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Abstract Starting from a general operator representation in the time-frequency do-
main, this paper addresses the problem of approximating linear operators by operators
that are diagonal or band-diagonal with respect to Gabor frames. A characterization
of operators that can be realized as Gabor multipliers is given and necessary condi-
tions for the existence of (Hilbert-Schmidt) optimal Gabor multiplier approximations
are discussed and an efficient method for the calculation of an operator’s best approxi-
mation by a Gabor multiplier is derived. The spreading function of Gabor multipliers
yields new error estimates for these approximations. Generalizations (multiple Ga-
bor multipliers) are introduced for better approximation of overspread operators. The
Riesz property of the projection operators involved in generalized Gabor multipliers
is characterized, and a method for obtaining an operator’s best approximation by a
multiple Gabor multiplier is suggested. Finally, it is shown that in certain situations,
generalized Gabor multipliers reduce to a finite sum of regular Gabor multipliers with
adapted windows.

Keywords Operator approximation · Generalized Gabor multipliers · Spreading
function · Twisted convolution

Mathematics Subject Classification (2000) 47B38 · 47G30 · 94A12 · 65F20

Communicated by Karlheinz Gröchenig.

The first author has been supported by WWTF project MA07-025 and FWF grant T 384-N13.

M. Dörfler (�)
Numerical Harmonic Analysis Group, Faculty of Mathematics, University of Vienna,
Alserbachstraße 23, 1090 Wien, Austria
e-mail: monika.doerfler@univie.ac.at

B. Torrésani
Laboratoire d’Analyse, Topologie et Probabilités, Centre de Mathématique et d’Informatique, 39 rue
Joliot-Curie, 13453 Marseille cedex 13, France
e-mail: bruno.torresani@univ-provence.fr

mailto:monika.doerfler@univie.ac.at
mailto:bruno.torresani@univ-provence.fr


262 J Fourier Anal Appl (2010) 16: 261–293

1 Introduction

The goal of time-frequency analysis is to provide efficient representations for func-
tions or distributions in terms of decompositions such as

f =
∑

λ∈�

〈f,gλ〉hλ.

Here, f is expanded as a weighted sum of atoms hλ well localized in both time and
frequency domains. The time-frequency coefficients 〈f,gλ〉 characterize the func-
tion under investigation, and a synthesis map usually allows the reconstruction of the
original function f .

Concrete applications can be found mostly in signal analysis and processing
(see [8, 9, 36] and references therein), but recent works in different areas such as
numerical analysis may also be mentioned (see for example [19, 20] and references
therein).

Time-frequency analysis of operators, originating in the work on communication
channels of Bello [5], Kailath [30] and Zadeh [41], has enjoyed increasing interest
during the last few years, [2, 35, 38, 39]. Efficient time-frequency operator represen-
tation is a challenging task, and often the intuitively appealing approach of operator
approximation by modification of the time-frequency coefficients before reconstruc-
tion is the method of choice. If the modification of the coefficients is confined to
be multiplicative, this approach leads to the model of time-frequency multipliers,
as discussed in Sect. 2.4. The class of operators that may be well represented by
time-frequency multipliers depends on the choice of the parameters involved and is
restricted to operators performing only small time-shifts or modulations.

The work in this paper is inspired by a general operator representation in the
time-frequency domain via a twisted convolution. It turns out, that this representa-
tion, respecting the underlying structure of the Heisenberg group, has an interesting
connection to the so-called spreading function representation of operators. An opera-
tor’s spreading function comprises the amount of time-shifts and modulations, i.e. of
time-frequency-shifts, effected by the operator. Its investigation is hence decisive in
the study of time-frequency multipliers and their generalizations. Although no direct
discretization of the continuous representation by an operator’s spreading function is
possible, the twisted convolution turns out to play an important role in the generaliza-
tions of time-frequency multipliers. In the main section of this article, we introduce
a general model for multiple Gabor multipliers (MGM), which uses several synthesis
windows simultaneously. Thus, by jointly adapting the respective masks, more gen-
eral operators may be well-represented than by regular Gabor multipliers. Specifying
to a separable mask in the modification of time-frequency coefficients within MGM,
as well as a specific sampling lattice for the synthesis windows, it turns out, that the
MGM reduces to one or the sum of a finite number of regular Gabor multipliers with
adapted synthesis windows.

For the sake of generality, most statements are given in a Gelfand-triple, rather
than a pure Hilbert space setting. This choice bears several advantages. First of all,
many important operators and signals may not be described in a Hilbert-space setting,
starting from simple operators as the identity. Furthermore, by using distributions,
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continuous and discrete concepts may be considered in a unified framework. Finally,
the Gelfand-triple setting often allows for short-cut proofs of statements formulated
in a general context.

This paper is organized as follows. The next section gives a review of the time-
frequency plane and the corresponding continuous and discrete transforms. We then
introduce the concept of Gelfand triples, which will allow us to consider operators
beyond the Hilbert-Schmidt framework. The section closes with the important state-
ment on operator-representation in the time-frequency domain via twisted convolu-
tion with an operator’s spreading function. Section 2.4 introduces time-frequency
multipliers and gives a criterion for their ability to approximate linear operators.
A fast method for the calculation of an operator’s best approximation by a Gabor
multiplier in Hilbert-Schmidt sense is suggested. Section 3 introduces generalizations
of Gabor multipliers. The operators in the construction of MGM are investigated and
a criterion for their Riesz basis property in the space of Hilbert-Schmidt operators
is given. We mention some connections to classical Gabor frames. A numerical ex-
ample concludes the discussion of general MGM. In the final section, TST (twisted
spline type) spreading functions are introduced. It is shown, that under certain con-
ditions, a MGM reduces to a regular Gabor multiplier with an adapted window or a
finite sum of regular multipliers with the same mask and adapted windows.

2 Operators from the Time-Frequency Point of View

Whenever one is interested in time-localized frequency information in a signal or
operator, one is naturally led to the notion of the time-frequency plane, which, in
turn, is closely related to the Weyl-Heisenberg group.

2.1 Preliminaries: The Time-Frequency Plane

The starting point of our operator analysis is the so-called spreading function oper-
ator representation. This operator representation expresses linear operators as a sum
(in a sense to be specified below) of time-frequency shifts π(b, ν) = MνTb . Here, the
translation and modulation operators are defined as

Tbf (t) = f (t − b), Mνf (t) = e2iπνtf (t), f ∈ L2(R).

These (unitary) operators generate a group, called the Weyl-Heisenberg group

H = {(b, ν,ϕ) ∈ R × R × [0,1[ } , (1)

with group multiplication

(b, ν,ϕ)(b′, ν′, ϕ′) = (b + b′, ν + ν′, ϕ + ϕ′ − ν′b). (2)

The specific quotient space P = H/[0,1] of the Weyl-Heisenberg group is called
phase space, or time-frequency plane, which plays a central role in the subsequent
analysis. Details on the Weyl-Heisenberg group and the time-frequency plane may
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be found in [22, 40]. In the current article, we shall limit ourselves to the basic irre-
ducible unitary representation of H on L2(R), denoted by πo, and defined by

πo(b, ν,ϕ) = e2iπϕMνTb. (3)

By π(b, ν) = πo(b, ν,0) we denote the restriction to the phase space. We refer to [11]
or [25, Chap. 9] for a more detailed analysis of this quotient operation.

The left-regular (and right-regular) representation generally plays a central role
in group representation theory. By unimodularity of the Weyl-Heisenberg group, its
left and right regular representations coincide. We thus focus on the left-regular one,
acting on L2(H) and defined by

[L(b′, ν′, ϕ′)F ](b, ν,ϕ) = F(b − b′, ν − ν′, ϕ − ϕ′ + b′(ν − ν′)). (4)

Denote by μ the Haar measure. Given F,G ∈ L2(H, dμ), the associated (left) con-
volution product is the bounded function F ∗ G, given by

(F ∗ G)(b, ν,ϕ) =
∫

H

F(h)
[
L(h)G

]
(b, ν,ϕ) dμ(h).

After quotienting out the phase term, this yields the twisted convolution on L2(P):

(F �G)(b, ν) =
∫ ∞

−∞

∫ ∞

−∞
F(b′, ν′)G(b − b′, ν − ν′)e−2iπb′(ν−ν′) db′dν′. (5)

The twisted convolution, which admits a nice interpretation in terms of group
Plancherel theory [11] is non-commutative (which reflects the non-Abelianess of H)
but associative. It satisfies the usual Young inequalities, but is in some sense nicer
than the usual convolution, since L2(R2)�L2(R2) ⊂ L2(R2) (see [22] for details).

As explained in [27, 28] (see also [23] for a review), the representation πo is uni-
tarily equivalent to a subrepresentation of the left regular representation. The repre-
sentation coefficient is given by a variant of the short time Fourier transform (STFT),
which we define next.

