) but with the supremum only being
over those balls B which contain x. We can then prove the following characterization,
extending the classical result (corresponding to X = C and q = 2), which is found
e.g. in [20, Theorem IV.3]. The cases q �= 2 are apparently new even for X = C;
besides their appearance in this characterization, we believe that our new functionals
Cq may find other uses in the theory of “tent spaces” of Coifman, Meyer and Stein [4];
cf. the remark between Theorem 4.4 and its proof.

Theorem 1.1 Let X be a UMD space. Let f ∈ L1
loc(R

n;X) with

∫
Rn

|f (x)|X
(1 + |x|)n+1

dx < ∞,

and denote F(x, t) := f ∗ ψt(x), where ψ ∈ S (Rn) has vanishing integral.

• If f ∈ BMO(Rn;X), then Cq(F ) ∈ L∞(Rn) for all q ∈ (0,∞).
• If Cq(F ) ∈ L∞(Rn) for some q ∈ (0,∞) and ψ is non-degenerate in the sense of

Sect. 2.3 below, then f ∈ BMO(Rn;X).

Moreover, we have for all q ∈ (0,∞) the equivalence of norms

‖f ‖BMO(Rn;X) � ‖Cq(F )‖L∞(Rn).

One of the key rôles played by the BMO space is in connection with the celebrated
T (1) and T (b) theorems, and in particular in connection with the so-called paraprod-
uct operators which make a decisive ingredient in the proof of these theorems. Let us
define the paraproduct of the functions f and u first as the formal expression

P(f,u) :=
∫ ∞

0
ψt ∗ [(ψt ∗ f )(φt ∗ u)] dt

t
,

where ψ,φ ∈ S (Rn) are fixed functions, the former one with a vanishing integral.
As for the convergence issues, it is useful to think of P(f,u) as a linear functional on
a suitable function space, its action on g being given by

〈P(f,u), g〉 :=
∫ ∞

0
〈ψt ∗ [(ψt ∗ f )(φt ∗ u)], g〉 dt

t
. (1.3)
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The “Carleson-type” characterization of BMO(Rn;X) from Theorem 1.1, together
with a conical square function description of Lp(Rn;X) from [10], allow a new and
clean proof of the following basic mapping property of the paraproduct.

Theorem 1.2 Let X be a UMD space, and p ∈ (1,∞). Let f ∈ BMO(Rn;X) and
u ∈ Lp(Rn). Then P(f,u) ∈ Lp(Rn;X) with

‖P(f,u)‖Lp(Rn;X) � ‖f ‖BMO(Rn;X)‖u‖Lp(Rn),

in the sense that the integral in (1.3) converges absolutely for all g ∈ Lp′
(Rn;X′)

and defines a linear functional on Lp′
(Rn;X′) with the mentioned norm bound.

Results of this flavour are already known for different versions of the vector-
valued paraproduct; see [5, 6, 9, 11]. (There is no canonical definition, even in the
scalar-valued case, but the word ‘paraproduct’ is generically used for various bilinear
objects with a structure similar to P(f,u) above.) While the present proof has some
elements in common with the previous ones, its advantage is the complete freedom
from interpolation. We have also made an effort to choose our definitions and the
set-up in such a way that the vector-valued theory parallels as much as possible the
classical approach in the scalar case.

The rest of the paper is organized as follows: Sect. 2 contains preliminary material
and sets up some basic notation. In Sect. 3 we define and discuss our vector-valued
versions of the A and C functionals of Coifman, Meyer and Stein [4], in terms of
which we formulate our “quadratic estimates”. Several basic results concerning these
functionals are provided in Sect. 4. This preparation done, we are ready to prove The-
orem 1.1 in Sect. 5. In the final Sect. 6 we prove a version of the Carleson embedding
theorem from which Theorem 1.2 follows.

2 Preliminaries

2.1 Basic Geometry

The upper half-space is R
n+1+ := R

n × (0,∞), whose points are usually denoted
by (x, t) or (y, t) with x, y ∈ R

n and t ∈ (0,∞). We write B(x, r) := {y ∈ R
n :

|y − x| < r} for the ball of centre x and radius r , and given a ball B , we denote by
c(B) its centre and by r(B) its radius. The notation B � x, e.g. in connection with a
supremum, means that B runs over all (open) balls which contain the point x.

A cube in R
n is a set of the form Q = x + [−h/2, h/2[n where x ∈ R

n and h ∈
(0,∞), and we write c(Q) = x and �(Q) = h for its centre and side-length, and
diam(Q) = √

n�(Q) for the diameter. Given α ∈ (0,∞), a ball B and a cube Q, we
denote by αB and αQ the ball and the cube having the same centres as B and Q,
respectively, and r(αB) = αr(B), �(αQ) = α�(Q).

