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Abstract Surprisingly, Fourier series on certain fractals can have better convergence
properties than classical Fourier series. This is a result of the existence of gaps in the
spectrum of the Laplacian. In this work we prove general criteria for the existence
of gaps when the Laplacian admits spectral decimation. The known examples, in-
cluding the Sierpinski gasket and the level-3 Sierpinski gasket, and the new examples
including the fractal-3 tree, the Hexagasket and the infinite family of tree-like fractals
satisfy the criteria.

Keywords Analysis on fractals · Spectral analysis · Laplace operator

Mathematics Subject Classification (2000) 28A80 · 42C99 · 31C25

1 Introduction

Laplacians on post critically fractals have been constructed both as a renormalized
limit of difference operators and a weak formulation using the theory of Dirichlet
forms [11] and [12]. The spectra of Laplacians on a number of fractals have been
analyzed both numerically [1] and using the spectral decimation method [5, 14, 16],
and [19].

One of the most striking results is that there can be gaps in the spectrum of the
Laplacian. (For a given infinite sequence α1 ≤ α2 ≤ · · · ≤ αk ≤ · · · , we say that there
exist gaps in the sequence if lim supk≥1

αk+1
αk

> 1.) This result was proved for the
Laplacian on the Sierpinski gasket by Gibbons, Raj and Strichartz in [9] using results
obtained by Fukushima and Shima [8].
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The existence of gaps is an interesting phenomenon in itself, but it also has im-
portant applications to analysis on fractals. For instance, Kigami and Lapidus [13]
proved that a Weyl-type limit, ρ(x)/xd/2 with ρ(x) being the eigenvalue counting
function, can not exist for any choice of d . This result also follows from the existence
of gaps as the Weyl ratio must drop by a constant factor when x passes through a
gap. In addition, one can use the existence of gaps and the heat kernel estimates to
derive a version of the Riesz theorem for Fourier series on fractals and even obtain the
stronger conclusion that the Fourier series converges for p = 1 and uniformly when
the function is continuous. (See Sect. 3 or [17] for details.)

The main purpose of this paper is to give criteria (Theorems 13, 15 and 16) for
the existence of gaps when the Laplacian admits spectral decimation. We show that
the criteria apply to various examples, including the Sierpinski gasket, the level-3
Sierpinski gasket, the fractal-3 tree, the Hexagasket, and the infinite family of the
n-branch tree-like fractals.

2 Laplacians on Fractals and Spectral Decimation Method

In this section, we review Kigami’s method to define Laplacians on p.c.f. fractals
[11, 12] and the spectral decimation method to analyze their spectra developed by
Shima [16].

2.1 Laplacians on Graphs

We mainly follow the notations and terminologies in [12]. Let K be a compact metriz-
able topological space and L = {K, S, {Fs}s∈S} a self-similar structure, where S is
a finite set and Fs is a continuous injection from K to itself for every s ∈ S. We
denote Wn(S) = Sn and W∗(S) = ∪n≥0Wn(S). For w = w1w2 · · ·wn ∈ Wn(S), let
Fw = Fw1 ◦ Fw2 ◦ · · · ◦ Fwn, and Kw = FwK. Assume that there exists a continuous
surjection π : SN → K satisfying π ◦ s = Fs ◦ π for every s ∈ S, where s denotes the
map from SN to SN defined by s(w1w2 · · · ) = sw1w2 · · · . The critical set C and the
post critical set P are defined respectively by

C = π−1
( ⋃

s,t∈S,s 	=t

(Ks ∩ Kt )

)
, P =

⋃
n≥1

σn(C),

where σ : SN → SN is the left-shift map. A self-similar set is called post critically
finite (abbreviation p.c.f.) iff the post critical set P is finite.

We take G0 to be the complete graph on V0, where V0 = π(P ) and is thought of
as the boundary of K. Then define the set of vertices at step m, Vm, recursively by

Vm =
⋃
s

FsVm−1

and define the edge relation (x, y) ∈ Em (or x ∼m y) to hold if there exist a word w

of length |w| = m such that x, y ∈ FwV0. It is not hard to see that the Vm’s build up
an ascending chain:

V0 ⊆ V1 ⊆ V2 ⊆ · · · .



78 J Fourier Anal Appl (2010) 16: 76–96

We set

V 0
m = Vm \ V0, V∗ =

⋃
m

Vm

and call the elements in V∗ vertices. We denote Gm = (Vm,Em) the step-m graph
with vertices Vm and edges Em.

For any set U , we shall use �(U) to denote the set of real valued functions on U

and

�0(Vm) = {f ∈ �(Vm) : f (p) = 0 for p ∈ V0}.
For two sets U and V , we define

L(U,V ) = {A : �(U) → �(V ) and A is linear}.
In particular, L(V ) means L(V,V ).