Definition 1 Let g ∈ L2(R), g 	= 0. The STFT of any f ∈ L2(R) is the function on
the phase space P defined by

Vgf (b, ν) = 〈f,π(b, ν)g〉 =
∫ ∞

−∞
f (t)g(t − b)e−2iπνt dt. (6)

This STFT is obtained by quotienting out [0,1] in the group transform

Vo
gf (b, ν,ϕ) = 〈f,πo(b, ν,ϕ)g〉. (7)

The integral transform Vo
g intertwines L and πo, i.e. L(h)Vo

g = Vo
gπo(h) for all

h ∈ H. The latter relation still holds true (up to a phase factor) when πo and Vo
g are

replaced with π and Vg respectively.
It follows from the general theory of square-integrable representations that for

any g ∈ L2(R), g 	= 0, the transform Vo
g is (a multiple of) an isometry L2(R) →
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L2(P), and thus left invertible by the adjoint transform (up to a constant factor). More
precisely, given h ∈ L2(R) such that 〈g,h〉 	= 0, one has for all f ∈ L2(R)

f = 1

〈h,g〉
∫

P

Vgf (b, ν)π(b, ν)hdbdν. (8)

We refer to [8, 25] for more details on the STFT and signal processing applications.
The STFT, being a continuous transform, is not well adapted for numerical cal-

culations, and, for practical issues, is replaced by the Gabor transform, which is a
sampled version of it. To fix notation, we outline some steps of the Gabor frame
theory and refer to [9, 25] for a detailed account.

Definition 2 (Gabor transform) Given g ∈ L2(R) and two constants b0, ν0 ∈ R
+,

the corresponding Gabor transform associates with any f ∈ L2(R) the sequence of
Gabor coefficients

Vgf (mb0, nν0) = 〈f,Mnν0Tmb0g〉 = 〈f,gmn〉, (9)

where the functions gmn = Mnν0Tmb0g are the Gabor atoms associated to g and the
lattice constants b0, ν0.

Whenever the Gabor atoms associated to g and the given lattice �b0,ν0 = b0Z ×
ν0Z form a frame,1 the Gabor transform is left invertible, and there exists h ∈ L2(R)

such that any f ∈ L2(R) may be expanded as

f =
∑

m,n

Vgf (mb0, nν0)hmn. (10)

In addition to the notion of a lattice we need to define the dual concept of adjoint
lattices.

Definition 3 (Adjoint lattice) For a given lattice � = b0Z × ν0Z the adjoint lattice is
given by �◦ = 1

ν0
Z × 1

b0
Z.

Note that the adjoint lattice is the dual lattice �⊥ with respect to the symplectic
character.

2.2 The Gelfand Triple (S0,L2, S′
0)

We next set up a framework for the exact description of operators we are interested
in. In fact, by their property of being compact operators, the Hilbert space of Hilbert-
Schmidt operators turns out to be far too restrictive to contain most operators of

1The operator

Sgf =
∑

m,n∈Z

〈f,Mmb0Tnν0g〉Mmb0Tnν0g

is the frame operator corresponding to g and the lattice defined by (b0, ν0). If Sg is invertible on L2(R),
the family of time-frequency shifted atoms Mmb0Tnν0g, m,n ∈ Z, is a Gabor frame for L2(R).
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practical interest, starting from the identity. Although the classical triple (S,L2,S′)
might seem to be the appropriate choice of generalization, we prefer to resort to the
Gelfand triple (S0,L2, S′

0), which has proved to be more adapted to a time-frequency
environment. Additionally, the Banach space property of S0 guarantees a technically
less elaborate account.

Definition 4 (S0) Let S(R) denote the Schwartz class. Fix a non-zero “window”
function ϕ ∈ S(R). The space S0(R) is given by

S0(R) = {f ∈ L2(R) : ‖f ‖S0 := ‖Vϕf ‖L1(R2) < ∞}.

Note that S0 is a special case of a modulation space [25], namely M1,1, and is also
called Feichtinger’s algebra in the literature. The following proposition summarizes
some properties of S0(R) and its dual, the distribution space S′

0(R).

Proposition 5 S0(R) is a Banach space and densely embedded in L2(R). The de-
finition of S0(R) is independent of the window ϕ ∈ S(R), and different choices of
ϕ ∈ S(R) yield equivalent norms on S0(R).

By duality, L2(R) is densely and weak∗-continuously embedded in S′
0(R) and can

also be characterized by the norm ‖f ‖S′
0
= ‖Vϕf ‖L∞ .

A triple of spaces (B, H,B′) consisting of a Banach space B which is densely em-
bedded in the Hilbert space H, which, in turn is densely embedded in B′, is called
(Banach) Gelfand triple. Hence, (S0,L2, S′

0) represents a special case of a Gelfand
triple [24] or Rigged Hilbert space. The prototype of a Gelfand triple is the triple of
sequence spaces (�1, �2, �∞). For a proof of Proposition 5, equivalent characteriza-
tions, and more results on S0 we refer to [13, 14, 17].

Via an isomorphism between integral kernels in the Banach spaces S0, S
′
0 and the

operator spaces of bounded operators S′
0 �→ S0 and S0 �→ S′

0, we obtain, together with
the Hilbert space of Hilbert-Schmidt operators, a Gelfand triple of operator spaces,
as follows. We denote by B the family of operators that are bounded S′

0 → S0 and
by B ′ the family of operators that are bounded S0 → S′

0. We have the following
correspondence between these operator classes and their integral kernels κ :

H ∈ (B,H ,B ′) ←→ κH ∈ (S0(R
2),L2(R2), S′

0(R
2)).

We will make use of the principle of unitary Gelfand triple isomorphisms, described
for the Gelfand triples just introduced in [17]. A linear mapping between two Gelfand
triples (B1, H1,B′

1), (B2, H2,B′
2) is called unitary Gelfand triple isomorphism if it

is an isomorphism between B1,B2, a unitary isomorphism on the Hilbert space level
and extends to a weak
-continuous bijection from B′

1 to B′
2. In fact, it may be shown,

that it suffices to verify unitarity of a given isomorphic operator on the (dense) sub-
space S0 in order to obtain a unitary Gelfand triple isomorphism, see [17, Corol-
lary 7.3.4]. The most prominent examples for a unitary Gelfand triple isomorphism
are the Fourier transform and the partial Fourier transform. For all further details
on the Gelfand triples just introduced, we again refer to [17], only mentioning here,
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that one important reason for investigating operator representations on the level of
Gelfand triples instead of just a Hilbert space framework is the fact, that S′

0 contains
distributions such as the Dirac functionals, Shah distributions or just pure frequencies
and B ′ contains operators of great importance in signal processing, e.g. convolution,
the identity or just time-frequency shifts.

Subsequently, we will usually assume that the analysis and synthesis windows g,h

are in S0. This is a rather mild condition, which has almost become the canonical
choice in Gabor analysis, for many good reasons. Among others, this choice guaran-
tees a beautiful correspondence between the �p-spaces and corresponding modulation
spaces [25]. In the �2-case this means, that the sequence of Gabor atoms generated
from time frequency translates of an S0 window on an arbitrary lattice � is automati-
cally a Bessel sequence (in such a case, the window is termed “Bessel atom”), which
is not true for general L2-windows.

The Banach spaces S0 and S′
0 may also be interpreted as Wiener amalgam

spaces [13, Sect. 3.2.2]. These time-frequency homogeneous spaces are defined as
follows. Let F L1 denote the Fourier image of integrable functions and let a com-
pactly supported function φ ∈ F L1(R) with

∑
n∈Z

φ(x − n) ≡ 1 be given. Then, for
X(R) = F L1(R) or X(R) = C(R), i.e. the space of continuous functions on R, or
any of the Lebesgue spaces, we define, for p ∈ [1,∞), with the usual modification
for p = ∞:

W(X, �p) =
{

f ∈ Xloc : ‖f ‖W(X,�p) =
(

∑

n∈Z

‖f Tnφ‖p

X

)1/p

< ∞
}

. (11)

Now, S0 = W(F L1, �1) and S′
0 = W(F L∞, �∞), see [13, Sect. 3.2.2].

2.3 The Spreading Function Representation and Its Connections to the STFT

The so-called spreading function representation, closely related to the integrated
Schrödinger representation [25, Sect. 9.2], expresses operators in (B,H ,B ′) as a
sum of time-frequency shifts. More precisely, one has (see [25, Chap. 9]):

Theorem 6 Let H ∈ (B,H ,B ′); then there exists a spreading function ηH in
(S0(R

2),L2(R2), S′
0(R

2)) such that

H =
∫ ∞

−∞

∫ ∞

−∞
ηH (b, ν)π(b, ν) dbdν. (12)

For H ∈ H , the correspondence H ↔ ηH is isometric, i.e. ‖H‖H = ‖ηH ‖L2(P).

Remark 7 For H ∈ B, the decomposition given in (12) is absolutely convergent,
whereas, for H ∈ B ′, it holds in the weak sense of bilinear forms on S0.

When ηH ∈ L2(P), H is a Hilbert-Schmidt operator, and the above integral is
defined as a Bochner integral.
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The spreading function is intimately related to the integral kernel κ = κH of H via

ηH (b, ν) =
∫ ∞

−∞
κH (t, t − b)e−2iπνt dt and

κH (t, s) =
∫ ∞

−∞
ηH (t − s, ν)e2iπνt dν.

As a consequence, for κH ∈ (S0,L2, S′
0), we also have ηH ∈ (S0,L2, S′

0). In partic-
ular, this leads to the following expression for a weak evaluation of Gelfand triple
operators:

〈K,L〉(B,H,B ′) = 〈κ(K), κ(L)〉(S0,L2,S′
0)

= 〈η(K),η(L)〉(S0,L2,S′
0)

. (13)

For L = g ⊗ f ∗, i.e. the tensor product with kernel κ(s, t) = g(s)f (t) and spreading
function η(b, ν) = Vf g(b, ν), we thus have:

〈K,g ⊗ f ∗〉(B,H,B ′) = 〈κ(K), κ(g ⊗ f ∗)〉(S0,L2,S′
0)

= 〈η(K),Vf g〉(S0,L2,S′
0)

. (14)

Let us also mention that the spreading function is related to the operator’s Kohn-
Nirenberg symbol via a symplectic Fourier transform, which we define for later ref-
erence.

