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Abstract We consider the problem of completely characterizing when a system of
integer translates in a finitely generated shift-invariant subspace of Ly (R?) is stable in
the sense that rectangular partial sums for the system are norm convergent. We prove
that a system of integer translates is stable in L;(RY) precisely when its associated
Gram matrix satisfies a suitable Muckenhoupt A, condition.
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1 Introduction

A finitely generated shift-invariant (FSI) subspaces of Ly(RY) is a subspace S C
L, (R4 ) for which there exists a finite family ® of Lz(Rd )-functions such that

S = 8(®P) :=span{p(- —k):p € D,k € Z4}.

FSI subspaces are used in several applications. Wavelets and other multi-scale meth-
ods are based on FSI subspaces [4, 6, 14], and FSI subspaces play an important role in
multivariate approximation theory such as spline approximation [5] and approxima-
tion with radial basis functions [9, 19]. The fundamental structure of FSI spaces has
been studied in a number of papers, see for example [1, 7, 8, 20]. Let us also mention
the classical results on translates of functions by Kolmogoroff [16] and Helson [13].
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For many applications it is useful to have a stable generating set for S. Given the
structure of S, it is natural to consider generating sets of integer translates. That is, a
system with the following structure,

W(—k) :y eV keZb, (1.1)

where W = {yr,...,¥n} C LQ(Rd) is a finite subset. Often we take ¥ = &, but ¥
may be different from @, and the two sets need not have the same cardinality but we
always require that S(¥) = S(®).

We focus on the case where (1.1) has a unique bi-orthogonal system in S, i.e.,
there exist {g}f } C S such that

(g W (—k) =6, ;8. V.¥ew:jkel’

For such systems, we can define the “rectangular” partial sum operators by

INF=Y Y (fghw(—h. (12)

VeV keZd:|ki|<N;

for f € Sand N= (N1, Na, ..., Ng) € Ng, with Ng := NU {0}.
The main result of this paper, which is stated in Theorem 1.2 below, completely
characterizes when we have norm convergence

INf— f, asminN; — +oo, forall f e S(¥). (1.3)
1

For example, whenever (1.1) forms a Riesz basis for S(V), (1.3) clearly holds true.
However, as Theorem 1.2 will show, we can have convergence in much more general
cases where (1.1) fails to be a Riesz basis. It is known that Riesz basis properties
of (1.1) can be completely characterized in terms of the Gram matrix for the system
V. In fact, (1.1) forms a Riesz basis for S(¥) precisely when the spectrum of the
Gram matrix for the system W is bounded and bounded away from zero, see [8].
Therefore, it is only natural to expect that the convergence (1.3) can be characterized
in terms of the Gram matrix for W.

There is, in fact, one very restricted case where the convergence (1.3) has already
been characterized. It was proved in [17] that in the univariate case (i.e., d = 1) with
one generator (i.e., N = 1), (1.3) holds precisely when the Gram matrix (which is a
scalar function in this case) is a Muckenhoupt A, weight. The characterization ba-
sically boils down to an application of the celebrated Hunt-Muckenhoupt-Wheeden
Theorem [15]. The restricted case indicates that some type of Muckenhoupt condition
on the Gram matrix is needed in order to obtain the wanted convergence characteriza-
tion in the general case. We introduce the needed generalized Muckenhoupt condition
in Definition 1.1 below.

Let us now state the main result of this paper precisely. First, we introduce some
notation. We define the Fourier transform by

£ = /R F@eT dy, f e L@, (14)
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The Gram matrix for W = {1, ..., ¥y} is the Hermitian positive semi-definite N x
N-matrix W := W (W) given by

W (W) = ( =k —k)) (1.5)

N
kezd hj=1

The Gram matrix is an example of a matrix weight. In general, we say that W :
T¢ — CN*N, T = [—1/2,1/2)¢, is a matrix weight if it is a measurable function
whose values are positive semi-definite N x N -matrices.

To deal with the problem at hand, we introduce the following subclass of matrix

weights. Some examples of such weights can be found in Sect. 5.

Definition 1.1 Let W be a N x N matrix weight on T, ie., a periodic measurable
function defined on T¢ whose values are positive semi-definite N x N matrices. We
say that W satisfies the Muckenhoupt product A;-matrix-condition provided that

| 12/ 12
— | wda — | wla )
‘<|R|/R E) (|R|/R 5

where the sup is over all rectangles R=1) x Ip x --- x I C R?. The collection of
all such weights is denoted PA; (d).

sup
R

< 00, (1.6)

As far as we know, this is the first time that a product Muckenhoupt A,-condition
for matrix weights has been considered. However, non-product Muckenhoupt con-
ditions have been considered by several authors in the matrix setting. The matrix
A, condition on T was put into prominence by Treil and Volberg in their seminal
papers [23, 24] where they generalized the Hunt-Muckenhoupt-Wheeden theorem
to vector-valued functions. More recently, matrix Muckenhoupt conditions on R?,
where the sup in (1.6) is taken over cubes and not rectangles, have been consid-
ered in [10, 11, 21] in order to study vector-valued singular integral operators and to
construct vector-valued weighted Besov spaces. The product A;-condition for scalar
weights has a long history, see [3] and references therein. Schauder bases for Ga-
bor systems were characterized in terms of scalar A, product conditions by Heil and
Powell in [12].

