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Abstract Let A be any 2 × 2 real expansive matrix. For any A-dilation wavelet ψ ,
let ̂ψ be its Fourier transform. A measurable function f is called an A-dilation
wavelet multiplier if the inverse Fourier transform of (f ̂ψ) is an A-dilation wavelet
for any A-dilation wavelet ψ . In this paper, we give a complete characterization of
all A-dilation wavelet multipliers under the condition that A is a 2 × 2 matrix with
integer entries and |det(A)| = 2. Using this result, we are able to characterize the
phases of A-dilation wavelets and prove that the set of all A-dilation MRA wavelets
is path-connected under the L2(R2) norm topology for any such matrix A.
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1 Introduction

One natural problem in wavelet theory concerns the construction of different
wavelets. Naturally, one may attempt to construct new wavelets from an existing one.
This approach leads to the concept of wavelet multipliers [6]. In the one-dimensional
case, wavelet multipliers have been studied extensively and characterized completely
[16, 20]. Another area of study in wavelet theory concerns the topological properties
of various classes of wavelets. One well known problem in this area asks whether the
collection of all or some orthonormal wavelets is path-connected under the L2(R)

norm [6, 20]. In fact, it is still an open question whether the set of all orthonormal
wavelets is path-connected under the L2(R) norm. However, it is proved in [20] that
the set of all MRA wavelets is path-connected under the L2(R) norm. Furthermore,
the use of wavelet multipliers played a key role in the establishment of this important
result.

The main purpose of this paper is to extend the above mentioned results to the
two-dimensional case.

Let A be a 2 × 2 real expansive matrix, i.e., a matrix with real entries whose
eigenvalues are all of modules greater than one. Let L2(R2) be the set of all square
Lebesgue integrable functions in R

2. An A-dilation wavelet is a function ψ ∈ L2(R2)

such that the set

{|detA| n
2 ψ(Ant − �) : n ∈ Z, � ∈ Z

2}
forms an orthonormal basis for L2(R2). For any function f (t) ∈ L1(R2) ∩ L2(R2),
its Fourier transform is defined by

(F f )(s) = ̂f (s) = 1

2π

∫

R2
f (t)e−it◦sdμ, (1.1)

where μ denotes the Lebesgue measure in R
2 and t ◦ s is the standard inner product

of the vectors s, t ∈ R
2. The inverse Fourier transform will be denoted by F −1.

A measurable function f is called an A-dilation wavelet multiplier if the inverse
Fourier transform of (f ̂ψ) is an A-dilation wavelet for any A-dilation wavelet ψ .

A matrix is called an integral matrix if its entries are all integers. In this paper,
we will only consider 2 × 2 expansive integral matrices A such that |det(A)| = 2.
Although it is possible for the dilation matrix A to be non-integral, such a matrix
must be accompanied by a full rank lattice � that is compatible with it (namely that
A� ⊂ � must hold). (A,�) is called an “admissible pair” in [14]. For an admissible
pair (A,�), one can simplify the problem by a suitable linear transformation x �→ Px

which takes (A,�) to (PAP −1,P�). If one chooses P such that P� = Z
2, then

PAP −1 is an integral matrix. In other words, we can always simplify the problem
to the case where A is integral. Furthermore, in this paper we are only interested in
MRA systems generated by a single wavelet function. It is known that in the higher-
dimensional case, such system exists only when |det(A)| = 2 [12, 17]. From now on,
all matrices will be 2 × 2 matrices with such properties unless otherwise stated.

There have been some attempts to characterize A-dilation wavelet multipliers
in the two-dimensional case. For example, in [15], a characterization of A-dilation
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wavelet multipliers is given for the following two specific 2 × 2 matrices

A =
(

1 1
1 −1

)

or A =
(

0 2
1 0

)

.

Moreover, it is proven there that for any given A-dilation wavelet ψ0 (under the above
choices of A), the set Mψ0 = {ψ : ̂ψ = vψ̂0} where v is an A-dilation wavelet
multiplier is path-connected.

In this paper, we generalize the above result to all 2 × 2 expansive matrices with
integer entries such that |det(A)| = 2. We will derive an explicit formula that can
be used to construct all A-dilation wavelet multipliers for such matrices A. We then
prove that the set of all A-dilation MRA wavelets is path-connected under the L2(R2)

norm. We also obtain a characterization of the phases of A-dilation MRA wavelets as
an application of the wavelet multipliers.

The rest of the paper is organized as follows. In the next section, we introduce the
notations and terms needed for this paper, with some preliminary results needed in
later sections. In Sect. 3 we discuss the relationship between wavelets with integrally
similar dilation matrices and show that we need only to consider six dilation matrices.
Section 4 gives two special MRA wavelets which will be used in Sect. 7. In Sect. 5
we characterize wavelet multipliers in the two-dimensional case. Section 6 is devoted
to the phases of A-dilation MRA wavelets. Finally, in Sect. 7 we prove that the set of
all A-dilation MRA wavelets is path-connected.

2 Notations, Definitions and Preliminary Results

For a given expansive integral matrix A (such that |det(A)| = 2), we will use T �,
DA as the translation and dilation unitary operators acting on L2(R2) defined by

(T �f )(t) = f (t − �), (DAf )(t) = |det(A)| 1
2 f (At) ∀f ∈ L2(R2), t ∈ R

2 and � ∈ Z
2.

Definition 2.1 A sequence {Vj : j ∈ Z} of closed subspaces of L2(R2) is called an
A-dilation multi-resolution analysis (or A-dilation MRA for short) if the following
hold:

(i) Vj ⊂ Vj+1, ∀j ∈ Z;
(ii)

⋂

j∈Z
Vj = {0}, ⋃

j∈Z
Vj = L2(R2);

(iii) f (t) ∈ Vj if and only if f (A−j t) ∈ V0 for j ∈ Z; and
(iv) There exists φ(t) in V0 such that {φ(t − �) : � ∈ Z

2} is an orthonormal basis
for V0.

The function φ(t) defined in (iv) above is called an A-dilation scaling function
for the MRA. In our case, it is known that a single A-dilation wavelet can be derived
from the above A-dilation MRA [17]. An A-dilation wavelet ψ so obtained is called
an MRA wavelet (and ψ ∈ V1 ∩ V ⊥

0 ). For any f ∈ V1, f (A−1t) ∈ V0 hence we have

f (t) = |det(A)|
∑

�∈Z2

c�φ(At − �). (2.1)
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If we define mf (s) = ∑

�∈Z2 c�e
−i�◦s, then by taking Fourier transform on both sides

of (2.1) we obtain ̂f (Aτ s) = mf (s)̂φ(s), where Aτ is the transpose of A. In particular,
we have

̂φ(Aτ s) = m(s)̂φ(s) (2.2)

for some function m(s) of the form similar to (2.1). The function m(s) is called the
low pass A-dilation filter of the corresponding A-dilation MRA.