Definition 8 The symplectic Fourier transform is formally defined by

FsF (t, ξ) =
∫

P

F(b, ν)e−2πi(bξ−tν)dbdν.

The symplectic Fourier transform is a self-inverse unitary automorphism of the
Gelfand triple (S0,L2, S′

0). We will make use of the following relation.

Lemma 9 Assume that f1, f2, g1, g2 ∈ L2(R). Then

Fs(Vg1f1Vg2f2)(x,ω) = (Vf2f1Vg2g1)(x,ω).

Proof The analogous statement for the conventional (Cartesian) Fourier transform
reads F (Vg1f1Vg2f2)(x,ω) = (Vf2f1Vg2g1)(−ω,x) and has been shown in [26,
Lemma 2.3.2]. The fact, that

[FsF ](x,ω) = F̂ (−ω,x)

completes the argument. �

Recall that the spreading function of the product of operators corresponds to the
twisted convolution of the operators’ spreading function. Assume K1 in (B,H ,B ′)
and K2 in (B ′,H ,B) then

η(K2 · K1) = η(K2)�η(K1). (15)



J Fourier Anal Appl (2010) 16: 261–293 269

The spreading function representation of operators provides an interesting time-
frequency implementation for operators, stated in the following proposition. It turns
out to be closely connected to the tools described in the previous section, in particular
twisted convolution and STFT.

Proposition 10 Let H be in (B,H ,B ′), and let η = ηH be its spreading function in
(S0(R

2),L2(R2), S′
0(R

2)). Let g ∈ S0(R), then the STFT of Hf is given by a twisted
convolution of ηH and Vgf :

VgHf (z) = (ηH �Vgf )(z).

Proof By (12), we may write

VgHf (z′) = 〈Hf,π(z′)g〉

=
∫

〈ηH (z)π(z)f,π(z′)g〉dz

=
∫

ηH (z)〈f,π(z)∗π(z′)g〉dz

=
∫

ηH (z)e−2πib(ν′−ν)〈f,π(z′ − z)g〉dz

=
∫

ηH (z)Vgf (z′ − z)e−2πib(ν′−ν)dz = (ηH �Vgf )(z′). (16)

Note that S0 is time-frequency shift-invariant, so π(z)g is in S0 for all z. Hence, the
expression in (16) is well-defined.

If f ∈ L2(R) and H ∈ H , then Vgf , VgHf and ηH ∈ L2(R2), which is in accor-
dance with the fact that L2�L2 ⊆ L2.

If f ∈ S0(R), then H may be in B ′, such that ηH ∈ S′
0(R

2), hence Hf ∈ S′
0(R).

Hence, we have Vgf ∈ S0(R
2) and VgHf ∈ S′

0(R
2). This leads to the inclusion

S′
0�W(C, �1) ⊆ L∞, which may easily be verified directly.

On the other hand, if f ∈ S′
0(R) and H in B, such that ηH ∈ S0(R

2), then Hf is in
S0(R). Hence, Vgf ∈ S′

0(R
2) and VgHf ∈ S0(R

2). Here, this leads to the conclusion
that we have, for f ∈ S′

0(R):

S0�Vgf ⊆ S0. (17)
�

Although it is known that Vgf is not only L∞(R2), but also in the Amalgam
space W(F L1, �∞) for f ∈ S′

0(R) and g ∈ S0(R), [13], it is not clear, whether (17)
also holds for functions F ∈ W(F L1, �∞), which are not in the range of S′

0(R) un-
der Vg . This and other interesting open questions concerning the twisted convolution
of function spaces are currently under investigation.2

2H. Feichtinger and F. Luef. Twisted convolution properties for Wiener amalgam spaces. In preparation,
2009.



270 J Fourier Anal Appl (2010) 16: 261–293

Remark 11 As a consequence of the last proposition, H may be realized as a twisted
convolution in the time-frequency domain:

Hf = 1

〈g,h〉
∫ ∞

−∞

∫ ∞

−∞
(
ηH �Vgf

)
(b, ν)MνTbhdbdν for all f ∈ (S0,L2, S′

0).

(18)
Notice that Proposition 10 implies that the range of Vg is invariant under left

twisted convolution. Notice also that this is no longer true if the left twisted con-
volution is replaced with the right twisted convolution. Indeed, in such a case, one
has

Vgf �ηH = VH ∗gf.

Hence, one has the following simple rule: left twisted convolution on the STFT
amounts to acting on the analyzed function f , while right twisted convolution on
the STFT amounts to acting on the analysis window g. It is worth noticing that in
such a case, applying V∗

g to Vgf �ηH yields the analyzed function f , up to some
(possibly vanishing) constant factor.

Example 12 As an illustrative example, let g,h ∈ S0 be such that 〈g,h〉 = 1 and con-
sider the oblique projection P : f �→ 〈f,g〉h. The spreading function of this operator
is given by Vgh, and we have VϕPf (z) = 〈f,g〉〈h,π(z)ϕ〉. By virtue of the inver-
sion formula for the STFT, which may be written as 〈f,g〉h = ∫ 〈h,π(z)g〉π(z)f dz,
we obtain:

VϕPf (z′) =
∫

〈h,π(z)g〉〈π(z)f,π(z′)ϕ〉dz = Vgh�Vϕf.

By completely analogous reasoning, we obtain the converse formula, if the operator
is applied to the analysing window:

VPϕf = 〈f,π(z)Pϕ〉 = Vϕf �Vgh.

Remark 13 Notice also that twisted convolution in the phase space is associated with
the true translation structure. Indeed, time-frequency shifts take the form of twisted
convolutions with a Dirac distribution on P:

δb0,ν0�Vgf = VgMν0Tb0f.

This corresponds to the usage of engineers, who “adjust the phases” after shifting
STFT coefficients [10, 21].

2.4 Time-Frequency Multipliers

Section 2.3 has shown the close connection between the spreading function represen-
tation of Hilbert-Schmidt operators and the short time Fourier transform. However,
the twisted convolution representation is generally of poor practical interest in the
continuous case, because it does not discretize well. Even in the finite case, it relies
on the full STFT on C

N , which represents vectors with N2 STFT coefficients, which
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may be far too large in practice, and sub-sampling is not possible in a straightforward
way.

Time-frequency (in particular Gabor) multipliers represent a valuable alternative
for time-frequency operator representation (see [18, 29] and references therein for
reviews). We analyze below the connections between these representations and the
spreading function, and point out some limitations, before turning to generalizations.

2.4.1 Definitions and Main Properties

Let g,h ∈ S0(R) be such that 〈g,h〉 = 1, let m ∈ L∞(R2), and define the STFT
multiplier Mm;g,h by

Mm;g,hf =
∫

P

m(b, ν)Vgf (b, ν)π(b, ν)hdbdν. (19)

This defines a bounded operator on (S0(R),L2(R), S′
0(R)).

Similarly, given lattice constants b0, ν0 ∈ R
+, set πmn = π(mb0, nν0) =

Mnν0Tmb0 . Then, for m ∈ �∞(Z2), the corresponding Gabor multiplier is defined
as

M
G
m;g,hf =

∞∑

m=−∞

∞∑

n=−∞
m(m,n)Vgf (mb0, nν0)πmnh. (20)

Note that Gabor multipliers may be interpreted as STFT multipliers with multiplier
m in S′

0. In fact, in this case, m is simply a sum of weighted Dirac impulses on the
sampling lattice.

The definition of time-frequency multipliers can of course be given for g,h ∈
L2(R), many nice properties only apply with additional assumptions on the windows.
Abstract properties of such multipliers have been studied extensively, and we refer
to [18] for a review. One may show for example that, whenever the windows g and h

are at least in S0, if m belongs to L2(P) (or �2(Z2)) then the corresponding multiplier
is a Hilbert-Schmidt operator and maps S′

0(R) to L2(R).
The spreading function of time-frequency multipliers may be computed explicitly.

Lemma 14 The spreading function of the STFT multiplier Mm;g,h is given by

ηMm;g,h
(b, ν) = M(b, ν)Vgh(b, ν), (21)

where M is the symplectic Fourier transform of the transfer function m

M(t, ξ) =
∫

P

m(b, ν)e2iπ(νt−ξb) dbdν.