We can now state the main result of this paper.

Theorem 1.2 Let S(V) be a FSI space in Lr(R?) for which ¥ has a bi-orthogonal
system. Then the following conditions are equivalent.

(@ Tnf — f,as min N; — 400, forall f € S(V)
(b) {TN}NeNg is a uniformly bounded family of operators on S
(¢) The Gram matrix W (W) is in the Muckenhoupt class PA;(d).

It is completely straightforward to verify that conditions (a) and (b) are equivalent

in Theorem 1.2. The main difficulty is to prove that (b) and (c) are equivalent. This
will follow directly from Theorem 3.3, which will be proved in Sect. 3.
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The structure of the paper is as follows. In Sect. 2 we explore the connection
between FSI subspaces and weighted vector-valued L»-spaces, and we characterize
when (1.1) has a bi-orthogonal system in S(W¥). Section 3 is devoted to studying
Fourier partial sum operators in the vector-valued setting, which through the Fourier
transform gives an equivalent approach to Theorem 1.2. The main result of Sect. 3
is Theorem 3.3 that gives a vector-valued Hunt-Muckenhoupt-Wheeden type result
for rectangular partial sums. In Sect. 4 we consider an application of Theorem 1.2 to
the problem of obtaining Schauder bases for FSI spaces. It is proved that provided
W € PA,(d), then we can find an enumeration of the system (1.1) that respects the
rectangular partial sums considered in Theorem 1.2 and turns (1.1) into a Schauder
basis for S(W¥). Section 5 contains a number of examples of PA;(d) weights and
related FSI subspaces.

2 Finitely Generated Shift Invariant Systems

In this section we explore the connection between FSI subspaces and weighted

vector-valued Ljy-spaces, and we characterize when (1.1) has a bi-orthogonal sys-

tem in S(¥). The main tool to study expansions in S(\W) is the Fourier transform. As

before, we assume that some ordering ¥ = {1, ¥2, ..., ¥y} has been imposed.
Following [8], we introduce the so-called bracket product given by

[f.8]:T! > Cix—> Y flx+hgk+k),
kezd

for f, g € L(R?). With this setup, we have the fundamental identity

(f: & 1@ty = {f" &) ey = fw[f,g]ds, f.g. € L®). @)

Let us now consider a finite expansion in S(\¥)

N
F=>2" coatel- =k,

t=1kezd
relative to the system (1.1). An application of the Fourier transform yields

N

N
fe=y" ( > cz,kez’“"‘f>1/?e =Y @ 22)
=1

=1 “kezd

The periodic functions 7, are not necessarily uniquely determined by f, but we can
nevertheless calculate the norm of f using the bracket product and (2.1). We form
the vector T = [T[]évzl ,and we let T denote the Hermitian transpose of T. We obtain

N N
1717, gy = /JT 1= /T 222 i 1 6)7; @) de

i=1 j=1
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= /]I“’ (& WE)T (&) dE, (2.3)
where W := W (W) is the Hermitian positive semi-definite N x N-matrix given by
A AN
W) = ([¥, I/fj])i’j=1~ 2.4

W is known as the Grammian matrix associated with W. Notice that the Cauchy-
Schwarz inequality shows that each entry in W is contained in L;(T¢) since ¥ C
Lo (RY).

Let us introduce the vector-valued weighted space

Ly(T*; W) = {f (T = CV £, pawy = /T (WU2E) £ €)1 ds < oo}.

We need to factorize over N := {g : gl z,(Te, wy = 0} in order to turn Ly(T?; W)
into a Hilbert space. However, it should be noted that we will mainly use this space in
the case where W is positive a.e. For such weights, A/ only contains vector functions
that vanish a.e.

The analysis so-far shows that the map U : L(T%; W) — S(¥) given by

N v
U(r):= (Zn@)v}@) 2.5)
=1

is an isometric isomorphism between L,(T¢; W) and S(W).

Of special interest to our analysis is the trigonometric system

e el epa ot n

where €;, j =1,..., N, is the standard basis for C". Notice that U (e~>"'*%e;) =
V(- — k). Below we will use the isomorphism U to study metric properties
of the shift invariant system (1.1) in terms of equivalent metric properties of
{e= k8 e )i cza oy v in Lo(T W).

We begin by characterizing when (1.1) has a unique bi-orthogonal system in S(W¥).
This turns out to be exactly when W~! € L1, giving an extension of the scalar result
obtained in [17]. We have the following proposition.