The cone of base x ∈ R
n and aperture α ∈ (0,∞), and its truncation at height

h ∈ (0,∞), are denoted by

�α(x) := {(y, t) ∈ R
n+1+ : |y − x| < αt},

�h
α(x) := {(y, t) ∈ �α(x) : t < h}.
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We also abbreviate �(x) := �1(x) and similarly with the truncated version.
A Whitney decomposition of an open set G ⊂ R

n with non-empty complement
is a collection of disjoint cubes {Qj }∞j=1 such that

⋃∞
j=1 Qj = G, and diam(Qj ) <

d(Qj ,G
c) ≤ 4 diam(Qj ) for all j . For instance we may choose {Qj }∞j=1 to consist

of all maximal cubes in {Qx : x ∈ G}, where Qx is the smallest dyadic Q � x such
that d(Q,Gc) ≤ 4 diam(Q).

2.2 “Square Functions” in Banach Spaces

Let us denote by γj a sequence of independent complex standard Gaussian random
variables on some probability space (�,A ,P). Let H be a separable complex Hilbert
space, and X a complex Banach space.

The Gauss space γ (H,X) consists of those T ∈ L (H,X) such that for some
(and then any) orthonormal basis (ej )

∞
j=1 of H the series

∑∞
j=1 γjT ej converges in

L2(�;X). The norm in γ (H,X) is defined by

‖T ‖γ (H,X) :=
∥∥∥∥∥

∞∑
j=1

γjT ej

∥∥∥∥∥
L2(�;X)

,

which is independent of the orthonormal basis (ej )
∞
j=1. See [16] for more details.

We can interpret X as a subspace of γ (H,X), and γ (H,X) as a subspace of
L2(�;X) by identifying x ∈ X with, say, the operator h �→ x(h, e1), and T ∈
γ (H,X) with the function

∑∞
j=1 γjT ej .

Let then H = L2(M,M ,μ). We say that f : M → X is weakly L2 if 〈f (·), x′〉 :
M → C is in L2(μ) for all x′ ∈ X′. If this is the case, then f · h : M → X (pointwise
product of functions) is Pettis-integrable for all h ∈ L2(μ), and there is a bounded
operator [18, Theorem 3.4]

If ∈ L (H,X), If h := Pettis-
∫

M

f · hdμ.

If it happens that If ∈ γ (H,X), then with slight abuse of notation we write f ∈
γ (H,X), and ‖f ‖γ (H,X) := ‖If ‖γ (H,X). If If /∈ γ (H,X), or if f is not even weakly
L2, then we denote ‖f ‖γ (H,X) := ∞. The Gauss norm ‖f ‖γ (H,X) will be thought of
as the “square function” of the Banach space-valued function f : M → X. Note that
if X = C, then ‖f ‖γ (H,X) = ‖f ‖H = ‖f ‖L2(μ). See [16] for further motivation of
why this is a natural definition of a “square function”.

We need a result about pointwise multipliers on γ (H,X). A collection T ⊂
L (X,Y ) is called Gauss-bounded if there holds

E

∥∥∥∥∥
N∑

j=1

γjTj ξj

∥∥∥∥∥
2

Y

≤ C2
E

∥∥∥∥∥
N∑

j=1

γj ξj

∥∥∥∥∥
2

X

for all N ∈ Z+, ξ1, . . . , ξN ∈ X and T1, . . . , TN ∈ T . The smallest admissible C is
denoted by Rγ (T ); if T is the range of an operator-valued function g, we also write
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Rγ (g) := Rγ (T ). (In a number of other papers, the notation γ (T ) has been used
instead of Rγ (T ); however, we decided to change this in order to avoid overloading
the symbol γ , and to emphasize the connection to the closely related notion of the
Rademacher-bound, which is defined with random signs εj in place of the γj and
denoted by R(T ).)

Proposition 2.1 (Kalton and Weis [14]) Let f ∈ γ (H,X), and g : M → L (X,Y )

be strongly measurable with Gauss-bounded range. Then g · f ∈ γ (H,Y ) and
‖g · f ‖γ (H,Y ) ≤ Rγ (g)‖f ‖γ (H,X).

We often exploit this when g is a bounded scalar-valued function, which we iden-
tify with an L (X)-valued one via λ ↔ λI . Then it is well-known (and can be proved
by a convexity argument) that Rγ (g) ≤ ‖g‖∞. In particular, when v is a unimodular
complex function, it follows that ‖v · g‖γ (H,X) = ‖g‖γ (H,X).

The following duality will also be needed:

Proposition 2.2 (Kalton and Weis [14]) If f ∈ γ (H,X) and g ∈ γ (H,X′) are
strongly measurable functions on M , then their pointwise duality product is in L1(μ),
and satisfies

∫
M

|〈f (t), g(t)〉|dμ(t) ≤ ‖f ‖γ (H,X)‖g‖γ (H,X′).