Specifying to the Gabor multiplier M
G
m;g,h

, we see the same expression for the spread-

ing function, however, in this case, M = M(d) is the (ν0
−1, b0

−1)-periodic symplectic
Fourier transform of the discrete transfer function m

M(d)(t, ξ) =
∞∑

m=−∞

∞∑

n=−∞
m(m,n)e2iπ(nν0t−mb0ξ). (22)
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Proof For f ∈ S′
0 and ϕ ∈ S0, we may write

〈Mm;g,hf,ϕ〉 = 〈m,Vgf · Vhϕ〉,
where the right-hand side inner product has to be interpreted as an integral or infinite
sum, respectively. By Lemma 9, applying the symplectic Fourier transform, we obtain

〈Mm;g,hf,ϕ〉 = 〈M,Vϕf · Vgh〉 = 〈M · Vgh,Vf ϕ〉. (23)

By calling on (14), this proves (21). By virtue of that fact that for g,h ∈ S0, Vgh

is certainly in L1(P) and even in the Wiener Amalgam Space W(C,L1), hence in
particular continuous, the expressions for the spreading function given in the lemma
are always well-defined. The symplectic Fourier transform is a Gelfand triple isomor-
phism of (S0,L2, S′

0), i.e., m ∈ (S0,L2, S′
0) ⇐⇒ M ∈ (S0,L2, S′

0). Hence, M ·Vgh ∈
(S0,L2, S′

0), which is in accordance with the fact, that for m in (�1, �2, �∞), i.e.,
(S0,L2, S′

0)(Z
2), the kernel of the resulting operator (and hence its spreading func-

tion), is in (S0,L2, S′
0), while Vf ϕ is in (S′

0,L2, S0), respectively, see [18] for details.
Hence, the expression obtained in (23) is well-defined by duality. �

Remark 15 All expressions derived so far are easily generalized to Gabor frames for
R

d associated to arbitrary lattices � ⊂ R
2d . In such situations, the spreading function

takes a similar form, and involves some discrete symplectic Fourier transform of the
transfer function m, which is in that case a �◦-periodic function, �◦ being the adjoint
lattice of �.

Notice that as a consequence of Proposition 10, one has the following “intertwin-
ing property”

VgMf = (Mm;g,h Vgh)�Vgf.

Remark 16 It is clear from the above calculations that a general Hilbert-Schmidt
operator may not be well represented by a TF-multiplier. For example, let us assume
that the analysis and synthesis windows have been chosen, and let η be the spreading
function of the operator under consideration.

• In the STFT case, if the analysis and synthesis windows are fixed, the decay of the
spreading function has to be fast enough (at least as fast as the decay of Vgh) to
ensure the boundedness of the quotient M = η/Vgh. Such considerations have led
to the introduction of the notion of underspread operators [32] whose spreading
function is compactly supported in a domain of small enough area. A more precise
definition of underspread operators will be given below.

• In the Gabor case, the periodicity of M(d) imposes extra constraints on the spread-
ing function η. In particular, the shape of the support of the spreading function
must influence the choice of optimal parameters for the approximation by a Gabor
multiplier, i.e. the shape of the window as well as the lattice parameters. The fol-
lowing numerical example indicates the direction for the choice of parameters in
the approximation of operators by Gabor multipliers.
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Example 17 Consider two operators OP1 and OP2 with spreading functions as
shown in Fig. 1. The values of the spreading functions are random and real, uni-
formly distributed in [−0.5,0.5].

Operator 1 has a spreading function with smaller support on the time-axis, which
means that the corresponding operator exhibits time-shifts across smaller intervals
than Operator 2, whose spreading function is, on the other hand, less extended in
frequency. The effect in the opposite direction is, obviously, reverse. These charac-
teristics are illustrated by applying the operators to a sinusoid with frequency 1 and a
Dirac impulse at −1, respectively.

Next, we realize approximation3 by Gabor multipliers with two fixed pairs of lat-
tice constants: b1 = 2, ν1 = 8 and b2 = 8, ν2 = 2. Furthermore, the windows are
Gaussian windows varying from wide (j = 0) to narrow (j = 100). Thus, j cor-
responds to the concentration of the window, in other words, j is the reciprocal of
the standard deviation. Now the approximation quality is investigated. The results
are shown in the lower plots of Fig. 1, where the left subplot shows the approxima-
tion quality for operator OP1 for b1, ν1 (solid) and b2, ν2 (dashed), while the right
hand subplot gives the corresponding results for operator 2. The error is measured
by err = ‖OP − APP‖H/‖OP + APP‖H . Here, APP denotes the approximation op-
erator and the norm is the operator norm. The results show that, as expected, the
“adapted” choice of time-frequency parameters leads to more favorable approxima-
tion quality. Here, the adapted choice of b and ν mimics the shape of the support
of the spreading function according to formula (21) and the periodicity of M(d). In
brief, if the operator realizes frequency-shifts in a wider range, we will need more
sampling-points in frequency and vice-versa. It is also visible, that the shape of the
window has considerable influence on the approximation quality.

The previous example shows, that the parameters in the approximation by Gabor
multipliers must be carefully chosen. Let us point out that the approximation quality
achieved in the experiment described in Example 17 is not satisfactory, especially
when the time- and frequency shift parameters are not well adapted. Operators with a
spreading function that is not well-concentrated around 0, i.e. “overspread operators”,
don’t seem to be well-represented by a Gabor multiplier even with high redundancy
(the redundancy used in the example is 8). Moreover, a realistic operator will have
a spreading function with a much more complex shape. The next section will give
some more details on approximation by Gabor multipliers before generalizations,
which allow for approximation of more complex operators, are suggested.

2.4.2 Approximation by Gabor Multipliers

The possibility of approximating operators by Gabor multipliers in Hilbert-Schmidt
sense depends on the properties of the rank one operators associated with time-
frequency shifted copies of the analysis and synthesis windows.

3Best approximation is realized in Hilbert-Schmidt sense, see the next section for details.
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Fig. 1 Approximation by Gabor Multipliers with parameters b1, ν1 (solid) and b2, ν2 (dashed)

Let g,h ∈ S0(R) be such that 〈g,h〉 = 1. Let λ = (b1, ν1) ∈ P, and consider the
rank one operator (oblique projection) Pλ defined by

Pλf = (g∗
λ ⊗ hλ)f = 〈f,gλ〉hλ, f ∈ (S0(R),L2(R), S′

0(R)). (24)

Direct calculations show that the kernel of Pλ is given by

κPλ(t, s) = gλ(s)hλ(t), (25)

and its spreading function reads

ηPλ(b, ν) = e2iπ(ν1b−b1ν)Vgh(b, ν). (26)

The following result characterizes the situations for which time-frequency rank
one operators form a Riesz sequence, in which case the best approximation by a
Hilbert-Schmidt operator is well-defined. This result first appeared in [15]. Here, we
give a slightly different version, which is obtained from the original statement by
applying Poisson summation formula. This result was also given in [6] for general
full-rank lattices in R

d .
We will subsequently denote by �◦

b0,ν0
= 1

ν0
Z × 1

b0
Z the adjoint lattice of �◦

b0,ν0
,

and by �◦ = [− 1
2ν0

, 1
2ν0

[×[− 1
2b0

, 1
2b0

[ its fundamental domain.
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Proposition 18 Let g,h ∈ L2(R), with 〈g,h〉 	= 0, let b0, ν0 ∈ R
+, and set

U (t, ξ) =
∞∑

k,�=−∞

∣∣∣∣Vgh

(
t + k

ν0
, ξ + �

b0

)∣∣∣∣
2

. (27)

The family {Pmb0,nν0 , m,n ∈ Z} is a Riesz sequence in H if and only if there exist
real constants 0 < A ≤ B < ∞ such that

0 < A ≤ U (t, ξ) ≤ B < ∞ a.e. on �◦. (28)

We call this condition the U condition.

Note that validity of the U condition, via the fact that the subspace spanned by the
corresponding Riesz basis of projection operators is closed, guarantees the existence
of a unique solution to the problem of best approximation of an arbitrary Hilbert-
Schmidt operator in a given Gabor multiplier setting. Accordingly it turns out, that
the approximation of a given operator via a standard minimization process yields an
expression, which is only well-defined if the U condition (28) holds.

Theorem 19 Assume that Vgh and b0, ν0 ∈ R
+ are such that the U condition (28) is

fulfilled. Then the best Gabor multiplier approximation (in Hilbert-Schmidt sense) of
H ∈ H is defined by the time-frequency transfer function m whose discrete symplec-
tic Fourier transform reads

M(b, ν) =
∑∞

k,�=−∞ Vgh(b + k/ν0, ν + �/b0)ηH (b + k/ν0, ν + �/b0)∑∞
k,�=−∞ |Vgh(b + k/ν0, ν + �/b0)|2 . (29)

Proof Let us set V = Vgh for simplicity of notation. First, notice that if ηH ∈ L2(P),
then the function (b, ν) ∈ �◦ → ∑

k,� |ηH (b + k/ν0, ν + �/b0)|2 is in L2(�◦), and is
therefore well defined almost everywhere in �◦. Thus, by Cauchy-Schwarz inequal-
ity, the numerator in (29) is well-defined a.e.

The Hilbert-Schmidt optimization is equivalent to the problem

min
M∈L2(�◦)

‖ηH − MV‖2.

The latter squared norm may be written as

‖ηH − MV‖2 =
∫ ∞

−∞

∫ ∞

−∞
|ηH (b, ν) − M(b, ν)V(b, ν)|2 dbdν

=
∞∑

k,�=−∞

∫ ∫

�◦
|ηH (b + k/ν0, ν + �/b0)

− M(b, ν)V(b + k/ν0, ν + �/b0)|2 dbdν

=
∫ ∫

�◦

[∑

k,�

|ηH (b + k/ν0, ν + �/b0)|2
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− 2�
(

M(b, ν)
∑

k,�

ηH (b + k/ν0, ν + �/b0)

× V(b + k/ν0, ν + �/b0)

)

+ |M(b, ν)|2
∑

k,�

|V(b + k/ν0, ν + �/b0)|2
]

dbdν.

From this expression, the Euler-Lagrange equations may be obtained, which read

M(b, ν)
∑

k,�

|V(b + k/ν0, ν + �/b0)|2

=
∑

k,�

ηH (b + k/ν0, ν + �/b0)V(b + k/ν0, ν + �/b0),

and the result follows. �

We next derive an error estimate for the approximation. Let us set, for (b, ν) ∈ �◦,

E (b, ν) = |∑k,� ηH (b + k/ν0, ν + �/b0)V(b + k/ν0, ν + �/b0)|2∑
k,� |ηH (b + k/ν0, ν + �/b0)|2 U (b, ν)

.