Proposition 2.1 Let S(\W), ¥ = {1, ..., ¥n}, be a FSI space. The sequence
Wit —blkez! j=1,...N)

has a bi-orthogonal sequence in S(V) if and only if W is invertible a.e. and W~ €
L1(T?; CN*NY (in particular, W is strictly positive definite a.e.). If this is the case,
the unique dual element to (- — k) is given by

U(e ™ swle)), kez, (2.6)

where U is defined by (2.5).
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Proof 1t suffices to study the system {e‘z”ik'?ej}kezd’jzl yyyyy v in La(T¢; W). Sup-
pose'W_1 € Li(T9). We claim that e 2"*$W~le; is the dual functional to
e~ 2Tkt e ;. Notice that

o2k W_lej”iz(Td;W) = /]I‘d ™ RE 2l W@ WE) W (§)e; dE
:/ W1, (&) < o0,
Td
R W-le; L>(T¢; W). Moreover, for k, k' € Z¢ and j, j’ € {1,2, ..., N},
<627lesej’ e27Tik/.§ W_lej,>L2<Td;W) = /

Td

Td I

=08, j Ok

AR E el Wl 6y W (£ )e; dE

Conversely, let {b; x} C Ly(T¢; W) be the unique dual system to {¢ 27k e ;). Thus,

(e " e bja) iy = /Td bW (E)ey e Eds

=08, j k.-

Notice that b; x (§) W (§)e; € L1 (T?) since bj 1 (£) € Lo(T%; W) and W € L1 (T?).
The Fourier transform is injective on L (T?) so we conclude that for a.a. £ € T¢,

bix@®IWE) = el j=1,2,....N.
It follows that W has full rank a.e., and we may solve for b; ; to get
bjx(€) =e 7 HEWT (E)e;.
We put k = 0, and obtain

00 > 16,0117 () = /Td el wl(€)e;ds, j=1.2,....N.

Hence trace(W 1) € L{(T¢). Recall that for a positive N x N-matrix A, trace(A) <
N| Al < N -trace(A), so

[ 1w e < [ waceaw e < oo, .
Td Td

We conclude this section by using the map U to translate the problem of studying
the rectangular partial sum operators given by (1.2) to an equivalent problem for
rectangular trigonometric partial sums in Ly(T?: W).
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For any FSI subspace S(W), W = {y, ..., ¥n}, for which W(¥)~! Ly (T%),
we can define the partial sum operators, for f € Lo(T%; W),

N
SNT = Z Z (t, e—2mk~§ W—lej>L2(Td;W)e—2mk»Eej
J=Lk:|ki|<N;

N

=Y D> (m e ey pu g ey (2.7)

J=1kilki | <N;

We have the following corollary to Proposition 2.1.

Corollary 2.2 Let S(W), W = {1, ..., ¥n}, be a FSI space for which W(¥)~! e
L(T%). For any N e N4, we have

ISNI Ly cwa: wy— Locrd:wy = TN Ly gty Ly ) - 23)

Proof Let f € S(¥) with f = Zj»v:l tjlﬁj. Recall that U(t) = f and U(e‘zmk'se./)
=¥ ;(- — k). We now use (2.6) to obtain

N
USND =) > (r,e ™ W le))  qayy Ule ™))
Jj=1ki|ki|<N;

N
=Y ) (Ur U W e ,maUe " e)) = Inf.
J=1k:lki|<N;

This clearly implies that [|SNTIl,,cra.wy = ITNS L ay> With Tl mdw) =
I £1 L, wa)> 5O (2.8) follows. 0

3 On a Vector Hunt-Muckenhoupt-Wheeden Product Theorem

In this section we study boundedness properties of linear operators on vector-valued
spaces. In particular, we are interested in characterizing the matrix weights W such
that the partial sum operators given by (2.7) on the space L(T¢; W) are uniformly
bounded. A complete characterization of such matrix weights is given by Theo-
rem 3.3 below.

Let us consider a linear operator 7 on Ly (T%). We may apply 7 to functions f
taking values in CV by letting it act separately on each coordinate function, i.e.,

(Tf);=Tfj, j=1,2,...,N, (3.1)

In case T is a (singular) integral operator with scalar kernel S(x, y), the lifting of T
to vector-valued functions simply corresponds to multiplying the kernel S(x, y) by
the N x N-identity matrix.
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A fundamental problem is to characterize the matrix weights W : T¢ — CV*V for
which certain families of singular integral operators extend to bounded operators on
the weighted space L (T¢; W).

The vector-valued Hilbert transform was studied in the seminal paper by Treil
and Volberg [24], and this was later generalized to other types of singular integral
operators by Goldberg [11].