Kigami first defines a Laplacian operator on the vertices Vm as a difference
operator. Take D to be a symmetric (Laplacian) matrix in L(V0) with row sum
zero, non-negative off-diagonal entries and negative diagonal entries. Choose r =
(r−1

1 , r−1
2 , . . . , r−1

|S| ) ∈ �(S) and let r0 be the number such that r−1
0 := ∑

s∈S r−1
s . De-

fine Hm ∈ L(Vm) by

Hm =
∑

w∈Wm

r−1
w Rt

wDRw, (2.1)

where Rw ∈ L(Vm,Fw(V0)) is the restriction map defined by Rwf = f |Fw(V0),
and rw = rw1rw2 . . . rwm for w = w1w2 . . .wm ∈ Wm. We call (Hm, r) the general-
ized/combinatorial Laplacian with weight r on Vm. The special case when all off-
diagonal entries of D are 1 and all ri = 1 is called the Standard Laplacian. Decom-
pose Hm into

Hm =
[
Tm J t

m

Jm Xm

]
, (2.2)

where Tm ∈ L(V0), Jm ∈ L(V0,V
0
m) and Xm ∈ L(V 0

m). In particular, write T = T1,
J = J1 and X = X1.

By constructing a measure μ̂m on Vm as

μ̂m(x) =
( ∑

w∈Wm

r−1
w Rt

w(−T )Rw

)
x,x

,

Kigami [11] defines the normalized Laplacian �̂mf (x) as

�̂mf (x) := Hmf (x)

μ̂m(x)
,

for f ∈ �(Vm).
Assume the p.c.f. fractal K is connected and

#(Fs(V0) ∩ V0) ≤ 1 for every s ∈ S. (2.3)
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Note the latter assumption implies that T is a diagonal matrix. Define diagonal
matrices M and W such that Mi,i = −Xi,i and W = [ −T 0

0 M

]
. We also denote

G(λ) = (X + λM)−1 if the inverse matrix exists.

Definition 1 [16] The generalized Laplacian (Hm, r) is said to have a strong har-
monic structure if there exist rational functions KD(λ) and KT (λ) such that when
X + λM is invertible, then

T − J t (X + λM)−1J = KD(λ)D + KT (λ)T . (2.4)

KD(0)−1 is called the energy renormalization constant.
We denote

F := {λ ∈ R : KD(λ) = 0 or det(X + λM) = 0}
and call elements in F the forbidden eigenvalues. Moreover, we let

Fk := {λ ∈ F : λ is an eigenvalue of − �̂k}
and call the elements in Fk the forbidden eigenvalues at step k or initial eigenvalues
at step k. The rational function

R(λ) := λ − KT (λ)

KD(λ)

is called the spectral decimation function.

Example 2.1 (The Sierpinski Gasket S G ) The fractal and the first step graph are
shown in Fig. 1. The boundary points are indicated by solid dots. It can be calculated
that for the standard Laplacian,

KD(λ) = 3 − 2λ

(4λ − 5)(2λ − 1)
, KT (λ) = 2λ

2λ − 1
,

and so the spectral decimation function is

R(λ) = λ(5 − 4λ),

with forbidden eigenvalues 1/2, 5/4, and 3/2. Notice that since all interior vertices
have four neighboring points, the spectral decimation function and the forbidden
eigenvalues differ by a constant factor 4 from those calculated in [18].

Suppose we are given a p.c.f. self-similar set (also satisfying our assumption (2.3))
and the generalized Laplacian has a strong harmonic structure. Then the normalized
Laplacian has the following spectral decimation property proved by Shima.

Proposition 2 (Shima [16]) Suppose the generalized Laplacian has a strong har-
monic structure. We have the following collective results:
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Fig. 1 The Sierpinski gasket

(1) If f is an eigenfunction of −�̂m+1 with eigenvalue λ, i.e. −�̂m+1f = λf , and
λ 	∈ F, then −�̂mf |Vm = R(λ)f |Vm ,

(2) Conversely, if −�̂mf = R(λ)f , and λ 	∈ F, then there exists a unique extension
f of f such that −�̂m+1f = λf .

The spectral decimation function R has been proved to have the following prop-
erty.

Proposition 3 (Shima [16]) The spectral decimation function R satisfies

R(0) = 0, and R′(0) = 1

KD(0)r0
> 1. (2.5)

ρ = R′(0) is called the Laplacian renormalization constant.

2.2 Laplacians on Fractals and Spectral Decimation

The (normalized) Laplacian � on K can be defined as a limit of the normalized
discrete Laplacians �̂m [11] and [12].

Definition 4 (Kigami [11]) Let

D =
{
u ∈ C(K) : there exists a function f ∈ C(K) and

lim
m→∞ρm�̂mu(x) = f (x) uniformly for x ∈ V∗ \ V0

}
.

We then define the (normalized) Laplacian on the fractal K by

�u = f,

where f is the function appearing above.

In some cases, spectra of Laplacians can be obtained through an iterative process
called spectral decimation.

Definition 5 For a p.c.f. self-similar set K, we say that the Laplacian, −�, with
Dirichlet boundary conditions, admits spectral decimation with spectral decimation
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function R if all eigenvalues of −� are of the form

ρi lim
m→∞ρmφv(x), x ∈ Fi+1 and i ∈ N ∪ {0},

where v = vm · · ·v1 with each vj ∈ {0, . . . ,#(branches of the inverse function
of R) − 1}, and φv = φvm · · ·φv1 with φk being the (k + 1)-th branch of the in-
verse functions of R from bottom to top; i.e., the φj are ordered according to their
domains, so that if x is in the domain of φj and y in the domain of φj+1, then x ≤ y.
In particular, φ0 is the bottom branch of the inverses.

