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Abstract This paper provides new results on computing simultaneous sparse ap-
proximations of multichannel signals over redundant dictionaries using two greedy
algorithms. The first one, p-thresholding, selects the S atoms that have the largest
p-correlation while the second one, p-simultaneous matching pursuit (p-SOMP), is
a generalisation of an algorithm studied by Tropp in (Signal Process. 86:572–588,
2006). We first provide exact recovery conditions as well as worst case analyses of
all algorithms. The results, expressed using the standard cumulative coherence, are
very reminiscent of the single channel case and, in particular, impose stringent re-
strictions on the dictionary.

We unlock the situation by performing an average case analysis of both algo-
rithms. First, we set up a general probabilistic signal model in which the coefficients
of the atoms are drawn at random from the standard Gaussian distribution. Second,
we show that under this model, and with mild conditions on the coherence, the prob-
ability that p-thresholding and p-SOMP fail to recover the correct components is
overwhelmingly small and gets smaller as the number of channels increases.
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Furthermore, we analyse the influence of selecting the set of correct atoms at ran-
dom. We show that, if the dictionary satisfies a uniform uncertainty principle (Candes
and Tao, IEEE Trans. Inf. Theory, 52(12):5406–5425, 2006), the probability that si-
multaneous OMP fails to recover any sufficiently sparse set of atoms gets increasingly
smaller as the number of channels increases.

Keywords Greedy algorithms · OMP · Thresholding · Multi-channel · Average
analysis

Mathematics Subject Classification (2000) 41A28 · 41A46 · 60D05

1 Introduction

Transform coding is one of the most successful paradigms in signal processing. Gen-
erally speaking, it asserts that many signals can be efficiently compressed because
they have a sparse representation on some fixed basis. A simple transform coder
would then decompose the signal over this optimal basis and threshold all projections
to locate and keep only the K strongest ones. This simple algorithm is at the core of
the success of modern image and video coders such as JPEG2000 where a wavelet
basis is used [11, 23]. Recently though, new problems have come to challenge that
paradigm. Restricting our models to decompositions over fixed bases drastically nar-
rows the class of signals that can be efficiently processed. A lively strand of research
advocates richer models based on redundant dictionaries, which can capture a much
broader range of signals. A dictionary � is a large collection of unit norm vectors
‖ϕn‖2 = 1, n = 1, . . . ,K in R

d , usually with K � d . Handling arbitrary dictionaries
is no easy task, though. First, uniqueness of a signal representation is not guaranteed
anymore. Second, even computing a decomposition becomes a complicated issue:
several algorithms, most notably greedy algorithms and convex relaxation techniques
can be used, but analysing their performances remained a daunting challenge. The
situation unlocked with the realisation that sparse models solve these problems. To
illustrate the role of sparsity, let us introduce the coherence of the dictionary, i.e.the
strongest correlation between any two distinct vectors in �: μ = maxi �=j |〈ϕi,ϕj 〉|.
Schematically, if a signal is a superposition of less than μ−1 elements of �, this
representation is unique and can be recovered by standard algorithms [10, 24, 26].

In parallel to developments in sparse signal models, various application scenarios
motivated renewed interest in processing not just a single signal, but many signals or
channels at the same time. A striking example is sensor networks, where signals are
monitored by low complexity devices whose observations are transfered to a central
collector [17]. This central node thus faces the task of analysing many, possibly high-
dimensional, signals. Moreover, signals measured in sensor networks are typically
not uncorrelated: there are global trends or components that appear in all signals,
possibly in slightly altered forms. Modeling multichannel signals by means of redun-
dant dictionaries, generalising existing mono-channel algorithms and understanding
their properties are thus important challenges.

In this paper we analyse the theoretical performances of two classes of simultane-
ous greedy algorithms, p-thresholding and p-SOMP. In both cases, we provide worst
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case recovery conditions, but our main contribution with respect to prior art is a rig-
orous average case analysis of both classes of algorithms. The spirit of our results,
described in Sect. 3, is that by allowing an overwhelmingly small probability of error,
we get more favourable recovery conditions, far better than what had been previously
reported in the worst case.

Our analysis is based on studying the average case instead of the worst case and
the spirit of our results is the following: We show that given a dictionary of coherence
μ, p-thresholding can recover superpositions of up to μ−2 atoms with overwhelming
probability, provided that the dynamic range of the signal coefficients is somewhat
limited. Our conditions on � are thus much less restrictive than in the worst case. In
particular, we provide quantitative versions of the results for distributed compressed
sensing in [3], which even allow to work with deterministic measurement matrices.

1.1 Signal Model

Suppose we are to design a network of N sensors monitoring a common phenom-
enon. Each of our sensors observes a d-dimensional signal yn ∈ R

d , n = 1, . . . ,N .
As explained in the previous section, a sparsity hypothesis will be the central assump-
tion of our model: we will assume that each signal yn admits a sparse approximation
over a single dictionary �,

yn = �xn + en, n = 1, . . . ,N.