Recall that a measurable function f is called an A-dilation wavelet multiplier if
the inverse Fourier transform of (f ψ̂) is an A-dilation wavelet whenever ψ is an A-
dilation wavelet. A measurable function f (t) ∈ L2(R2) is called a 2πZ

2-translation
periodic if f (t + 2π�) = f (t) a.e. on R

2 for any � ∈ Z
2, and f is called A-dilation

periodic if f (At) = f (t) a.e. on R
2. Furthermore, f is called A-dilation-translation

compatible if there exists a 2πZ
2-translation periodic function k(t) such that f (At) =

k(t)f (t). Apparently, the function mf (s) and the low pass A-dilation filter defined
above are 2πZ

2-translation periodic functions.
The following lemmas are well known results and can be easily obtained by stan-

dard arguments [1, 9, 13].

Lemma 2.1 ψ is an A-dilation wavelet iff the following conditions hold

(i) ‖ψ‖2 = 1;
(ii)

∑

j∈Z
|̂ψ((Aτ )j s)|2 = 1/(2π)2 a.e. and

(iii)
∑∞

j=0
̂ψ((Aτ )j s)̂ψ((Aτ )j (s + 2π�)) = 0 a.e. ∀� ∈ Z

2 \ Aτ
Z

2.

Lemma 2.2 An A-dilation wavelet ψ is an A-dilation MRA wavelet iff

Dψ(s) =
∞
∑

n=1

∑

�∈Z2

|̂ψ((Aτ )n(s + 2π�))|2 = 1

(2π)2
a.e. (2.3)

Lemma 2.3 φ is an A-dilation scaling function for an MRA iff the following condi-
tions hold

(i)
∑

�∈Z2 |̂φ(s + 2π�)|2 = 1/(2π)2 a.e.;
(ii) limj→∞ |̂φ((Aτ )−j s)| = 1/2π a.e. and

(iii) there exists a 2πZ
2-translation periodic function m(s) ∈ L2([−π,π)2) such

that ̂φ(Aτ s) = m(s)̂φ(s).

Lemma 2.4 Suppose that ψ is an A-dilation MRA wavelet with scaling function φ,
then

|̂φ(s)|2 =
∞
∑

j=1

|̂ψ((Aτ )j s)|2 a.e. (2.4)

Since |det(A)| = 2, the quotient group Z
2/Aτ

Z
2 has only 2 elements. Let

� + Aτ
Z

2 be the non-zero element in Z
2/Aτ

Z
2, where � ∈ Z

2 is a representative of
the corresponding coset. Then we have (Aτ )−1� �∈ Z

2. Since |det((Aτ )−1)| = 1
2 and
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2(Aτ )−1 is an integral matrix, there is a unique element h0 ∈ {(1/2,0)τ , (0,1/2)τ ,
(1/2,1/2)τ } such that (Aτ )−1� ∈ h0 + Z

2. Let u be a constant vector such that
h0 ◦ u = 1/2. We have the following two propositions.

Proposition 2.1 Let φ ∈ L2(R2) be an A-dilation scaling function for an A-dilation
MRA {Vj } and let m be its associated low pass filter. Let ψ ∈ W0 = V1 ∩ V ⊥

0 , then
{ψ(t − �) : � ∈ Z

2} is an orthonormal basis for W0 iff

̂ψ(Aτ s) = eis◦uv(Aτ s)m(s + 2πh0)̂φ(s) a.e., (2.5)

where v is a 2πZ
2-translation periodic measurable function with |v(s)| = 1 a.e.

on R
2.

Let us give an outline of the proof for Proposition 2.1. From the discussion follow-
ing (2.1), we have ̂ψ(Aτ s) = mψ(s)̂φ(s) for some 2πZ

2-translation periodic function
mψ . Again, standard arguments show that {ψ(t−�) : � ∈ Z

2} is an orthonormal basis
for W0 iff equations |m(s)|2 +|m(s + 2πh0)|2 = 1, |mψ(s)|2 +|mψ(s + 2πh0)|2 = 1
and m(s)mψ(s) + m(s + 2πh0)mψ(s + 2πh0) = 0 hold. The reader can verify that
the solution for mψ(s) (in terms of m(s)) is of the form given in the proposition.

Proposition 2.2 Let ψ be an A-dilation MRA wavelet. Then eis◦u1 |̂ψ(s)| is the
Fourier transform of an A-dilation MRA wavelet, where u1 = A−1u and u is the
constant vector defined before Proposition 2.1.

Proof Let φ be the corresponding scaling function with low pass filter m, then
F −1(|̂φ|) is also an A-dilation scaling function whose associated low pass filter is
|m| by Lemma 2.3. Thus, the function ψ1 defined by

̂ψ1(A
τ s) = eis◦u|m(s + 2πh0)̂φ(s)| = eis◦u|ψ(Aτ s)|

is an A-dilation MRA wavelet. The result follows after a simple substitution t =
Aτ s. �

3 Systems with Integrally Similar Dilation Matrices

Two d × d integral matrices B and C are said to be integrally similar if there exists
an integral d ×d matrix P such that |det(P )| = 1 and P −1BP = C. In such cases we
write B ∼ C. The main result of this section is the following theorem which reveals
the relation between wavelets under integrally similar dilation matrices.

Theorem 3.1 For any 2 × 2 integral matrix P with |det(P )| = 1, let �P :
L2(R2) −→ L2(R2) be the operator defined by �P (g(t)) = g(P t). If B and C are
two 2 × 2 integral, expansive matrices such that P −1BP = C, then the following
statements hold

(i) ψ is a B-dilation wavelet iff �P (ψ) is a C-dilation wavelet;
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(ii) A function f ∈ L2(R2) is a B-dilation wavelet multiplier iff the function
�(Pτ )−1(f ) is a C-dilation wavelet multiplier.

Proof (i) It suffices to show that {Dn
BT �ψ(t)} (n ∈ Z and � ∈ Z

2) is an ortho-
normal basis of L2(R2) iff {Dn

CT �ψC} is an orthonormal basis of L2(R2), where
ψC = �P (ψ). Since |det(P )| = 1, PZ

2 = Z
2, a simply variable substitution P t =

s shows that {|det(B)|n/2ψ(BnP t − P�)} is an orthonormal basis of L2(R2) iff
{|det(B)|n/2ψ(Bnt − �)} = {Dn

BT �ψ(t)} is an orthonormal basis of L2(R2). But a
direct computation shows that

Dn
CT �ψC(t) = Dn

CT �ψ(P t) = Dn
Cψ(P (t − �))

= |det(C)|n/2ψ(P (Cnt − �)) = |det(B)|n/2ψ((PCnP −1)P t − P�)

= |det(B)|n/2ψ(BnP t − P�).

(ii) Let f be a B-dilation wavelet multiplier and let ψC be a C-dilation wavelet.
By (i) above, there exists a B-dilation wavelet ψ such that ψC(t) = ψ(P t). We have

̂ψC(s) = 1

2π

∫

R2
ψC(t)e−it◦sdt = 1

2π

∫

R2
ψ(P t)e−it◦sdt

= 1

2π

∫

R2
ψ(t)e−iP−1t◦sdt = 1

2π

∫

R2
ψ(t)e−it◦(P τ )−1sdt

= ̂ψ((P τ )−1s).

Thus,

F −1(fC
̂ψC)(t) = 1

2π

∫

R2
f ((P τ )−1s)̂ψ((P τ )−1s)eis◦tds

= 1

2π

∫

R2
f (s)̂ψ(s)eiP τ s◦tds

= 1

2π

∫

R2
f (s)̂ψ(s)eis◦P tds

= F −1(f ̂ψ)(P t).