Remark 6 (1) Note that in the above definition, φv has to be chosen such that the
limit exists. Shima proved if φ0(z) < z for all positive real numbers z on its domain,
then the existence of the limit is equivalent to the condition that after finitely many
steps, we only apply the bottom branch, φ0, of the inverse functions.

In fact, if φ0(z) < z, then φ
(n)
0 (z), the n iterations of φ0, is decreasing in n and so

converges. But the limit is a fixed point of φ0 and so it is 0. Hence after applying φ0
sufficiently many times, the resulting value will be close to 0. Proposition 3 then tells
us

φ0(z) = 1

ρ
z + O(z2), as z → 0.

Hence the limit in the above definition exists if we only apply φ0 after finitely many
steps to do the extensions. Conversely, if we do not apply φ0 after finitely many
steps, then φv(z) with |v| = m does not converge to 0 as m → ∞. Since ρ > 1,
limm ρmφv(z) does not exist.

Therefore, we conclude that if φ0(z) < z for all positive z on its domain, all eigen-
values of −� must be of the form

ρi lim
m→∞ρmφ

(m−j)

0 φv′(z), (2.6)

where z ∈ Fi+1, |v′| = j , and i ∈ N ∪ {0}.
(2) This definition can also be applied to Laplacians with Neumann boundary

condition, where all boundary points satisfy the same type of eigenvalue equations
as other interior points. All we need to do is to replace F and Fi by F ∪ {0} and
Fi ∪ {0} respectively since constant functions are always Neumann eigenfunctions
corresponding to eigenvalue zero.

Shima has proved the following theorem about the relationship between strong
harmonic structure and spectral decimation.

Theorem 7 (Shima [16]) Suppose the Laplacian −� has a strong harmonic struc-
ture. If the number of contraction maps is less than the Laplacian renormalization
constant, i.e. |S| < 1

KD(0)r0
, then −� admits spectral decimation with a rational

function R.

If we take all ri to be 1, then 1/r0 = |S|. By Theorem 4.10 in [11], it is known that
for some s ∈ S, rs < KD(0)−1. Therefore KD(0) < 1 and |S| < 1

KD(0)r0
. Hence we

have the following corollary.
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Corollary 8 If a Laplacian has the strong harmonic structure and all ri = 1, then it
admits spectral decimation.

3 Criteria for Spectral Gaps

Under some technical conditions on the self-similar structure L, one can find a com-
plete orthonormal basis of L2(K,μ), formed by Dirichlet or Neumann eigenfunctions
of the Laplacians, where μ is a Radon measure on K. (For the existence of such an
orthonormal basis, see Theorem 3.4.6 in [12].) Thus we can decompose any function
f ∈ L2 as

f =
∞∑

j=1

cjuj with cj =
∫

K
f ujdμ,

where uj are the eigenfunctions of the Laplacian on K, analogous to the sine and
cosine functions on the interval. This sum is the Fourier series of f and its partial
sums converge to f in L2 norm.

Strichartz proved the following theorems concerning convergence of the Fourier
series on S G and the Littlewood-Paley theorem.

Theorem 9 (Theorem 1 in [17]) Let {Nm} be a sequence of integers such that
λNm+1
λNm

− 1 is bounded away from zero. Then the partial sums of the Fourier series

SNmf converge to f as m → ∞ in Lp for f ∈ Lp (1 ≤ p < ∞) and uniformly if f

is continuous.

Theorem 10 (Theorem 2 in [17]) Let 1 < p < ∞. Let

Sf (x) =
( ∞∑

m=1

∣∣∣∣∣
Nm∑

j=Nm−1+1

cjuj (x)

∣∣∣∣∣
2)1/2

,

where {Nm} is the same sequence as in the above theorem. Then there exist constants
Ap and Bp such that

Ap ‖ f ‖p≤‖ Sf ‖p≤ Bp ‖ f ‖p .

The proof of the two theorems uses a generic argument developed by Duong,
Ouhabaz and Sikora ([7], Theorem 3.1 and 6.2), with two key ingredients. One is
the existence of gaps [9] and the other is a suitable heat kernel estimate, which was
originally proved on S G by Barlow and Perkins [4], and have been extended to other
fractals. (See [3, 10, 12] and references therein.) Here the existence of gaps for a
given sequence is defined as follows.

Definition 11 Let α1 ≤ α2 ≤ · · · ≤ αk ≤ · · · be an infinite sequence. We say that
there exist gaps in the sequence if lim supk→∞

αk+1
αk

> 1.
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Essentially, the same argument can be applied to any other fractals where there
exist gaps in the spectrum of the Laplacian and the heat kernel estimates specified in
[7] are satisfied.