Sparsity in this case is embodied in each of the coefficient vectors xn, which are
assumed to have few non zero entries as measured by their �0 “norm”:1 ‖x‖0 ≤ S. In
order to model correlations between signals, we will refine this model by imposing
that all signals share a common sparse support, i.e.

yn = ��xn + en,

where �� is the restriction of the synthesis matrix � to the columns listed in the
set �. In this case, sparsity is conveyed by the size of the support set, |�| ≤ S, and
there is thus no restriction on the coefficient vectors. This model is inspired by a re-
cent series of papers on distributed sensing, see [2] and references therein. It describes
a network of sensors monitoring a signal with a strong global component that appears
at each node. Localised effects are modelled by letting synthesis coefficients xn vary
across nodes and through the innovations en. As an illustrative example, imagine sen-
sors measuring the chemical composition of the atmosphere at some locations of a
geographical area. There is a common component, say a mean regular chemical com-
position, modelled by the fixed support �. But it changes slightly from node to node
because of differences in sensor location (latitude, altitude, . . .); these are modelled
by varying the amplitudes xn of components from node to node. Localised effects,
like pollution or forest fires, can drastically alter the signal and are captured by tran-
sient innovations en. The very nature of these innovation signals en will thus depend

1Note that we adopted a common abuse of language, since ‖ · ‖0 is not a norm, neither a semi-norm.
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on the exact problem one wants to solve. However, and for simplicity, we will in this
paper assume that they are orthogonal to the subspace spanned by �. Hence ��xn is
the best approximation of yn by elements of � in mean squared sense. Note that we
will sometimes refer to en as noise, in a clear but hopefully not misleading abuse of
language.

Let us now turn towards describing a generative model for the synthesis coeffi-
cients xn. In order to obtain a sufficiently general model, we will assume that the
components xn(i), i ∈ � of the random vector xn are independent Gaussian variables
of variance σi . This model is fairly general to accommodate various practical prob-
lems: the Gaussian assumption is one of the most widely used in signal processing,
while incorporating different variances allows us to shape the synthesis coefficients,
imposing statistical decay for example on the xn(i).

In order to simplify our analysis we will adopt a global matrix notation. We will
collect all signals on the columns of the d × N matrix Y = [y1, . . . , yN ]. Let U be
a S × N random matrix with independent standard Gaussian entries and let � be
a S × S diagonal matrix whose diagonal entries σ 2

i are positive real numbers. Our
model can then be written in compact form:

Y = �� · � 1
2 · U + E, (1.1)

where E is a d × N matrix collecting innovation (noise) signals en on its columns.

1.2 Recovery Problem

A typical problem consists in recovering either the support � (this is a recovery prob-
lem) or the coefficients X (this is an estimation problem) from the observation Y . For
that, algorithms must be designed, and their success must be characterised depending
on the noise level and other characteristics of the multichannel sparse signal model.
Typical (single channel) sparse approximation algorithms rely on the computation of
the inner products 〈y,ϕk〉 between the signal y and the atoms ϕk of the dictionary,
which are the entries of the vector ��y. In the multichannel setting, we will consider
algorithms that similarly rely on the entries 〈yn,ϕk〉 of the matrix ��Y . Instead of
inner products with the atoms ϕk involved in the signal model, it is also interesting to
consider variants where other atoms ψk , which we will call sensing atoms, are used
in the algorithms, cp. [22]. In other words, the algorithms will rely on the entries of
��Y . One of the reasons for introducing such sensing atoms is that, in some cases,
the signal model is only approximately known so one cannot use the (unknown) dic-
tionary � in an algorithm. Another reason is that an added freedom in the choice
of the sensing matrix may also improve the provable performance of the considered
algorithms.

Thresholding Algorithm Of the two families of sparse approximation algorithms
considered in this paper, the family of simultaneous thresholding algorithms is cer-
tainly the simplest one. In the single channel case, thresholding amounts to selecting
the atoms of the dictionary which are most correlated with the signal y. In the mul-
tichannel setting, the main change is that one should combine the correlation of the
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atom with the different channels to get a single interchannel correlation criterion for
the selection of the most correlated atoms. For any 1 ≤ p ≤ ∞ one can consider the
p-correlation

‖ψ�
kY‖p :=

(
N∑

n=1

|〈ψk,yn〉|p
)1/p

(1.2)

with the standard modification for p = ∞. The p-thresholding algorithm simply
amounts to selecting a set �M of M atoms whose p-correlations with Y are among
the M largest

‖ψ�
kY‖p ≥ ‖ψ�

l Y‖p, ∀k ∈ �M,∀l /∈ �M. (1.3)

In addition to an estimated support �S , p-thresholding can also be used to provide
an estimate of the coefficients X, which is most easily done by least squares opti-
misation, leading to XM := �

†
�M

Y where �
†
�M

denotes the Moore-Penrose pseudo-
inverse of ��M

.

