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Abstract We study norm convergence and summability of Fourier series in the set-
ting of reduced twisted group C∗-algebras of discrete groups. For amenable groups,
Følner nets give the key to Fejér summation. We show that Abel-Poisson summation
holds for a large class of groups, including e.g. all Coxeter groups and all Gromov
hyperbolic groups. As a tool in our presentation, we introduce notions of polynomial
and subexponential H-growth for countable groups w.r.t. proper scale functions, usu-
ally chosen as length functions. These coincide with the classical notions of growth
in the case of amenable groups.
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1 Introduction

Let T be a compact abelian group and G = ̂T denote its dual Letting C(T ), the con-
tinuous complex functions on T , act as multiplication operators on L2(T ), and identi-
fying L2(T ) with �2(G) via Fourier transform, one obtains C∗

r (G), the reduced group
C∗-algebra of G, which is generated by the translation operators λ(g) on �2(G). In
the same way, L∞(T ) corresponds to vN(G), the group von Neumann algebra of G.
In this picture, the uniform norm ‖ ·‖∞ becomes the operator norm ‖ ·‖. Now, C∗

r (G)

and vN(G) make sense for any discrete group G and may then be thought of as
dual objects associated with G. Ever since the pioneering work of Murray and von
Neumann, such group algebras (and their locally compact analogues) have been an
important source of examples in operator algebra theory. More recently, they have
also inspired several concepts, results and conjectures in noncommutative geome-
try, as illustrated in [22, 48, 86]. In many situations (see e.g. [6, 7, 15, 43, 60, 61,
63–65]), it appears to be useful to consider also twisted versions of these algebras,
C∗

r (G,σ ) and vN(G,σ), where σ is a 2-cocycle on G with values in the unit circle
T, the generators being now twisted translation operators �σ (g) acting on �2(G) and
satisfying �σ (g)�σ (h) = σ(g,h)�σ (gh) for all g,h ∈ G. Except in trivial cases,
these twisted algebras are noncommutative, even if G = ̂T is abelian, and can not be
studied by classical methods. A simple, but very popular example is G = Z

N with
σ� : Z

N × Z
N → T given by σ�(x, y) = exp(i xt �y) for some N × N real matrix

�, the resulting C∗
r (G,σ�) being then called a noncommutative N -torus whenever

σ� is not symmetric.
Given any result in harmonic analysis on a compact abelian group T which may be

reformulated as a result about C∗
r (̂T ) (or vN(̂T )), one may wonder whether this result

carries over to C∗
r (G,σ ) (or vN(G,σ)). As our starting point, we consider the basic

problem that the Fourier series of a function f ∈ C(T ) does not necessarily converge
uniformly (to f ). The usual way to remedy for this defect, at least when T = T, is
either to assume that f is C1, or more generally, that ̂f ∈ �1(Z), or to follow ideas of
Abel, Cesaro, Poisson and Fejér, and introduce different kind of summation processes
for Fourier series.

Let us briefly review here these summation processes when T = T, so G = Z. For
each k ∈ Z set ek(z) = zk (z ∈ T), so that for f ∈ C(T), the (formal) Fourier series
of f is given by

∑

k∈Z
̂f (k)ek.

Let (ϕn) be a sequence in �2(Z). For each n ∈ N, set

Mn(f ) :=
∑

k∈Z

ϕn(k) ̂f (k)ek, f ∈ C(T),

this series being clearly absolutely convergent with respect to ‖ · ‖∞. Each Mn is then
a bounded linear map from (C(T),‖ · ‖∞) into itself, satisfying ‖Mn‖ ≤ ‖ϕn‖2.

Elementary analysis shows that Mn(f ) converges uniformly (necessarily to f ) for
all f ∈ C(T) if and only if ϕn → 1 pointwise on Z and supn ‖Mn‖ is finite, in which
case one could say that C(T) has the summation property with respect to (ϕn). The
main difficulty in a concrete situation is to compute the operator norms ‖Mn‖, or
at least to get good estimates for them (the problem being that in cases of interest
‖ϕn‖2 → ∞).
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The usual convergence problem of Fourier series consists of looking at ϕn(k) =
dn(k) := 1 if |k| ≤ n and 0 otherwise, in which case ‖Mn‖ → ∞. In the case of
Fejér summation, one considers instead ϕn(k) = fn(k) := 1 − |k|

n
if |k| ≤ n − 1 and

0 otherwise. Then ‖Mn‖ = 1 for all n, and it follows that the Fourier series of any f

in C(T) is uniformly Fejér summable to f. For Abel-Poisson summation, one picks
a sequence (rn) in the interval (0,1) converging to 1 and considers ϕn(k) = pn(k) :=
r
|k|
n . Alternatively, one can introduce pr(k) = r |k| for r ∈ (0,1) and the associated

operator Mr defined in the obvious way, and let r → 1 as is usually done. (We will use
nets instead of sequences in the sequel to accommodate for such situations.) Again
‖Mn‖ = 1 = ‖Mr‖ for all n and all r , hence the Fourier series of any f in C(T) is
uniformly Abel-Poisson summable to f.

The proofs of these results usually invoke the Fejér kernel Fn (writing Mn(f ) =
Fn ∗f ) and the Poisson kernel Pr (writing Mr(f ) = Pr ∗f ), which have nicer behav-
iour than the Dirichlet kernel Dn. In fact, as they are both non-negative, their Fourier
transforms ̂Fn = fn and ̂Pr = pr are positive definite functions on Z (while ̂Dn = dn

is not), and this sole fact implies that ‖Mn‖ = 1 for all n. This way of establishing
the key property for a summation process is not new (and is also relevant when con-
sidering L1(T) instead of C(T)): see e.g. [35, Sect. 1]. It has the interesting feature
that it generalizes to a broader context.

Consider now some reduced twisted group C∗-algebra A = C∗
r (G,σ ) associated

to a discrete group G. To each element x ∈ A on may naturally define its (formal)
Fourier series

∑

g∈G x̂(g)�σ (g) (see Sect. 2). In this paper, we address the following
problems:

i) giving conditions ensuring that this series converges in operator norm (necessarily
to x).

ii) establishing the existence of summation processes on A.

Concerning i), it is clear that the condition x̂ ∈ �1(G) provides one natural answer.
In classical theory, the degree of smoothness of x is reflected in some stronger decay
condition on x̂, with x ∈ C∞ corresponding to x̂ having rapid decay. Inspired by the
work of P. Jolissaint [54] on groups with the rapid decay property (with respect to
some length function) and its twisted version [16], we illustrate in Sect. 3 how i) may
also be answered by introducing some decay conditions (w.r.t. some weight function
on G), which involve not only the Fourier coefficients of an element, but also G.
To illustrate the applicability of these conditions, we use ideas from U. Haagerup’s
paper [45] and introduce notions of polynomial and subexponential H-growth for a
countable group G. These notions of H-growth are defined w.r.t. to a proper (scale)
function on G, which is commonly taken to be a length function. Instead of using
(the square root of) the cardinality |E| of a finite nonempty subset E of G to mea-
sure growth, we use the “Haagerup content” c(E) of E, which may be defined as
follows:

c(E) = sup
{∥

∥

∥

∑

g∈E

agλ(g)

∥

∥

∥|ag ∈ C (g ∈ E),
∑

g∈E

|ag|2 = 1
}

i.e. c(E) is the norm of the natural embedding of �2(E) into C∗
r (G). This num-

ber satisfies 1 ≤ c(E) ≤ |E|1/2. Moreover, c(E) = |E|1/2 for all E whenever G is
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amenable [72, 79]. Hence, one recovers the usual notions of growth in the case of
amenable groups (and proper length functions). Our main contribution concerning
problem i) may then be summarized as follows:

Theorem 1.1 Let L : G → [0,∞) be a proper function.
If G has polynomial H-growth (w.r.t. L), then there exists some s > 0 such that

the Fourier series of x ∈ C∗
r (G,σ ) converges to x in operator norm whenever

∑

g∈G |̂x(g)|2 (1 + L(g))s < ∞.

If G has subexponential H-growth (w.r.t. L), then the Fourier series of x ∈
C∗

r (G,σ ) converges to x in operator norm whenever there exists some t > 0 such
that

∑

g∈G |̂x(g)|2 exp(tL(g)) < ∞.

To mention just one example here, the first statement in this theorem applies when
G is a free group on n generators and L is the canonical word-length function on G,
in which case one may choose any s > 3.

As an intermediate step before discussing problem ii), we study multipliers on
C∗

r (G,σ ) in Sect. 4, and pay attention to those which transform each element of
C∗

r (G,σ ) into an element having an operator norm convergent Fourier series. These
special multipliers are used to define summation processes in Sect. 5. It has been
known already since the work of G. Zeller-Meier that some analogue of Fejér sum-
mation for Fourier series exists when the group is amenable (cf. [89, Proposition 5.8];
see also [36] for the untwisted case and [88] for G = Z

2 with a twist). The direct ana-
logue of Fejér summation may in fact be obtained in this case after picking a Følner
net in G, the existence of such a net being equivalent to the amenability of the group.
The precise statement is as follows.

Theorem 1.2 Assume that {Fα} is a Følner net of finite subsets for G. Then

∑

g∈Fα ·F−1
α

|gFα ∩ Fα|
|Fα| x̂(g)�σ (g) −→

α
x (in operator norm)

for all x ∈ C∗
r (G,σ ).

If G = Z and σ = 1, then choosing Fn = {0,1, . . . , n − 1} just gives the classical
Fejér summation theorem.