In this section we shall give three criteria for the existence of gaps in the spectrum
of Laplacians on fractals which admit spectral decimation. The proofs of the theorems
we give are similar. In all cases, we show there are gaps in the spectrum between
numbers Ak and Bk, where Ak , Bk are of the form

Ak = ρk lim
m→∞ρmφ

(m−1)
0 (x),

Bk = ρk lim
m→∞ρmφ

(m−1)
0 (y)

with x, y consecutive elements of the set R−1(F).
Following the proofs of the theorems we will give examples of fractals to which

the theorems can be applied. The first criterion applies to the level-2 and level-3
Sierpinski gaskets, S G and S G 3, the 3-tree fractal, and the Hexagasket. It is shown
in [9] that there are two sequences where we can find gaps for S G and our first
criterion detects one of them. Slightly modifying the conditions of the first criterion,
we obtain a second theorem which can be used to find the other sequence for S G
where gaps are already known to occur. The third theorem can be used to prove the
existence of gaps for the tree-like fractals.

3.1 Gap Theorems for the Sierpinski Gasket and Other Fractals

As before, we let Fk = {λ ∈ F : λ is an eigenvalue of − �̂k}, be the set of forbid-
den/initial eigenvalues appearing at step k. We restrict the domain of R to the non-
negative real line.

We denote the functions

y0(z) = lim
m→∞ρmφ

(m)
0 (z), if v = 0, (3.1)

yv(z) = lim
m→∞ρmφ

(m−j)

0 φv(z), if |v| = j, vj 	= 0, (3.2)

for all z such that the limits on the right-hand side exist. We are particularly interested
about properties of the function y0, which will be used in the proof of our criteria for
finding spectral gaps.

Lemma 12 If φ0 is strictly convex on [0, b], where b is the largest forbidden eigen-
value, and φ0(b) < b, then y0 exists. Moreover, it is convex on its domain, strictly
increasing and continuous.

Proof We first note that y0(z) is well-defined for all 0 ≤ z ≤ b because the strict
convexity of φ0 and φ0(0) = 0 gives

φ0(z)

z
<

φ0(b)

b
< 1,
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for all z in [0, b] and hence by Remark 6, y0 exists. (The existence of the limit in a
neighborhood of zero also follows from Koenig’s Linearization theorem. See [15].)

We note that continuity follows from convexity. To prove the convexity, we choose
z1 and z2 from the domain of φ0 with 0 ≤ z1 < z2 and let 0 < t < 1. Since φ0 is
(strictly) convex, so is φ

(m)
0 for all m. Hence,

ty0(z1) + (1 − t)y0(z2)

y0(tz1 + (1 − t)z2)
= lim

m

tφ
(m)
0 (z1) + (1 − t)φ

(m)
0 (z2)

φ
(m)
0 (tz1 + (1 − t)z2)

≥ 1.

Next we prove that y0 is strictly increasing. Since y0(0) = 0, there is no loss of
generality in taking 0 < z1 < z2. By the strict convexity of φ0,

φ0(z1)

z1
<

φ0(z2)

z2
,

which we rewrite as

φ0(z2)

φ0(z1)
>

z2

z1
.

Repeated applications of this inequality gives

y0(z2)

y0(z1)
= lim

m

φ
(m)
0 (z2)

φ
(m)
0 (z1)

≥ z2

z1
> 1.

�

Theorem 13 Let b be the largest forbidden eigenvalue. There exist gaps in the spec-
trum of the generalized Laplacian on the fractal if the following conditions are satis-
fied:

(1) R−1([0, b]) ⊆ [0, b];
(2) φ1(x) is defined and decreasing on [0, b];
(3) φ0(x) is strictly convex and φ0(b) < φ1(b);
(4) there exists k0 such that for all k ≥ k0 and all x ∈ Fk , φ1(b) ≤ x.

Proof Let

Ak = ρk lim
m→∞ρmφ

(m)
0 (b),

Bk = ρk lim
m→∞ρmφ

(m−1)
0 φ1(b).

The first condition tells us that we can further iterate φ0(b) and φ1(b) by inverse
functions of R. By Remark 6, Lemma 12 and the assumptions on φ0 and φ1, the two
limits defining Ak and Bk exist and so Ak and Bk are well-defined for any k.

Since φ0 is strictly convex by Lemma 12, we know that A0 and B0 are different
and B0 > A0. Since Bk

Ak
= B0

A0
> 1, it is sufficient to show that there is no eigenvalue

between Ak and Bk for all k > k0 given in condition (4).
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As the Laplacian admits spectral decimation, by Definition 5 and Remark 6 all
eigenvalues must be of the form

ρi lim
m→∞ρmφ

(m−j)

0 φv(x),

where i, j ∈ N ∪ {0}, |v| = j, and x ∈ Fi+1. Hence it suffices to prove the following
two claims:

(i) For i ≥ 0 and x ∈ Fi+1,

Bk ≤ ρi lim
m→∞ρmφ

(m−j)

0 φv(x) ≤ Ak+1,

where φv = φvj
◦· · ·◦φv1 for v = vj · · ·v1 with vj 	= 0, |v| = j , and i+j = k+1;

(ii) For all k ≥ k0 − 1 and x ∈ Fk+2 ⊆ F, we have

Bk ≤ ρk+1 lim
m→∞ρmφ

(m)
0 (x) ≤ Ak+1.