Greedy Algorithm Simultaneous Orthogonal Matching Pursuit (SOMP) is a some-
what more elaborate iterative algorithm for sparse signal approximation. At each it-
eration, an atom index km is selected, and a residual is updated. At the first iteration
the residual is simply Y0 := Y . After M iterations, the set of selected atoms being
�M := {km}Mk=1, the new residual is computed as YM = Y − ��M

XM = (I − P�M
)Y

where XM := �
†
�M

Y and P�M
= ��M

�
†
�M

is the orthogonal projection onto the
linear span of the selected atoms. In p-SOMP, the next selected atom kM+1 is the one
which maximises the p-correlation with the residual YM

‖ψ�
kM+1

YM‖p = max
1≤k≤K

‖ψ�
kYM‖p. (1.4)

Recovering the Right Support Given the model Y = ��X + E, we will say by
definition that p-thresholding (respectively p-SOMP) “recovers” � if when we set
M = |�|, the selected set �M exactly matches �. Occasionally we may also be
interested in partial recovery, meaning that for some M ≤ |�| the algorithms only
select “good” atoms, i.e. �M ⊂ �.

2 Technical Tools and Notations

This section provides the main tools and notations which will be used over and over
in the remaining of this article to state and prove our results.

2.1 Matrix Norms

In order to be able to neatly analyse the algorithms in the next sections it will be
convenient to define the following matrix norms. Let A be a n × m-matrix with rows
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(Ai)1,...,n then we define

‖A‖p,∞ := max
i=1,...,n

‖Ai‖p = max
i=1,...,n

(
m∑

j=1

|Aij |p
) 1

p

. (2.1)

Note that this matrix norm should not be confused with the operator norm |||A|||p→∞,
which for general 1 ≤ p,q ≤ ∞ is defined as:

|||A|||p→q = max
‖x‖p=1

‖Ax‖q . (2.2)

However, there exists a connection between the two norm types which we will exploit
later to prove some easy inequalities. Namely if 1

p
+ 1

p′ = 1 we have

‖A‖p,∞ = |||A|||p′→∞. (2.3)

Among the p,q-operator norms the 2,2-operator norm will play an important role as
it is connected to the spectrum of the matrix, i.e.,

|||A|||2→2 = λmax(A) = largest singular value of A. (2.4)

Also we will write for shortness ||| · ||| := ||| · |||2→2. The following lemma collects two
useful properties of operator norms.

Lemma 1

1. For two matrices A,B we have

|||AB|||p→q ≤ |||B|||p→s |||A|||s→q . (2.5)

2. If A† denotes the Moore-Penrose pseudo-inverse of A we have

|||A†|||2→2 = 1

λmin(A)
, (2.6)

where λmin(A) denotes the smallest non-zero singular value of A.

The following trivial Corollary will be essential for some recovery results in this
paper.

Corollary 2 For two matrices A,B we have

‖AB‖p,∞
‖B‖p,∞

≤ |||A|||∞→∞ = ‖A‖1,∞ = max
i=1..n

m∑
j=1

|Aij |. (2.7)
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2.2 Babel Functions and Isometry Constants

A few essential tools have emerged from the literature to characterise which sparse
representations from a redundant dictionary can be recovered with typical algorithms
such as �1-minimization and greedy algorithms. Here we recall the definitions of
the Babel function, also known as cumulative coherence, and the restricted/global
isometry constants of a dictionary. Where necessary, we adapt these tools to handle
pairs (�,�) made of a dictionary �, from which the sparse signals Y ≈ �X are
built, and a sensing dictionary � , used to compute correlations with the signal Y .

p-Babel Functions The p-Babel function for a subset � is the most tangible char-
acteristics of a given pair of dictionaries (�,�) of equal size. It is defined in the
computationally explicit form as

μp(�,�,�) := sup
�/∈�

(∑
j∈�

|〈ϕj ,ψ�〉|p
) 1

p

(2.8)

and measures the amount of correlation between sensing atoms ψ� outside the sup-
port � and modeling atoms ϕj inside the support �. A complement to the p-Babel
function measures the amount of correlation between atoms inside the support �

μin
p (�,�,�) := sup

i∈�

μp(��,��,�\{i}). (2.9)

Taking the supremum over all possible subsets of size at most S, we get the definition
of the p-Babel function for an integer S as

μp(�,�, S) := sup
|�|≤S

μp(�,�,�). (2.10)

A similar definition is used for μin
p (�,�, S), which trivially yields the relation

μin
p (�,�, S) ≤ μp(�,�, S − 1). (2.11)

Most interesting for us will be the cases p = 1 and p = 2. When the sensing dic-
tionary � equals the modeling one �, the reader can easily check that the p-Babel
function for p = 1 matches the standard definition of the Babel function which can
be found, e.g., in Tropp’s enjoyable paper [24].