By the definition of f , F −1(f ̂ψ)(t) is a B-dilation wavelet. Thus by (i) again,
F −1(f ̂ψ)(P t) (hence F −1(fC

̂ψC)(t)) is a C-dilation wavelet. This proves that fC

is a C-dilation wavelet multiplier. On the other hand, if fC is a C-dilation wavelet
multiplier, reversing the above argument shows that f is a B-dilation wavelet multi-
plier. �

Remark 3.1 The linear operator �P : L2(R2) −→ L2(R2) defined above is obvi-
ously continuous and unitary (since |det(P )| = 1). In the case that P is also integral
and P −1BP = C, then Theorem 3.1 asserts that �P ψ : WB −→ WC is a continuous
and bijective mapping, where WB is the set of all B-dilation wavelets and WC is the
set of all C-dilation wavelets.
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Remark 3.2 Using (2.3) and ̂ψC(s) = ̂ψ((P τ )−1s) as shown in the proof of Theo-
rem 3.1(ii), it is easy to see that in the case B ∼ C by the relation P −1BP = C, the
operator �P is also a bijection between the set of all B-dilation MRA wavelets and
the set of all C-dilation MRA wavelets.

We will now turn our focus on 2 × 2 integral expansive matrices A with the prop-
erty |det(A)| = 2. It turns out that there are exactly six integrally similar classes of
such integral matrices [14]. A representative from each of these classes is listed be-
low.

A1 =
(

0 2
1 0

)

, A2 =
(

0 2
−1 0

)

,

A3 =
(

1 1
−1 1

)

, A4 =
(

0 2
−1 1

)

,

and A5 = −A3, A6 = −A4.
For the rest of this paper, we will only consider the case where A is one of the

above six matrices. By Theorem 3.1 (as well as Remarks 3.1 and 3.2), the discussion
of a different 2 × 2 expansive integral matrix B (with |det(B)| = 2) can be converted
to a discussion concerning one of the six matrices listed above by applying the oper-
ator �P for some suitable P . For the sake of convenience, let us give the vectors h0,
u and A−1u used in Propositions 2.1 and 2.2 here. We can choose u = (1,0)τ for all
cases. For A = A1 or A = A2, h0 = (1/2,0)τ , u1 = A−1u = (0,1/2)τ ; for A = ±A3,
h0 = (1/2,1/2)τ , u1 = A−1u = ±(1/2,1/2)τ ; for A = ±A4, h0 = (1/2,0)τ and
u1 = A−1u = ±(1/2,1/2)τ . Throughout the rest of the paper, h0, u and u1 are so
defined with respect to their corresponding dilation matrix A.

4 Examples of Haar and Shannon Type A-dilation Wavelets

Example 4.1 The construction of the Haar-type A-dilation wavelet given here can be
found in [4, 11, 14]. The low pass filter m is m(s) = 1

2 (1 + e−is◦u), ̂φ(s) is defined by
̂φ(s) = (1/2π)

∏∞
j=1 m((Aτ )−j s), and ψ is defined by

̂ψ(s) = eis◦u1m((Aτ )−1s + 2πh0)̂φ((Aτ )−1s). (4.1)

Example 4.2 The Shannon type A-dilation MRA wavelet in this example is con-
structed using the concept of wavelet sets [6, 7, 12]. For each matrix A, we construct
a scaling set F such that the set E = AτF \ F is an A-dilation wavelet set, i.e., the
function 1

2π
χE is the Fourier transform of an A-dilation wavelet. Let 
 be the set

[−π,π)2. The low pass filter, scaling function and wavelet are given by

m(s)|
 = χ(Aτ )−1
, ̂φ(s) = 1

2π
χ
 and ̂ψ(s) = 1

2π
eis◦u1χAτ 
\
.

Notice that m(s) is a 2πZ
2-translation periodic and the above formula gives its de-

finition in one complete period (i.e., 
 = [−π,π)2). The wavelet set E = Aτ
\
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Fig. 1 The supports of m, ̂φ and ̂ψ : (a) is for the case of A = A1 or A = A2, (b) is for the case of A = A3,
A5 and (c) is for the case of A = A4, A6

(which is the support of ̂ψ ), the supports of ̂φ(s) (i.e., 
) and m(s) (within 
) are
shown in Figs. 1(a) to 1(c) for each case of A.

Remark 4.1 In fact, the function ̂ψ0(s) = 1
2π

χAτ 
\
 is itself the Fourier transform
of an A-dilation MRA wavelet. From this fact, the above results on ψ can also be
derived from Proposition 2.2 directly.

5 A-dilation Wavelet Multipliers

In this section, we characterize the A-dilation wavelet multipliers. A necessary con-
dition for a function f to be an A-dilation wavelet multiplier is that |f | = 1 [6, 15,
20]. Thus in the following we will limit our discussion to such functions. Instead of
trying to characterize the scaling function multiplier or the low pass filter multiplier
(which is the approach used in [15]), we will use a different approach. Let us call a
function f with the property |f | = 1 a unimodular function.

Theorem 5.1 A unimodular function f ∈ L∞(R2) is an A-dilation wavelet multi-
plier iff the function k(s) = f (Aτ s)/f (s) is 2πZ

2-translation periodic.

Proof “⇐=” Assume that f ∈ L∞(R2) is a unimodular function and that k(s) =
f (Aτ s)/f (s) is 2πZ

2-translation periodic. To show that f is a wavelet multiplier,
we need to show that for any A-dilation wavelet ψ , η = F −1(f ̂ψ) is also a wavelet.
It suffices to verify that η̂ satisfies conditions (ii) and (iii) in Lemma 2.1. It is easy
to see that (ii) holds for η̂ since |̂η| = |̂ψ | and (ii) holds for ̂ψ . Applying the relation
f (Aτ s) = k(s)f (s) repeatedly, for any j ≥ 1 and � ∈ Z

2, we obtain

f ((Aτ )j s) = k((Aτ )j−1s) · · · k(Aτ s)k(s)f (s), (5.1)

and
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f ((Aτ )j (s + 2π�)) = k((Aτ )j−1(s + 2π�))k((Aτ )j−2(s + 2π�))

· · ·k(Aτ (s + 2π�))k(s + 2π�)f (s + 2π�)

= k((Aτ )j−1s) · · · k(Aτ s)k(s)f (s + 2π�).

Since k(s) is unimodular, this leads to

f ((Aτ )j s) · f ((Aτ )j (s + 2π�))

= k((Aτ )j−1s) · · · k(Aτ s)k(s)f (s) · k((Aτ )j−1s) · · · k(Aτ s)k(s)f (s + 2π�)

= f (s)f (s + 2π�)

for any j ≥ 0 and � ∈ Z
2. Thus

∞
∑

j=0

η̂((Aτ )j s)̂η((Aτ )j (s + 2π�))

=
∞
∑

j=0

[f ((Aτ )j s)f ((Aτ )j (s + 2π�)) · ̂ψ((Aτ )j s)̂ψ((Aτ )j (s + 2π�))]

=
∞
∑

j=0

f (s)f (s + 2π�)̂ψ((Aτ )j s)̂ψ((Aτ )j (s + 2π�))

= f (s)f (s + 2π�)

∞
∑

j=0

̂ψ((Aτ )j s)̂ψ((Aτ )j (s + 2π�)) = 0

for any � ∈ Z
2\Aτ

Z
2. So condition (iii) of Lemma 2.1 holds for η̂ as well.