Corollary 20 With the above notation, we obtain the estimate

‖H − Mm‖2
H ≤ ‖ηH ‖2 ‖1 − E ‖∞

for the best approximation of H by a Gabor multiplier Mm according to (29).

Proof Set �H (b, ν) = ∑
k,� |ηH (b + k/ν0, ν + �/b0)|2. Replacing the expression for

M obtained in (29) into the error term, we have

‖H − Mm‖2
H =

∫ ∫

�◦

[
�H (b, ν) − |M(b, ν)|2 U (b, ν)

]
dbdν

=
∫ ∫

�◦
�H (b, ν)[1 − E (b, ν)]dbdν

≤ ‖ηH ‖2 ‖1 − E ‖∞,

where we have used the fact that ‖�H ‖L2(�◦) = ‖ηH ‖L2(P). Clearly, Cauchy-Schwarz
inequality gives |E (b, ν)| ≤ 1 on �◦, with equality if and only if there exists a func-
tion φ such that η = φV , i.e. if and only if H is a multiplier with the prescribed
window functions. Hence we obtain

‖H − Mm‖2
H ≤ ‖H‖2

H

[
1 − ess inf

(b,ν)∈�◦ E (b, ν)

]
. (30)

�
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Remark 21 E (b, ν) essentially represents the cosine of the angle between vectors
{ηH (b + k/ν0, ν + �/b0), k, � ∈ Z} and {V(b + k/ν0, ν + �/b0), k, � ∈ Z}. In other
words, the closer to colinear these vectors, the better the approximation.

An example for operators which are poorly represented by this class of multipliers
are those with a spreading function that is not “well-concentrated”. These are, in tech-
nical terms, overspread operators. The underspread/overspread terminology seems to
originate from the context of time-varying multipath wave propagation channels [31].
However, different definitions exist in the literature. Here, we give the definition
used in [33]. Note that underspread operators have recently found renewed interest
[7, 33–35, 37, 39].

Definition 22 Consider an operator K with compactly supported spreading function:

supp(ηK) ⊆ Q(t0, ξ0), where Q(t0, ξ0) := [−t0, t0] × [−ξ0, ξ0].
Then, K is called underspread, if vol(Q) < 1.

Most generally, operators which are not underspread, will be called overspread.
It is generally known, that an operator must be underspread in order to be well-
approximated by Gabor multipliers. Formula (29) enables us to make this statement
more precise.

Corollary 23 Consider an underspread operator H . Choose (b0, ν0) such that
1/b0 > 2ξ0 and 1/ν0 > 2t0 and consider the Gabor frame {gmn,m,n ∈ Z}, with lat-
tice constants (b0, ν0), and dual window h. Then, the symplectic Fourier transform
M of the time-frequency transfer function of the best Gabor multiplier takes the form

M = ηH Vgh

U ,

and the approximation error can be bounded by

‖ηH − MVgh‖2 ≤ ‖ηH ‖2 ess sup
(b,ν)∈�◦

H

[
1 − |Vgh(b, ν)|2

U (b, ν)

]

with �◦
H = �◦ ∩ supp(ηH ).

Proof

‖ηH − MVgh‖2 =
∫ ∫

�◦

[
|η(b, ν)|2 −

∣∣η(b, ν)Vgh(b, ν)
∣∣2

U (b, ν)

]
dbdν

≤ ‖ηH ‖2 ess sup
(b,ν)∈�◦

[
1 − |Vgh(b, ν)|2

U (b, ν)

]
.

�

The estimate in the last corollary shows, that approximation quality is a joint prop-
erty of window and lattice, which is in accordance with the results of Example 17.



278 J Fourier Anal Appl (2010) 16: 261–293

Remark 24 Note that, although technically only defined for Hilbert-Schmidt opera-
tors, the approximation by Gabor multipliers can formally be extended to operators
from B ′, see [18, Sect. 5.8]. Also, the expression given in (29) is well-defined in S′

0
whenever ηH is at least in S′

0. However, for non-Hilbert-Schmidt operators, it is not
clear, in which sense the resulting Gabor multiplier represents the original operator.
The following example shows that at least in some cases, the result is however the
intuitively expected one.

Example 25 Consider the operator π(λ), i.e. a time-frequency shift. Although this
operator is clearly not a Hilbert-Schmidt operator, we may consider its approximation
by a Gabor-multiplier according to (29). First note that the spreading function of the
time-frequency shift π(λ) = π(b1, ν1) is given by ηπ = δ(b − b1) · δ(ν − ν1). Then,
we have

M(b, ν) =
∑

k,l

Vgh(b + k/ν0, ν + l/b0)δ(b − b1 + k/ν0, ν − ν1 + l/b0)∑
k′,l′ |Vgh(b + k′/ν0, ν + l′/b0)|2

= Vgh(b1, ν1)
∑

k,l

δ(b − b1 + k/ν0, ν − ν1 + l/b0)∑
k′,l′ |Vgh(b1 + k′−k

ν0
, ν1 + l′−l

b0
)|2

= Vgh(b1, ν1)

U (b1, ν1)

∑

k,l

δ(b − b1 + k/ν0, ν − ν1 + l/b0).

Hence, from the inverse (discrete) symplectic Fourier transform we obtain:

m(m,n) = Vgh(b1, ν1)

U (b1, ν1)

∫ 1
ν0

0

∫ 1
b0

0

∑

k,l

δ(b − b1 + k/ν0, ν − ν1 + l/b0)

× e−2πi(mb0ν−nν0b) dbdν

= Vgh(b1, ν1)

U (b1, ν1)
e−2πi(mb0ν1−nν0b1).

As expected, the absolute value of the mask is constant and the phase depends on the
displacement of λ from the origin. This confirms the key role played by the phase
of the mask of a Gabor multiplier. Specializing to λ = 0, we obtain a constant mask
and thus, if h is a dual window of g with respect to � = b0Z × ν0Z, up to a constant
factor, the identity.

3 Generalizations: Multiple Gabor Multipliers and TST Spreading Functions

In the last section it has become clear that most operators are not well represented as
a STFT or Gabor multiplier.

Guided by the desire to extend the good approximation quality that Gabor multi-
pliers warrant for underspread operators to the class of their overspread counterparts,
we introduce generalized TF-multipliers. The basic idea is to allow for an extended
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scheme in the synthesis part of the operator: instead of using just one window h, we
suggest the use of a set of windows {h(j)} in order to obtain the class of Multiple
Gabor Multipliers (MGM for short).

Definition 26 (Multiple Gabor Multipliers) Let g ∈ S0(R) and a family of recon-
struction windows h(j) ∈ S0(R), j ∈ J , as well as corresponding masks mj ∈ �∞ be
given. Operators of the form

M =
∑

j∈J
M

G
mj ;g,h(j) (31)

will be called Multiple Gabor Multipliers (MGM for short).

Remark 27

(a) The most natural generalization of Gabor multipliers would allow for both several
analysis and synthesis windows. However, we will see below that the generaliza-
tion introduced in (31) is sufficient in order to achieve perfect representation of
most operators of interest.

(b) Note, that we need to impose additional assumptions in order to obtain a well-
defined operator. For example, we may assume

∑
j supλ|mj(λ)| = C < ∞ and

maxj ‖hj‖S0 = C < ∞, which guarantees a bounded operator on (S0,L2, S′
0).

This follows easily from the boundedness of a Gabor multiplier under the con-
dition that m is �∞. Conditions for function space membership of MGMs
are easily derived in analogy to the Gabor multiplier case. For example, if∑

j

∑
λ |mj(λ)|2 < ∞, we obtain a Hilbert-Schmidt operator, similarly, trace-

class membership follows from an analogous �1-condition.
(c) The spreading function of a MGM is (formally) given by a sum of the spreading

functions corresponding to the single Gabor multipliers involved:

ηG
Mmj ;g,h(j)

(b, ν) =
∑

j∈J
M(j)(b, ν)Vgh

(j)(b, ν), (32)

where the (ν0
−1, b0

−1)-periodic functions M(j) are the symplectic Fourier trans-
forms of the transfer functions mj .

(d) Note that in practice |J | will often be finite. Let us mention that by assuming
mj ∈ �2(Z3), we have ‖ηG

Mmj ;g,h(j)
‖2 = C‖m‖2.

It is immediately obvious that the new model gives much more freedom in gen-
erating overspread operators. However, in order to obtain structural results, we will
have to impose further specifications.

Before doing so, we will state a generalization of Proposition 18 to the more gen-
eral situation of the family of projection operators P

j
λ defined by

P
j
λ f = (g∗

λ ⊗ h
j
λ)f = 〈f,gλ〉hj

λ, where λ ∈ �, j ∈ J . (33)

Note that these projection operators are the building blocks for the MGM. The fol-
lowing theorem characterizes their Riesz property.
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Proposition 28 Let g,hj ∈ L2(R), j ∈ J , with 〈g,hj 〉 	= 0, let b0, ν0 ∈ R
+, and let

the matrix �(b, ν) be defined by

�(b, ν)jj ′ =
∑

k,�

Vgh(j)(b + k/ν0, ν + �/b0)Vgh
(j ′)(b + k/ν0, ν + �/b0) (34)

a.e. on �◦ = [0, ν−1
0 [× [0, b−1

0 [. Then the family of projection operators {P j
λ ,

j ∈ Z, λ ∈ �} is a Riesz sequence in H if and only if � is invertible a.e. with uniform
bounds 0 < A ≤ B < ∞ such that

A ≤ �(b, ν) ≤ B a.e. on �◦. (35)

Alternatively, the Riesz basis property is characterized by bounded invertibility of the
matrix U defined as

U jj ′
(t, ξ) =

∑

k,l

[Vgg · Vhj h
j ′ ](kb0, lν0)e

−2πi(lν0t−kb0ξ) (36)

a.e. on the fundamental domain of �.