Shorthands In several sections of this article, we will omit the reference to the dic-
tionary pair (�,�) if it is clear which one we are considering and will write simply
μp(�), μin

p (�), μp(S) and μin
p (S). Similar shorthands will be used for the notations

introduced hereafter.
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Similarity Between Sensing and Modeling Dictionaries While p-Babel functions
measure the similarity between non-corresponding atoms in the original and the sens-
ing dictionary, which we will want to be small to obtain recovery results, we will also
need a measure for the similarity between matching atom pairs ϕk,ψk , which we will
then want to be large. For that we consider

βk := 〈ϕk,ψk〉 > 0, (2.12)

β(�) := min
i∈�

βi. (2.13)

The assumption that βk > 0 is merely a convention which can always be guaranteed
by slightly changing the definition of the sensing dictionary � , replacing ψk by −ψk

if necessary.

Isometry Constants In order to bound the spectrum of a subdictionary �� we define
the isometry constant δ� = δ�(�) as the smallest quantity such that

(1 − δ�) · ‖x‖2
2 ≤ ‖��x‖2

2 ≤ (1 + δ�) · ‖x‖2
2 ∀x �= 0. (2.14)

Note that the definition above provides the following bound on the extremal singular
values of ��

λmin(��) ≥ √
1 − δ� and λmax(��) ≤ √

1 + δ�. (2.15)

Since we also want a uniform estimate over all possible subdictionaries of a given
size, we define for an integer S the global (restricted) isometry constant

δS := sup
|�|=S

δ� (2.16)

and easily check that δS is a non-decreasing function of S. Restricted isometry con-
stants were introduced by Candès, Romberg and Tao in [4, 5] in order to study
recovery by Basis Pursuit (�1) in the context of compressed sensing. Indeed if
δ3S + 3δ4S < 2 then Basis Pursuit recovers all S-sparse (mono-channel) signals [4].
Good estimates of these numbers were obtained for random Gaussian and Bernoulli
d × K matrices �: If

S ≤ Cδ

d

log( K
Sε

)
(2.17)

then with probability at least 1 − ε the restricted isometry constant of � satisfies
δS ≤ δ, see e.g. [1, 5, 19]. A similar result holds for random partial Fourier matrices
under the condition S ≤ Cδd log−4(K) log−1(ε−1), see [5, 18, 20].

3 Main Results

The analysis of both p-thresholding and p-SOMP follows a similar pattern. First, we
provide subtle sufficient conditions which guarantee that the considered algorithm
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(partially) recovers the desired support. In addition to the noise level, these recovery
conditions depend on subtle joint properties of the analysis and synthesis dictionar-
ies, of the ideal support �, of the signal coefficients X, etc. Next we proceed with a
worst case analysis which provides coarser worst case recovery conditions that de-
pend more globally on the sparsity of X, on its “dynamic range”, etc. Such a worst
case analysis gives results expressed in terms of cumulative coherence of the dic-
tionary which are essentially of the same strength and flavour as similar results for
recovery in the monochannel setting. Last, we show how to switch from a worst case
analysis to an average case analysis: assuming a specific probabilistic model on the
coefficients X, we provide conditions on the sparsity of X that guarantee that the sub-
tle recovery conditions are satisfied with high probability. This drastically changes
the strength of the required conditions, since by allowing a small amount of failure of
the algorithms for non typical coefficients, this significantly increases the size of the
supports that can be recovered.

In order to give a more quantitative feeling of our results, we will highlight them
with the example of a dictionary composed of the union of the Dirac and DCT bases
(hereby simply referred to as the Dirac-DCT dictionary). More precisely, �DDCT is
the d × 2d matrix obtained by concatenating the d × d identity matrix and the d × d

DCT matrix whose k-th column is:

ϕk(n) =
√

2

d

k cos

( π

2d
(2n − 1)(k − 1)

)
, n = 1, . . . , d,

with 
k = 1/
√

2 for k = 1 and 
k = 1 for 2 ≤ k ≤ d . This dictionary has coherence
μ = √

2/d and it is also easy to see that μp(S) = S1/p · μ.

Recovery Conditions for p-Thresholding The success of p-thresholding at recover-
ing the good support � is guaranteed for a given signal model Y = ��X +E as soon
as the minimum p-correlation with good atoms mini∈� ‖ψ�

i Y‖p exceeds the maxi-
mum p-correlation with “bad” atoms ‖��

�
Y‖p,∞ where � := {1 ≤ k ≤ K,k /∈ �}.