“=⇒” We need to show that k(s) = f (Aτ s)/f (s) is 2πZ
2-translation periodic.

Let ψ be any A-dilation MRA wavelet such that supp(̂ψ) = R
2. Such ψ exists. For

example the A-dilation wavelet constructed in Example 4.1 has such a property. By
Proposition 2.2, the function ψ1(t) defined by

̂ψ1 = eis◦u1 |̂ψ(s)| = eis◦u1 |̂ψ1(s)| (5.2)

is an A-dilation wavelet. Since F −1(f ̂ψ1) is also an A-dilation wavelet, ̂ψ1 and f ̂ψ1
both satisfy condition (iii) of Lemma 2.1, i.e.,

∞
∑

j=0

̂ψ1((A
τ )j s) · ̂ψ1((Aτ )j (s + 2π�)) = 0 a.e. and (5.3)

∞
∑

j=0

f ((Aτ )j s)̂ψ1((A
τ )j s) · f ((Aτ )j (s + 2π�))̂ψ1((Aτ )j (s + 2π�)) = 0 a.e.

(5.4)

for any � ∈ Z
2 \ Aτ

Z
2. Since � ∈ Z

2 \ Aτ
Z

2, there exists �1 ∈ Z
2 such that � = �0 +

Aτ�1 = Aτ (h0 + �1). It follows that � ◦ u1 = Aτ (h0 + �1) ◦ A−1u = (h0 + �1) ◦ u =
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1/2 + m, where h0 ◦ u by the definition of h0 and u, and m = �1 ◦ u is an integer.
Thus

̂ψ1(s)̂ψ1(s + 2π�) = eis◦u1 |̂ψ1(s)| · e−i(s+2π�)◦u1 |̂ψ1(s + 2π�)|
= ei(−π−2mπ)|̂ψ1(s)| · |̂ψ1(s + 2π�)| = −|̂ψ1(s)| · |̂ψ1(s + 2π�)|.

On the other hand, for any j > 0, (Aτ )j � ◦ u1 = � ◦ A−j−1u ∈ Z and hence

̂ψ1((A
τ )j s)̂ψ1((Aτ )j (s + 2π�))

= ei(Aτ )j s◦u1 |̂ψ1((A
τ )j s)| · e−i((Aτ )j (s+2π�)◦u1 |̂ψ1((A

τ )j (s + 2π�))|
= |̂ψ1((A

τ )j s)| · |̂ψ1((A
τ )j (s + 2π�))|.

Thus, (5.3) and (5.4) can be rewritten as

|̂ψ1(s)| · |̂ψ1(s + 2π�)|

=
∞
∑

j=1

|̂ψ1((A
τ )j s)| · |̂ψ1((A

τ )j (s + 2π�))| and (5.5)

f (s)f (s + 2π�) · |̂ψ1(s)| · |̂ψ1(s + 2π�)|

=
∞
∑

j=1

f ((Aτ )j s)f ((Aτ )j (s + 2π�))|̂ψ1((A
τ )j s)| · |̂ψ1((A

τ )j (s + 2π�))|. (5.6)

Since f is unimodular, f = 1/f . Hence (5.6) can be rewritten as

f (s)
f (s + 2π�)

|̂ψ1(s)| · |̂ψ1(s + 2π�)|

=
∞
∑

j=1

f ((Aτ )j s)
f ((Aτ )j (s + 2π�))

|̂ψ1((A
τ )j s)| · |̂ψ1((A

τ )j (s + 2π�))|. (5.7)

Combining this with (5.5) then leads to

∞
∑

j=1

|̂ψ1((A
τ )j s)| · |̂ψ1((A

τ )j (s + 2π�))|

=
∞
∑

j=1

f (s + 2π�)

f (s)
f ((Aτ )j s)

f ((Aτ )j (s + 2π�))
|̂ψ1((A

τ )j s)| · |̂ψ1((A
τ )j (s + 2π�))|.

(5.8)

Let βj (s) = f (s+2π�)
f (s)

f ((Aτ )j s)
f ((Aτ )j (s+2π�))

, Reβj (s) = aj (s), Imβj (s) = bj (s). Then (5.8)
can be rewritten as

∞
∑

j=1

(1 − aj (s))|̂ψ1((A
τ )j s)| · |̂ψ1((A

τ )j (s + 2π�))|



J Fourier Anal Appl (2010) 16: 155–176 165

= i

∞
∑

j=1

bj (s)|̂ψ1((A
τ )j s)| · |̂ψ1((A

τ )j (s + 2π�))|, (5.9)

and hence we have

∞
∑

j=1

(1 − aj (s))|̂ψ1((A
τ )j s)| · |̂ψ1((A

τ )j (s + 2π�))| = 0 and (5.10)

∞
∑

j=1

bj (s)|̂ψ1((A
τ )j s)| · |̂ψ1((A

τ )j (s + 2π�))| = 0. (5.11)

Since βj is unimodular by its definition, we have aj (s) ≤ 1. So we must have aj (s) =
1 a.e. in order for (5.10) to hold. Of course this would then imply that bj (s) = 0 a.e.
as well since a2

j (s) + b2
j (s) = 1. Thus,

βj (s) = f (s + 2π�)

f (s)
f ((Aτ )j s)

f ((Aτ )j (s + 2π�))
= 1 a.e.

For j = 1, the above is equivalent to

f (Aτ s)
f (s)

= f (Aτ (s + 2π�))

f (s + 2π�)
a.e. ∀� ∈ Z

2 \ Aτ
Z

2.

If � ∈ Aτ
Z

2, then � − �0 /∈ Aτ
Z

2 since �0 /∈ Aτ
Z

2. We have

k(s + 2π�) = k(s + 2π�0 + 2π(� − �0)) = k(s + 2π�0) = k(s).

Therefore, k(s) is 2πZ
2-translation periodic. �

Next, we show that all A-dilation wavelet multipliers can be constructed in the
way described in the following theorem. Recall that an A-dilation wavelet set E in
R

2 is a measurable set such that F −1( 1
2π

χE) is an A-dilation wavelet. It is known that
E is an A-dilation wavelet set iff both the sets {AnE : n ∈ Z} and {E +2π� : � ∈ Z

2}
are partitions of R

2 modulo a null set [7].

Theorem 5.2 Let E be an A-dilation wavelet set, and let k(s) be a measurable uni-
modular 2πZ

2-translation periodic function and g(s) be a measurable unimodular
function defined on E. Define

f (s) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

g(s), s ∈ E,

k((Aτ )−1s) · · ·k((Aτ )−ns) · g((Aτ )−ns), s ∈ (Aτ )nE,n ≥ 1,

k(s)k(Aτ s) · · · k((Aτ )n−1s) · g((Aτ )ns), s ∈ (Aτ )−nE,n ≥ 1,

1, 0.

Then f is an A-dilation wavelet multiplier. Moreover, any A-dilation wavelet multi-
plier can be constructed this way.
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Proof Since k(s) is 2πZ
2-translation periodic, it suffices (by Theorem 5.1) to show

that f (Aτ s) = k(s)f (s) in order to show that f is an A-dilation wavelet multiplier.