The analogue of Abel-Poisson summation is more troublesome, unless the group
is Z

N for some N ∈ N. In this case, we show the following:

Theorem 1.3 Let p be 1 or 2, and | · | denote the usual p-norm on Z
N . Let r ∈ (0,1).

Then
∑

g∈ZN

r |g| x̂(g)�σ (g) −→
r→1− x (in operator norm)

for all x ∈ C∗
r (ZN,σ ).
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Actually, we also show that the twisted analogue of the Abel-Poisson summation
theorem holds for a large class of groups (see Theorems 5.9 and 5.12): it includes
for example all Coxeter groups [51] and all Gromov hyperbolic groups [42, 44].
All countable groups having the Haagerup property [19] and having subexponential
H-growth (w.r.t. some Haagerup function) are also contained in this class.

On the other hand, the main result of [45] may be interpreted as saying that free
groups have some Fejér-like summation property, involving only finitely supported
multipliers. We conclude this paper by giving some sufficient conditions for this Fejér
property and its twisted versions to hold.

The influence of Haagerup’s seminal paper [45] on our work should be evident.
We have also benefited from many of its follow-ups (like [11, 13, 14, 19, 25, 27, 35,
54, 56, 69]). It should finally be noted that Zeller-Meier’s result for amenable groups
mentioned above is valid in the more general setting of twisted C∗-crossed products
by discrete groups and that a proof of the analogue of Fejér summation for usual
C∗-crossed products by an action of Z is given in [26]. (For more on this, see [5].)

2 Preliminaries

Throughout this article G denotes a discrete group and e its identity element.

2.1 On Twisted Group Operator Algebras

The basic reference on this subject is [89] (see also [73–75]). We give here a short
review. We follow standard terminology and notation in operator algebras, as may be
found for example in [26, 31, 32].

Definition 2.1 A (normalized) 2-cocycle on G with values in T is a map
σ : G × G → T such that

σ(g,h)σ (gh, k) = σ(h, k)σ (g,hk) (g,h, k ∈ G)

σ(g, e) = σ(e, g) = 1 (g ∈ G).

The set of all normalized 2-cocycles will be denoted by Z2(G,T).

Examples of 2-cocycles on Z
N were given in the Introduction. Up to a natural

equivalence (irrelevant for our purposes) they are always of this form [2, 3]. For
other examples, see e.g. [58] (for abelian groups), [71] (for the integer Heisenberg
group), [50] (for Coxeter groups), [63] (for Fuchsian groups).

Projective representations associated with 2-cocycles were first considered by
I. Schur in the case of finite groups and by G. Mackey in the general case (see e.g. [57,
62]).

Definition 2.2 A σ -projective unitary representation U of G on a (non-zero) Hilbert
space H is a map from G into the group U (H) of unitaries on H such that

U(g)U(h) = σ(g,h)U(gh) (g,h ∈ G).
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We then have U(e) = IH (the identity operator on H) and

U(g)∗ = σ(g,g−1)U(g−1), g ∈ G.

Definition 2.3 Let σ ∈ Z2(G,T). The left regular σ -projective unitary representa-
tion �σ of G on �2(G) is defined by

(�σ (g)ξ)(h) = σ(g,g−1h)ξ(g−1h), ξ ∈ �2(G), g,h ∈ G.

Choosing σ to be the trivial 2-cocycle (σ = 1) gives the left regular representation
of G, which we will denote by λ. Some authors prefer a unitarily equivalent definition
of the left regular σ -projective unitary representation of G (and others prefer right
versions), but we have chosen to follow [72].

From now on, we fix σ ∈ Z2(G,T). Letting {δh}h∈G denote the canonical basis of
�2(G), we then have

�σ (g)δh = σ(g,h)δgh, g,h ∈ G,

so, especially, �σ (g)δ = δg , where δ = δe .

Definition 2.4 The reduced twisted group C∗-algebra C∗
r (G,σ ) (resp. the twisted

group von Neumann algebra vN(G,σ)) is the C∗-subalgebra (resp. von Neumann
subalgebra) of B(�2(G)) generated by the set �σ (G), that is, the closure in the oper-
ator norm (resp. weak operator) topology of the ∗-algebra C(G,σ ) = Span(�σ (G)).

Definition 2.5 We let τ denote the linear functional on vN(G,σ) given by

τ(x) = (xδ, δ), x ∈ vN(G,σ).

For x ∈ vN(G,σ), we set ‖x‖2 = τ(x∗x)1/2 and x̂ = xδ ∈ �2(G).

The following fundamental result is well known.

Proposition 2.6 The functional τ is a faithful, tracial state on vN(G,σ) and ‖ · ‖2
is a norm on vN(G,σ).

Moreover, the map x → x̂ is a linear isometry from (vN(G,σ),‖ · ‖2) to
(�2(G),‖ · ‖2), which sends �σ (g) to δg for each g ∈ G.

Definition 2.7 The value x̂(g) ∈ C is called the Fourier coefficient of x ∈ vN(G,σ)

at g ∈ G.

To justify this definition, we first remark that τ corresponds to integration w.r.t.
the normalized Haar measure in the classical case. Hence, we may consider τ as the
normalized “Haar functional” on vN(G,σ). Then we have

x̂(g) = (xδ, δg) = (xδ,�σ (g)δ) = τ(x�σ (g)∗)

for all x ∈ vN(G,σ) and g ∈ G. Further, we also record that

‖x̂‖∞ ≤ ‖x̂‖2 = ‖x‖2 ≤ ‖x‖.
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Definition 2.8 The (formal) Fourier series of x ∈ vN(G,σ) is the series
∑

g∈G

x̂(g)�σ (g).

Note that this series does not necessarily converge in the weak operator topology
(see [66]). However, the following result follows readily from Proposition 2.6.

Proposition 2.9 Let x ∈ vN(G,σ). Then

x =
∑

g∈G

x̂(g)�σ (g) (w.r.t.‖ · ‖2).

The Fourier series representation of x ∈ vN(G,σ) is unique. More generally, the
following holds.

Proposition 2.10 Let ξ : G → C and suppose that the series
∑

g∈G ξ(g)�σ (g) con-

verges to some x ∈ vN(G,σ) w.r.t. ‖ · ‖2. Then ξ ∈ �2(G) and ξ = x̂.

Proof For any finite subset F of G, set aF = ∑

g∈F ξ(g)�σ (g) and let χF denote
the characteristic function of F. Then we have âF = ξχF =: ξF . Now the assumption
says that aF → x w.r.t. ‖ · ‖2, which implies that ξF → x̂ in �2-norm. This implies
that

∑

g∈F |ξ(g)|2 ≤ ‖x̂‖2
2 for all finite subset F of G, hence ξ ∈ �2(G). But then

ξF → ξ in �2-norm and we get x̂ = ξ. �

Definition 2.11 We set

CF(G,σ) :=
{

x ∈ C∗
r (G,σ ) |

∑

g∈G

x̂(g)�σ (g) is convergent in operator norm

}

.

Proposition 2.12 If x ∈ CF(G,σ), then its Fourier series necessarily converges to
x in operator norm.

Proof This follows from Proposition 2.9 and the fact that ‖ · ‖2 ≤ ‖ · ‖. �

Let f ∈ �1(G). The series
∑

g∈G f (g)�σ (g) is clearly absolutely convergent in
operator norm and we shall denote its sum by πσ (f ). Then we have ‖πσ (f )‖ ≤ ‖f ‖1
and

π̂σ (f ) =
(

∑

g∈G

f (g)�σ (g)

)

δ =
∑

g∈G

f (g)δg = f.

Note that in the sequel, we will use the more suggestive notation πλ instead of π1
(since we write λ instead of �1).

Let now x ∈ vN(G,σ) and assume that x̂ ∈ �1(G). Then we get π̂σ (̂x) = x̂, hence
πσ (̂x) = x. Therefore, x ∈ CF(G,σ) and ‖x‖ = ‖πσ (̂x)‖ ≤ ‖x̂‖1.

Summarizing, we get the following.
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Proposition 2.13

{x ∈ vN(G,σ) | x̂ ∈ �1(G)} = πσ (�1(G)) ⊆ CF(G,σ).

Twisted group operator algebras may alternatively be described with the help of
twisted convolution.

Definition 2.14 Let ξ, η ∈ �2(G). The complex function ξ ∗σ η on G given by

(ξ ∗σ η)(h) =
∑

g∈G

ξ(g)σ (g, g−1h)η(g−1h), h ∈ G

is called the σ -convolution product of ξ and η.

As |(ξ ∗σ η)(h)| ≤ (|ξ | ∗ |η|)(h), h ∈ G, it is straightforward to verify that ξ ∗σ η

is a well defined bounded function on G satisfying

‖ξ ∗σ η‖∞ ≤ ‖ |ξ | ∗ |η| ‖∞ ≤ ‖ξ‖2‖η‖2.

Notice also that δa ∗σ δb = σ(a, b)δab, a, b ∈ G.

One can now check that if x ∈ vN(G,σ) and η ∈ �2(G), then xη = x̂ ∗σ η. The
usual properties of convolution carries over to twisted convolution. For example, we
have

Proposition 2.15 Let p ∈ {1,2}, f ∈ �1(G),η ∈ �p(G). Then f ∗σ η ∈ �p(G) and

‖f ∗σ η‖p ≤ ‖f ‖1‖η‖p.

Moreover, the Banach space �1(G) is a Banach ∗-algebra, denoted by �1(G,σ ), with
respect to twisted convolution and involution given by

f ∗(g) = σ(g,g−1) f (g−1), g ∈ G.