By the triangle inequalities

‖��

�
Y‖p,∞ ≤ ‖��

�
��X‖p,∞ + ‖��

�
E‖p,∞

and

min
i∈�

‖ψ�
i Y‖p ≥ min

i∈�
‖ψ�

i ��X‖p − ‖��
�E‖p,∞,

we get the recovery condition

‖��
�E‖p,∞ + ‖��

�
E‖p,∞ < min

i∈�
‖ψ�

i ��X‖p − ‖��

�
��X‖p,∞. (3.1)

Recovery Conditions for p-SOMP As far as p-SOMP is concerned, it partially re-
covers the good support � after M steps if the set �M only contains “good” atoms,
that is to say if �M ⊂ �. Since �M+1 = �M ∪ {kM+1}, partial recovery after M + 1
steps is equivalent to partial recovery after M steps with an additional good choice of
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the M + 1-th atom, which is only guaranteed if ‖��
�YM‖p,∞ > ‖��

�
YM‖p,∞. De-

noting Q�M
:= I − P�M

the orthogonal projection onto the complement of the span
of the selected atoms (by convention Q∅ = I), by the triangle inequalities

‖��
�YM‖p,∞ ≥ ‖��

�Q�M
��X‖p,∞ − ‖��

�Q�M
E‖p,∞

and

‖��

�
YM‖p,∞ ≤ ‖��

�
Q�M

��X‖p,∞ + ‖��

�
Q�M

E‖p,∞
we get the recovery condition

‖��
�Q�M

E‖p,∞+‖��

�
Q�M

E‖p,∞ < ‖��
�Q�M

��X‖p,∞−‖��

�
Q�M

��X‖p,∞.

(3.2)
Under the simplifying assumption that ��

�E = 0, which we discuss below, if the first
M steps of p-SOMP have been successful (that is to say if �M ⊂ �) then Q�M

E =
E, and we obtain that the M + 1-th atom is guaranteed to be correct provided that

‖��
�E‖p,∞ + ‖��

�
E‖p,∞ < ‖��

�Q�M
��X‖p,∞ − ‖��

�
Q�M

��X‖p,∞. (3.3)

Remark 3.1 The assumption that ��
�E = 0 might seem a bit artificial if one con-

siders E as additive noise in the model, in which case it would seem more nat-
ural to assume it is a realization of, e.g., a random Gaussian process. In contrast,
from an approximation theory perspective, E would typically represent the error
of best approximation of Y with the atoms in �, that is to say E = Y − ��X

with X = arg minZ ‖Y − ��Z‖ for some norm ‖ · ‖. When this norm is given by
‖Y −��X‖ = (

∑N
n=1 ‖yn −��xn‖q

2)1/q for some q , (e.g., q = 2 for the Froebenius
norm), this implies that E satisfies ��

�en = 0 for each n.

Both condition (3.1) and (3.3) mean that the noise level, as measured by
‖��

�E‖p,∞ + ‖��

�
E‖p,∞, should be small enough compared to some upper limit

which jointly depends on the analysis and synthesis dictionaries �, � , the supports
� and �M ⊂ �, the coefficients X, etc. Next, we express simpler conditions that
somehow untangle the role of the different objects that we are manipulating.

To state the worst case analysis of thresholding, we introduce a specific notation

X i
p =

(
N∑

n=1

|Xin|p
)1/p

, i ∈ � (3.4)

for the p-norms of the rows of X, i.e. X i
p is the p-norm of the vector of coefficients

associated to the i-th atom ϕi . A detailed analysis is carried out in the next section,
yielding Theorem 9. We state below a somewhat simpler form of this result, assuming
� = �.

Theorem 3 (Worst case analysis for thresholding) Assume that Y = ��X + E with

‖��
�E‖p,∞ + ‖��

�
E‖p,∞ < min

i∈�
X i

p − max
i∈�

X i
p · (μ1(S) + μ1(S − 1)) , (3.5)

where S := |�|. Then, p-thresholding with � = � exactly recovers the support �.
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Observe that we want to maximise the right hand side of (3.5) and, in particular, we
want:

mini∈� X i
p

maxi∈� X i
p

> μ1(S) + μ1(S − 1).