Proof Recall that the family {P j
λ , j ∈ Z, λ ∈ �} is a Riesz basis for its closed linear

span if there exist constants 0 < A,B < ∞ such that

A‖c‖2
2 ≤

∥∥∥∥
∑

λ

∑

j

c
j
λP

j
λ

∥∥∥∥
2

H S
≤ B‖c‖2

2 (37)

for all finite sequences c defined on (� × J ). We have

∥∥∥∥
∑

λ

∑

j

c
j
λP

j
λ

∥∥∥∥
2

H S
=

〈∑

λ

∑

j

c
j
λP

j
λ ,

∑

μ

∑

j ′
cj ′
μ P j ′

μ

〉

=
∑

λμ

∑

jj ′
c
j
λc

j ′
μ 〈gλ, gμ〉〈hj

λ,h
j ′
μ 〉.

Hence, by setting Ujj ′
(b, ν) = [Vgg · Vhj hj ′ ](b, ν), we may write

∥∥∥∥
∑

λ

∑

j

c
j
λP

j
λ

∥∥∥∥
2

H S
=

∑

λμ

∑

jj ′
c
j
λc

j ′
μ Ujj ′

(μ − λ)

=
∑

μ

∑

jj ′
c
j ′
μ (cj ∗ Ujj ′

)(μ)

= b0ν0

∑

jj ′
〈U jj ′ · Cj , Cj ′ 〉L2(�◦),

where U jj ′
(t, ξ) = ∑

k,l U
jj ′

(kb0, lν0)e
−2πi(lν0t−kb0ξ) is the discrete symplectic

Fourier transform of Ujj ′
, and, analogously, Cj is the discrete symplectic Fourier
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transform of the sequence cj , defined on �, for each j . Hence, these are ν−1
0 × b−1

0 -
periodic functions. The last equation can be rewritten as

∥∥∥∥
∑

λ

∑

j

c
j
λP

j
λ

∥∥∥∥
2

2
= b0ν0

∑

jj ′

∫

�◦
U jj ′

(t, ξ) · Cj (t, ξ)Cj ′
(t, ξ)dtdξ

= b0ν0 〈U · C, C〉L2(�◦)×�2(Z) ,

where U is the matrix with entries U jj ′
. Note that this proves statement (36) by posi-

tivity of the operator U .
In order to obtain the condition for � given in (34), first note that

Fs(Vgg · Vhj h
j ′

)(λ) = (Vgh
j ′ · Vghj )(λ)

by applying Lemma 9. Furthermore, F := Vgh
j ′ · Vghj is always in L1 for

g,hj ∈ L2. We may therefore look at the Fourier coefficients of its �◦-periodization,
with λ = (mb0, nν0):

F −1
s (P�◦F)(λ) =

∫

�◦

(
∑

k,�

F

(
b + k

ν0
, ν + �

b0

))
e2πi(bnν0−νmb0) dbdν

=
∫

�◦

(
∑

k,�

F

(
b + k

ν0
, ν + �

b0

))
e

2πi((b+ k
ν0

)nν0−(ν+ �
b0

)mb0)
dbdν

=
∫

R2
F(b, ν)e2πi(bnν0−νmb0) dbdν = F −1

s (Vgh
j ′ · Vghj )(λ).

Hence, we may apply the Poisson summation formula, with convergence in L2(�◦),
to obtain:

P�◦(Vgh
j ′ · Vghj )(b, ν) = b0ν0

∑

k,l

F −1
s (Vgh

j ′ · Vghj )(kb0, lν0)e
−2πi(b�ν0−νkb0)

= b0ν0

∑

k,l

Vgg · Vhj hj ′
(kb0, lν0)e

−2πi(b�ν0−νkb0).

We conclude that
∥∥∥∥
∑

j

∑

λ∈�

c
j
λP

j
λ

∥∥∥∥
2

2
= b0ν0

∑

jj ′

∫
�(b, ν)jj ′Cj (b, ν)Cj ′

(b, ν) dbdν, (38)

and the Riesz basis property is equivalent to the invertibility of �. �

In the sequel, the discrete symplectic Fourier transforms of mj will be denoted by
Mj , and the vector with Mj as coordinates will be denoted by M. We then obtain an
expression for the best multiplier in analogy to the Gabor multiplier case discussed
in Theorem 19.
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Proposition 29 Let g ∈ S0(R) and h(j) ∈ S0(R), j ∈ J be such that for almost all
b, ν, the matrix �(b, ν) defined in (34) is invertible a.e. on �◦.

Let H ∈ (B,H ,B ′) be an operator with spreading function η ∈ (S0,L2, S′
0).

Then the functions Mj yielding approximation of the form (31) may be obtained
as

M = �−1 · B, (39)

where B is the vector whose entries read

Bj0(b, ν) =
∑

k,�

η(b + k/ν0, ν + �/b0)Vgh
j0(b + k/ν0, ν + �/b0). (40)

For operators in H the obtained approximation is optimal in Hilbert-Schmidt sense.

Proof The proof follows the lines of the Gabor multiplier case. The optimal approx-
imation of the form (31) is obtained by minimizing

∥∥∥∥∥η −
∑

j

MjVj

∥∥∥∥∥

2

=
∑

k,�

∫

�◦

∣∣∣∣η(b + k/ν0, ν + �/b0)

−
∑

j

Mj (b, ν)Vj (b + k/ν0, ν + �/b0)

∣∣∣∣
2

dbdν

where one has set Vj = Vgh
(j). Setting to zero the Gâteaux derivative with respect

to Mj0 , we obtain the corresponding variational equation

∑

j

Mj (b, ν)
∑

k,�

Vj (b + k/ν0, ν + �/b0)Vj0(b + k/ν0, ν + �/b0) = Bj0(b, ν),

where Bj (b, ν) are as defined in (40). Provided that the �(b, ν) matrices are invert-
ible for almost all b, ν, this implies that the functions Mj for approximation of the
form (31) may indeed be obtained as in (39). �

In a next step, we are going to discern two basic approaches:

(a) mj (λ) = m(μ,λ), i.e. the synthesis windows are time-frequency shifted versions
(on a lattice) of a single synthesis window: hj = π(μj )h, μj ∈ �1.

(b) mj(λ) = m1(λ)m2(j), i.e. a separable multiplier function. If we set h(j)(t) =
π(bj , νj )h(t) then this approach leads to what will be called TST spreading func-
tions in Sect. 3.1.

In both cases we will be especially interested in the situation in which the hj are
given as time-frequency shifted versions of a single synthesis window on the adjoint
lattice �◦.

We fix the synthesis windows hj to be time-frequency translates of a fixed window
function, i.e.

h(j)(t) = π(bj , νj )h(t) = e2iπνj th(t − bj ). (41)
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We may turn our attention to the projection operators associated with two fixed (Ga-
bor) families (g,�1) and (h,�2). Note that it has been shown by Benedetto and Pfan-
der [6] that the family of projection operators {Pλ, λ ∈ �}, as discussed in Sect. 2.4
either forms a Riesz basis or not a frame (for its closed linear span). The next corollary
shows that, on the other hand, if we use the extended family of projection operators
{Pλ,μ, (λ,μ) ∈ �1 × �2}, where Pλ,μf = 〈f,π(λ)g〉π(μ)h, we obtain a frame of
operators for the space of Hilbert-Schmidt operators, whenever (g,�1) and (h,�2)

are Gabor frames. This corollary is a special case of Theorem 4.1 in [3] and Proposi-
tion 3.2 in [4].

Corollary 30 Let two Gabor frames (g,�1) and (h,�2) be given. Then the family
of projection operators {Pλ,μ, (λ,μ) ∈ �1 × �2} form a frame of operators in H
and any Hilbert-Schmidt operator H may be expanded as

H =
∑

λ∈�1,μ∈�2

c(λ,μ)Pλ,μ.

The coefficients are given by c(λ,μ) = 〈H,(Pλ,μ)∗〉 = 〈Hπ(μ)h,π(λ)g〉.

Note that an analogous statement holds for Riesz sequences. Very recently, it has
been shown [1], that the converse of Corollary 30 holds true for both frames and
Riesz bases, i.e. the family of projection operators {Pλ,μ, (λ,μ) ∈ �1 × �2} is a
frame (a Riesz basis) for H if and only if the two generating sequences form a frame
(a Riesz basis) for L2(R). In particular, this leads to the conclusion, that the charac-
terization of Riesz sequences given in Proposition 28 also yields a characterization of
frames for L2(R)—it is well known, that (gλ,λ ∈ �) form a Gabor frame if and only
if (gμ,μ ∈ �◦) form a Riesz sequence. We can draw two conclusions.

Corollary 31 Let g ∈ L2(R) and a lattice � = b0Z × ν0Z be given.