As πσ (f )η = f ∗σ η whenever f ∈ �1(G) and η ∈ �2(G), the map πσ : �1(G) →
C∗

r (G,σ ) is easily seen to be a faithful ∗-representation of �1(G,σ ) on �2(G), and
C∗

r (G,σ ) is the closure of πσ (�1(G)) in the operator norm. Moreover, there is a
bijective correspondence U → πU between σ -projective unitary representations of
G and non-degenerate ∗-representations of �1(G,σ ) determined by

πU(f ) =
∑

g∈G

f (g)U(g), f ∈ �1(G),

(the series above being obviously absolutely convergent in operator norm), the inverse
correspondence being given by Uπ(g) = π(δg), g ∈ G. One may then pass to the
enveloping C∗-algebra [31] of �1(G,σ ), which is denoted by C∗(G,σ ) and called
the full twisted group C∗-algebra associated to (G,σ ). When G is amenable, the
extension of πσ to C∗(G,σ ) is faithful [89], and C∗(G,σ ) may then be identified
with C∗

r (G,σ ) via this isomorphism.
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2.2 On Amenability, Haagerup Property and Length Functions

Definition 2.16 The group G is called amenable if there exists a left translation
invariant state on �∞(G).

Amenability of G can be formulated in a huge number of equivalent ways (see
[31, 76, 79, 87]). We will make use of the following characterizations. As usual, a
complex function ϕ on G is called normalized when ϕ(e) = 1.

Theorem 2.17 The group G is amenable if and only if one of the following conditions
holds:

1) G has a Følner net {Fα}, that is, each Fα is a finite non-empty subset of G and we
have

|gFα
Fα|
|Fα| →

α
0 for every g ∈ G. (1)

2) There exists a net {ϕα} of normalized positive definite functions on G with finite
support such that ϕα → 1 pointwise on G.

3) There exists a net {ψα} of normalized positive definite functions in �2(G) such
that ψα → 1 pointwise on G.

4) | ∑

g∈G f (g) | ≤ ‖∑

g∈G f (g)λ(g)‖ for all f ∈ �1(G).

In the sequel, we will write p.d. instead of positive definite. In the same way, we
will write n.d. instead of negative definite (we follow here [8]; n.d. functions are
called conditionally negative definite by some authors).

A weakening of 2) in Theorem 2.17 leads to the following concept (see [19]).

Definition 2.18 The group G is said to have the Haagerup property (or to be a-T-
menable) if there exists a net {ϕα} of normalized p.d. functions vanishing at infinity
on G (that is, ϕα ∈ c0(G) for all α) and converging pointwise to 1.

Clearly, all amenable groups have the Haagerup property. All free groups also have
this property, as first established in [45]. We refer to [19] for other examples, as well
as many characterizations of the Haagerup property. We will need the following one.

Proposition 2.19 Assume that G is countable. Then G has the Haagerup property
if and only if there exists a n.d. function h : G → [0,∞) which is proper, that is,
h−1([0, t]) is finite for all t ≥ 0. We will call such a function h a Haagerup function
on G.

Concerning n.d. functions, we recall the following result of Schoenberg (which is
used to prove Proposition 2.19; see [8, Theorem 2.2] for a more general statement).

Theorem 2.20 A function ψ : G → C is n.d. if and only if e−tψ is p.d. for all t > 0
(equivalently, rψ is p.d. for all 0 < r < 1).



J Fourier Anal Appl (2009) 15: 336–365 345

An interesting class of functions on a group is the class of length functions (see
e.g. [21, 54, 56]).

Definition 2.21 A function L : G → [0,∞) is called a length function if L(e) = 0,
L(g−1) = L(g) and L(gh) ≤ L(g) + L(h) for all g,h ∈ G.

If G acts isometrically on a metric space (X,d) and x0 ∈ X, then L(g) :=
d(g · x0, x0) gives a “geometric” length function on G. (All length functions can
be described in this way.) If G is finitely generated and S is a finite generator set
for G, then the word-length function g → LS(g) (w.r.t. to the letters from S ∪ S−1)
gives a length function on G, which we will call algebraic. All such algebraic length
functions are equivalent in a natural way.

Length functions may be used to define growth conditions. The reader should
consult [30, 54, 76, 87] for more details.

Definition 2.22 Let L be a length function on G. For r ∈ R
+, set

Br,L := {g ∈ G | L(g) ≤ r}. Then one says that
G has polynomial growth (w.r.t. L) if there exist K,p > 0 such that

|Br,L| ≤ K(1 + r)p for all r ∈ R
+,

G has subexponential growth (w.r.t. L) if for any b > 1, there is some r0 ∈ R
+

such that |Br,L| < br for all r ≥ r0.

Definition 2.23 Let G be finitely generated. Then G has polynomial (resp. subex-
ponential) growth if it has polynomial (resp. subexponential) growth w.r.t. some (or,
equivalently, any) algebraic length on G.

Note that if G is finitely generated and has polynomial (resp. subexponential)
growth w.r.t. to some length function L on G, then G has polynomial (resp. subex-
ponential) growth. In addition, we mention:

Theorem 2.24 Let G be finitely generated and let S be a generator set.

1) If G has polynomial growth, then {Bk,LS
}k≥0 is a Følner sequence for G (see [30]).

2) If G has subexponential growth, then there is a subsequence of {Bk,LS
}k≥0 which

is a Følner sequence for G (see [30]).
3) G has polynomial growth if and only if G is almost nilpotent (see [76, 87]).
4) G can have subexponential growth without having polynomial growth (see [76,

87]).

Length functions arise naturally in connection with the Haagerup property.

Proposition 2.25 Let G be countable. Then G has Haagerup property if and only if
it has a Haagerup length function.

Proof Assume that G has the Haagerup property. Let h be a Haagerup function on G

(cf. Theorem 2.19). Then, as h is n.d., L = h1/2 is also n.d. (see [8, Corollary 2.10]).
Further, L is clearly proper. Finally, L is a length function on G: this follows from [8,
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Proposition 3.3] (the standing assumption that G is abelian is not used in the proof
of this proposition). Hence L is a Haagerup length function on G. The converse
implication is trivial. �

In some cases, Haagerup length functions are geometrically given: this happens
for example when G acts isometrically and metrically properly on a tree, or on a
R-tree, [10, 84]. In the case of finitely generated groups, Haagerup length functions
are often algebraically given: this is at least true for free abelian groups [8], free
groups [19, 45] and Coxeter groups [12].

3 Convergence of Fourier Series and Decay Properties

Throughout the rest of this paper, we let σ ∈ Z2(G,T) and denote by K(G) the set
of all complex functions on G having finite support.

Definition 3.1 Let L be a subspace of �2(G) which contains K(G), let ‖ · ‖′ be
a norm on L and ξ ∈ L. When F is finite subset of G, set ξF = ξχF , where χF

denotes the characteristic function of F.

We say that ξ → 0 at infinity w.r.t. ‖ · ‖′ if for every ε > 0, there exists a finite
subset F0 of G such that ‖ξF ‖′ < ε for all finite subsets F of G which are disjoint
from F0.

Definition 3.2 Let L be a subspace of �2(G) which contains K(G). We say that
(G,σ ) has the L-decay property (w.r.t. ‖ · ‖′) if there exists a norm ‖ · ‖′ on L such
that the following two conditions hold:

i) For each ξ ∈ L we have ξ → 0 at infinity w.r.t. ‖ · ‖′.
ii) The map f → πσ (f ) from (K(G),‖ · ‖′) to (C∗

r (G,σ ),‖ · ‖) is bounded.

We will simply say that G has the L-decay property (w.r.t. ‖ · ‖′) if (G,1) has the
L-decay property (w.r.t. ‖ · ‖′).

Due to the following proposition, it is sufficient to establish decay properties only
for G in all natural cases we are aware of.

Proposition 3.3 Assume that G has the L-decay property w.r.t. ‖ · ‖′ and that
‖ |f | ‖′ = ‖f ‖′ for all f ∈ K(G). Then (G,σ ) has the L-decay property w.r.t. ‖ · ‖′.

Proof Let C > 0 be the norm of the map f → πλ(f ) from (K(G),‖ · ‖′) to
(C∗

r (G),‖ · ‖). Let f ∈ K(G) and η ∈ �2(G). Then

‖πσ (f )η‖2 = ‖f ∗σ η‖2 ≤ ‖ |f | ∗ |η| ‖2 = ‖πλ(|f |)|η| ‖2

≤ C‖ |f | ‖′ ‖ |η| ‖2 = C‖f ‖′ ‖η‖2.

Hence, we have ‖πσ (f )‖ ≤ C‖f ‖′ for all f ∈ K(G). As the first condition in Defin-
ition 3.2 is independent of σ, the assertion follows. �
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The above proposition has previously been established by I. Chatterji [16] (in a
special situation).

Lemma 3.4 Assume that (G,σ ) has the L-decay property w.r.t. ‖ · ‖′.
Let ξ ∈ L. Then the series

∑

g∈G ξ(g)�σ (g) converges in operator norm to some
a ∈ C∗

r (G,σ ) satisfying â = ξ. We will denote this a by π̃σ (ξ).

Letting π̃σ : L → C∗
r (G,σ ) denote the associated map, we then have

π̃σ (L) ⊆ CF(G,σ).