Since the ratio on the l.h.s of this equation is at most one, the most favourable case
arises when the dynamic range of the coefficients is small, i.e. when the components
of � have the same strength. In the same expression, incoherence rears its ugly head,
for even in the best case we have to assume

μ1(S) + μ1(S − 1) < 1. (3.6)

Since μ1(S) ≤ Sμ, the sparsity of recoverable signals is thus roughly confined to the
realm

S <
1

2
(μ−1 + 1),

making it nearly useless for dictionaries one would use in practice. On the other hand
experiments show that the range of useful sparsity is much bigger and confirm the
intuition that typical results are much more favourable [28]. Understanding the aver-
age performance of simultaneous thresholding under the probabilistic signal model
introduced in Sect. 1.1 is precisely our next contribution, detailed in Sect. 5, and
summarised by the following result:

Theorem 4 (Average case analysis for 1-thresholding) Let p = 1 and S = |�|. As-

sume that Y = �� �
1
2 U + E with U a S × N matrix of standard Gaussian random

variables and � = diag(σ 2
i )i∈�, and suppose that

‖��
�E‖1,∞ + ‖��

�
E‖1,∞ <

√
2

π
N ·

(
min
i∈�

σi − max
i∈�

σi · μ2(S)

)
. (3.7)

Then the probability that p-thresholding with � = � fails to exactly recover the
support � does not exceed K exp(−Nγ 2/π) with K the number of atoms in � and

γ :=
mini∈� σi − maxi∈� σi · μ2(S) −

√
π
2 N−1 · (‖��

�E‖1,∞ + ‖��

�
E‖1,∞)

mini∈� σi + maxi∈� σi · μ2(S)
.

(3.8)

Similar results hold for 1 < p ≤ ∞ where
√

2
π
N is replaced with a constant

Cp(N). Clearly, there is a common flavour with worst case results: we want to max-
imise the r.h.s of (3.7) and, for any fixed number of channels N , this implies

mini∈� σi

maxi∈� σi

> μ2(S).

The most favourable situation is once again reached when all components of � have
the same strength, i.e. when the ratio on the l.h.s gets close to one. This time how-



666 J Fourier Anal Appl (2008) 14: 655–687

ever, observe that the range of allowed sparsity is constrained by the 2-Babel func-
tion μ2(S) < 1. Since μ2(S) grows much slower than μ1(S), we can now recover
much more atoms, up to roughly S = μ−2, with high probability. When the number
of channels N grows, condition (3.7) demands that the average noise per channel
N−1(‖��

�E‖1,∞ + ‖��

�
E‖1,∞) be small enough, but once this is satisfied the prob-

ability of failure decreases exponentially fast with the number of channels N .
Even though the conditions for recovering typical signals with p-thresholding are

milder than their worst case counterpart, the constraint that each component of the
support be equally important remains quite a limitation of the algorithm. This moti-
vates turning our attention to p-SOMP in hope that this more complex technique will
allow us to relax those restrictions. We start by stating the worst case results for OMP
which are proved in Sect. 4. For p = 1 they match the results by Tropp et al. [28],
and for all p they generalise the results of Chen and Huo [7] to the noisy setting.

Theorem 5 (Worst case analysis for p-SOMP) Assume that Y = ��X + E where
the atoms in � are linearly independent and

‖��
�E‖p,∞ + ‖��

�
E‖p,∞ < min

i∈�
X i

p · (1 − μ1(�) − μin
1 (�)

)
. (3.9)

Then S := |�| steps of p-SOMP with � = � recover the support �.

This result is expressed in slightly different and finer terms than Theorem 3: here
we give a characterisation of recoverable index sets by explicitly controlling the cor-
relations among atoms on the support through the quantity μin

1 (�) and correlations of
the support with the rest of the dictionary through μ1(�). Comparing (3.9) and (3.5)
clearly shows the main advantage of OMP over thresholding: both conditions require
the noise level to be small enough compared to some measure of dictionary coher-
ence, but the restriction on the dynamic range of the signal has disappeared in (3.9).
However, there is no quantitative gain on the size of S. If we give up our fine char-
acterisation of � and estimate the r.h.s of (3.9) in terms of S, the right most term
becomes 1 − μ1(S) − μ1(S − 1) and we are back to (3.6). Once again, the obvious
way to transcend this barrier is to understand the behaviour of the algorithm for typi-
cal signals and not in the worst case. A detailed analysis is performed in Sect. 6, but
a simplified version of our result reads as follows.

Theorem 6 Let p = 1, S := |�| and Y = �� �
1
2 U + E with U a S × N matrix

of standard Gaussian random variables, � = diag(σ 2
i )i∈�, and E an error term or-

thogonal to the atoms in �. Suppose

κ := 1 − μin
2 (�) + μ2(�)

1 − δ�

> 0

and in addition

‖��

�
E‖1,∞ <

√
2

π
Nκ min

i∈�
σi. (3.10)
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Then the probability that S steps of 1-SOMP with � = � fail to exactly recover the
support � does not exceed K · 2S · exp(−Nγ 2/π) with K the number of atoms in �

with

γ :=
κ − (√ 2

π
N · mini∈� σi

)−1 · ‖��

�
E‖1,∞

κ
. (3.11)

This theorem gives a characterization of those index sets � that can be recovered
with high probability. As expected, there are similarities with the worst case: we
see that the main requirement embodied by (3.10) is that the approximation error be
sufficiently small compared to a measure of correlations of atoms on the support and
correlations of the support with the rest of the dictionary. However, observe that these
correlations are now measured using the 2-Babel function and that we are basically
asking that:

μin
2 (�) + μ2(�) < 1 − δ�.