2.3 Test Functions

For convenience, we choose to work with test functions ψ,φ in the Schwartz class
S (Rn), although an interested reader will easily check that much less would often
suffice. We call a test function ψ degenerate if its Fourier transform ψ̂ vanishes iden-
tically on some ray {tξ : t ∈ [0,∞)}, where ξ ∈ R

n \ {0}; otherwise it is called non-
degenerate. For a non-degenerate ψ , one can always find a complementary function
φ ∈ S (Rn) such that

∫ ∞

0
ψ̂(tξ)φ̂(−tξ )

dt

t
= 1 (2.1)

for all ξ ∈ R
n \ {0}, and φ̂ may be chosen to vanish in a neighbourhood of the origin,

so that in particular φ has vanishing integral. In fact, a possible φ is given by

φ̂(−ξ) := χ(ξ)ψ̂(ξ)∫ ∞
0 χ(tξ)|ψ̂(tξ)|2 dt/t

where we have first chosen a non-negative χ ∈ C∞
c (Rn \ {0}) which vanishes in a

sufficiently small neighbourhood of 0 so that χ · ψ̂ is still non-identically zero on all
rays from the origin.



J Fourier Anal Appl (2010) 16: 495–513 501

3 The Functionals A and C of Coifman, Meyer and Stein

Let F : R
n+1+ → X be strongly measurable, i.e., a pointwise limit of simple X-

valued functions. (For operator-valued functions G : R
n+1+ → L (X,Y ), which we

also encounter later on, strong measurability means the strong measurability of
G(·)ξ : R

n+1 → Y for all ξ ∈ X.) We now introduce vector-valued versions of the
various functionals used by Coifman, Meyer and Stein [4] to define the norms of
their “tent spaces”. To simplify notation, we abbreviate

γ (X) := γ

(
L2

(
R

n+1+ ,
dy dt

tn+1

)
;X

)
.

According to the philosophy that the Gauss norms should replace the classical
quadratic expressions in the Banach space-valued analysis, our conical square func-
tion and its truncated version are defined by

A(α)(F )(x) := ‖F · 1�α(x)‖γ (X), A(α)(F |h)(x) := ‖F · 1�h
α(x)‖γ (X).

Recall that we interpret the norms as being ∞ if the quantities inside them do not

belong to the indicated space. We abbreviate A(F) := A(1)(F ), A(F |h) := A(1)(F |h)

for our most common choice of the aperture.
For X = C, our A reduces to the functional A = A2 defined in [4, Sect. 1]. While

Coifman et al. consider a family of related functionals Aq with parameter q ∈ [1,∞]
(which may be naturally extended to q ∈ (0,∞] as in [3]), we only define the vector-
valued A in the quadratic case q = 2 as above, and in the end-point case q = ∞.
However, the natural setting for the latter one is somewhat different, and we also
choose a different notation:

For an operator-valued function G : R
n+1+ → L (X,Y ) (with no additional condi-

tions), we define the non-tangential maximal function

N(α)(G)(x) := Rγ ({G(y, t) : (y, t) ∈ �α(x)}).

We also write N(G) := N(1)(G).

Lemma 3.1 For any G, the function N(α)(G) : R
n → [0,∞] is lower semicontinu-

ous.

Proof Suppose that N(α)(G)(x) > λ. Because of the finitary nature of Gauss-
boundedness, this means that there exist N ∈ Z+ and (y1, t1), . . . (yN , tN ) ∈ �α(x)

such that

Rγ ({G(y1, t1), . . . ,G(yN, tN)}) > λ.

But these points also belong to �α(x′) whenever |x′ − x| < mini=1,...,N [αti −
|yi − xi |], and hence N(α)(G)(x′) > λ for all x′ in this neighbourhood of x. Thus
{N(α)(G) > λ} is open. �
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We then come to the C functional, which is relevant for the description of the BMO
space. It is defined as an average of the truncated A functionals, with an additional
parameter q ∈ (0,∞) indicating the type of the average:

C(α)
q (F )(x) := sup

B�x

(
1

|B|
∫

B

A(α)(F |r(B))q(y)dy

)1/q

.

Note that by Jensen’s (or Hölder’s) inequality, C
(α)
q (F )(x) is a nondecreasing func-

tion of q ∈ (0,∞). Once again, we abbreviate Cq(F ) := C
(1)
q (F ).

If X = C, then

C2(F )2(x) = sup
B�x

1

|B|
∫

B

∫∫
�r(B)(y)

|F(z, t)|2 dzdt

tn+1
dy

= sup
B�x

1

|B|
∫ r(B)

0

dt

t

∫
2B

dz|F(z, t)|2 |B ∩ B(z, t)|
tn

� sup
B�x

1

|B|
∫∫

B×(0,r(B))

|F(y, t)|2 dy dt

t

reduces to the definition of C = C2 in [4] using the Carleson cylinders B × (0, r(B)).
We note that in [4] a scale of functionals Cq with q ∈ [1,∞) (and naturally extended
to q ∈ (0,∞), cf. [3]) is also defined, but it differs from our scale, with equivalence
of the functionals only at q = 2.

4 Basic Estimates for the A and C Functionals

The A functionals have already been studied in the vector-valued context in [10], and
we quote two inequalities from there. Both results involve the UMD property of the
underlying Banach space X, and our use of UMD in the present paper will be mainly
via the application of these estimates.