Proof Using that ii) holds, we get that there exists C > 0 such that
∥

∥

∥

∥

∑

g∈F

ξ(g)�σ (g)

∥

∥

∥

∥

= ‖πσ (ξF )‖ ≤ C‖ξF ‖′

for any finite subset F of G. Now, using that i) holds, we deduce then immediately
that the net {∑g∈F ξ(g)�σ (g)}F , indexed over the finite subsets of G ordered by
inclusion, satisfies the Cauchy criterion [33, 9.1.6] w.r.t. operator norm. Hence this
net converges in operator norm to some a ∈ C∗

r (G,σ ). But then it also converges to a

w.r.t. ‖ · ‖2, hence we have â = ξ by Proposition 2.10, as desired. The last statement
follows immediately. �

Theorem 3.5 Assume that (G,σ ) has the L-decay property w.r.t. ‖·‖′. Set
L∨(G,σ ) = {x ∈ vN(G,σ) | x̂ ∈ L}. Then

L∨(G,σ ) = π̃σ (L) ⊆ CF(G,σ).

Proof Let x ∈ L∨(G,σ ). From Lemma 3.4 (with ξ = x̂), we get that the Fourier

series of x converges in operator norm to π̃σ (̂x) ∈ C∗
r (G,σ ) and that ̂̃πσ (̂x) = x̂.

By uniqueness, this implies that π̃σ (̂x) = x. Thus we have shown that L∨(G,σ ) ⊆
π̃σ (L). We also know that π̃σ (L) ⊆ CF(G,σ) from Lemma 3.4.

Finally, if x ∈ π̃σ (L), so x = π̃σ (ξ) for some ξ ∈ L, then Lemma 3.4 says that
x̂ = ξ ∈ L. Hence, π̃σ (L) ⊆ L∨(G,σ ). �

It is almost immediate that (G,σ ) has the �1(G)-decay property w.r.t. ‖ · ‖1. Any-
how, we already saw in Sect. 2 that the assertions in Lemma 3.4 and Theorem 3.5
hold when L = �1(G).

As another source of examples, we shall now consider weighted spaces. We estab-
lish first some notation.

Let κ : G → [1,∞),1 ≤ p ≤ ∞ and define

Lp
κ = {ξ : G → C | ξκ ∈ �p(G)} ⊆ �p(G),

which becomes a Banach space w.r.t. the norm ‖ξ‖p,κ = ‖ξκ‖p . Clearly, Lp
κ ⊆ Lq

κ

and ‖·‖q,κ ≤ ‖·‖p,κ whenever 1 ≤ p ≤ q ≤ ∞, while Lp
γ ⊆ Lp

κ and ‖·‖p,κ ≤ ‖·‖p,γ

whenever γ : G → [1,∞) is such that κ ≤ γ.

Definition 3.6 We say that (G,σ ) (resp. G) is κ-decaying if (G,σ ) (resp. G) has the
L2

κ -decay property w.r.t. ‖ · ‖2,κ .
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Proposition 3.7

1) G is κ-decaying if and only if the linear map f → πλ(f ) from (K(G),‖ · ‖2,κ ) to
(C∗

r (G),‖ · ‖) is bounded. The norm of this map will then be called the κ-decay
constant of G.

2) Assume that G is κ-decaying. Then (G,σ ) is κ-decaying and we have

{x ∈ vN(G,σ) | x̂ ∈ L2
κ} = π̃σ (L2

κ ) ⊆ CF(G,σ).

Proof

1) The fact that L2
κ satisfies condition i) in Definition 3.2 w.r.t. ‖ · ‖2,κ is elementary

classical analysis.
2) As ‖ |f | ‖2,κ = ‖f ‖2,κ for all f ∈ K(G), the first assertion follows from Proposi-

tion 3.3. The second is then a consequence of Theorem 3.5.
�

Example 3.8 Assume that G is countable and κ satisfies condition (IS), by which we
mean that κ−1 ∈ �2(G).

Then the Cauchy-Schwarz inequality immediately gives that L2
κ ⊆ �1(G) and

‖f ‖1 ≤ ‖κ−1‖2 ‖f ‖2,κ , f ∈ L2
κ . As ‖πλ(f )‖ ≤ ‖f ‖1 for all f ∈ K(G), we get

‖πλ(f )‖ ≤ ‖κ−1‖2 ‖f ‖2,κ , f ∈ K(G).

Hence, G is κ-decaying (with decay constant at most ‖κ−1‖2). However, note that
in such a case, the conclusion of Proposition 3.7, part 2), brings nothing new as
πσ (L2

κ ) ⊆ πσ (�1(G)).

More concretely, assume that G is finitely generated and let L denote any algebraic
length function on G. For t > 0, set κt = exp(tL2). Then κt satisfies (IS) (see e.g.
the proof of [21, Proposition 24]). One may also consider γa = aL, a > 1. Then γa

is easily seen to satisfy (IS) for all a > 1 whenever G has subexponential growth.
Hence, G is γa-decaying for all a > 1 in this case. As we will see later in this section,
the same conclusion can still be drawn for many nonamenable groups.

The case κL,s = (1 + L)s where L is a length function and s > 0 has received a
lot of attention in connection with the rapid decay property for groups, introduced
in [54]. Using our terminology, G has the RD-property (w.r.t. a length function L) if
and only if there exists some s0 > 0 such that G is κL,s0 -decaying. Note that when G

is amenable, G has the RD-property (w.r.t. L) if and only if G has polynomial growth
(w.r.t. L) (see [54, Corollary 3.1.8] and [17, 86]). When G is finitely generated, one
just talks about the RD-property, having in mind that L is then chosen to be any
algebraic length function on G.

Much of the interest around the RD-property is due to the following: when G

has the RD-property (w.r.t. L), then the canonical image of the Fréchet space H∞
L =

⋂

s>0 L2
κL,s

(w.r.t. the obvious family of seminorms), which is thought as representing
a space of “smooth” functions on the “dual” of G, is a dense spectral (= inverse-
closed) ∗-subalgebra of C∗

r (G). For more about this and the RD-property, see e.g.
[16–18, 53, 55, 56, 61, 86] and references therein. See also the end of this section.
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Let now L denote the usual word-length function on a free group Fn. It follows
from [45] (see also [54, 86]) that Fn is κL,2-decaying, hence Fn has the RD-property.
This may be seen as a consequence of the fact that Fn has “polynomial H-growth”.
To explain this, we begin with a fundamental lemma.

Lemma 3.9 Let E be a non-empty finite subset of G. Define

c(E) = sup{‖πλ(f )‖ | f ∈ K(G), supp(f ) ⊆ E,‖f ‖2 = 1}.
Then 1 ≤ c(E) ≤ |E|1/2.

If G is amenable, then c(E) = |E|1/2.

Proof Note first that if a ∈ E, then ‖δa‖2 = 1 and ‖πλ(δa)‖ = ‖λ(a)‖ = 1. Hence
c(E) ≥ 1.

Next, we have

‖π1(f )‖ ≤ ‖f ‖1 =
∑

g∈E

|f (g)| ≤ |E|1/2
(

∑

g∈E

|f (g)|2
)1/2

= |E|1/2‖f ‖2

for every f ∈ K(G) with supp(f ) ⊆ E. So c(E) ≤ |E|1/2.

Finally, assume that G is amenable. Set f = (1/|E|1/2)χE. Then we have ‖f ‖2 =
1 and |E|1/2 = ‖f ‖1 = ‖πλ(f )‖ (cf. Theorem 2.17, part 4). Hence we get |E|1/2 ≤
c(E) and the last assertion follows. �

Obviously, c(E) is what we called the Haagerup content of E in the Introduction.
We leave to the reader to check that c(E) ≤ c(F ) whenever E ⊆ F and c(E ∪ F) ≤
c(E) + c(F ) whenever E and F are pairwise disjoint (E,F being finite nonempty
subsets of G).

The computation of c(E), or just finding an upper bound for it better than |E|1/2

when G is nonamenable, appears to be quite challenging in general. It has been dealt
with in some special cases (e.g. [1, 20, 38, 40, 41, 45, 56, 59]), often in connection
with the related problem of estimating the norm ‖πλ(f )‖ for f ∈ K(G) (especially
when f = χE).

We can now measure “H-growth” instead of growth by using the Haagerup content
instead of the square root of cardinality for finite subsets of G.

Definition 3.10 Let G be countable and L : G → [0,∞) be proper. Set
Br,L := {g ∈ G |L(g) ≤ r} for each r ∈ R

+. Then we say that
G has polynomial H-growth (w.r.t. L) if there exist K,p > 0 such that

c(Br,L) ≤ K(1 + r)p for all r ∈ R
+.

Further, we say that G has subexponential H-growth (w.r.t. L) if for any b > 1,

there exists some r0 ∈ R
+ such that c(Br,L) < br whenever r ≥ r0.

It is clear from Lemma 3.9 that when G is amenable and L is a proper length
function on G, then polynomial (resp. subexponential) H-growth (w.r.t. L) reduces to
polynomial (resp. subexponential) growth (w.r.t. L).
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Using the properties of the Haagerup content mentioned above, one checks with-
out trouble the following useful lemma.

Lemma 3.11 Let G be countable and L : G → [0,∞) be proper. For each k ∈ Z,

k ≥ 0, set Ak,L = {g ∈ G |k ≤ L(g) < k + 1} and CL(k) = c(Ak,L) if Ak,L is non-
empty, CL(k) = 0 otherwise.

Then G has polynomial H-growth if and only if there exist constants K,p > 0
such that CL(k) ≤ K(1 + k)p for all k ≥ 0.

Further, G has subexponential H-growth if and only if for any b > 1, there exists
some k0 ∈ N such that CL(k) < bk whenever k ≥ k0.

Example 3.12 Using Lemma 3.11, a careful look into the existing literature provides
us with many examples of (nonamenable) groups having polynomial H-growth.

1) Let G = Fn, n < ∞, denote a free group and let L denote the natural algebraic
length on G. Then we have CL(k) ≤ k+1 for all k ≥ 0 (see [45] for n = 2 and [86]
for a nice geometric proof of the general case due to T. Steger). Hence G has
polynomial H-growth (w.r.t. L).