(a) The Gabor family {gλ,λ ∈ �} forms a frame for L2(R) if and only if the matrix

�mn,m′n′(b, ν)

=
∑

k,�

exp
( − 2iπ[m/ν0(ν + �ν0 − n/b0) − m′/ν0(ν + �ν0 − n′/b0)]

)

× Vgg(b − m/ν0 + kb0, ν − n/b0 + �ν0)

× Vgg(b − m′/ν0 + kb0, ν − n′/b0 + �ν0)

is, a.e. on �◦, invertible on �2.
(b) In addition, we may state the following “Balian-Low Theorem for the tensor

products of Gabor frames”:
A family of projection operators given by {Pλ,μ = g∗

λ ⊗ gμ, (λ,μ) ∈ � × �◦}
forms a frame for the space of Hilbert-Schmidt operators on L2(R) if and only if
it forms a Riesz basis. Hence, in this case, g cannot be in S0(R).
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Proof Statement (a) is easily obtained from (34) by observing that

Vgπ(mb0, nν0)g(b, ν) = e−2iπmb0(ν−nν0)Vgh(b − mb0, ν − nν0).

We then have that {Pλ,μ = g∗
λ ⊗ gμ, (λ,μ) ∈ �◦ × �◦} forms a Riesz basis in H

if and only if �mn,m′n′(b, ν) is invertible. By the converse of Corollary 30, this is
equivalent to the Riesz property of gμ,μ ∈ �◦, which, in turn, is equivalent to the
frame property of {gλ,λ ∈ �} by Ron-Shen duality, see, e.g. [25].

To see (b), note that in this case Pλ,μ is a frame for H ⇔ (gλ,�) and (gμ,�◦)
form a frame ⇔ (gλ,�) and (gμ,�◦) form a Riesz basis ⇔ {Pλ,μ = g∗

λ ⊗ gμ,
(λ,μ) ∈ � × �◦} is a Riesz basis for H . Furthermore, by the classical Balian-Low
theorem, if a Gabor system is an L2-frame and at the same time a Riesz sequence
(hence an L2-Riesz basis), then the generating window g cannot be in S0.4 �

We may next ask, when the projection operators form a Riesz sequence, if the
reconstruction windows are TF-shifted versions of a single window h on the adjoint
lattice of � = b0Z × ν0Z. In fact, in this case, the matrix � turns out to enjoy quite a
simple form. To fix some notation, let

Amn(b, ν) =
∑

k,�

e2iπm[ν−�/ν0] Vgh(b − k/ν0, ν − �/b0)

× Vgh(b − (k − m)/ν0, ν − (� − n)/b0),

and introduce the right twisted convolution operator

K
�

A(b, ν) : M(b, ν) → M(b, ν)�A(b, ν).

We may derive the form of � given in the following corollary by direct calculation:

Corollary 32 Let g,h ∈ L2(R) as well as b0, ν0 be given. Furthermore, let h(j) =
π( m

ν0
, n

b0
)h. Then the variational equations read

M(b, ν)�A(b, ν) = B(b, ν). (42)

Hence, if for all b, ν ∈ R
2, the discrete right twisted convolution operator K

�

A is
invertible, then the family Pλ,μ = g∗

λ ⊗ gμ, (λ,μ) ∈ � × �◦ forms a Riesz sequence
and the best MGM approximation of an Hilbert-Schmidt operator with spreading
function η is given by the family of transfer functions

Mmn(b, ν) =
[
(K

�
A(b, ν))−1 B(b, ν)

]

mn
,

where B is given in (40).

We close this section with some results of numerical experiments testing the ap-
proximation quality of MGMs for slowly time-varying systems. Note that more ex-
tensive numerical results are presented in [12].

4More precisely, g cannot even be in the space of continuous functions in the Wiener space W(R), see [25,
Theorem 8.4.1].
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Fig. 2 Approximation by multiple Gabor multipliers

Example 33 We study the approximation of a (slowly) time-varying operator. The
operator has been generated by perturbing a time-invariant operator. The spreading
function is shown in the upper display of Fig. 2. The signal length is 32, time- and
frequency-parameters are b0 = 4 and ν0 = 4, such that the redundancy of the Ga-
bor frame used in the MGM approximation is 2. The approximation is then realized
in several steps for two different schemes. Scheme 1 adds three synthesis window
corresponding to a frequency-shift by 4, a time-shift by 4 and a time-frequency-
shift by (4,4). The first step 1 calculates the regular Gabor multiplier approximation.
Step 2 adds one (only frequency-shift) and so on. The rank of the resulting operator
families is 64, 128 for both step 2 and step 3 (adding either time- or frequency-shift)
and 256 (time-shifted, frequency-shifted and time-frequency-shifted window added).
The resulting approximation-errors are given by the solid line in the lower display of
Fig. 2.

Scheme 2 considers synthesis windows shifted in time and frequency on the sub-
lattice generated by a = 8, b = 8, the resulting families having rank 64, 256 and 576.
Here, we only plot the results for the case corresponding to three and eight additional
synthesis windows, respectively. The results are given by the dotted line.

For comparison, an approximation with a regular Gabor multiplier with redun-
dancy 8, i.e. an approximation family of rank 256, has been performed. The approxi-
mation error for this situation is the diamond in the middle of the display. It is easy to
see that, depending on the behavior of the spreading function, different schemes per-
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form advantageously for a certain redundancy. Note that for scheme 1, the best MGM
with the same rank as the regular Gabor multiplier performs better than the latter. In
the case of the present operator, scheme 2 performs the “wrong” time-frequency shifts
on the synthesis windows in order to capture important characteristics of the operator.
However, in a different setting, this scheme might be favorable (e.g. if an echo with a
longer delay is present).

The example shows, that the choice of an appropriate sampling scheme for the
synthesis windows is extremely important in order to achieve a good and efficient
approximation by MGM. An optimal sampling scheme depends on the analysis win-
dow’s STFT, the lattice used in the analysis and on the behavior of the operator’s
spreading function, which reflects the amount of delay and Doppler-shift created by
the operator. Additionally, structural properties of the family of projections operators
used in the approximation, based on the results in this section, have to be exploited
to achieve numerical efficiency. An algorithm for optimization of these parameters is
currently under development.5

3.1 Varying the Synthesis Window: TST Spreading Functions

We next turn to the special case of separable functions mj (λ) = m1(λ)m2(j) for the
mask in the definition (31) of MGMs. In this case the resulting operator is of the form

Mf =
∑

λ

m1(λ)ρ(λ)

(
∑

j

m2(j)
(
g∗ ⊗ hj

)
)

(f ) =
∑

λ

m1(λ)ρ(λ)Pmf,

where Pmf = ∑
j m2(j)〈f,g〉hj and ρ(λ) denotes a tensor product of time-

frequency shifts:

ρ(λ)H := π(λ)Hπ∗(λ).

Hence, the spreading function of M is given by

ηM = M · ηPm
,

where M is the discrete symplectic FT of m1. If the reconstruction windows are given
by hj = π(μj )h, μj = (bj , νj ), this becomes

ηM = M ·
∑

j

m2(j)Vgh(λ − μj )e
−2πi(ν−νj )bj .

Motivated by this result, we introduce the following definition.

Definition 34 (TST spreading functions) Let φ be a given function from the function
spaces (S0(R

2),L2(R2), S′
0(R

2)) and let b1, ν1 denote positive numbers. Let α be

5P. Balazs, M. Dörfler, F. Jaillet and B. Torrésani. An optimized sampling scheme for generalized Gabor
multipliers. In preparation, 2009.
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in �1(Z2). A spreading function η = ηH of H ∈ (B,H ,B ′), that may be written as

η(b, ν) =
∑

k,�

αk�φ(b − kb1, ν − �ν1)e
−2iπ(ν−�ν1)kb1 (43)

will be called Twisted Spline Type function (TST for short).

Remark 35 By α in �1, the series defining η is absolutely convergent in (S0,L2, S′
0).

For �2-sequences α, we obtain an L2-function η for φ ∈ L2.

TST functions are nothing but spline type functions (following the terminol-
ogy introduced in [15]), in which usual (Euclidean) translations are replaced with
the natural (i.e. H-covariant) translations on the phase space P. In fact, by writing
α(b, ν) = ∑

k,� αk�δ(b − kb1, ν − �ν1), the TST spreading function may be written
as a twisted convolution: η(b, ν) = α�φ. This leads to the following property of op-
erators associated with TST spreading functions.

Lemma 36 An operator H ∈ (B,H ,B ′) possesses a TST spreading function η ∈
(S0,L2, S′

0) as in (43) if and only if it is of the form

Hη =
∑

k,�

αk�π(kb1, �ν1)Hφ, (44)

where Hφ is the linear operator with spreading function φ.

The proof consists of a straight-forward computation which may be spared by
noting that we have, by (15):

Hη = Hα�φ = Hα · Hφ =
∑

k,�

αk�π(kb1, �ν1)Hφ.

As before, we are particularly interested in the situation of the synthesis windows
being given by time-frequency shifted versions of a single window: hj = π(μj )h. In
a next step we note, that under the condition π(λ)π(μj ) = π(μj )π(λ), i.e., μj ∈ �◦,
the MGM with separable multiplier results in a TST spreading function with a Gabor
multiplier as basic operator Hφ .