Theorem 4.1 (Hytönen et al. [10, Theorem 4.3]) Let X be a UMD space, and p ∈
(1,∞) and α ∈ (0,∞). For all strongly measurable F : R

n+1+ → X, there holds

‖A(α)(F )‖Lp(Rn) � ‖A(F)‖Lp(Rn).

Theorem 4.2 (Hytönen et al. [10, Theorem 4.8]) Let X be a UMD space, and
p ∈ (1,∞). Let ψ ∈ S (Rn) have a vanishing integral and F(x, t) := f ∗ ψt(x) for
f : R

n → X. Then

‖A(F)‖Lp(Rn) � ‖f ‖Lp(Rn;X).

Next we give an end-point extension of the previous theorem:

Corollary 4.3 Under the assumptions of Theorem 4.2, there also holds

‖A(F)‖L1(Rn) � ‖f ‖H 1(Rn;X),

where H 1 is the real-variable Hardy space.
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Proof We observe that

A(F)(x) := ‖F · 1�(x)‖γ (X) ≤ ‖(y, t) �→ F(y, t)η((y − x)/t)‖γ (X)

≤ A(2)(F )(x) (4.1)

where η ∈ C∞
c (Rn) is bounded by one everywhere, equal to one in B(0,1), and van-

ishes outside B(0,2). It follows from Theorems 4.1 and 4.2 that the linear map-
ping taking f to x �→ [(y, t) �→ F(y, t)η((y − x)/t)] is bounded from Lp(Rn;X) to
Lp(Rn, γ (X)) for p ∈ (1,∞). This mapping is given by the integral operator

f (x) �→
∫

Rn

K(x, z)f (z)dz,

where

K(x, z) : X → γ (X), ξ �→
[
(y, t) �→ 1

tn
φ

(
x − z

t

)
η

(
y − x

t

)]
⊗ ξ.

To obtain its boundedness from H 1(Rn;X) to L1(Rn, γ (X)) (which by (4.1) com-
pletes the proof), it suffices to show (see [19]) that the K defined above is a Calderón–
Zygmund kernel. Observe that

‖ξ �→ h ⊗ ξ‖L (X,γ (X)) = ‖h‖
L2(

dy dt

tn+1 )
.

Hence the claim follows from the computations

‖K(x, z)‖2L (X,γ (X)) =
∫∫

R
n+1+

∣∣∣∣ 1

tn
φ

(
x − z

t

)
η

(
y − x

t

)∣∣∣∣
2 dy dt

tn+1

≤
∫ ∞

0

∫
B(x,ct)

1

t2n

(
1 + |x − z|

t

)−2(n+1)

dy
dt

tn+1
� 1

|x − z|2n
,

and

‖∇zK(x, z)‖2L (X,γ (X)n) �
∫∫

R
n+1+

∣∣∣∣ 1

tn+1
∇φ

(
x − z

t

)
η

(
y − x

t

)∣∣∣∣
2 dy dt

tn+1

≤
∫ ∞

0

∫
B(x,ct)

1

t2(n+1)

(
1 + |x − z|

t

)−2(n+2)

dy
dt

tn+1

� 1

|x − z|2(n+1)
.

In both cases the last step follows easily after observing that the y-integration only
yields a factor Ctn, and splitting the t-integration to the two intervals [0, |x − z|) and
[|x − z|,∞). �

We now present some norm inequalities between A(F) and Cq(F ). These es-
timates mostly depends on the definition of Cq(F ) as an average of the truncated
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versions of A(F), and have quite little to do with the more precise internal structure
of these quantities. Hence the proof of the following theorem is almost a repetition
of the original scalar-valued argument of Coifman, Meyer and Stein [4], and we only
write it out for the sake of completeness.

Theorem 4.4 (Coifman et al. [4, Theorem 3]) Let F : R
n+1+ → X be strongly mea-

surable. The following relations are valid for all α ∈ (0,∞):

(a) If X is a UMD space, p ∈ (1,∞) and q ∈ (0,∞), then

‖A(α)(F )‖Lp(Rn) � ‖C(α)
q (F )‖Lp(Rn).

(b) If X is any Banach space and 0 < q < p ≤ ∞, then

‖C(α)
q (F )‖Lp(Rn) � ‖A(α)(F )‖Lp(Rn).

In particular, if X is a UMD space and 0 < q ≤ 1 < p < ∞, then for all α,β ∈ (0,∞)

there holds

‖A(α)(F )‖Lp(Rn) � ‖C(β)
q (F )‖Lp(Rn).

Note that the last statement of the theorem gives an indication of the usefulness of
the functionals Cq for q ∈ (0,1], even in the scalar setting X = C. Had we insisted
on the use of C2 only, the admissible range of p in the last conclusion would be
restricted to p > 2 as in [4].

Proof Part (b) is immediate from the observation that C
(α)
q (F ) ≤ M(A(α)(F )q)1/q ,

where M is the Hardy–Littlewood maximal function, and the maximal inequality in
Lr , where r = p/q ∈ (1,∞].