Let us state the result by Treil and Volberg in details, since it will be essential for
the proof of Theorem 3.3. Let W be a N x N matrix weight on T. We say that W
satisfies the regular (periodic) Muckenhoupt A»-condition if

1 12 1/2
— | wd — [ wld )
‘(Illfl E) (|1|/1 ;

where the sup is over all intervals I C R. The collection of all such weights is denoted
Ay (T). Also, notice that A, (T) =PA,(1).
The Hilbert transform H is defined on L,(T) by

< 00, 3.2)

sup
I

H(f)x) ::p.v./Tf(t) cot(mw(x —1))dt.

We lift H using (3.1) to a linear operator on Lo (T; W) for any N x N matrix weight
W on T. The fundamental result by Treil and Volberg [24], see also [23], is the
following.

Theorem 3.1 ([24]) Let W : T — CN*N be a matrix weight. Then the Hilbert trans-
form is bounded on Ly(T; W) if and only if W € Ay(T).

We recall that the univariate Dirichlet kernel Dy is given by

sin2x (N + 1/2)t

bv( = sinmt

N=>1, 3.3)
and for f € Lo(T),

N
SN(f) =) foe™™ = fx Dy = /;r f)DN(—1)dt.
k=—N

We have the following immediate corollary to Theorem 3.1.

Corollary 3.2 Let W : T — CV*N be a matrix weight in As. Then the partial sum
operators f — f x Dy are uniformly bounded on Ly(T; W).

Proof We let P = %(1 +iH + Sp) denote the Riesz projection onto H? for f €
Lo>(T; W), where So f := fT f(y)dy is the O-order partial sum operator. It follows
that Py is bounded on L, (T; W) since H is bounded according to Theorem 3.1, and
So is bounded according to [23, Lemma 1.5]. Notice that f — fe?™'M" is a unitary
mapping on Ly (T; W), just as in the scalar case. Then we observe that

fxDy= 672ﬂiN'P+(eZﬂiN-f) _ eZni(NJrl)*P+(672ni(N+l)~f)’

and the result follows. O

BIRKHAUSER



J Fourier Anal Appl (2010) 16: 901-920 909

We can now state the main result of this paper. Also notice that Corollary 2.2 and
Theorem 3.3 give a direct proof of Theorem 1.2.

Theorem 3.3 Let W : T¢ — CN*N be a matrix weight with W, W= € L joc(R?).
Then the rectangular partial sum operators

SNFE) = Y fRe ™ NeN,

kEZdZ”(i\fN,'
are uniformly bounded on Lo(T%; W) if and only if W € PA,(d).

The proof of Theorem 3.3 is based on Corollary 3.2 and the following two lem-
mata. Part (a) of Lemma 3.4 gives an equivalent formulation of the product AP(d)
condition in terms of integrals of certain non-negative functions. This type of condi-
tion was first considered by S. Roudenko [21] for matrix A ,-weights on R? associ-
ated with cubes (and not rectangles as is needed for our results).

Let W : T¢ — CN*VN be a matrix weight with W, W=! € L joc(R¢). For conve-
nience, we define the following quantity for any rectangle R C R?,

12/ 4 B 1/2
= (o fowae) (i [ ree) |

We have the following lemma.

(3.4)

Lemma 3.4 Let W : T — CN*N be a matrix weight with W, W~ € L1 joc (RY).
For a rectangle R C R?, we define M(R, W) by (3.4). Then the following holds.

(a) We have uniformly in R,
M(R, W)* =< |R|2//||W1/2(§>W V2 () |1Pdnde.

(b) There exists a universal constant ¢ > 0 such that for rectangles R C R C R4,

Rl -
M(R, W) §C%M(R, w).

(c) Suppose W € PA(d), then the univariate weight §; — W (&), obtained by fixing
the variables & (k # J), is uniformly in Ay (T) fora.e. (§1,...,§; 1,41, ..., &)

= ']I*dfl

Proof The proof of (a) can be found in [21] for the non-product case. The reader can
easily check that the same proof works in the product case. For (b), we notice that

M(R, W)* < |R|2//||W”2<s>w Y2(n)|Pdndg

IRI2 1

= IREJRP [ [ iwrew R Panas
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- & M(R, W)?

TR
Now we turn to the proof of (c). It suffices to consider W(t) =W(,&,...,&) for
(&2,...,&7) € T9—! fixed. Given an interval / C R, we form R, = I. (&) x --- X
I:(&4), where I;(§;) is an interval of length 2¢ centered at &;. Since W € PA(d)
there exists a constant Cy independent of / x R, such that

C% = MU x Re, W)?

1 1 B
TR I2/ / (W//”Wl/z(““)w l/z(w,V)Ilzdtdw>dwzv_
£ € & I1JI

Hence, by Lebesgue’s differentiation theorem, for almost every (&, ..., &7) e R471,

1

C% > lim M(I x R,, W)? = —
W= lim M e W) |12

/[||W1/2(1)W*1/2(w)||2dzdwxM(], W)2,
1J1

where the constants are independent of I and (&7, ..., &;). Hence W is uniformly in
Ay(T) forae. (&, ...,&;) e T4~ 1, O

Lemma 3.5 estimates the norm of integral operators on L, (T¢; W) with very lo-
calized kernels.