Lemma 37 Assume that a MGM M with multiplier mj(λ) = m1(λ)m2(j) is given.
If the synthesis windows hj are given by hj = π(μj )h, with μj ∈ �◦, then

M =
∑

j

m2(j)π(μj )M
G
m1;g,h,

i.e., here, the operator Hφ is given by a regular Gabor multiplier with mask m1 and
synthesis window h.
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Remark 38 Comparing the expression in the previous lemma to the expression
M = ∑

λ m1(λ)ρ(λ)Pm for the same operator, we note that in this situation, the op-
erator may either be interpreted as a (weighted) sum of Gabor multipliers or as a
Gabor multiplier with a generalized projection operator Pm in the synthesis process.
In this situation, we may ask, whether the family of generalized projection operators,
{ρ(λ)Pm}λ∈� form a frame or Riesz basis for their linear span. In fact, if m is in
�1 and g,h ∈ S0, this question is easily answered by generalizing the result proved
in [6, Theorem 3.2]. Here, {ρ(λ)Pm}λ∈� is either a Riesz basis or not a frame for
its closed linear span. Furthermore, there exists r > 0 such that {ρ(αλ)Pm}λ∈� is a
Riesz basis for its closed linear span whenever α > r .

In generalizing the result of Lemma 37, it is a natural further step to assume that
the basic function φ entering in the composition of η is the spreading function of a
Gabor multiplier (at least in an approximate sense). According to the discussion of
Sect. 2.4, this essentially means that φ is sufficiently well concentrated in the time-
frequency domain.

(In the sequel we will write πmn for π(mb0, nν0) whenever the applicable lattice
constants are sufficiently clear from the context.)

Hence, we assume that a Gabor multiplier Hφ , as defined in (20) is given. We may
formally compute

Hf =
∑

k,�

αk�πk�

∑

m,n

m(m,n)Vgf (mb0, nν0)π(mb0, nν0)h

=
∑

m,n

m(m,n)Vgf (mb0, nν0)
∑

k,�

αk�π(kb1, �ν1)π(mb0, nν0)h. (45)

Based on this expression, one may pursue two different choices of the sampling-
points (kb1, �ν1). First, in extension of the result given in Lemma 37, we assume
that the sampling points are associated to the adjoint lattice �◦ = 1

ν0
Z × 1

b0
Z of

� = b0Z×ν0Z. The second choice of sampling points on the original lattice leads to a
construction as introduced in [11] as Gabor twisters and will not be further discussed
in the present contribution.

The following theorem extends the result given in Lemma 37 to the case in which
the sampling points in the TST expansion are chosen from a lattice containing the ad-
joint lattice. It turns out that the TST spreading function then leads to a representation
as a sum of Gabor multipliers.

Theorem 39 Let b0, ν0 ∈ R
+ generate the time-frequency lattice �, and let �◦ de-

note the adjoint lattice. Let g,h ∈ S0(R) denote respectively Gabor analysis and syn-
thesis windows, such that the U condition (28) is fulfilled. Let H denote the operator
in (B,H ,B ′) defined by the twisted spline type spreading function η as in (43), with
b1, ν1 ∈ R

+.

1. Assume that b1 and ν1 are multiple of the dual lattice constants. Then H is a
Gabor multiplier, with analysis window g, synthesis window

γ =
∑

k,�

αk�π(kb1, �ν1)h, (46)
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and transfer function

m(m,n) = b0ν0

∫

�◦
M(b, ν)e−2iπ(nν0b−mb0ν) dbdν, (47)

with �◦ the fundamental domain of the adjoint lattice �◦, and

M(b, ν) =
∑∞

k,�=−∞ Vgh(b + k/ν0, ν + �/b0)φ(b + k/ν0, ν + �/b0)∑∞
k,�=−∞ |Vgh(b + k/ν0, ν + �/b0)|2 . (48)

2. Assume that the lattice generated by b1 and ν1 contains the adjoint lattice:

b1 = 1

pν0
, ν1 = 1

qb0
. (49)

Then H may be written as a finite sum of Gabor multipliers

Hf =
p∑

i=1

q∑

j=1

( ∑

m≡i [modp]

∑

n≡j [modq]
m(m,n)Vgf (mb0, nν0)πmn

)
γij , (50)

with at most p · q different synthesis windows γij and the transfer function given
in (47) and (48).

Proof Let us formally compute

Hf =
∑

m,n

m(m,n)Vgf (mb0, nν0)
∑

k,�

αk�π(kb1, �ν1)πmnh

=
∑

m,n

m(m,n)Vgf (mb0, nν0)πmnγmn,

where

γmn =
∑

k,�

αk�e
2iπ[knb0ν1−�mν0b1]π(kb1, �ν1)h.

Now observe that if (b1, ν1) ∈ �◦, one obviously has

γmn =
∑

k,�

αk�π(kb1, �ν1)h = γ00, for (m,n) ∈ Z
2,

i.e. the above expression for Hf involves a single synthesis window γ = γ00. There-
fore, in this case, H takes the form of a standard Gabor multiplier, with fixed time-
frequency transfer function, and a synthesis window prescribed by the coefficients in
the TST expansion. This proves the first part of the theorem.

Let us now assume that the TST expansion of the spreading function is finer than
the one prescribed by the lattice �◦, but nevertheless the lattice �1 = Zb1 × Zν1

contains �◦. In other words, there exist positive integers p,q such that (49) holds.
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We then have

γmn =
∑

k,�

αk�e
2iπ[ knp−lmq

pq
]
π(kb1, �ν1)h (51)

and it is readily seen that there are at most pq different synthesis windows γij ,

γij = γm [modp],n [modq], i = 1, . . . , p; j = 1, . . . , q. (52)

The operator H may hence be written as a sum of Gabor multipliers, with one
prescribed time-frequency transfer function, which is sub-sampled on several sub-
lattices of the lattice �:

�ij = (pb0 · Z + i · b0) × (qν0 · Z + j · ν0), i = 0, . . . , p − 1; j = 0, . . . , q − 1,

and a single synthesis window per sub-lattice as given in (52). The resulting expres-
sion for H is hence as given in (50).

The expression for the transfer function is derived in analogy to the case discussed
in Sect. 2.4. �

Remark 40 Let us observe that in this approximation, the time-frequency transfer
function m is completely characterized by the function φ used in the TST expansion.
The choice of φ therefore imposes a fixed mask for the multipliers that come into
play in (50).

Example 41 We first assume, that for a given primal lattice � = b0Z × ν0Z, the
representation of a spreading function η is given by 5 building blocks:

η(b, ν) =
1∑

k=−1

αk0φ

(
b − k

ν0
, ν

)
+

1∑

�=−1

α0�φ

(
b, ν − �

b0

)
.

In this case, we obtain a single Gabor multiplier with synthesis window

γ00 =
1∑

k=−1

αk0π

(
k

ν0
,0

)
h +

1∑

�=−1

α0�π

(
0,

�

b0

)
h.

If we add the windows φ(b ± 1
2ν0

, ν ± 1
2b0

) to the representation of η, we are now

dealing with the finer lattice � = 1
2ν0

Z × 1
2b0

Z and we obtain the sum of 4 Gabor
multipliers with the following synthesis windows:

γ00 =
1∑

k=−1

αk0π

(
k

2ν0
,0

)
h +

1∑

�=−1

α0�π

(
0,

�

2b0

)
h,

γ01 =
1∑

k=−1

αk0e
πikπ

(
k

2ν0
,0

)
h +

1∑

�=−1

α0�π

(
0,

�

2b0

)
h,
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γ10 =
1∑

k=−1

αk0π

(
k

2ν0
,0

)
h +

1∑

�=−1

eπi�α0�π

(
0,

�

2b0

)
h,

γ11 =
1∑

k=−1

αk0e
πikπ

(
k

2ν0
,0

)
h +

1∑

�=−1

α0�e
−πi�π

(
0,

�

2b0

)
h,

and corresponding lattices: �00 = 2Zb0 × 2Zν0, �01 = 2Zb0 × (2Z + 1)ν0, �10 =
(2Z + 1)b0 × 2Zν0, and �11 = (2Z + 1)b0 × (2Z + 1)ν0.

It is important to note, that in both cases described in Theorem 39 as well as the
above example, the transfer function m can be calculated as the best approximation
by a regular Gabor multiplier—a procedure which may be efficiently realized us-
ing (29). Fast algorithms for this task also exist in the literature, see [16], however,
the algorithm derived from (29) is faster, since only one two-dimensional Fourier-
transform, whose size depends on the fundamental domain of the adjoint lattice, is
necessary. Moreover, our method may easily be adapted to the generalized case ac-
cording to (39).

4 Conclusions and Perspectives

Starting from an operator representation in the continuous time-frequency domain
via a twisted convolution, we have introduced generalizations of conventional time-
frequency multipliers in order to overcome the restrictions of this model in the ap-
proximation of general operators. The model of multiple Gabor multipliers in princi-
ple allows the representation of any given linear operator. However, in oder to achieve
computational efficiency as well as insight in the operator’s characteristics, the para-
meters used in the model must be carefully chosen. An algorithm choosing the op-
timal sampling points for the family of synthesis windows, based on the spreading
function, is the topic of ongoing research. On the other hand, the model of twisted
spline type functions allows the approximation of a given spreading function and re-
sults in an adapted window or family of windows. By refining the sampling lattice in
the TST approximation, a rather wide class of operators should be well-represented.
The practicality of this approach has to be shown in the context of operators of prac-
tical relevance. All the results given in this work will also be applied in the context of
estimation rather than approximation.

As a further step of generalization, frame types other than Gabor frames may be
considered. Surprisingly little is known about wavelet frame multipliers, hence it will
be interesting to generalize the achieved results to the affine group.
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