Part (a) follows from the distributional inequality

|{A(α)(F ) > 2λ}| ≤ |{C(α)
q (F ) > γλ}| + Cγ q |{A(α+10)(F ) > λ}|, (4.2)

which, for all α,q ∈ (0,∞), is true with some C, and for all γ ∈ (0,1], λ ∈ (0,∞),
as we show in the following lemma. Integrating (4.2) multiplied by pλp−1, we obtain

2−p‖A(α)(F )‖p
Lp ≤ γ −p‖C(α)

q (F )‖p
Lp + Cγ q‖A(α+10)(F )‖p

Lp .

Since ‖A(α+10)(F )‖Lp ≤ C′‖A(α)(F )‖Lp by Theorem 4.1, we obtain

‖A(α)(F )‖Lp � ‖C(α)
q (F )‖Lp

provided that γ > 0 is chosen sufficiently small and the left-hand side is finite.
The finiteness assumption can be removed by a standard approximation argument;
cf. [4]. �

Lemma 4.5 (Coifman et al. [4, Lemma 3]) For all q,α ∈ (0,∞), there exists a con-
stant C such that

|{A(α)(F ) > 2λ;C(α)
q (F ) ≤ γ λ}| ≤ Cγ q |{A(α+10)(F ) > λ}|

for all γ ∈ (0,1] and λ ∈ (0,∞). In particular, (4.2) holds for the same parameters.
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Proof Let β := α + 10. Denoting by
⋃∞

k=1 Qk a Whitney decomposition of the open
set {A(β)(F ) > λ}, it suffices to prove that

|{x ∈ Qk : A(α)(F )(x) > 2λ,C(α)
q (F )(x) ≤ γ λ}| ≤ Cγ q |Qk| (4.3)

for each k. Thus we fix a particular Qk and denote by B the minimal ball containing
it. By the properties of the Whitney decomposition, for each k there exists an xk ∈
{A(β)(F ) ≤ λ} such that d(xk,Qk) ≤ 8r(B) and hence d(xk, x) ≤ 10r(B) for all
x ∈ Qk .

We decompose

F(y, t) = F(y, t)1[r(B),∞)(t) + F(y, t)1(0,r(B))(t) =: F1(y, t) + F2(y, t).

If x ∈ Qk and (y, t) ∈ �α(x) with t ≥ r(B), then

|y − xk| ≤ |y − x| + |x − xk| < αt + 10r(B) ≤ (α + 10)t = βt,

and hence (y, t) ∈ �β(xk). Then

A(α)(F1)(x) ≤ A(β)(F )(xk) ≤ λ.

On the other hand, there holds A(α)(F2)(x) = A(α)(F |r(B))(x), so that

1

|B|
∫

B

A(α)(F2)
q(y)dy ≤ c inf

x∈B
C(α)

q (F )q(x) ≤ c(γ λ)q,

where the last estimate is true whenever the set on the left of (4.3) is non-empty. It
follows that

|{x ∈ Qk : A(α)(F )(x) > 2λ}| ≤ |{x ∈ B : A(α)(F2)(x) > λ}|
≤ c(γ λ)q |B| 1

λq
= Cγ q |Qk|,

which was to be proven. �

Finally we come to a duality inequality involving the A and C functionals. We fol-
low closely the scalar-valued argument from [20, Sect. IV.4.4], starting with auxiliary
results for the following stopping time: Fix some q ∈ (0,∞) and ρ > 1, and define
τ(x) by

τ(x) := sup{τ > 0 : A(F |τ)(x) ≤ ρCq(F )(x)}.

Lemma 4.6 For all balls B , there holds |B ∩ {τ > r(B)}| ≥ (1 − ρ−q)|B|.

Proof Observe that

1

|B|
∫

B

A(F |r(B))q(y)dy ≤ inf
x∈B

Cq(F )q(x),



506 J Fourier Anal Appl (2010) 16: 495–513

so that

inf
x∈B

Cq(F )q(y) ≥ 1

|B|
∫

B∩{τ≤r(B)}
A(F |r(B))q(y)dy

≥ 1

|B|
∫

B∩{τ≤r(B)}
ρpCq(F )q(y)dy

≥ ρq |B ∩ {τ ≤ r(B)}|
|B| inf

x∈B
Cq(F )q(x).

The claim follows after cancellation and complementation. �

Corollary 4.7 For all positive measurable functions H on R
n+1+ , there holds

∫∫
Rn

H(y, t)
dy dt

t
�

∫
Rn

∫∫
�τ(x)(x)

H(y, t)
dy dt

tn+1
dx.

Proof This is immediate from the lemma after changing the order of integration on
the right. �

Theorem 4.8 Let F : R
n+1+ → X, G : R

n+1 → X′ be strongly measurable, and q ∈
(0,∞). Then

∫∫
R

n+1+
|〈F(y, t),G(y, t)〉| dy dt

t
�

∫
Rn

Cq(F )(x)A(G)(x)dx.