Once our claims are proved, only the eigenvalues limm→∞ ρmφ
(m)
0 (x) with

x ∈ F1, and the eigenvalues ρk+1 limm→∞ ρmφ
(m)
0 (x) with x ∈ Fk+2 and k < k0 − 1

could lie in ∪[Aj ,Bj ]. As there are only finitely many such eigenvalues, this will not
affect the existence of gaps in the sequence.

It is easy to see that the second inequality of (ii) follows directly from the
monotonicity of φ0. The first inequality of (ii) is equivalent to

lim
m→∞ρmφ

(m−1)
0 φ1(b) ≤ ρ lim

m→∞ρmφ
(m)
0 (x).

If we replace m by m′ = m − 1 on the right-hand side, we have

lim
m→∞ρmφ

(m−1)
0 φ1(b) ≤ lim

m→∞ρmφ
(m−1)
0 (x).

The last inequality is true because condition (4) implies that φ1(b) ≤ x for all those
forbidden eigenvalues which can appear at step k0 or later.

To show (i), note that Fi+1 ⊆ F and

ρi lim
m→∞ρmφ

(m−j)

0 φv(x) = lim
m→∞ρmφ

(m−i−j)

0 φv(x).

It is sufficient to prove the following stronger inequalities:

(i′) For x ∈ F,

Bk ≤ lim
m→∞ρmφ

(m−k−1)
0 φv(x) ≤ Ak+1,

where φv = φvj
◦ · · · ◦ φv1 for v = vj · · ·v1 with vj 	= 0. To show the second

inequality of (i′), note that φv(x) ≤ b for any v and x by condition (1). Hence

lim
m→∞ρmφ

(m−k−1)
0 φv(x) ≤ lim

m→∞ρmφ
(m−k−1)
0 (b)

= lim
m→∞ρm+k+1φ

(m)
0 (b) = Ak+1.
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Now we are only left with the first inequality of (i′), which is

ρk lim
m→∞ρmφ

(m−1)
0 φ1(b) ≤ lim

m→∞ρmφ
(m−k−1)
0 φv(x),

where |v| = j , vj 	= 0, x ∈ F. Because of the monotonicity of φ0, it is sufficient to
show φ1(b) ≤ φv(x) = φvj

◦ φv′(x), where |v′| = |v| − 1, vj 	= 0, and x ∈ F. Note
that to make φv(x) the smallest, vj has to be 1. Since x ≤ b and φ1 is decreasing, we
have φ1(b) ≤ φv(x). �

Remark 14 (1) It is possible that Ak and Bk are not true eigenvalues in the spec-
trum, but this will not affect the existence of gaps. What is important is that there
is no eigenvalue between Ak and Bk for sufficiently large k. Indeed, if Ak and Bk

are not true eigenvalues, then there are even larger gaps between the greatest (true)
eigenvalue less than Ak and the least eigenvalues greater than Bk .

(2) Since

φ′′
0 (λ) = − R′′(φ0(λ))

[R′(φ0(λ))]3
,

the strict convexity of φ0 can be verified by showing that R is strictly concave on the
image of φ0.

We further remark that the strict convexity of φ0 of the theorem is used in our
proof to verify that A0 and B0 exist and are distinct.

(3) Recall that φ0(0) = 0 and φ′
0(0) = 1

ρ
> 0, where ρ is the Laplacian renormal-

ization constant, so φ0 is always increasing on its domain. Because we divide the
branches of the inverse functions according to where the function turns, as long as R

is continuous on [0, a], where a is the least positive root of R, φ1 will be decreasing.

Next we use the above theorem to prove the existence of gaps for the Sierpinski
gaskets, S G and S G 3, the fractal-3 tree and the Hexagasket. Theorem 13 can also be
applied to the infinite family of Vicsek sets. We refer the readers to [20] for more
details.

Example 3.1 (Sierpinski Gasket S G , Fig. 1) For the Sierpinski gasket, the spectral
decimation function is

R(λ) = λ(5 − 4λ).

(See [16, 19] or Sect. 1.) Hence the inverse functions are

φ0,1(λ) = 5 ∓ √
25 − 16λ

8
.

The set of forbidden eigenvalues, F, is {1/2,5/4,3/2} and the set of forbidden eigen-
values at step k, Fk , is {5/4,3/2} for all k ≥ 2. Figure 2 shows φ0 and φ1.

It is clear that 3/2 is in the domain of φ0 and φ1, R−1([0,3/2]) = [0,5/4] ⊆
[0,3/2], and φ1 is decreasing. The strict convexity of φ0 can be easily obtained either
by checking φ′′

0 > 0 or verifying R′′ < 0 and φ0 is increasing on its domain, as men-
tioned in Remark 14. The last condition is also satisfied since φ1(3/2) = 3/4 < 5/4,
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Fig. 2 Inverse functions of R

for the Sierpinski gasket

the smallest forbidden eigenvalue in Fk for k ≥ 2. Hence all conditions of Theorem 13
are satisfied and so there are gaps in the spectrum.