2) More generally, let G denote a Gromov hyperbolic group [42, 44] and let L denote
some algebraic length on G. Then G has polynomial H-growth (w.r.t. L). This
may be deduced from [29, 54] (see also [70] and [22]): in the course of the proof
that G has the RD property, it is implicitely shown that there exists a constant
K > 0 such that CL(k) ≤ K(1 + k) for all k ≥ 0.

3) Let (G,S) denote a Coxeter group [51] and let L denote the word-length on G

(w.r.t. S). Then CL(k) ≤ K(1 + k)
3
2 P for some K > 0 and P ∈ N, see [38]. Hence

G has polynomial H-growth (w.r.t. L). Note that G is nonamenable whenever it
is neither finite nor affine [28].

4) Let G = G1 ∗A G2 be an amalgamated free product of groups and let L denote
the “block” length on G induced by some integer-valued length functions Lj on
Gj satisfying Lj = 0 on A, j = 1,2, (cf. [10, 78]). If A is finite and each Gj

has polynomial H -growth (w.r.t. Lj ), j = 1,2, then, adapting the proof of [54,
Theorem 2.2.2(1)], one can deduce that G has polynomial H-growth (w.r.t. L).

To produce an example of a nonamenable group G which has subexponential, but
not polynomial, H-growth (w.r.t. a length function L), one may proceed as follows.
Pick any finitely generated group � which has subexponential, but not polynomial
growth, and let L1 denote some word-length function on �. Then set G := � × F2
and let L be defined on G by L(g1, g2) = L1(g1) + L2(g2), L2 denoting the usual
word-length function on F2.

Our interest in H-growth lies in the following.

Theorem 3.13 Let G be countably infinite and L : G → [0,∞) be proper.

1) Assume that G has polynomial H-growth (w.r.t. L). Then there exist some s0 > 0
such that (G,σ ) is (1 + L)s0 -decaying. Especially, if L is a length function, then
G has the σ -twisted RD-property (w.r.t. L).

2) Assume that G has subexponential H-growth (w.r.t. L). Then (G,σ ) is aL-
decaying for all a > 1.
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To prove this theorem, we will use the following.

Lemma 3.14 Assume that G is countably infinite and let {Ej }∞j=0 be a partition of
G into finite nonempty subsets.

Set cj = c(Ej ), j ≥ 0. Pick dj ≥ 1 for each j ≥ 0 such that
∑∞

j=0(
cj

dj
)2 < ∞.

Define κ : G → [1,∞) by κ = ∑∞
j=0 djχEj

.

Then G is κ-decaying.

Proof Set χj = χEj
, j ≥ 0. For f ∈ K(G), we have

‖πλ(f )‖ =
∥

∥

∥

∥

∥

∞
∑

j=0

πλ(f χj )

∥

∥

∥

∥

∥

≤
∞
∑

j=0

‖πλ(f χj )‖

≤
∞
∑

j=0

cj‖f χj‖2 =
∞
∑

j=0

cj

dj

dj‖f χj‖2

≤
( ∞

∑

j=0

( cj

dj

)2
)1/2( ∞

∑

j=0

d2
j ‖f χj‖2

2

)1/2

= C‖f ‖2,κ ,

where C = (
∑∞

j=0(
cj

dj
)2)1/2. Hence G is κ-decaying. �

Note that if one also assumes that G is amenable in this lemma, then one realizes
easily that κ satisfies (IS), so that the assertion is essentially trivial in this case (cf.
Example 3.8).

Proof of Theorem 3.13. For each k ≥ 0, let Ak,L and CL(k) be defined as in
Lemma 3.11.

Define I = {k ∈ N ∪ {0} |Ak,L is nonempty} and let {kj }∞j=0 denote an enumera-
tion of the elements of I, listed in strictly increasing order. Note that kj ≥ j for all j .
Further, for j ≥ 0, set Ej = Akj ,L. Then the family {Ej }j≥0 is a partition of G in
finite nonempty subsets.

For j ≥ 0, set cj = c(Ej ), i.e. cj = CL(kj ).

We will now prove the first assertion. Using Lemma 3.11, we assume therefore
that there exist K,p > 0 such that CL(k) ≤ K(1 + k)p for all k ≥ 0. Choose s0 > 0
such that s0 > p + 1

2 .

Then we have

∞
∑

j=0

( cj

(1 + kj )s0

)2 ≤
∞
∑

j=0

K2
( (1 + kj )

p

(1 + kj )s0

)2 = K2
∞
∑

j=0

1

(1 + kj )2(s0−p)

≤ K2
∞
∑

j=0

1

(1 + j)2(s0−p)
< ∞

as 2(s0 − p) > 1.
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Hence, defining κ : G → [1,∞) by κ = ∑∞
j=0(1 + kj )

s0χEj
, we get from

Lemma 3.14 that G is κ-decaying. Now, as κ ≤ (1 + L)s0, this implies that G is
(1 + L)s0 -decaying. Assertion 1) then follows from Proposition 3.7.

Next, assume that G has subexponential H-growth (w.r.t. L) and let a > 1. Using
Lemma 3.11 we choose b > 1 such that b < a, and j0 ∈ N such that CL(j) < bj

whenever j ≥ j0.

Then we have

∞
∑

j=j0

( cj

akj

)2 ≤
∞
∑

j=j0

(bkj

akj

)2 =
∞
∑

j=j0

(b2

a2

)kj ≤
∞
∑

k=kj0

(b2

a2

)k

< ∞

as b2/a2 < 1.

Hence, defining γ : G → [1,∞) by γ = ∑∞
j=0 akj χEj

, we get from Lemma 3.14

that G is γ -decaying. Now, as γ ≤ aL, this implies that G is aL-decaying. Asser-
tion 2) then follows from Proposition 3.7. �

We may now prove Theorem 1.1 stated in the Introduction.

Theorem 3.15 Let L : G → [0,∞) be a proper function.
If G has polynomial H-growth (w.r.t. L), then there exists some s > 0 such that

the Fourier series of x ∈ C∗
r (G,σ ) converges to x in operator norm whenever

∑

g∈G |̂x(g)|2 (1 + L(g))s < ∞.

If G has subexponential H-growth (w.r.t. L), then the Fourier series of x ∈
C∗

r (G,σ ) converges to x in operator norm whenever there exists some t > 0 such
that

∑

g∈G |̂x(g)|2 exp(tL(g)) < ∞.

Proof It suffices to combine Theorem 3.13 with Proposition 3.7, part 2). �

Example 3.16 Let G be any of the groups listed in Example 3.12, equipped with
the length function L introduced there. As G has polynomial H-growth (w.r.t. L), it
follows from Theorem 3.13 that G has the σ -twisted RD-property (w.r.t. L), and also
that (G,σ ) is aL-decaying for all a > 1.

We conclude this section with some remarks on the interesting class of weight
functions κ satisfying

κ(e) = 1, κ(g−1) = κ(g), κ(gh) ≤ κ(g)κ(h)

for all g,h ∈ G. Such functions are called “absolute values” in [8], and just “weights”
in [39, 83], so we will call them absolute weights here. Note that κs, s > 0 is then
also an absolute weight. If L is a length function on G, then (1 + L)s, s > 0 and
aL, a > 1 are all examples of such absolute weight functions. Conversely, if κ is an
absolute weight function, then loga(κ) is a length function for any a > 1.

Absolute weights are related to certain norms on K(G). If N is a norm on
K(G) satisfying N(δe) = 1,N(ξ∗) = N(ξ), and N(ξ ∗σ η) ≤ N(ξ)N(η) for all
ξ, η ∈ K(G), that is, N is a ∗-algebra norm on K(G) (w.r.t. σ -twisted convolution
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and involution), then κN(g) := N(δg) gives an absolute weight on G. Conversely,
one may show (using the first inequality in the next paragraph) that if κ is an ab-
solute weight on G, then Nκ := ‖ · ‖1,κ gives a norm on K(G) satisfying the above
properties (for any σ ).

Now, fix an absolute weight κ on G. For ξ, η ∈ L2
κ , it is an easy exercise to verify

that

|(ξ ∗σ η)κ| ≤ |ξκ| ∗ |ηκ|.
This implies that

‖ξ ∗σ η‖1,κ ≤ ‖ξ‖1,κ‖η‖1,κ

whenever ξ, η ∈ L1
κ . It follows that L1

κ becomes a Banach ∗-algebra w.r.t. σ -twisted
convolution and involution. The problem of determining under which conditions it
becomes symmetric as a Banach ∗-algebra has recently been studied G is of polyno-
mial growth (see e.g. [39, 43]).

One may also consider H∞
κ (G) := ⋂

s>0 L2
κs , which becomes a Fréchet space

(w.r.t. the obvious family of seminorms) and contains K(G). If G is κ-decaying with
decay constant C, then we have

‖ξ ∗σ η‖2,κ ≤ C‖ξ‖2,κ2‖η‖2,κ

whenever ξ ∈ L2
κ2, η ∈ L2

κ . Indeed, when ξκ ∈ L2
κ , we have

‖ξ ∗σ η‖2,κ ≤ ‖|ξκ| ∗ |ηκ|‖2 ≤ ‖π̃λ(ξκ)‖‖ηκ‖2 ≤ C‖ξκ‖2,κ‖η‖2,κ

= C‖ξ‖2,κ2‖η‖2,κ .