Proof By Corollary 4.7 and Proposition 2.2 (the duality of the Gauss norms),

LHS �
∫

Rn

∫∫
�τ(x)(x)

|〈F(y, t),G(y, t)〉| dy dt

tn+1
dx

≤
∫

Rn

‖F · 1�τ(x)(x)‖γ (X)‖G · 1�τ(x)(x)‖γ (X′) dx

=
∫

Rn

A(F |τ(x))(x)A(G|τ(x))dx

�
∫

Rn

Cq(F )(x)A(G)(x)dx = RHS,

where the last estimate used the defining property of the stopping time τ(x). �

5 The Carleson-type characterization of BMO

We are now ready for the proof of Theorem 1.1. It follows the general structure of the
scalar-valued argument from [20, Sects. IV.4.3–4], now that vector-valued versions
of the same tools are available.
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Proof of f ∈ BMO ⇒ Cq(F ) ∈ L∞ Since Cq(F )(x) is a non-decreasing function of
q ∈ (0,∞), we may assume that q ∈ (1,∞). We fix a ball B , split the function as

f = (f − f3B)13B + (f − f3B)1(3B)c + f3B =: f1 + f2 + f3,

and write Fi(x, t) := fi ∗ ψt(x).
For F1, we have
(

1

|B|
∫

B

A(F1|r(B))q(y)dy

)1/q

≤
(

1

|B|
∫

Rn

A(F1)
q(y)dy

)1/q

= |B|−1/q‖A(F1)‖Lq(Rn)

� |B|−1/q‖f1‖Lq(Rn;X) � ‖f ‖BMO(Rn;X),

where we used Theorem 4.2, and hence the UMD property.
Concerning F2, we can estimate

‖F2 · 1�r(B)(y)‖γ (X)

=
∥∥∥∥(u, t) �→

∫
(3B)c

[f (z) − f3Bc ]ψt(u − z)dz1�r(B)(y)(u, t)

∥∥∥∥
γ (X)

≤
∫

(3B)c
‖(u, t) �→ [f (z) − f3Bc ]ψt(u − z)1�r(B)(y)(u, t)‖γ (X) dz

=
∫

(3B)c
|f (z) − f3Bc |X · ‖ψt(u − z)1�r(B)(y)(u, t)‖

L2(
dudt

tn+1 )
dz. (5.1)

For z ∈ (3B)c , y ∈ B , and (u, t) ∈ �r(B)(y), there holds

|z − u| ≥ |z − c(B)| − |c(B) − y| − |y − u|
≥ |z − c(B)| − 2r(B) ≥ 3−1|z − c(B)|,

thus

|ψt(u − z)| � t−n

(
1 + |u − z|

t

)−(n+1)

� t

|z − c(B)|n+1
,

and hence the L2 norm on the right of (5.1) may be bounded by

(∫ r(B)

0

∫
B(x,t)

|ψt(u − z)|2 dy
dt

tn+1

)1/2

� r(B)

|z − c(B)|n+1
.

It follows that

‖F2 · 1�r(B)(y)‖γ (X) �
∫

(3B)c
|f (z) − f3B |X r(B)

|z − c(B)|n+1
dz � ‖f ‖BMO(X),

for all y ∈ B , and in particular the same upper bound holds for the Lq average of the
left-side quantity over the ball B . This argument for F2, as a matter of fact, did not
employ any special properties of the Banach space X.
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Finally, since
∫

ψ(y)dy = 0 we have f3 ∗ ψt(x) ≡ 0, so the estimate for F3 is
trivial. �

Proof of CqF ∈ L∞ ⇒ f ∈ BMO We establish this by invoking the (vector-valued)
H 1–BMO-duality. Consider a function g in the following dense subspace of the
Hardy space H 1(Rn;X′): We assume that g is compactly supported, bounded, and
takes its values in a finite-dimensional subspace of X′. Due to the non-degeneracy
of ψ , there is a complementary Schwartz function φ such that (2.1) holds. Then we
have ∫

Rn

〈f (x), g(x)〉dx =
∫ ∞

0

∫
Rn

〈f ∗ ψt(x), g ∗ φt (x)〉dx
dt

t
,

which identity, for our choice of g, is a simple consequence of the correspond-
ing result for scalar functions f and g found in [20, Sects. IV.4.4.1–2]. Denoting
G(y, t) := g ∗ φt (y), it follows from Theorem 4.8 and Corollary 4.3 that

∣∣∣∣
∫

Rn

〈f (x), g(x)〉dx

∣∣∣∣ �
∫

Rn

Cq(F )(x)A(G)(x)dx

≤ ‖Cq(F )‖L∞(Rn)‖A(G)‖L1(Rn)

� ‖Cq(F )‖L∞(Rn)‖g‖H 1(Rn;X′).

Thus f acts as a bounded functional on H 1(Rn;X′) via the natural duality, which
implies that f ∈ BMO(Rn;X), since H 1(Rn;X′)′ � BMO(Rn;X) when the Banach
space X is reflexive, in particular when it is UMD (see [1]). �

6 Carleson Embedding and Paraproducts

In this section we first develop some further inequalities involving the A, C and N

functionals, which are then applied to prove Theorem 1.2. The inequality behind that
theorem is contained in the “Carleson embedding theorem”, which we give next.