Lemma 3.5 Suppose Sf(§) = de S, n)f(m)dn is an integral operator with a
scalar kernel S(&,n) that satisfies |S(E,n)| < «|R|™ xrxr for some bounded rec-
tangle R C R4, Then the norm of S on Lz(Td; W) isat mostd -o - M(R, W), with
M(R, W) given by (3.4). Moreover, the kernel |R|™"xg x xr induces an operator
with norm exactly M(R, W) on Lo(T4: ).

The proof of Lemma 3.5 for non-product A ,-weights can be found in Gold-
berg [11]. The reader can easily adapt the proof in [11] to the product case. We can
now give a proof of Theorem 3.3.

Proof of Theorem 3.3 First we assume that W € PA>(d). The case d = 1 is exactly
the conclusion of Corollary 3.2. Next we consider the case d = 2; the reader can
easily verify that the argument below generalizes to any d > 3.

According to Lemma 3.4(c), W, := W (&1, -) and W, := W (-, &) satisfy uniform
Muckenhoupt A,-conditions on T. Pick any f € Ly(T?, W). By Fubini’s theorem,
fe, = f(&1,-) € Lo(T, Wg)) and fg, := f(-, &) € Lo(T, Wg,) for a.e. [£1] and [&],
respectively.

Let Dy be the univariate Dirichlet kernel given by (3.3), and we define

Ty f =Dy * fe, = /T fo(ODN(-—1)dt,
Ti f := Dy * fz, ::/ng1 ()Dy (- — 1) dt.
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Notice that Ty p f = TI%, TA2/I f. We apply Corollary 3.2 to obtain

/T WLE0TE iy (62 Pdes < C /JT W, 6) foy @) e, ac (1]

An integration yields,

/T A (W28, )T f (&1, &) dE2dE,
<C /T /T (W25, &) f (51, £2) |7 dErdEy . (3.5)

Similarly,

NN FI oy = /T /T (W2 (Er 60Ty T £ (€1, 62) P d&1d5
sC/TA|W1/2(a,sz>T@f<sl,sz>|2dsldsz

< / / WP, £ fPdEdEs.
TJT

It follows that {TN}y eng are uniformly bounded on L, (T?; W).

Now, let us assume that the operators {TN}NeNg are uniformly bounded on
L>(T9¢; W). We have to prove that M (R, W) given by (3.4) is uniformly bounded
in R.

Let us first recall some elementary facts about the univariate Dirichlet kernel given
by (3.3). The kernel Dy is real and ||Dylloc = 2N 4+ 1 = Dyn(0). By Bernstein’s
inequality, ||D;\, lloo < (2N 4 1)2. We can thus find an integer K (independent of N)

such that for t € [—ﬁ, ﬁ] we have Dy (1) > (1 — ﬁ)]/dHDNHOO.

Let arectangle R =11 x I x --- x I4 be given. For j =1,2,...,d, with |I;| >
ﬁ, we define N; =0 and replace /; with [—1/2, 1/2), and obtain a possibly larger
rectangle R. By Lemma 3.4(b) there is a universal constant ¢ such that M (R, W) >
cM (R, W) since |I§| < (2K)d|R|. Next, foreach j =1,2,...,d with |[;| < ﬁ, we
choose an integer N; > 1 such that

1 1 1 1

—_— — << — . —. 3.6
4 Nj_|j|_2 N; (36
Noticethatfort,ute,wehavet—ute—IjC[—%M,%M]SO
1\ /4
Dy;(t —u) = (l - ﬁ> I1DN; lloo- (3.7
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For notational convenience we put Dy := 1, and form the product kernel

d
Dn&) =[] Dw, ).

j=1

The plan of attack is to use the simple fact that f — xzTN(x 3 f) is uniformly
bounded in both R and N € Nf)l. We notice that f — x5Tn(x 3 f) has integral kernel

$26,m = xpgMxzE) DN —§).

We wish to estimate the operator norm of $> from below. For that purpose we first
consider the operator with kernel

SE ) =81, m) — 5206, m) = DNlloo x g E) x g (M) — x5 E) x g (M DNE — m).