Note that φ0(3/2) = 1/2 and 1/2 does not appear as a forbidden eigenvalue at
any step k ≥ 2, so Ak = 5k limm→∞ ρmφ

(m)
0 (3/2) for k ≥ 2 is not a true eigenvalue

in the spectrum. But this does not affect the existence of gaps, as we pointed out
in Remark 14. Indeed, we can replace Ak by the greatest eigenvalue less than Ak ,
say A′

k , and obtain larger gaps. We claim

A′
k = 5k lim

m→∞ 5mφ
(m)
0 (5/4) for k ≥ 2.

To see this, we first note that since φl(x) ≤ 5/4 for all x ∈ [0,3/2] and l = 0,1, it
follows that if i + j = k + 1 and x ∈ Fi+1,

5i lim
m→∞ 5mφ

(m−j)

0 φv(x) ≤ A′
k+1, |v| = j, and vj 	= 0.

Furthermore, as 5/4 is the second largest forbidden eigenvalue, we have

5k+1 lim
m→∞ 5mφ

(m)
0 (x) ≤ A′

k+1

for x ∈ Fk+2 \ {3/2}. These observations establish the claim and show there are gaps
in (A′

k,Bk) for Bk = 5k limm→∞ 5mφ
(m−1)
0 φ1(3/2), as previously proven in [9].

Example 3.2 (The level-3 Sierpinski Gasket S G 3, Fig. 3) The spectrum of the stan-
dard Laplacian on this fractal has also been obtained independently in [2] and [6].

The spectral decimation function is

R(λ) = 6λ(λ − 1)(4λ − 3)(4λ − 5)

6λ − 7
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Fig. 3 Level-3 Sierpinski
Gasket S G 3

Fig. 4 Inverse functions of R

for the level-3 Sierpinski gasket

and the forbidden eigenvalues are 3±√
5

4 ,3/4,7/6,5/4, and 3/2. The set of forbidden
eigenvalues at step k, Fk , is {3/4,5/4,3/2} for k ≥ 2. Numerical data in [6] suggested
that there are gaps in the spectrum. Now we can apply Theorem 13 to verify this
result.

As R is continuous on [0,7/6), φ1 is decreasing. Note that R(λ) = 0 has four real
roots 0,3/4,1, and 5/4. Furthermore,

R(λ) − 3/2 = 3(4λ2 − 6λ + 1)(16λ2 − 24λ + 7)

12λ − 14
,

and it has four real roots 3±√
2

4 , 3±√
5

4 . Since

R−1([0,3/2]) = [0,max{largest root of R(λ), largest root of R(λ) − 3/2}]

=
[

0,
3 + √

5

4

]
,

which is contained in [0,3/2], the first condition of Theorem 13 is satisfied.
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Fig. 5 A fractal-3 tree1

To check the third condition of the theorem, we note that R is differentiable on
(−∞,7/6) and

R′(x) = 6(288x4 − 1024x3 + 1290x2 − 658x + 105)

(6x − 7)2
.

Using Maple, we find that R′ are has only two real roots, 0.2880979998 and
0.8900943083, correct to six decimal places. The first turning point of R is
0.2880979998 and so the range of φ0 is contained in [0,0.3]. Using Maple again,
we find

R′′(x) = 12(1728x4 − 7104x3 + 10752x2 − 7056 + 1673)

(6x − 7)3

and the only two real roots of R′′ are 0.5988200688 and 1.314052020. Particularly,
this tells us that the sign of R′′ remains unchanged on [0,0.3]. We can easily check
that it is negative, so R is strictly concave from 0 to 0.3. Therefore condition (3) is
satisfied.

Note that φ1(3/2) is equal to the second root of R(λ) − 3/2 = 0. Thus φ1(3/2) =
3−√

2
4 , which is less than 3/4, the smallest element in Fk for k ≥ 2, so the last con-

dition of the theorem is satisfied. Therefore, by Theorem 13, there exist gaps in the
spectrum.

Example 3.3 (A fractal-3 tree, Fig. 5) This fractal can be approximated by trian-
gles with 3 boundary points and appeared as the limit set of the Gupta-Sidki group.
(See [2] and references therein.)

The spectral decimation function R and the forbidden eigenvalues have been

shown in [2] to be R(λ) = 4λ(λ − 1)(4λ − 3), F= { 3−√
3

4 , 3
4 , 3+√

3
4 , 3

2 }. The inverse
functions are shown in Fig. 6.

1The figure of this fractal is taken from Teplyaev with his permission.
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Fig. 6 Inverse functions of R

for the fractal-3 tree

Fig. 7 Hexagasket

We note R(λ) = 3/2 has solutions 1
4 , 3±√

3
4 and so φ1(3/2) = 3−√

3
4 , which is

the smallest element in F. The rest of conditions in Theorem 13 can also be easily
verified.