If that is the case, and the average approximation error per channel N−1 · ‖��

�
E‖1,∞

is small enough, then the probability that 1-SOMP fails to recover � becomes in-
creasingly smaller as the number of channels grows. It might be more convenient to
state a condition on the dictionary as a whole, and not on a given support. If the dic-
tionary satisfies a uniform uncertainty principle [5], that is to say if the S-restricted
isometry constants δS are small, the following result shows that the probability that
1-SOMP fails to recover any support of size S decays exponentially fast with the
number of channels.

Theorem 7 (Average case analysis of 1-SOMP) Let p = 1 and S = |�|. Assume that
the dictionary � obeys a uniform uncertainty principle with S-restricted isometry
constants δS+1 < 1/3 and

‖��

�
E‖1,∞ <

√
2

π
N · min

i∈�
σi · (1 − 3δS+1) . (3.12)

Then the probability that S steps of 1-SOMP with � = � fail to exactly recover the
support � does not exceed K · 2S · exp(−Nγ 2/π) with K the number of atoms in �

and

γ := 1 − 3δS+1 −
(√

2

π
N · min

i∈�
σi

)−1

· ‖��

�
E‖1,∞. (3.13)

The previous result provides a quantitative average case analysis of multi-channel
OMP based on the restricted isometry constants δS alone. Together with the condition
(2.17) for random Gaussian or Bernoulli matrices to have small δS it therefore gives a
theoretical explanation to numerical results in the context of distributed compressed
sensing conducted in [3].

Note that because of the term 2S in the probability bound above, which also ap-
pears in Theorem 6, the required number of channels must be quite high, typically
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N ≈ S. Getting rid of this factor would therefore be highly desirable, but the tech-
nique we used to prove the theorems does not seem to be easily adaptable to do so,
and it remains an open question whether this can be done at all.

In practice, computing the S-restricted isometry constant of � is a daunting task.
Fortunately, when � is a tight frame and for any support of size at most S selected at
random, our last result shows that the behaviour of 1-SOMP is essentially controlled
by the 2-Babel function.

Theorem 8 Assume � to be a tight frame. Let Y = ���
1
2 U with U a S × N matrix

of standard Gaussian random variables and � drawn at random among all supports
of size at most S. Assume that μ2(S) < 1/3 and

‖��

�
E‖1,∞ <

√
2

π
N · min

i∈�
σi · (1 − 3μ2(S)) and S < d/37. (3.14)

Then the probability that S steps of 1-OMP with � = � fail to exactly recover the
support � does not exceed K · 2S · exp(−Nγ 2/π) + 2 exp(−γ̃ 2) with

γ = 0.9

(
1 − 3μ2(S) −

(√
2

π
N · min

i∈�
σi

)−1

· ‖��

�
E‖1,∞

)

and γ̃ = ( 1
37 − S

d
)/(μ

√
S).

Before proceeding to the technical core of this paper, let us synthesise our find-
ings using the Dirac-DCT dictionary introduce above. Since in that case we have
μq(S) = S1/q

√
2/d , for q = 1,2, worst case analysis tell us that both p-thresholding

and p-SOMP can recover supports of size S ≈ √
d . For 1-thresholding however, av-

erage case analysis when all Gaussian coefficient have equal variances asserts that
the probability of recovering supports of size S ≈ d gets overwhelmingly large as the
number of channels grows. We reach the same conclusion for 1-SOMP by inspect-
ing (3.14). Average case analysis confirms a large body of experiments that illustrate
the effectiveness of simultaneous approximations with greedy algorithms. In particu-
lar, strong hypotheses on either the size of � or the incoherence of the dictionary are
relaxed. Note, though, that for both p-thresholding or p-SOMP our bounds require a
large number of channels to be effective. It is not absolutely clear, as of this writing,
whether that is an inherent limit of the algorithms or an artefact of our proofs and
more experimental results are needed to draw a decisive conclusion.

4 Worst Case Analysis

In this section we develop conditions that ensure recovery of all signals with a cer-
tain support set �. Our main contribution is an extension of existing results to the
case where noise is present on the signal. In contrast to the expository Sect. 3 we now
work with a sensing matrix � (possibly different from �) and a general p ∈ [1,∞] to
measure multichannel correlations. We will need some assumptions on {X (m)

p }|�|
m=1,
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a non-increasing rearrangement of the row p-norms X k
p , k ∈ � of the signal coeffi-

cients X. The shorthands μp(�) and μin
p (�) will respectively denote μp(�,�,�)

and μin
p (�,�,�).