Notice that the estimate (3.7) implies the following size estimate

1SE, M| = [IDNlloox 5 &) x5 (1) — x5 E) x5 (M) DN(E — )|
_ 1Dl

- 2d
IR| - | DNlloo

= T|R|_1X§(§)X§(U)~

XeE)xg(m

Acgording to Lenlma 3.5, the kernel S induces an operator of norm at most
%|R| - IDNllseM (R, W) on Ly(T9; W). At the same time, Lemma 3.5 shows that

the operator with kernel Sy (&, 1) = |R||| Dnlloo - |RI ™" x 5(§) x 5 () has norm exactly
|I€’| || DNllcoM (I? , W) on Lz(Td ; W). The triangle inequality for operator norms im-
plies that

IR| - IDNllooM (R, W) = [[S1 = S2ll = [[IS1]| = 12

[\SR

> |R|- | DxllooM (R, W) — || S2],

50 [|S2]l = AR - I DNlloc M (R, W). Moreover, by (3.6), we see that |R| - | Dnlloc >
4K )_d , S0 we may conclude that
M(R,W) < CM(R, W)
<2C“4K)!||S,|

=2C@4K)? sup IXaINX RO Lyre: w)
”fHLz(T’I;W)Zl

<C sup NN S Iy eme: w
Hf”Lz(Td;W)Zl

S C//
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with constant C” independent of R. Thus, we can finally conclude that W €
PA>(d). O

Remark 3.6 As the reader may notice, modulo the complications added by the vector-
valued setup, the “kernel localization” technique used to prove the only if part of
Theorem 3.3 is in fact very similar to the original technique introduced by Hunt,
Muckenhoupt, and Wheeden in [15].

4 Schauder Bases for FSI Spaces

In this section, we consider an application of Theorem 1.2 to the problem of obtaining
Schauder bases for an FSI space S(W). Let us first recall some elementary facts about
Schauder bases in a Hilbert space. We refer to [22] for more details.

A family B = {x, : n € N} of vectors in a Hilbert space H is a Schauder basis for
H if for every x € H there exists a unique sequence {«;, := o, (x) : n € N} of scalars
such that

N
lim Zanxn =Xx
N—o0

n=1

in the norm topology of H. The unique choice of scalars implies that x — &, (x) is a
linear functional, for every n € N. Furthermore, for every n € N, there exists a unique
vector y, such that o, (x) = (x, y,). It follows that

(Xm>Yn) =0mn, m,neN. 4.1

A pair of sequences ({un}neN, {vnlnen) In H is a bi-orthogonal system if
(Ums Vn) = 8m.n, m,n € N. We say that {v,},eN is a dual sequence to {u,},eN, and
vice versa.

A dual sequence is not necessarily uniquely defined. In fact, it is unique if and only
if the original sequence is complete in H (i.e., if the span of the original sequence is
dense in H).

Suppose B = {x, : n € N} is complete, and has a unique dual sequence {y,}.
Then B is a Schauder basis for H if and only if the partial sum operators Sy (x) =
Z;quzl (x, yn)x,, are uniformly bounded on H.

4.1 A Particular Enumeration of Z?2

Expansions relative to Schauder bases need not converge unconditionally, and the
ordering of the Schauder basis elements becomes crucial. To study Schauder basis
properties of (1.1), we therefore first have to impose an ordering of the system (1.1)
that is compatible with the result on rectangular partial sums given by Theorem 1.2.

Our starting point is to consider enumerations of Z¢, i.e., bijective maps o : N —
Z2 . In order not to cloud the picture by complicated notation, we restrict our attention
to enumerations of Z and Z?. For Z, we simply pick the enumeration o'! given by

0,1,—-1,2,-2,....
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Let A(1) := {ol}. For d =2, we follow Heil and Powell [12], and consider the fol-
lowing class of enumerations.

Definition 4.1 Let A(2) be the set containing all enumerations {(k;, n j)}?';] of 72
defined in the following recursive manner.

1. The initial terms (k1,n1) ... (ky,, ny) are either
0,0),(1,0), (-1,0),...,(A1,0), (—=A1,0)
or
(0,0), (0, 1), (0, —-1),..., (0, By), (0, —By),

for some positive integers A or Bj.

2. If {(kj, nj)}]J.k:1 has been constructed to be of the form {—Ay,..., Ay} X
{—Bx, ..., By} for some non-negative integers Ak, By, then terms are added to
either the top and bottom or the left and right sides to obtain either the rectangle

{—Ak, ..., A} x {—(Bx+1),..., By + 1}
or
{(—(Ar+1), ..., A + 1} X {=B, ..., B}
For example, terms would first be added to the left side ordered as
(A + 1,0, (=(A+ D, D, (=(Ax + 1), =D, ..., (=(Ax + 1), By),
(—(Ax + 1), = By),

and likewise for the right side. Top and bottom proceed analogously.