Case 1. s ∈ E. Then Aτ s ∈ AτE and

f (Aτ s) = k((Aτ )−1Aτ s)g((Aτ )−1Aτ s) = k(s)g(s) = k(s)f (s).

Case 2. s ∈ (Aτ )nE where n ≥ 1. Then Aτ s ∈ (Aτ )n+1E and

f (Aτ s) = k((Aτ )−1Aτ s) · · · k((Aτ )−(n+1)Aτ s)g((Aτ )−(n+1)Aτ s)

= k(s)k((Aτ )−1s) · · · k((Aτ )−ns)g((Aτ )−ns)

= k(s)f (s).

Case 3. s ∈ (Aτ )−1E. Then Aτ s ∈ E and f (s) = k(s)g(Aτ s), so f (Aτ s) = g(Aτ s) =
k(s)f (s).

Case 4. s ∈ (Aτ )−nE where n > 1. Then Aτ s ∈ (Aτ )−(n−1)E and

f (Aτ s) = k(Aτ s) · · ·k((Aτ )n−2Aτ s)g((Aτ )n−1Aτ s)

= k(s)k(s)k(Aτ s) · · · k((Aτ )n−1s)g((Aτ )ns)

= k(s)f (s).

Since {(Aτ )nE : n ∈ Z} is a partition of R
2 modulo a null set, the above four cases

have exhausted all possibilities for a.e. s ∈ R
2.

Now suppose that f (s) is an A-dilation wavelet multiplier. Let g(s) = f (s) for
s ∈ E, and k(s) = f (Aτ s)/f (s). Then k(s) is 2πZ

2-translation periodic and is uni-
modular. We leave it to our reader to verify that f (s) has the form given in the theo-
rem. �

6 Phases of A-dilation MRA Wavelets

The linear phase filtering problem is considered in signal processing where wavelets
and scaling functions are considered as filter functions. For more detailed discussions
on the linear-phase problems concerning wavelet and scaling functions, interested
reader may refer to [3, Sect. 5.5].

A function f (t) ∈ L2(R2) is said to have a linear phase if its Fourier transform
has the form

̂f (s) = ±| ̂f (s)| · e−is◦a a.e.

for some constant vector a ∈ R
2, which is the phase of ̂f (s).

The following theorem concerning the phase of an A-dilation MRA wavelet in
L2(R2) is an application of the results obtained in Sect. 5.

Theorem 6.1 Let ψ(t) ∈ L2(R2) be an A-dilation MRA wavelet. Then

̂ψ(s) = eis◦u1f (s)|̂ψ(s)|
for some A-dilation wavelet multiplier f (s).
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Proof By Proposition 2.1, the Fourier transform of an A-dilation MRA wavelet ψ(t)

has the form

̂ψ(s) = eis◦u1v(s)m((Aτ )−1s + 2πh0)̂φ((Aτ )−1s), (6.1)

where v is some unimodular and 2πZ
2-translation periodic function. Recall from

(2.2) that ̂φ(Aτ s) = m(s)̂φ(s) and that the low pass filter m(s) is 2πZ
2-translation pe-

riodic. Let ̂φ(s) = g(s)|̂φ(s)|. Then ̂φ(Aτ s) = g(Aτ s)|̂φ(Aτ s)| = g(Aτ s)|m(s)̂φ(s)|
and ̂φ(Aτ s) = m(s)̂φ(s) = m(s)g(s)|̂φ(s)|. Thus g(Aτ s)/g(s) = m(s)/|m(s)|. Now
let E = Supp(̂φ). For any s ∈ (Aτ )−1E, Aτ s ∈ E so 0 �= ̂φ(Aτ s) = m(s)̂φ(s). It fol-
lows that ̂φ(s) �= 0 so s ∈ E. This shows that (Aτ )−1E ⊂ E (which then implies that
(Aτ )nE ⊂ (Aτ )n+1E for any n ∈ Z). Since m(s) is 2πZ

2-translation periodic and
the support of m(s) contains (Aτ )−1E, g(Aτ s)/g(s) is 2πZ

2-translation periodic on
(Aτ )−1E as well. Thus the restriction of g(Aτ s)/g(s) on (Aτ )−1E can be extended
to a 2πZ

2-translation periodic function k0(s) over the set
⋃

�∈Z2((Aτ )−1E + 2π�).
We then define a unimodular and 2πZ

2-translation periodic function k(s) by

k(s) =
{

k0(s), s ∈ ⋃

�∈Z2((Aτ )−1E + 2π�),

1, otherwise.

We will now use k(s) to extend the domain of g to R
2. If s ∈ E, g(s) is already

defined by its definition ̂φ(s) = g(s)|̂φ(s)|. If s ∈ AτE\E, then g((Aτ )−1s) is defined
since (Aτ )−1s ∈ E. Thus we can define g(s) = k((Aτ )−1s) · g((Aτ )−1s). In general,
assume that g(s) has been defined on (Aτ )nE, then for any s ∈ (Aτ )n+1E\(Aτ )nE,
define g(s) = k((Aτ )−1s) · g((Aτ )−1s). The support of ̂ψ is contained in AτE by
(6.1). By Lemma 2.1(ii),

⋃

n∈Z
(Aτ )nE = R

2 modulo a null set. Thus the extended
g has been defined on the entire R

2. The function g is an A-dilation wavelet mul-
tiplier since k(s) = g(Aτ s)/g(s) is unimodular and 2πZ

2-translation periodic. For
s ∈ (Aτ )−1E, we have m(s) = ̂φ(Aτ s)/̂φ(s) = k(s)|m(s)|. For s ∈ E \ (Aτ )−1E,
̂φ(Aτ s) = m(s)̂φ(s) = 0 while ̂φ(s) �= 0. So m(s) = 0. Thus m(s) = k(s)|m(s)| also
holds. This means m(s) = k(s)|m(s)| holds for all s ∈ R

2 since m(s) is 2πZ
2-

translation periodic and
⋃

k∈Z2(E + 2π�) = R
2 modulo a null set by Lemma 2.3(i).

Finally, (6.1) becomes

̂ψ(s) = eis◦u1v(s)k((Aτ )−1s + 2πh0)|m((Aτ )−1s + 2πh0)|
× g((Aτ )−1s)|̂φ((Aτ )−1s)|

= eis◦u1v(s)k((Aτ )−1s + 2πh0)g((Aτ )−1s)|̂ψ(s)|.