Assume now that G is κs0 -decaying for some s0 > 0. Then one deduces from the
above inequality (by considering ξ, η ∈ H∞

κ (G) and replacing κ with κs for s ≥ s0)
that H∞

κ (G) becomes a ∗-algebra under twisted convolution and involution, hence
that π̃σ (H∞

κ (G)) is a (dense) ∗-subalgebra of C∗
r (G,σ ). If κ = 1+L for some length

function L on G, then our assumption just says that G has property RD w.r.t. L, and
π̃σ (H∞

κ (G)) is then a spectral subalgebra of C∗
r (G,σ ) (see [16] and also [61]), as

mentioned earlier in this section in the untwisted case. It is not unlikely that this might
be generalized to more general weights.

4 Twisted Multipliers

In [45, Definition 1.6] Haagerup introduces the concept of a function which multiplies
C∗

r (G) into itself. The twisted analogue, which we will need in our discussion of
summation processes in the next section, is as follows.

Definition 4.1 Let ϕ be a complex function on G. Consider the linear map Mϕ :
C(G,σ ) → C(G,σ ) given by

Mϕ(πσ (f )) = πσ (ϕf ), f ∈ K(G).
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We say that ϕ is a σ -multiplier if Mϕ is bounded w.r.t. the operator norm on C(G,σ ),
in which case we also denote by Mϕ the (unique) extension of Mϕ to a bounded linear
map from C∗

r (G,σ ) into itself. Note that Mϕ is then uniquely determined by

Mϕ(�σ (g)) = ϕ(g)�σ (g), g ∈ G.

We denote by MA(G,σ) the set of all σ -multipliers on G. Clearly MA(G,σ) is a
subspace of �∞(G) containing K(G). We set MA(G) = MA(G,1), in accordance
with the existing literature.

Adapting the arguments of Haagerup-de Cannière given in the proof of [27, Propo-
sition 1.2], one can show the following result.

Proposition 4.2 Let ϕ be a complex function on G. Then ϕ ∈ MA(G,σ) if and only
if there exists a (unique) normal operator M̃ϕ from vN(G,σ) to vN(G,σ) such that

M̃ϕ(�σ (g)) = ϕ(g)�σ (g), g ∈ G,

in which case we have ‖Mϕ‖ = ‖M̃ϕ‖.
Further, MA(G,σ) is a Banach space w.r.t. the norm |||ϕ||| := ‖Mϕ‖.

While one implication in the first statement above is trivially true, the converse
requires some work. As we won’t need this result in the sequel, we skip the details.
Note however that in the course of the proof, one identifies the predual of vN(G,σ)

with a certain space A(G,σ) of functions on G, corresponding to the Fourier algebra
in the untwisted case (cf. [37]), and establishes that MA(G,σ) multiplies A(G,σ)

into itself. This explains the terminology and the notation.
Still following Haagerup-de Cannière [27], one may also introduce the twisted

analogue of their concept of completely bounded multipliers:

M0A(G,σ) := {ϕ ∈ MA(G,σ) | Mϕ is a completely bounded map}
and equip this space with the norm ‖ϕ‖cb = ‖Mϕ‖cb. Concerning completely
bounded maps between C∗-algebras, we refer to [77, 80]. We set M0A(G) =
M0A(G,1).

The existence of completely bounded multipliers is well known in the un-
twisted case. Letting P(G) denote the cone of all p.d. functions on G and B(G) =
Span(P (G)) be the Fourier-Stieltjes algebra of G, then we have for example B(G) ⊆
M0A(G) (see [23, 27, 45, 80]). We recall that B(G) consists of all the matrix co-
efficients of the unitary representations of G and that it may be identified with
the dual space of C∗(G). The norm of ϕ ∈ B(G) as an element of the dual of
C∗(G) being denoted by ‖ϕ‖, one has |||ϕ||| ≤ ‖ϕ‖cb ≤ ‖ϕ‖. If ϕ ∈ P(G), then
|||ϕ||| = ‖ϕ‖ = ϕ(e). Note also that G is amenable if and only if B(G) = MA(G), if
and only if B(G) = M0A(G) (see [9, 67]).

Completely bounded multipliers are closely related to (Herz-)Schur multipliers
(see [11, 80]). We recall that a kernel K : G × G → C is called a Schur multiplier
on B(�2(G)) if for every A ∈ B(�2(G)) with associated matrix [A(s, t)] w.r.t. to the
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canonical basis of �2(G), the matrix [K(s, t)A(s, t)] also represents a bounded oper-
ator on �2(G), denoted by SK(A). When K is a Schur multiplier, then the associated
linear operator SK from B(�2(G)) into itself is necessarily bounded. Moreover, SK

is then completely bounded, with ‖SK‖cb = ‖SK‖ (see [80, Theorem 5.1]).
Let now ϕ : G → C and Kϕ be the kernel on G × G given by Kϕ(s, t) = ϕ(st−1).

Then ϕ ∈ M0A(G) if and only if Kϕ is a Schur multiplier, in which case we have
‖ϕ‖cb = ‖SKϕ‖ (see [11] and [80, Theorem 6.4]). In fact, we will show below that
ϕ ∈ M0A(G,σ) may be characterized in the same way. Especially, we have:

Proposition 4.3 M0A(G,σ) = M0A(G) (and the cb-norm of ϕ ∈ M0A(G,σ) is in-
dependent of σ ).

Proof Let ϕ : G → C. As explained above, it is enough to show that ϕ ∈ M0A(G,σ)

if and only if Kϕ is a Schur multiplier, and that in this case we have ‖ϕ‖cb = ‖SKϕ‖.
Let Kϕ be a Schur multiplier. Then one computes that

[SKϕ (�σ (g))(s, t)] = [ϕ(st−1)σ (st−1, t)δg(st
−1)] = [Mϕ(�σ (g))(s, t)]

for all g, s, t ∈ G. It follows that the restriction of SKϕ to C(G,σ ) is equal to Mϕ .
Especially, this means that Mϕ has a bounded extension to C∗

r (G,σ ), hence that
ϕ ∈ MA(G,σ). Moreover, as SKϕ is completely bounded, Mϕ is then also completely
bounded, and ‖ϕ‖cb = ‖Mϕ‖cb ≤ ‖SKϕ‖cb = ‖SKϕ‖.

Conversely, assume that ϕ ∈ M0A(G,σ). From the fundamental factorization
theorem for c.b. maps (see [77, 80]), there exist a Hilbert space H, a unital
∗-homomorphism π from B(H) into itself, and operators T1 and T2 from �2(G) into

H with ‖T1‖‖T2‖ ≤ ‖ϕ‖cb, such that Mϕ(x) = T ∗
2 π(x)T1 for all x ∈ C∗

r (G,σ ). Then

ϕ(st−1) = ϕ(st−1) (δs, δs) = ϕ(st−1) (σ (st−1, t)�σ (st−1)δt , δs)

= σ(st−1, t) (Mϕ(�σ (st−1))δt , δs) = σ(st−1, t) (T ∗
2 π(�σ (st−1))T1δt , δs)

= σ(st−1, t) (σ (s, t−1)π(�σ (s))π(�σ (t−1))T1δt , T2δs)

= σ(s, t−1)σ (st−1, t) (π(�σ (t−1))T1δt ,π(�σ (s))∗T2δs)

= σ(t−1, t)σ (s, e) (π(�σ (t−1))T1δt ,π(�σ (s))∗T2δs)

= (π(�σ (t))∗T1δt ,π(�σ (s))∗T2δs)

for all s, t ∈ G. Hence, setting ηj (s) = π(�σ (s))∗Tj δs ∈ H for j = 1,2, we get
ϕ(st−1) = (η1(t), η2(s)) for all s, t ∈ G, and

sup
s∈G

‖η1(s)‖ sup
s∈G

‖η2(s)‖ ≤ ‖T1‖‖T2‖ ≤ ‖ϕ‖cb.

From Grothendieck’s theorem [80, Theorem 5.1], we then deduce that Kϕ is a Schur
multiplier satisfying ‖SKϕ‖ ≤ ‖ϕ‖cb . Altogether, the assertion clearly follows. �

We don’t know whether the equality MA(G,σ) = MA(G) always holds.
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Corollary 4.4 We have P(G) ⊆ B(G) ⊆ M0A(G,σ). If ϕ ∈ P(G), then we have
|||ϕ||| = ‖ϕ‖cb = ϕ(e).

Proof This follows from Proposition 4.3 and the facts recalled before its statement.
As we will use the last statement several times in the sequel, we also give a direct
proof. Let ϕ ∈ P(G). Then write ϕ(·) = (V (·)η, η) for some unitary representation
V of G on a Hilbert space H and some η ∈ H. Let W be the unitary operator on
�2(G) ⊗ H ∼= �2(G, H) given by

(Wψ)(g) = V (g)ψ(g), g ∈ G,ψ ∈ �2(G, H).

Then one computes that W ∗(�σ (g) ⊗ V (g))W = �σ (g) ⊗ IH for all g ∈ G. This is
the twisted version (cf. [4, Proposition 2.2]) of usual Fell’s absorbing property [31,
13.1.3].

Next, let T : �2(G) → �2(G) ⊗ H be given by T (ξ) = ξ ⊗ η. Then T is linear,
bounded and T ∗(ξ ′ ⊗ η′) = (η′, η)ξ ′.

Now, define M : C∗
r (G,σ ) → B(�2(G)) by

M(x) = T ∗W(x ⊗ IH)W ∗T .

Then M is a completely positive map (see [77]) and

(∗) ‖M‖ = ‖M‖cb = ‖M(I)‖ = ‖T ∗T ‖ = ‖η‖2 = ϕ(e).

Furthermore, for g ∈ G,ξ ∈ �2(G), we have

M(�σ (g))ξ = T ∗W(�σ (g) ⊗ IH)W ∗T ξ = T ∗(�σ (g)ξ ⊗ V (g)η)

= (V (g)η, η)�σ (g)ξ = ϕ(g)�σ (g)ξ.