In its statement we use the notion of type q ∈ (0,2] of a Banach space Y , defined
by the requirement that

Eε

∣∣∣∣∣
N∑

k=1

εkyk

∣∣∣∣∣
Y

�
(

N∑
k=1

|yk|qY
)1/q

(6.1)

for all N ∈ Z+ and y1, . . . , yN ∈ Y , where εk are independent Rademacher variables
(i.e., distributed according to the law P(εk = +1) = P(εk = −1) = 1/2) and Eε the
corresponding mathematical expectation.

The estimate (6.1) is trivial for q ∈ (0,1], and in fact this case of Theorem 6.1
would suffice for the proof of Theorem 1.2. However, we have chosen to consider a
general q ∈ (0,2] in order to allow easier comparison to the scalar-valued case, where
C does have type 2 and moreover the Carleson functional C2 is the classical choice.
Indeed, the case X = Y = L (X,Y ) = C and q = 2 of the following theorem is given
in [4, Remark (b) on p. 320].
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In the proof, we will need the type q property of the space γ (H,Y ) instead of that
of Y but these are actually equivalent. Indeed, this follows from the well-known fact
that L2(�;Y) inherits the type q property of Y , and Y is isomorphic to a subspace of
γ (H,Y ), which is isomorphic to a subspace of L2(�,Y ).

Theorem 6.1 Let F : R
n+1+ → X, G : R

n+1+ → L (X,Y ) be measurable. Let
β > α > 0, 0 < q < p ≤ ∞ and Y have type q . Then

‖C(α)
q (G · F)‖Lp(Rn) � ‖N(β)(G)‖Lp(Rn)‖C(α)

q (F )‖L∞(Rn).

In the vector-valued theory, Theorem 6.1 has a certain analogy to [9, Theorem 8.2],
and the basic ingredient of the proof, contained in the following lemma, is related to
and inspired by [9, Lemma 8.1]. However, once the lemma is established, the way
it is used to obtain Theorem 6.1 differs from the approach in [9], the most notable
departure being that we are able to avoid any use of interpolation.

Lemma 6.2 Let F : R
n+1+ → X and G : R

n+1+ → L (X,Y ) be measurable. Let β >

α > 0 and q ∈ (0,2] be such that Y has type q . Then for all balls B there holds
∫

B

A(α)(G · F |r(B))q(x)dx �
∫

(1+α+β)B

N(β)(G)q(x)dx · ‖C(α)
q (F )‖q

L∞(Rn)
.

Proof Let G0 := G · 1(1+α)B×(0,r(B)), so that for all x ∈ B we have

A(α)(F · G|r(B))(x) = A(α)(F · G0)(x).

We introduce the stopping times

τk(x) := inf{τ > 0 : Rγ {|G0(y, t)| : (y, t) ∈ �α(x); t ≥ τ } ≤ 2k}.
Then we can estimate

A(α)(F · G0)(x) =
∥∥∥∥
∑
k∈Z

F · G0 · 1
�

τk(x)
α (x)\�τk+1(x)

α (x)

∥∥∥∥
γ (Y )

= Eε

∥∥∥∥
∑
k∈Z

εkF · G0 · 1
�

τk(x)
α (x)\�τk+1(x)

α (x)

∥∥∥∥
γ (Y )

�
(∑

k∈Z

‖F · G0 · 1
�

τk(x)
α (x)\�τk+1(x)

α (x)
‖q

γ (Y )

)1/q

�
(∑

k∈Z

2kq‖F · 1
�

τk(x)
α (x)

‖q

γ (Y )

)1/q

,

where the type q assumption was used in the second to last step, and the definition of
the stopping times in the last one. The introduction of the Rademacher variables εk in
the second step is in effect the invariance of the Gauss norm under the multiplication
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by a unimodular function; this step can be omitted for q ∈ (0,1]. Integrating over the
ball B , it follows that

∫
B

A(α)(F · G|r(B))q(x)dx ≤
∫

Rn

A(α)(F · G0)
q(x)dx

�
∑
k∈Z

∫
Rn

2kqA(α)(F |τk(x))q(x)dx

≤
∑
k∈Z

∫
{τk>0}

2kqA(α)(F |τk(x))q(x)dx.

Observe that {τk > 0} = {N(α)G0 > 2k} ⊆ {N(β)G > 2k} since β > α. Let us de-
note by

⋃∞
j=1 Qkj a Whitney decomposition of the open set {N(β)G > 2k}. Then

∫
{τk>0}

2kqA(α)(F |τk(x))q(x)dx ≤ 2kq
∞∑

j=1

∫
Qkj

A(α)(F |τk(x))q(x)dx.

By the properties of the Whitney decomposition, for each Qkj we have

d(Qkj , {N(β)G0 ≤ 2k}) ≤ 4 diam(Qkj ).