Let f (s) = v(s)k((Aτ )−1s + 2πh0)g((Aτ )−1s). Since the support for each of v(s),
k(s) and g(s) is R

2, the support for f (s) is R
2. Furthermore,

f (Aτ s)
f (s)

= v(Aτ s)k(s + 2πh0)g(s)

v(s)k((Aτ )−1s + 2πh0)g((Aτ )−1s)

= (v(Aτ s)/v(s))k(s + 2πh0)k((Aτ )−1s + 2πh0)k((Aτ )−1s). (6.2)
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Since (v(Aτ s)/v(s))k(s + 2πh0) is 2πZ
2-translation periodic by the definitions of

v and k, we only need to show that k((Aτ )−1s + 2πh0)k((Aτ )−1s) is also 2πZ
2-

translation periodic. If � ∈ Aτ
Z

2 then it is obvious that k((Aτ )−1(s + 2π�) +
2πh0)k((Aτ )−1(s + 2π�)) = k((Aτ )−1s + 2πh0)k((Aτ )−1s). Otherwise, we have
� = �0 + Aτ�1 = Aτ (h0 + �1) for some �1 ∈ Z

2. It follows that k((Aτ )−1(s +
2π�) + 2πh0)k((Aτ )−1(s + 2π�)) = k((Aτ )−1s + 2π�1 + 4πh0)k((Aτ )−1s +
2π�1 + 2πh0) = k((Aτ )−1s + 2πh0)k((Aτ )−1s) since 2h0 ∈ Z

2. This proves that
f (Aτ s)/f (s) is indeed 2πZ

2-translation periodic. f (Aτ s)/f (s) is unimodular since
every term in the right side of (6.2) is unimodular. Thus f is an A-dilation wavelet
multiplier by Theorem 5.1. �

Corollary 6.1 For every A-dilation wavelet ψ , there exists an A-dilation wavelet ψ ′
such that |̂ψ | = |̂ψ ′| and ψ ′ has a linear phase −u1 = −A−1u.

Proof By Theorem 6.1, there exists an A-dilation wavelet multiplier f such that

̂ψ(s) = eis◦u1f (s)|̂ψ(s)|.
Since f is unimodular, multiplying f on both sides of the above equation yields

f (s)̂ψ(s) = eis◦u1 |̂ψ(s)| = eis◦u1 |f (s)̂ψ(s)|.
Since f is also an A-dilation wavelet multiplier, ψ ′ defined by ̂ψ ′(s) = f (s)̂ψ(s) is
also an A-dilation wavelet. By definition, −u1 is a linear phase of ψ ′. �

Remark 6.1 If B is a 2×2 integral expansive matrix with |det(B)| = 2 and P −1AP =
B for some integral matrix P with |det(P )| = 1, then for any given B-dilation wavelet
ψB , there exists a B-dilation wavelet ψ ′

B such that |̂ψB | = |̂ψ ′
B | and ψ ′

B has a linear
phase of the form −P τ u1.

7 Path-connectivity of the Set of A-dilation MRA Wavelets

As another application of Theorem 5.1, in this section we prove that the set of A-
dilation MRA wavelets is path-connected under the L2(R2) norm topology. In the
one-dimensional case, the path-connectedness of the set of all orthonormal wavelets
is still an open question, although many results have been obtained for special classes
of wavelets and frame wavelets. In [19], Speegle showed that the class of all min-
imally supported frequency (MSF) wavelets is path-connected. Paluszyński et al.
showed the connectivity for the class of MRA tight frame wavelets [18]. Garrigós
et al. showed that the class of all tight frame wavelets satisfying certain mild condi-
tions on their spectrum is also connected [10]. Dai et al. showed that the sets of s-
elementary tight frame wavelets (for any given frame bound) and s-elementary frame
wavelets are all path-connected [5, 8]. These efforts were further extended to the set
of all frame wavelets by Bownik [2], where he showed that this much larger set is
path-connected under a differently defined norm called L2∗(R) (he also showed that
this result holds in the higher-dimensional case). Despite all these efforts, so far there
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has been little activity in attacking the path-connectivity problem of MRA wavelets
in higher dimensions. While it is generally expected that the set of all MRA wavelets
is path-connected in the higher-dimensional case, the establishment of such a result
is not a trivial generalization of the one-dimensional case due to the complexity in-
troduced by the dilation matrices.

Our main result of this section is the following theorem.

Theorem 7.1 For any two A-dilation MRA wavelets ψ0 and ψ1, there exists a con-
tinuous map γ : [0,1] −→ L2(R2) such that γ (0) = ψ0, γ (1) = ψ1 and γ (t) is an
A-dilation MRA wavelet for ∀ t ∈ [0,1].

We will prove the theorem by directly constructing a continuous path connect-
ing the two MRA wavelets. The proof is given for the case where A is one of
the matrices A1, A2, ±A3 and ±A4. In general, if B ∼ A for one of the matrices
A above, then we can simply apply the unitary operator �P to the set of all A-
dilation MRA wavelets (recall Remark 3.2). The proof is of constructive nature and
long. So we break it into several lemmas. For a given A-dilation wavelet ψ0, define
Mψ0 = {ψ : ̂ψ = v̂ψ0 for some A-dilation wavelet multiplier v}, and Wψ0 = {ψ :
ψ is an A-dilation wavelet with |̂ψ | = |̂ψ0|}. Furthermore, in the case that ψ0 is an
A-dilation MRA wavelet with φ0 being the corresponding A-dilation scaling function
for the MRA, define Sψ0 = {ψ : ψ is an A-dilation MRA wavelet with |φ| = |φ0|}.
Lemma 7.1 For any A-dilation MRA wavelet ψ0 we have Sψ0 = Mψ0 = Wψ0 .

Proof Wψ0 ⊆ Sψ0 follows from equation (2.4) of Lemma 2.4. Mψ0 ⊆ Wψ0 by defi-
nition. Sψ0 ⊆ Mψ0 follows from an argument similar to the one used in the proof of
Theorem 1.2 in [15] and Proposition 2.1. �

Lemma 7.2 Let ψ0 be an A-dilation MRA wavelet. Then Mψ0 is path-connected.

Proof This is proved in [15] for a special case of A. However the proof for the general
case is similar and thus omitted. �

By Lemma 7.1 we have Sψ0 = Mψ0 . Thus, to show that any two A-dilation MRA
wavelets are connected by a continuous path, it suffices to show that for any A-
dilation MRA wavelet ψ , there exists a ψ1 ∈ Sψ , such that ψ1 is path-connected
to the generalized Shannon wavelet ψ0 defined by

̂ψ0(s) = 1

2π
eis◦u1χAτ 
\
(s). (7.1)

We will choose ψ1 ∈ Sψ so that it is associated with a scaling function φ1 such that
̂φ1 ≥ 0 and m1 ≥ 0 and

̂ψ1(s) = eis◦u1m1((A
τ )−1s + 2πh0)̂φ1((A

τ )−1s). (7.2)

The existence of such a ψ1 is guaranteed by Lemma 2.3 and Proposition 2.2. Note
that the corresponding scaling function and low pass filter of ψ0 are given by ̂φ0(s) =
(1/2π)χ
 and m0(s)|
 = χ(Aτ )−1
, respectively.



170 J Fourier Anal Appl (2010) 16: 155–176

We will now build a path that connects the low pass filters first, then use it to
construct the path for the scaling functions and the connected path for the wavelet
functions. We will describe the construction for the case of A = A3. The other cases
can be dealt with similarly. Notice in this case 2πh0 = (π,π)τ and s ◦ u1 = (s1 +
s2)/2 where s = (s1, s2)

τ . For t ∈ [0,1], s ∈ 
 = [−π,π)2, define

mt(s) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(1 − t)m0(s) + tm1(s), s ∈ (Aτ )−1
 \ (1 − t)(Aτ )−1
,

1, s ∈ (1 − t)(Aτ )−1
,
√

1 − |mt(s + (π,−π)τ )|2, s ∈ R1,
√

1 − |mt(s + (π,π)τ )|2, s ∈ R2,
√

1 − |mt(s + (−π,π)τ )|2, s ∈ R3,
√

1 − |mt(s + (−π,−π)τ )|2, s ∈ R4,

where the regions Rj (1 ≤ j ≤ 4) are as marked in Fig. 1(b). The general mt(s) is
then defined by extending the above 2πZ

2-periodically. Of course, for t = 0 and
t = 1, mt(s) is just the m0(s) and m1(s) given before. Furthermore, it is easy to see
that |mt(s)| ≤ 1 for any t by its definition and that mt(s) satisfies the equation

|mt(s)|2 + |mt(s + (π,π)τ )|2 = 1.