Remark 4.2 We leave it to the reader to verify that the above technique can be gen-
eralized to obtain admissible enumerations of Z¢ recursively as follows. We always
start at 0. Then at each step in the process where a rectangle

R={=Ni,....,Ni} x{=Na,...,No} x --- x{=Ny, ..., Ng}, N; €Ny,

has been reached, we proceed by only adding terms to two opposing “faces” of R.
The terms are added to each of the two faces using an admissible enumeration of
/s

4.2 A Characterization of Schauder Bases for FSI Subspaces
We consider W = {1, ..., ¥n} C La(R?), d € {1, 2}, such that the system

F={yk,):=ve(—k)ezd o=1... N (4.2)

has a unique dual system {g(¢, k, -)} in S(¥). Given o € A(d), we lift o to an enu-
meration 6 of {1,2,..., N} x 74 defined as follows

(1,0(1)), 2,0(1)),...,(N,o(1)),1,0(2)),...,(N,0(2)),1,0(3)),.... (4.3)
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With this ordering, we define the partial sum operators

J
TP fi=Y (£.8G(). NP E (). ). feSW).

j=1

We also need to consider the associated partial sum operator in Lo(T%; W). Put
e(l,k):=e 2 kEe, and &L, k) := U(e 2" kEW=1(£)e,), with U defined by (2.5).
Then

J
S§7 = Z (1.6 () Ly wye@ (). T € La(T: W),

satisfies U(SGt) =T7 f for U(zr) = f € S(V).
It is now immediate from our general discussion of Schauder bases that the fol-
lowing conditions are equivalent:

(i) The system F given by (4.2) is a Schauder basis for S(¥) with the ordering
induced by o € A(d)
(ii) The partial sum operators 7'y are uniformly bounded on S(¥).

With the notation in place, we can state our main result on Schauder bases for FSI
subspaces. The following result is a corollary of Theorem 1.2.

Corollary 4.3 We consider a FSI subspace S(\V) in Lr(RY), with d € {1,2}, and
W = {1, ..., Un}. Assume that the system given by (4.2) has a unique dual system
in S(V), and let W (V) be the Gram-matrix for V. Then the following statements are
equivalent

(@) supyep(q)supy IT7 Il < oo.
(b) W e AP(d).

Proof (a) = (b): For d = 1, we notice that T(glj+1)N = Ty, with T; given by (1.2),
so supy || Ty|| < oo, and W € Ay(T) by Theorem 1.2. We turn to d = 2. Given a
rectangle

R={—Np,...,Ni} x{=Na,..., N2}, N1, N2 €Ny,
we can use Definition 4.1 to construct an enumeration o € A(2) such that

o({l,...,J}) =R for some J € N. Then Ty ; = T(n,,n,), and therefore

sup | T(ny, Ny Il < 00.
Ni,N,>0

Hence, W € APP(2) by Theorem 1.2.

(b) = (a): Assume thatd = 2. Fix f € S(V), and pick 0 € A(2). For any J we let
N be the largest integer N; < J for which T]‘\;jf =Ty, x f, for some integers L, K.
Now, by Theorem 1.2,
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177 fll,@ey < 0Tk fll,wey + IT7 = To,x) fll,@2)
< Clfllymey + ICT7 = To k) fllL,®2)

Hence, it suffices to bound the norm of the term

J
(T7 =To)f= Y (/8GN GE (), ). 4.4

J=Nj

According to Definition 4.1, the sum (4.4) contains terms that have been added to the
top and bottom or left and right side of an rectangle. The cases are treated in a similar
fashion. For definiteness, assume that (4.4) adds terms to the top of the rectangle.

We study the equivalent problem in L,(T?; W). Pick t with U(t) = f, so
U(S85t) = T7 f. Notice that the ordering ¢ given by (4.3) ensures that the sum
(89 — SL.k )T can be rewritten

N M
(S; —SL,K)T — Z Z (z, e2m’n$1 g2ni(K+l)$2ej>62ninsleZni(K-i-l)szej +E, (4.5)
j=ln=—M

where the remainder E is a sum of at most 2N — 1 terms of the type
(1, e2mikEe,) o2k EQ, We observe that, in general,

1z, ™S e) ™™ Seqll 2wy < IW Ly a2y IW ™ ) 12y rowy

which follows from Holder’s inequality. We can thus use brute force to uniformly
estimate the remainder E in (4.5) in terms of ||z ||, 2.y). Next, we notice that,

N M
Z (Te—Zn'i(K+l)§2 eZT[inSl ej)eZJTinélejeZHi(K—i-l)EQ
j=ln=-—M Lr(T2; W)
N M
— Z (,L,e—2ni(K+1)§2’e27‘[in§1ej>62ﬂin$1ej )
j=ln=—M Ly(TZ; W)

For notational convenience, we define the vector function
h(€) = / (&1, E)e” KTV gy = (1 (8, e KA,
T

where Sy is the 0-order partial sum operator. We recall that W (-, &») and W (&1, -) are
uniformly in AP(1) for a.e. & and a.e. &1, respectively. Hence, using Corollary 3.2
for the variable &1,