Example 3.4 (The Hexagasket, Fig. 7) The Hexagasket, or the Hexakun, can be ob-
tained by starting with a regular hexagon and six contraction maps {Fj }6

j=1 with ratio
1/3 and fixed points equal to the vertices of the hexagon. The boundary points in this
case are the six vertices of the hexagon. But this fractal can also be generated by
a slightly different i.f.s, with smaller boundary. For each Fj , we compose it with a
rotation of angle jπ

3 . Then there are only three boundary points, every other one of
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Fig. 8 Inverse functions of R

for the hexagasket

the six vertices of the hexagon, indicated as solid dots in Fig. 7. This fractal has been
studied in [2, 12, 18].

The spectral decimation function R and the forbidden eigenvalues have been

shown in [2] to be R(λ) = 2λ(λ−1)(16λ2−24λ+7)
2λ−1 , F = { 3±√

2
4 , 3±√

5
4 , 1

2 , 3
2 }. Moreover,

Fk = { 3±√
2

4 , 1
2 , 3

2 }, for k ≥ 2. Inverse functions of R are shown in Fig. 8.

Note that R(λ) = 3/2 has solutions 1
4 , 3

4 , 3±√
5

4 , so φ1(3/2) = 1/4 and it is less
than the smallest element in Fk . Other conditions in Theorem 13 can also be easily
verified and so there exist gaps in the spectrum of the Laplacian.

In [9], it is shown that there exists a second sequence of gaps for S G . We can
slightly modify our conditions in Theorem 13 and identify those gaps.

Theorem 15 Let a < b be the two largest forbidden eigenvalues in F. There exist
gaps in the spectrum of the generalized Laplacian if the following conditions are
satisfied:

(1) R−1([0, b]) ⊆ [0, a];
(2) φ1(x) is defined and decreasing on [0, b];
(3) φ0(x) is strictly convex;
(4) there exists k0 such that for all k ≥ k0 and all x ∈ Fk , φ1(a) ≤ x.

Proof The proof is quite similar to the above theorem. Let

Ak = ρk lim
m→∞ρmφ

(m−1)
0 φ1(b),

Bk = ρk lim
m→∞ρmφ

(m−1)
0 φ1(a).
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We can show that all eigenvalues of the form

ρi lim
m→∞ρmφ

(m−j)

0 φv(x), with |v| = j, vj 	= 0, i + j = k + 1,

are between Bk and Ak+1, except the case when v = 1 and x = b for Ak . The rest of
the proof is almost identical to that of Theorem 13. �

Example 3.5 (Sierpinski Gasket S G ) In Example 3.1 we actually verified that the
conditions of Theorem 15 were satisfied with b = 3/2, a = 5/4, and k0 = 2. There-
fore there are gaps between

Ak = 5k lim
m→∞ρmφ

(m−1)
0 φ1(3/2)

and

Bk = 5k lim
m→∞ρmφ

(m−1)
0 φ1(5/4).

That is the second sequence of gaps for S G discovered in [9].

3.2 A Gap Theorem for the n-branch Tree-Like Fractal

We have the following alternative criterion to determine whether there are gaps in the
spectrum of Laplacian. We shall use it to prove the existence of gaps for the tree-like
fractals which will be described after the proof of the theorem.

Theorem 16 Suppose α ≤ β are two consecutive forbidden eigenvalues in F. Let
c ≥ b be such that R−1([0, b]) ⊆ [0, c], where b is the largest forbidden eigenvalue.
If the following conditions are satisfied, then there must be gaps in the spectrum.

(1) φ1(x) ≥ β , for all x ∈ [0, c];
(2) φ0(c) ≤ α;
(3) φ0(x) is strictly convex.

Proof The proof of this theorem is also very similar to previous theorems.
For k ≥ 0, we let

Ak = ρk lim
m→∞ρmφ

(m)
0 (α),

Bk = ρk lim
m→∞ρmφ

(m)
0 (β).

By the same reasoning as in the previous theorems, we can prove that both Ak and
Bk exist and Bk

Ak
= B0

A0
> 1 for any k. We claim there is no eigenvalue between Ak and

Bk for any k and hence there are gaps in the spectrum.
Let k > 1, i + j = k, |v| = j , and vj 	= 0. We claim that for all x ∈ Fi+1 ⊆ F, for

which φ
(m−j)

0 φv(x) is defined,

Bk ≤ ρi lim
m→∞ρmφ

(m−j)

0 φv(x) ≤ Ak+1. (3.3)
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Fig. 9 Step-1 graph of the
5-branch tree-like fractal

Note that the first inequality above is equivalent to

lim
m→∞ρmφ

(m)
0 (β) ≤ lim

m→∞ρm+i−kφ
(m−j)

0 φv(x).

Since i − k = −j , if we let m′ = m − j on the right-hand side, the above inequality
is equivalent to

lim
m→∞ρmφ

(m)
0 (β) ≤ lim

m→∞ρ(m)φm
0 φv(x).

As φ0 is increasing on its domain, it suffices to show that

φv(x) ≥ β, vj 	= 0, x ∈ Fi+1.

By (1), φi(x) ≥ β for all x ∈ [0, c], so it is clearly true.
The second inequality of (3.3) is equivalent to

lim
m→∞ρm+k+1−iφ

(m)
0 (α) ≥ lim

m→∞ρmφ
(m−j)

0 φv(x).