Define:

̂φt (s) = 1

2π

∞
∏

j=1

mt((A
τ )−j s), (7.3)

̂ψt(s) = ei
s1+s2

2 mt((A
τ )−1s + (π,π)τ )̂φt ((A

τ )−1s) (7.4)

for s ∈ R
2. Then ̂φt is well defined since 0 ≤ mt(s) ≤ 1, so is ̂ψt . Furthermore, for t =

0 and t = 1, ψt coincides with the ̂ψ0 and ̂ψ1 defined in (7.1) and (7.2), respectively.
To complete the proof of Theorem 7.1, we need to show

1. φt is an A-dilation scaling function, so ψt is an A-dilation MRA wavelet.
2. The mapping [0,1] → L2(R2) defined by t �→ ψt is continuous.

These two statements will be proved in the next three lemmas.

Lemma 7.3 For each t ∈ [0,1], let φt and ψt be functions as defined in (7.3) and
(7.4), respectively. Then φt is an A-dilation scaling function and ψt is an A-dilation
MRA wavelet.

Proof The statement holds trivially for t = 0 and 1, so we only need to consider the
case 0 < t < 1. From the definition of φt , we have

̂φt (A
τ s) = mt(s)̂φt (s), s ∈ R

2, (7.5)

̂φt (s) = 1

2π
, s ∈ (1 − t)
. (7.6)
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So ̂φt (s) satisfies conditions (ii) and (iii) of Lemma 2.3. We will prove that φt satisfies
condition (i) of Lemma 2.3 as well, which then implies that φt is a scaling function.

For ∀ s ∈ 
, we have (Aτ )−j s ∈ (Aτ )−1
 ∀ j ≥ 1. So by the definition of mt(s),
we have mt((A

τ )−j s) ≥ 1 − t . Since A is expansive, for any fixed 0 < t < 1, we can
choose k0 sufficiently large such that (Aτ )−k
 ⊂ (1 − t)
 when k ≥ k0. Hence, if
s ∈ 
 and k ≥ k0, then ̂φt ((A

τ )−ks) = 1/2π by (7.6) and

̂φt (s) = 1

2π

∞
∏

j=1

mt((A
τ )−j s) = 1

2π

k0
∏

k=1

mt((A
τ )−ks)

∞
∏

k=k0+1

mt((A
τ )−ks)

= ̂φt ((A
τ )−k0 s)

k0
∏

k=1

mt((A
τ )−ks) = 1

2π

k0
∏

k=1

mt((A
τ )−ks) ≥ 1

2π
(1 − t)k0 .

This implies that χ
(s) ≤ 2π ̂φt (s)/(1 − t)k0 . Define

μt,k(s) = 1

2π
χ
((Aτ )−ks) ·

k
∏

j=1

mt((A
τ )−j s), k ≥ 1.

Then

μt,k(s) ≤ ̂φt ((A
τ )−ks)

(1 − t)k0

k
∏

j=1

mt((A
τ )−j s) = ̂φt (s)

(1 − t)k0
.

For k ≥ 2, we have
∫

R2
|μt,k(s)|2e−in◦sds

= 1

4π2

∫

R2
|χ
((Aτ )−ks)|2 ·

k
∏

j=1

|mt((A
τ )−j s)|2 · e−in◦sds

= 2k

4π2

∫




k
∏

j=1

|mt((A
τ )k−j s)|2e−in◦((Aτ )ks)ds

= 2k

4π2

∫




k−1
∏

j=0

|mt((A
τ )j s)|2e−in◦((Aτ )ks)ds

= 2k

4π2

∫




|mt(s)|2
k−1
∏

j=1

|mt((A
τ )j s)|2e−in◦((Aτ )ks)ds.

Let Rj and Tj (1 ≤ j ≤ 4) be the regions marked in Fig. 1(b) and let Uj = Rj ∪ Tj .
To compute the last integral in the above equality, we divide 
 into these smaller
regions. We have

∫

R2
|μt,k(s)|2e−in◦sds



172 J Fourier Anal Appl (2010) 16: 155–176

= 2k

4π2

(∫

∪1≤j ′≤4Uj ′
|mt(s)|2

k−1
∏

j=1

|mt((A
τ )j s)|2e−in◦((Aτ )ks)ds

)

= 2k

4π2

4
∑

j ′=1

∫

Uj ′
|mt(s)|2

k−1
∏

j=1

|mt((A
τ )j s)|2e−in◦((Aτ )ks)ds.

We have

∫

U1

|mt(s)|2
k−1
∏

j=1

|mt((A
τ )j s)|2e−in◦((Aτ )ks)ds

=
∫

R1

|mt(s)|2
k−1
∏

j=1

|mt((A
τ )j s)|2e−in◦((Aτ )ks)ds

+
∫

T1

|mt(s)|2
k−1
∏

j=1

|mt((A
τ )j s)|2e−in◦((Aτ )ks)ds

=
∫

T1

k−1
∏

j=1

|mt((A
τ )j s)|2e−in◦((Aτ )ks)ds,

where the second equality is obtained by substituting s with s − (π,−π)τ in the
integral over T1 together with the equality that |mt(s)|2 + |mt(s + (π,−π)τ )|2 = 1
for any s ∈ R1. Similarly, for each j ′ = 2, 3 and 4 we also have

∫

Uj ′
|mt(s)|2

k−1
∏

j=1

|mt((A
τ )j s)|2e−in◦((Aτ )ks)ds

=
∫

Tj ′

k−1
∏

j=1

|mt((A
τ )j s)|2e−in◦((Aτ )ks)ds

So
∫

R2
|μt,k(s)|2e−in◦sds

= 2k

4π2

∫

∪1≤j ′≤4Tj ′

k−1
∏

j=1

|mt((A
τ )j s)|2e−in◦((Aτ )ks)ds

= 2k

4π2

∫

(Aτ )−1


k−1
∏

j=1

|mt((A
τ )j s)|2e−in◦((Aτ )ks)ds

= 2k−1

4π2

∫




k−2
∏

j=0

|mt((A
τ )j s)|2e−in◦((Aτ )k−1s)ds
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=
∫

R2
|μt,k−1(s)|2e−in◦sds.

Repeating the above procedure then leads to
∫

R2
|μt,k(s)|2e−in◦sds

=
∫

R2
|μt,1(s)|2e−in◦sds

= 1

4π2

∫

R2
|χ
((Aτ )−1s)|2 · |mt((A

τ )−1s)|2e−in◦sds

= 2

4π2

∫




|mt(s)|2e−in◦(Aτ s)ds

= 2

4π2

∫

(Aτ )−1


e−in◦(Aτ s)ds = 1

4π2

∫




e−in◦sds = δn,0.