N M 5
Z Z (.L.6727Ti(K+1)$2’ eZﬂinél ej>e27'[in§1 e
j=ln=—M

Ly (T2, W)
=/T/T|W”2(sl,sz>DM*h|2dad§2
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<c / / W2, ek PdE e
TJT
=C fT /T IWL2(&1, £)So(t (61, e P KTV 248,45

<c' / f (W2 (51, E)Te KR 2agdgy
TJT

_ 2
- C ”t”Lz(TZ;W)’

where we also used that Sp is bounded uniformly on L,(T; W (&, -)) for a.e. &;.
Collecting the estimates, we conclude that

||(T}7 —TL,K)f”Lz(]RZ) = ||(S7 —SL,K)T”LZ(TZ;W) = C/||T||L2(11‘2;W) = C/||f||L2(R2),
with C’ independent of J. The proof in the case d = 1 is similar. g
Remark 4.4 As in Remark 4.2, we leave it to the reader to verify that the proof of
Corollary 4.3 can be generalized to arbitrary d by defining admissible enumerations

of 74 following the outline in Remark 4.2. Then (b) = (a) in the proof of Corol-
lary 4.3 can be used as the first step in an induction argument on d.

5 Some Examples

In this final section, we consider some examples of PA;(d) weights, and some asso-
ciated FSI subspaces.

5.1 The Case N =1

First, we consider the scalar case N = 1 with d arbitrary. Our prime example in
this case will be polynomials. Let B = {x € R : |x| < 1}. Then for any polynomial
P(x) =), cqx® of degree n on R?, we have the following estimate by Ricci and
Stein [18],

K
f|P<x>|‘“dxscﬂ,n<Z|ca|> , 5.1)
B o

for un < 1. The constant ¢, , is uniform for all polynomials of degree n. We observe
that for the unit cube R = {x : |x;| < 1}, we have the trivial fact that /2R C B, so
using (5.1),

d—d/Z/ |P(x)|_“dx=/d " |P(d”2x)|“‘dxSEM,n<Z|Ca|>
R —Y/<R

o

Also, |, r|P(x)|dx and ) |cy| are norms on the polynomials of degree n, and they
are thus equivalent as norms on a finite dimensional space. Hence,

—
/lP(x)|"dx§C,“,</ |P(x)|dx) . (5.2)
R R
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Then we observe that the polynomials of degree n are invariant under affine trans-
formations, so it follows that (5.2) holds for any rectangle R on R?. From this, we
deduce that for any polynomial of degree n, |P|* is a (scalar) PA,(d) weight pro-
vided —1 < na < 1.

5.2 Arbitrary N and d

Let us expand the example of Sect. 5.1 to arbitrary N. We notice that given polyno-
mials Py, P>, ..., Py on R4, the matrix

G :=diag(|P1|", ..., |Pn|"") € PAy(d)

provided —1 < deg(P;)a; < 1fori=1,...,N.Welet Q =[—1/2, 1/2)d, and define
V={y1,...,¥n} by

Vi(€) = xo —k)y/I|Pil%, i=1,...,N,

where {k;} is a collection of distinct integers in Z?. An easy calculation shows that
W (V) = G. We thus have the norm convergence given by (1.3). However, the spec-
trum of W (W) is bounded away from zero precisely when all polynomials P; have
no roots on Q. Thus, for this example,

(i) We always have the norm convergence given by (1.3)
(ii) For d =1, 2, we obtain Schauder bases for S(¥) using Corollary 4.3
(iii) The system (1.1) is a Riesz basis for S(¥) only when each P; has no roots on

0.

That W (W) is diagonal is a reflection of the fact that the principal shift-invariant
subspaces S({y;}), i =1,2,..., N, are pairwise orthogonal, and one can argue that
the example does not truely belong in the matrix setting. We conclude this section
with a more “genuine” matrix example ford =1 and N = 2.

5.3 TheCased=1and N =2
Let us consider the following example by Bownik [2]. For t € [—1/2, 1/2) we define

G = Utr) 1 0 U U@ = cosa(t) —sina(t)
O=U0 0 b() ©. = sina(t)  cosa(t) |’

where a(r) = sign(r)|t|%, b(t) = |t|¢, with —1 < & < 1, and § satisfying —28 < ¢ <
25. Then G(¢) € AP(1), see [2].
Define /1, ¥2 € L2(R) by

¥1(8) = VG X,
U2(8) = vi (D xp0.1) + v2(0) X[1.2)s

where

vi(@) | [cosB(t) —sinf(1) || /G22(1)
vw@) | | sinp@t)  cosB(t) 0 '
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with 8 : T — [0, 27) measurable such that \/G 1 1(t)vi(t) = G12(t) = G2,1(t). We
notice that this is always possible since det G (¢) > 0. Then a direct calculation shows
that W = {y1, Y} satisfies W (W) = G(¢).

The spectrum of G(¢) is not bounded away from zero, so Corollary 4.3 gives us
an example of a conditional Schauder basis for S(¥).
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