Hence, it follows that M is a c.b. extension of Mϕ and the last statement follows
from (∗). �

Remark 4.5 �2(G) ⊆ M0A(G,σ) (with ‖ϕ‖cb ≤ ‖ϕ‖2). This is easy to see directly,
but also follows from Proposition 4.3 (as �2(G) ⊆ B(G)).

Now, to prepare for our study of summation processes in the next section, consider
ϕ ∈ MA(G,σ) and x ∈ C∗

r (G,σ ). Then M̂ϕ(x) = ϕx̂.
Indeed, if x ∈ C(G,σ ), this is trivial; otherwise the statement follows

immediately from a density argument. Hence, the Fourier series of Mϕ(x) is
∑

g∈G ϕ(g)̂x(g)�σ (g). This series does not necessarily converge in operator norm,

but if for example ϕ ∈ �2(G), then it does, since ϕx̂ ∈ �1(G). This motivates the
following definition.

Definition 4.6 We let MCF(G,σ) denote the set of all complex functions ϕ : G →
C such that the series

∑

g∈G ϕ(g)̂x(g)�σ (g) converges in operator norm for all x ∈
C∗

r (G,σ ).
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At least, we know that �2(G) ⊆ MCF(G,σ). Further, we have the following.

Proposition 4.7 MCF(G,σ) ⊆ MA(G,σ). Moreover,

MCF(G,σ) = {ϕ ∈ MA(G,σ) |Mϕ maps C∗
r (G,σ ) into CF(G,σ)}

and if ϕ ∈ MCF(G,σ), then
∑

g∈G ϕ(g)̂x(g)�σ (g) converges to Mϕ(x) in operator
norm for all x ∈ C∗

r (G,σ ).

Proof Let ϕ ∈ MCF(G,σ). Define a linear map M ′
ϕ : C∗

r (G,σ ) → C∗
r (G,σ ) by

M ′
ϕ(x) =

∑

g∈G

ϕ(g)̂x(g)�σ (g).

Using the closed graph theorem, one gets that M ′
ϕ is bounded. Indeed, assume xn → x

and M ′
ϕ(xn) → y in C∗

r (G,σ ). Then M̂ ′
ϕ(xn) = ϕx̂n → ϕx̂ = M̂ ′

ϕ(x) pointwise on G

and also M̂ ′
ϕ(xn) → ŷ pointwise on G. Hence, M̂ ′

ϕ(x) = ŷ, so M ′
ϕ(x) = y, as desired.

As M ′
ϕ(�σ (g)) = ϕ(g)�σ (g) for all g ∈ G, this implies that M ′

ϕ is a bounded ex-
tension of Mϕ from C(G,σ ) to C∗

r (G,σ ). Hence ϕ ∈ MA(G,σ), and the first state-

ment is proven. As M̂ϕ(x) = ϕx̂ for all x ∈ C∗
r (G,σ ), the last assertion follows. �

Inspired by [45, Lemma 1.7], we can produce other examples of multipliers in
MCF(G,σ).

Proposition 4.8 Let G be κ-decaying with decay constant C.

Let ψ ∈ L∞
κ and set K = ‖ψ‖∞,κ . Then ψ ∈ MCF(G,σ) with |||ψ ||| ≤ CK .

Proof From Proposition 3.7 we know that (G,σ ) is κ-decaying. Moreover, from the
proof of Proposition 3.3, we see that ‖πσ (f )‖ ≤ C‖f ‖2,κ for all f ∈ K(G), where
C is given as above.

Now, let f ∈ K(G). Then

‖ψf ‖2,κ = ‖ψf κ‖2 ≤ ‖ψκ‖∞‖f ‖2 = K‖f ‖2 ≤ K‖πσ (f )‖.
Hence we get

‖Mψ(πσ (f ))‖ = ‖πσ (ψf )‖ ≤ C‖ψf ‖2,κ ≤ CK‖πσ (f )‖.
Thus Mψ is bounded with ‖Mψ‖ ≤ CK. Especially, ψ ∈ MA(G,σ) and it remains
only to show that ψ ∈ MCF(G,σ).

Let x ∈ C∗
r (G,σ ). As ‖ψx̂‖2,κ ≤ K‖x̂‖2 < ∞, we have M̂ψ(x) = ψx̂ ∈ L2

κ .
From the last statement in Proposition 3.7, we get that

∑

g∈G ψ(g)̂x(g)�σ (g) con-
verges in operator norm, as desired. �

Remark 4.9 Let G be κ-decaying and let ψ ∈ L∞
κ . The proof of Proposition 4.8

shows in fact that
∑

g∈G ψ(g)̂x(g)�σ (g) is operator norm convergent for all x ∈
vN(G,σ).
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If, in addition, ψ is p.d., then it is natural to wonder whether it has the strong Feller
property introduced by J.L. Sauvageot [81, 82], that is, whether M∗∗

ψ (C∗
r (G,σ )∗∗) ⊆

C∗
r (G,σ ). Now, one readily sees from the proof of Proposition 4.8 that there ex-

ists a constant C′ > 0 such that ‖πσ (ψf )‖ ≤ C′‖f ‖2 for all f ∈ K(G), and it does
indeed follow that ψ has the strong Feller property (cf. [82, Lemma 3.3 and Proposi-
tion 5.2]).

5 Summation Processes

We begin with some definitions.

Definition 5.1 A net {ϕα} in MA(G,σ) is called an approximate multiplier unit
whenever Mϕα(x) → x in operator norm for every x ∈ C∗

r (G,σ ).
Such a net is called bounded when supα |||ϕα||| < ∞.

Remark 5.2 We record the following simple but useful facts:

1) Assume that {ϕα} is an approximate multiplier unit in MA(G,σ). Then ϕα → 1
pointwise on G and we have 1 ≤ supα |||ϕα||| ≤ ∞. If {ϕα} is a sequence, then
{ϕα} is bounded (as follows from the uniform boundedness principle).

2) Let {ϕα} be a net in MA(G,σ). Using a straightforward ε/3-argument, one de-
duces that {ϕα} is a bounded approximate multiplier unit if and only if ϕα → 1
pointwise on G and {ϕα} is bounded.

3) If G is countable (so C∗
r (G,σ ) is separable), then (mimicking the trick used to

produce a countable approximate unit in a separable C∗-algebra) one can always
extract a sequence from a given bounded approximate multiplier unit to produce
a (bounded) countable approximate multiplier unit if necessary.

Example 5.3 Assume that {ϕα} is a net of normalized p.d. functions on G converging
pointwise to 1. Then |||ϕα||| = 1 for all α (cf. Corollary 4.4) and assertion 2) above
gives that {ϕα} is a bounded approximate multiplier unit for Cr(G,σ).

Definition 5.4 Let {ϕα} be a net of complex functions on G. We say that {ϕα} is a
Fourier summing net for (G,σ ) if {ϕα} is an approximate multiplier unit for Cr(G,σ)

satisfying ϕα ∈ MCF(G,σ) for all α.

Such a net gives a summation process for Fourier series of elements in C∗
r (G,σ ):

the series
∑

g∈G ϕα(g)̂x(g)�σ (g) is then convergent in operator norm for all α, and

∑

g∈G

ϕα(g)̂x(g)�σ (g) →
α

x

for all x ∈ C∗
r (G,σ ) (w.r.t. operator norm).

It is an open question whether one can always find a Fourier summing net for
a general pair (G,σ ). When G is amenable, the answer is well-known. Indeed, the
following theorem was proven by Zeller-Meier in [89] (see also [36]) in the case of a
net of finitely supported functions.



J Fourier Anal Appl (2009) 15: 336–365 359

Theorem 5.5 Let G be amenable and {ϕα} be any net of normalized p.d. functions
in �2(G) converging pointwise to 1. Then {ϕα} is a (bounded) Fourier summing net
for (G,σ ) (satisfying |||ϕα||| = 1 for all α).

Proof As �2(G) ⊆ MCF(G,σ) (cf. Sect. 4), this follows from Example 5.3. �

We turn now to the proof of Theorem 1.2 on Fejér summation, which may be
restated as follows :

Theorem 5.6 Let G be amenable and pick a Følner net {Fα} for G. Set

ϕα(g) = |gFα ∩ Fα|
|Fα| , g ∈ G.

(Note that each ϕα has finite support given by supp(ϕα) = Fα · F−1
α .) Then {ϕα} is a

(bounded) Fourier summing net for (G,σ ) (satisfying |||ϕα||| = 1 for all α).

Proof Each ϕα is normalized, and the Følner condition gives that ϕα converges point-
wise to 1. As ϕα(g) = (λ(g)ξα, ξα), where ξα := |Fα|−1/2χFα , each ϕα is positive
definite. This means that {ϕα} satisfies the assumptions of Theorem 5.5 and the result
follows. �

We remark that N. Weaver [88] has proved this result for twisted group
C∗-algebras of Z

2, using a different approach.
Next, we turn our attention to Abel-Poisson summation and prove first Theo-

rem 1.3. We restate it in a slightly more general form, which also incorporates Gauss
summation.

Theorem 5.7 Let G = Z
N for some N ∈ N. For p ∈ {1,2}, let | · |p denote the usual

p-norm on G. Let L(·) denote either | · |1 , | · |2 or | · |22. For each r ∈ (0,1), set
ϕr = rL.

Then {ϕr}r→1− is a (bounded) Fourier summing net for (G,σ ).