So ‖μt,k‖2 = 1. Clearly limk→∞ μt,k(s) = ̂φt (s) for all s ∈ R
2. Thus φt ∈ L2(R2) by

Fatou’s Lemma. Since μt,k(s) is dominated by
̂φt (s)

(1−t)k0
, we get

lim
k→∞

∫

R2
|μt,k(s)|2e−in◦sds =

∫

R2
|̂φt (s)|2e−in◦sds = δn,0

by Lebesgue’s dominated convergence theorem. This is equivalent to the condition
that

∑

�∈Z2 |̂φt (s + 2π�)|2 = 1
4π2 a.e. By Lemma 2.3, φt is a scaling function for

some MRA. Consequently, ψt is an A-dilation MRA wavelet. �

Lemma 7.4 limt→t0
̂φt (s) = ̂φt0(s) a.e. for any t0 ∈ [0,1].

Proof By the definition of mt(s), the mapping t �→ mt(s) is continuous with re-
spect to t a.e. for s ∈ R

2. Since ̂φ1 ≥ 0, limj→∞ ̂φ1((A
τ )−j s) = 1/2π a.e. For any

given ε > 0 and s ∈ R
2, there exists a positive integer n0 such that ̂φ1((A

τ )−ns) >

1/2π − ε/2 and (Aτ )−ns ⊂ (Aτ )−1
 for any n ≥ n0. It follows that mt((A
τ )−ns) is

either 1 or (1 − t) + tm1((A
τ )−ns) for any t ∈ [0,1]. In either case, mt((A

τ )−ns) ≥
m1((A

τ )−ns). So the following inequality holds for any t ∈ [0,1]:

̂φt ((A
τ )−ns) = 1

2π

∞
∏

j=1

mt((A
τ )−j (Aτ )−ns)

≥ 1

2π

∞
∏

j=1

m1((A
τ )−j (Aτ )−ns) = ̂φ1((A

τ )−ns).

Since ̂φt (s′) ≤ 1/2π for any s′ ∈ R
2 by its definition, it follows that for any t1,

t2 ∈ [0,1], we have

|̂φt1((A
τ )−ns) − ̂φt2((A

τ )−ns)| < ε/2. (7.7)
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On the other hand, since t �→ mt((A
τ )−j s) is continuous for each j , we have that

the mapping t �→ ∏n0
j=1 mt((A

τ )−j s) is continuous. Hence for each t0 ∈ [0,1], there
exists δ > 0 such that for |t − t0| < δ and t ∈ [0,1],

∣

∣

∣

∣

∣

n0
∏

j=1

mt((A
τ )−j s) −

n0
∏

j=1

mt0((A
τ )−j s)

∣

∣

∣

∣

∣

< ε.

Now, we obtain

|̂φt (s) − ̂φt0(s)|

=
∣

∣

∣

∣

∣

1

2π

∞
∏

j=1

mt((A
τ )−j s) − 1

2π

∞
∏

j=1

mt0((A
τ )−j s)

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

n0
∏

j=1

mt((A
τ )−j s)̂φt ((A

τ )−n0 s) −
n0
∏

j=1

mt0((A
τ )−j s)̂φt0((A

τ )−n0 s)

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

n0
∏

j=1

mt((A
τ )−j s) · ̂φt ((A

τ )−n0 s) −
n0
∏

j=1

mt0((A
τ )−j s)̂φt ((A

τ )−n0 s)

+
n0
∏

j=1

mt0((A
τ )−j s)̂φt ((A

τ )−n0 s) −
n0
∏

j=1

mt0((A
τ )−j s)̂φt0((A

τ )−n0 s)

∣

∣

∣

∣

∣

≤ 1

2π

∣

∣

∣

∣

∣

n0
∏

j=1

mt((A
τ )−j s) −

n0
∏

j=1

mt0((A
τ )−j s)

∣

∣

∣

∣

∣

+ |̂φt ((A
τ )−n0 s) − ̂φt0((A

τ )−n0 s)|

<
ε

2π
+ ε

2
< ε.

Therefore we have proved that limt→t0
̂φt (s) = ̂φt0(s). �

By the continuity of mt(s) and ̂φt , we now have limt→t0
̂ψt(s) = ̂ψt0(s) a.e.

Lemma 7.5 For t0, t ∈ [0,1], limt→t0 ‖̂ψt − ̂ψt0‖2 = 0.

Proof Since ‖̂ψt‖2 = ‖̂ψt0‖2 = 1, ‖̂ψt − ̂ψt0‖2 = 〈̂ψt − ̂ψt0,
̂ψt − ̂ψt0〉 = 2 −

〈̂ψt, ̂ψt0〉 − 〈̂ψt0 ,
̂ψt 〉. Thus it suffices to show that limt→t0〈̂ψt, ̂ψt0〉 = 1.

Since ̂ψt0 ∈ L2(R2), for any given ε > 0, there exists a sufficiently large number

r > 0 such that (
∫

|s|>r
|̂ψt0(s)|2ds)

1
2 < ε/4. By Hölder Inequality, we then have

∫

|s|>r

|̂ψt(s) − ̂ψt0(s)| · |̂ψt0(s)|ds

≤ ‖̂ψt(s) − ̂ψt0(s)‖
(∫

|s|>r

|̂ψt0(s)|2ds
) 1

2

< ε/2
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since

‖̂ψt(s) − ̂ψt0(s)‖ ≤ ‖̂ψt(s)‖ + ‖̂ψt0(s)‖ = 2.

On the other hand, we have

|̂ψt(s) − ψ̂t0(s)| ≤ 1/π

since

|̂ψt(s)| ≤ 1/2π and |ψ̂t0(s)| ≤ 1/2π

by (7.3), (7.4) and |mt | ≤ 1. Thus by the dominated convergence theorem, we have

lim
t→t0

∫

|s|≤r

|̂ψt(s) − ̂ψt0(s)|ds = 0.

Therefore, there exists a number δ > 0 such that
∫

|s|≤r
|̂ψt(s) − ̂ψt0(s)|ds < πε/2

whenever |t − t0| < δ. Combining the above leads to

|〈̂ψt , ̂ψt0〉 − 1| = |〈̂ψt , ̂ψt0〉 − 〈̂ψt0,
̂ψt0〉| =

∣

∣

∣

∣

∫

R2
(̂ψt(s) − ̂ψt0(s)) · ̂ψt0(s)ds

∣

∣

∣

∣

≤
∫

|s|≤r

|(̂ψt(s) − ̂ψt0(s))̂ψt0(s)|ds +
∫

|s|>r

|(̂ψt(s) − ̂ψt0(s))̂ψt0(s)|ds < ε.

So limt→t0 ‖̂ψt − ̂ψt0‖2 = 0. �

Since the inverse Fourier transform is continuous, we know that the mapping t �→
ψt is continuous. This completes the proof of Theorem 7.1.

Let us end this paper with the following discussion about the possibility of ex-
tending the results of this paper to higher dimensions. One apparent limitation of the
approach used here is that the proof depends heavily on the reduction of the number
of dilation matrices that need to be considered. It is difficult to find all the equivalent
classes of integrally similar dilation matrices for higher dimensions. Even if we have
found all these classes, there is no guarantee that the construction we used here will
still work since the situation can be much more complicated. Therefore, a general
approach that does not depends on the specific structure of a dilation matrix will be
more desirable.
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