Again, notice that k − i = j and let m′ = m + j + 1 on the left-hand side. We would
have

lim
m→∞ρmφ

(m−j−1)

0 (α) ≥ lim
m→∞ρmφ

(m−j)

0 φv(x).

Hence it suffices to show that

φ0(φv(x)) ≤ α

for all w. Since R−1([0, b]) ⊆ [0, c] and φ0 is increasing, the largest possible value
on the left-hand side is φ0(c). Hence the last inequality is true by (2) and we have the
desired result. �

Example 3.6 (The n-branch tree-like fractal) This infinite family of fractals can be
obtained by sticking n−2 intervals to the middle of a unit interval and then repeating
this process (sticking n − 2 branches to each interval obtained in the previous step
with half of its length). Figure 9 shows the first step graph for n = 5.

For Laplacians on this infinite family of fractals, one can choose a weighted vector
r = (1,1, r−1, . . . , r−1)︸ ︷︷ ︸

n−2

with r > 0 so that the weights on the two outer branches are

1 and the weights on all (n − 2) inner branches are r . (See [16] for the case when
n = 5.)
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Let D and H1 be the matrices representing the graph Laplacians on V0 and V1
respectively. Then D = [ −1 1

1 −1

]
and H1 = [

T J t

J X

]
, where T is the diagonal matrix

with Ti,i = Di,i ,

J =

⎡
⎢⎢⎢⎣

1 1
0 0
...

...

0 0

⎤
⎥⎥⎥⎦

(n−1)×2

,

X =

⎡
⎢⎢⎢⎣

−(2 + (n − 2)r) r r · · · r

r −r 0 · · · 0
...

...

r 0 0 · · · −r

⎤
⎥⎥⎥⎦

(n−1)×(n−1)

.

Hence

X + λM =

⎡
⎢⎢⎢⎣

(2 + (n − 2)r)(λ − 1) r r · · · r

r (λ − 1)r 0 · · · 0
...

...

r 0 0 · · · (λ − 1)r

⎤
⎥⎥⎥⎦

(n−1)×(n−1)

,

and so the normalized Laplacian for any function f on V1 \ V0 satisfies

�̂f (qi) = f (q1) − f (qi), for 2 ≤ i ≤ n − 1,

and

�̂f (q1) = 1

2 + (n − 2)r

[
f (p1) + f (p2) + r

n−1∑
i=2

f (qi)

]
− f (q1).

Recall that the spectral decimation function R is given by

R(λ) = λ − KT (λ)

KD(λ)
,

where KD and KT are defined by

T − J t (X + λM)−1J = KD(λ)D + KT (λ)T .

We can easily see that KD(λ) = (−J tG(λ)J )1,2, where G(λ) = (X + λM)−1. Since

(J tG(λ)J )1,2 =
∑
k,j

J t
1,kGk,j Jj,2 = G1,1,

we have that

KD(λ) = −G(λ)1,1 = −1

det(X + λM)
[(λ − 1)r]n−2.
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So now the question is to find det(X + λM). Repeatedly expanding by the last col-
umn, we have

det(X + λM) = ((λ − 1)r)n−3
∣∣∣∣ (2 + (n − 2)r)(λ − 1) r

r (λ − 1)r

∣∣∣∣
− (n − 3)rn−1(λ − 1)n−3

= (λ − 1)n−3rn−2[(2 + (n − 2)r)λ2 − 2(2 + (n − 2)r)λ + 2].
Therefore,

KD(λ) = − λ − 1

(2 + (n − 2)r)λ2 − 2(2 + (n − 2)r)λ + 2
.

Moreover,

KT (λ) = T1,1 − (J tG(λ)J )1,1 − KD(λ)D1,1

T1,1

= 1 − 2KD(λ).

It follows then

R(λ) = λ − KT (λ)

KD(λ)
= −(2 + (n − 2)r)λ(λ − 2).

The forbidden eigenvalues, by definition, are zeros of KD and det(X + λM), so F =
{1, α1, α2}, where α1 = 1 −

√
(n−2)r

2+(n−2)r
and α2 = 1 +

√
(n−2)r

2+(n−2)r
.

We now use Theorem 16 to show that there are gaps in the spectrum of the Lapla-
cian on this infinite family of fractals. Let φ0, φ1 be the 2 branches of the inverse
function of R(λ) from bottom to top:

φ0,1(x) = 1 ∓
√

2 + (n − 2)r − x

2 + (n − 2)r
.

Note that φi(x) ≤ 2 for all x ≥ 0. The domain of φ0 and φ1 (restricted to [0,∞]) con-
tains [0,2] for any n and r . Hence we can take b = α2 < 2 and c = 2 in Theorem 16
and the condition R−1([0, b]) ⊆ [0, c] is satisfied. Let α = α1 and β = 1. Clearly
φ1(x) ≥ 1 = β for all x ∈ [0,2] and so (1) is satisfied. As φ0(2) = α1, condition (2)
is satisfied. As before, condition (3) of the strict convexity of φ0 can be obtained by
checking R′ > 0 and R′′ < 0 on Im(φ0).
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