Proof It is well known and elementary that | · |22 is n.d. Hence, | · |2, being the square
root of | · |22, is also n.d. (see [8]). Especially, | · |1 is n.d. when N = 1, and it follows
from a simple inductive argument that | · |1 is n.d. for all N ≥ 1. This means that L is
n.d. Hence, according to Theorem 2.20, all ϕr are p.d. Moreover, one checks easily
that they are square-summable and normalized. As ϕr converges pointwise to 1 when
r → 1−, Theorem 5.5 applies and gives the result. �

The Gaussian case above (choosing L(·) = | · |22) illustrates that one should not
only consider length functions. To show the existence of summation processes for
many other (nonamenable) groups, we will use the following result.

Proposition 5.8 Let {ϕα} be a net in MA(G,σ). Assume that

i) {ϕα} converges pointwise to 1,
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ii) {ϕα} is bounded,
iii) for each α there exists some κα : G → [1,∞) such that G is κα-decaying and

{ϕα} ∈ L∞
κα

.

Then {ϕα} is a (bounded) Fourier summing net for (G,σ ).

Proof Conditions i) and ii) ensure that {ϕα} is a bounded approximate multi-
plier unit (cf. Remark 5.2, part 2)). Further, Proposition 4.8 ensures that {ϕα} ⊆
MCF(G,σ). �

Theorem 5.9 Let G be a countable group with the Haagerup property and L be a
Haagerup function on G.

Assume that G has polynomial H-growth (w.r.t. L). Then there exists some q ∈ N

such that {(1 + tL)−q}t→0+ is a (bounded) Fourier summing net for (G,σ ).
More generally, assume that G has subexponential H-growth (w.r.t. L). Then

{rL}r→1− is a (bounded) Fourier summing net for (G,σ ).

Proof For p ∈ N, t > 0, set ψp,t = (1 + tL)−p . For r ∈ (0,1), set ϕr = rL. Then
ψp,t and ϕr are normalized positive definite functions on G, as follows respectively
from [8, p. 75] and from Theorem 2.20. Hence, both {ψp,t }t→0+ and {ϕ}r→1− are
bounded (cf. Example 5.3) and converge pointwise to 1.

Assume first that G has polynomial H-growth w.r.t. L. Due to Theorem 3.13,
part 1), we may pick s0 > 0 such that G is κ-decaying, where κ = (1 + L)s0 . Choose
q ∈ N such that q ≥ s0. Clearly, ψq,t ∈ L∞

κ for all t > 0. This means that {ψq,t }t→0+
satisfies all conditions in Proposition 5.8 (with κt = κ for all t > 0), and the first
assertion follows.

Next, assume that G has subexponential H-growth (w.r.t. L). Let 0 < r < 1, set
κr = r−L. Then, according to Theorem 3.13, part 2), (G,σ ) is κr -decaying. More-
over, we obviously have ϕr ∈ L∞

κr
. This means that {ϕr}r→1− satisfies all conditions

in Proposition 5.8, and the second assertion follows. �

Example 5.10 Let G be a finitely generated free group, or a Coxeter group, with gen-
erator set S. Then the word-length LS is a Haagerup function on G (see [19]). Fur-
ther, G has polynomial H-growth w.r.t. LS (see Example 3.12). Hence, Theorem 5.9
applies.

Remark 5.11 Assume that there exists a net ϕα of normalized p.d. functions on
G converging pointwise to 1 and satisfying condition iii) in Proposition 5.8. Then
C∗

r (G,σ ) has the strong Feller approximation property considered by Sauvageot [81,
82]: indeed, each ϕα has then the strong Feller property, cf. Remark 4.9. This ob-
servation applies to any countable group which has the Haagerup property and has
subexponential H-growth w.r.t. some Haagerup function (cf. Theorem 5.9 and its
proof).

The class of groups for which the Abel-Poisson summation holds contains indeed
many other groups.
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Theorem 5.12 Let G be a Gromov hyperbolic group and let L be an algebraic length
function on G. Then {rL}r→1− is a (bounded) Fourier summing net for (G,σ ).

Proof In a recent paper [69], N. Ozawa has shown that the net {rL}r→1− is c.b.
bounded in M0A(G). Using Proposition 4.3, we get that this net is c.b. bounded in
M0A(G,σ). In particular, it is bounded in MA(G,σ). Moreover, as explained in Ex-
ample 3.12, G has polynomial H-growth, hence subexponential H-growth (w.r.t. L).
We can now conclude the proof by proceeding in the same way as in the proof of the
second statement of Theorem 5.9. �

We conclude this paper with some remarks on Fejér-like properties.

Definition 5.13 We say that (G,σ ) has the Fejér property if there exists a Fourier
summing net {ϕα} for (G,σ ) in K(G). If {ϕα} converges pointwise to 1 and is
bounded in MA(G,σ), then we say that (G,σ ) has the bounded Fejér property.
Moreover, if this net can be chosen to satisfy |||ϕα||| = 1 for all α, then we say that
(G,σ ) has the metric Fejér property.

When σ = 1, we just talk about the corresponding Fejér property for the group G.

To motivate the use of the adjective “metric” in the metric Fejér property, we recall
that a Banach space X is said to have the Metric Approximation Property (M.A.P.) if
there exists a net of finite rank contractions on X approximating the identity map in
the strong operator topology (SOT) on B(X). Hence, if (G,σ ) has the metric Fejér
property, then C∗

r (G,σ ) has the M.A.P. We don’t know whether the converse is true.
In [45, Theorem 1.8], Haagerup shows that F2 has the metric Fejér property, hence
that C∗

r (F2) has the M.A.P. (despite the fact that C∗
r (F2) is not nuclear).

Theorem 5.6 shows that (G,σ ) has the metric Fejér property whenever G is
amenable. It is not unlikely that this is still true whenever G has the Haagerup prop-
erty. In fact, in the untwisted case, a conjecture of M. Cowling (see [19]) says that
any (countable) group G with the Haagerup property is weakly amenable [25] with
CH-constant equal to 1, that is, there exists a net {ϕα} in K(G) converging pointwise
to 1 such that supα ‖ϕα‖cb = 1. Cowling’s conjecture (which also may be formulated
in the locally compact case) has been verified in a number of cases (see e.g. [19, 24,
25, 49, 52, 85]).

The following result generalizes [45, Theorem 1.8] (see also [56] and [14]).

Theorem 5.14 Assume that the following conditions hold:

(i) There exists a net {ϕα} in MA(G,σ) converging pointwise to 1 and satisfying
|||ϕα||| = 1 for all α.

(ii) For each α there exists a function κα : G → [1,+∞) such that G is κα-decaying
and ϕακα ∈ c0(G).

Then (G,σ ) has the metric Fejér property.

Proof Clearly, ϕα �= 0 for all α. Let α ∈ �, n ∈ N. Using (ii), we can pick a finite
subset Aα,n of G such that |ϕακα| ≤ 1

n
outside Aα,n. If necessary, we enlarge Aα,n to
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include at least one element where ϕα is nonzero. Set ϕα,n = ϕαχAα,n . Then

‖(ϕα − ϕα,n)κα‖∞ = sup{|(ϕακα)(g)| g /∈ Aα,n} ≤ 1

n
.

Using Proposition 4.8, we get that (ϕα − ϕα,n) ∈ MA(G,σ) and

|||ϕα − ϕα,n||| ≤ Cα

n
→ 0 as n → +∞

where Cα denotes the decay constant of G w.r.t. κα.

So, setting ψα,n = 1
|||ϕα,n|||ϕα,n, we have |||ψα,n||| = 1 and |||ψα,n − ϕα||| → 0 as

n → ∞.
Now, using (i), we have Mϕα → Id in the SOT on B(C∗

r (G,σ )). It follows easily
that Id ∈ {Mψα,n |α ∈ �,n ∈ N}−SOT. The existence of a net {ψβ} in K(G) converg-
ing pointwise to 1 and satisfying |||ψβ ||| = 1 for all β is then clear. Hence, (G,σ ) has
the metric Fejér property �

Corollary 5.15 Assume that G is countable and has the Haagerup property. If there
exists a Haagerup function L on G such that G has subexponential H-growth (w.r.t.
L), then (G,σ ) has the metric Fejér property.

Proof Assumptions (i) and (ii) in Theorem 5.14 hold with ϕr = rL and κr =
(r−1/2)L, 0 < r → 1−, and the result follows. �

N. Ozawa has recently shown [69] that all Gromov hyperbolic groups are weakly
amenable, hence especially they have the bounded Fejér property. In a certain sense,
“most” finitely presented groups are Gromov hyperbolic (see [68]). However, not all
groups have the bounded Fejér property. This follows from an unpublished work of
Haagerup [46], where he considers the group H obtained by forming the standard
semi-direct product of Z

2 by SL(2,Z) and shows that H is not weakly amenable by
actually proving that H does not have the bounded Fejér property (see [34] for the
continuous version of this result). But note that H , which does not have the Haagerup
property, does have the Fejér property: this follows from [47], where Haagerup and
Kraus show that H satisfies a certain approximation property, called AP, which is
stronger than the Fejér property. It is conceivable that SL(3,Z) does not have the
Fejér property. Haagerup and Kraus conjecture in [47] that SL(3,Z) fails to have the
AP, but this is still open as far as we know.
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11. Bożejko, M., Fendler, G.: Herz-Schur multipliers and completely bounded multipliers of the Fourier

algebra of a locally compact group. Boll. Unione Mat. Ital. A 3(6), 297–302 (1984)
12. Bożejko, M., Januszkiewicz, T., Spatzier, R.J.: Infinite Coxeter groups do not have Kazhdan’s prop-

erty. J. Oper. Theory 19, 63–67 (1988)
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