We may hence pick an xkj such that N(β)G0(xkj ) ≤ 2k and |x − xkj | ≤ 5 diam(Qkj )

for all x ∈ Qkj . If x ∈ Qjk , (y, t) ∈ �α(x), and t ≥ 5 diam(Qjk)(β − α)−1, then

|y − xkj | ≤ |y − x| + |x − xkj | < αt + 5 diam(Qkj ) ≤ βt,

and hence (y, t) ∈ �β(xkj ). It follows that

Rγ {G0(y, t) : (y, t) ∈ �α(x), t ≥ 5 diam(Qjk)(β − α)−1} ≤ 2k,

and hence τk(x) ≤ 5 diam(Qjk)(β − α)−1. This implies that

∫
Qkj

A(α)(F |τk(x))q(x)dx ≤
∫

Qkj

A(α)(F |5 diam(Qjk)(β − α)−1)q(x)dx

� |Qkj |‖C(α)
q (F )‖q

L∞ .

Substituting back we obtain

∫
B

A(α)(F · G|r(B))q(x)dx �
∑
k∈Z

2kq
∞∑

j=1

|Qkj | · ‖C(α)
q (F )‖q

L∞

=
∑
k∈Z

2kq |{N(β)G0 > 2k}| · ‖C(α)
q (F )‖q

L∞

� ‖N(β)G0‖q
Lq ‖C(α)

q (F )‖q
L∞ .
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Finally, we note that if d(x,B) ≥ (α + β)r(B), then �β(x) ∩ [(1 + α)B ×
(0, r(B))] = ∅ and hence N(β)G0(x) = 0. On the other hand, we always have
N(β)G0(x) ≤ N(β)G(x). These observations imply that

‖N(β)G0‖Lq(Rn) ≤ ‖N(β)G‖Lq((1+α+β)B)

and complete the proof. �

Theorems 6.1 and 1.2 are now easy consequences.

Proof of Theorem 6.1 For each x ∈ R
n we have, using the previous lemma,

C(α)
q (G · F)(x) = sup

B�x

(
1

|B|
∫

B

A(α)(G · F |r(B))q(y)dy

)1/q

� sup
B�x

(
1

|B|
∫

(1+α+β)B

N(β)(G)q(y)dy

)1/q

‖C(α)
q (F )‖L∞

� M(N(β)(G)q)1/q(x)‖C(α)
q (F )‖L∞ .

The proof is concluded by an application of the maximal inequality in Lr with r =
p/q ∈ (1,∞]. �

Proof of Theorem 1.2 We are given three functions

f ∈ BMO(Rn;X), u ∈ Lp(Rn), g ∈ Lp′
(Rn;X′).

Let us define

F(x, t) := f ∗ ψt(x), U(x, t) := u ∗ φt (x), G(x, t) := g ∗ ψ̃t (x),

where ψ̃(x) := ψ(−x). By the obvious identification of λ ∈ C and λI ∈ L (X), we
think of U as an operator-valued function. Let α > 1. Then we use Theorem 4.8 and
Theorem 6.1 to obtain:∫∫

R
n+1+

|〈U(x, t)F (x, t),G(x, t)〉| dx dt

t

� ‖Cq(U · F)‖Lp(Rn)‖A(G)‖
Lp′

(Rn)

� ‖N(α)(U)‖Lp(Rn)‖Cq(F )‖L∞(Rn)‖A(G)‖
Lp′

(Rn)
.

Recall that

‖Cq(F )‖L∞(Rn) � ‖f ‖BMO(Rn;X), ‖A(G)‖
Lp′

(Rn)
� ‖g‖

Lp′
(Rn;X′)

by Theorem 1.1 and Theorem 4.2. Finally, we observe the pointwise domination
N(α)(U) � M(u), from which

‖N(α)(U)‖Lp(Rn) � ‖M(u)‖Lp(Rn) � ‖u‖Lp(Rn)
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follows by the maximal inequality. This shows the convergence of the integral defin-
ing 〈P(f,u), g〉 as well as the asserted norm estimate for P(f,u). �

It seems worthwhile formulating one more consequence of Theorem 6.1 in terms
of the A and C functionals:

Corollary 6.3 Let F : R
n+1+ → X, G : R

n+1+ → L (X,Y ) be strongly measurable.
Let Y be a UMD space, q ∈ (0,∞), and p ∈ (1,∞). Then

‖A(G · F)‖Lp(Rn) � ‖N(G)‖Lp(Rn)‖Cq(F )‖L∞(Rn).

Proof Since Cq(F ) is non-decreasing in q ∈ (0,∞), we may again assume that
q ∈ (0,1]. Then Y has automatically type q . Let α ∈ (0,1). We apply Theorem 4.1,
Theorem 4.4, and Theorem 6.1 with β = 1 > α > 0, in this order, to get

‖A(G · F)‖Lp � ‖A(α)(G · F)‖Lp � ‖C(α)
q (G · F)‖Lp � ‖N(G)‖Lp‖Cq(F )‖L∞ ,

and this was the claim. �
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