Theorem 9 (Worst case recovery with p-thresholding) If

‖��
�E‖p,∞ +‖��

�
E‖p,∞ < min

i∈�

{
X i

p · |〈ψi,ϕi〉|
}

−max
k∈�

{
X k

p · (μ1(�) + μin
1 (�)

)}
(4.1)

then p-thresholding recovers the support set � from Y = ��X + E. Moreover, the
reconstructed coefficients X̃ satisfy

‖X − X̃‖∞,2 ≤ ‖�†
�E‖∞,2 ≤ (

1 + μin
1 (�,�,�)

) · ‖E‖∞,2.

Note: the latter inequality involves μin
1 (�,�,�) and not μin

1 (�,�,�).

Proof The proof follows the analysis in [13]. Denoting B := diag(〈ψk,ϕk〉)k∈�,
observe that ‖ψ�

i ��X‖p is the p-norm of the i-th row of ��
���X = BX +

(��
��� − B)X. Since the p-norm of the i-th row of BX is |〈ψi,ϕi〉| · X i

p we get

‖ψ�
i ��X‖p ≥ |〈ψi,ϕi〉| · X i

p − ‖(��
��� − B)X‖p,∞.

Therefore, the recovery condition (3.1) is satisfied whenever

‖��
�E‖p,∞ + ‖��

�
E‖p,∞ < min

i∈�

{
〈ψi,ϕi〉| · X i

p

}
− ‖(��

��� − B)X‖p,∞

− ‖��

�
��X‖p,∞. (4.2)

To conclude, we use Corollary 2 to estimate

‖(��
��� − B)X‖p,∞ + ‖��

�
��X‖p,∞

≤
(
‖��

��� − B‖1,∞ + ‖��

�
��‖1,∞

)
· ‖X‖p,∞

≤
(

sup
k∈�

∑
j∈�\{k}

|〈ψk,ϕj 〉| + sup
k /∈�

∑
j∈�

|〈ψk,ϕj 〉|
)

· ‖X‖p,∞

and identify with the definitions of μin
1 (�) and μ1(�). For the claim on the error

of the reconstructed coefficients we note that X̃ = �†
�(��X + E) = X + �†

�E.

Moreover, |||�†
�||| ≤ 1 + μin

1 (�,�,�), see for instance [25, Proposition 4.3] or [9].
This completes the proof. �

The success of p-thresholding is thus governed by the condition that the noise
level should be smaller than a threshold determined both by the dynamic range of the
coefficients X i

p and by the sum of correlations among atoms on the support as well
as between the support and the remaining of �. The conditions on the correlations
between the sensing and synthesis dictionaries are expressed in terms of the cumu-
lative coherence and are very reminiscent of Tropp’s recovery condition [24]. These
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conditions are based on worst case analysis and are fairly restrictive. The cumula-
tive coherence in particular is an �1 norm and can be very big even for reasonably
small �. In the next sections, we develop an average case analysis of p-thresholding
and show that the typical recovery conditions are much less restrictive.

Theorem 10 (Worst case recovery with p-SOMP) Assume that, for the support set �,
the sensing matrix and the dictionary matrix are such that ��

���
� is invertible and

sup
k /∈�

‖(��
���)−1��

�ψk‖1 < 1. (4.3)

Consider a multichannel signal Y = ��X + E and suppose that M ≤ |�| satisfies

‖��

�
E‖p,∞ + ‖��

�E‖p,∞ < X (M)
p ·

(
1 − sup

k /∈�

‖(��
���)−1��

�ψk‖1

)

× |||(��
���)−1|||−1

1→1. (4.4)

Then the first M steps of p-OMP recover distinct elements of the support �. If
(4.4) is valid for M = |�| then in addition the reconstructed coefficients X̃ satisfy
‖X − X̃‖∞,2 ≤ (1 + μin

1 (�,�,�)) · ‖E‖∞,2.

Proof We will proceed by induction just as in the single channel case [13]. Sup-
pose we have performed M iterations successfully, i.e., �M ⊂ � (this assumption is
clearly true for M = 0 since �0 = ∅ when no iteration of SOMP has been performed
yet) and, with only a slight abuse of notations, let �XM = ��XM be an approximant
of Y generated by SOMP after M iterations, i.e., XM = �

†
�M

Y on its support �M

and zero outside. Further, let YM = Q�M
Y = Y − �XM be the associated residual.

If M = |�| there is nothing to prove, so we consider the case M < |�|. The next
selected atom is in � as soon as ‖��

�YM‖p,∞ > ‖��

�
YM‖p,∞. Decomposing the

residual, we just need

‖��
���(X − XM) + ��

�E‖p,∞ > ‖��

�
��(X − XM) + ��

�
E‖p,∞.

Using triangle inequalities and rearranging we get the stronger condition

‖��

�
E‖p,∞ + ‖��

�E‖p,∞ < ‖��
���(X − XM)‖p,∞ − ‖��

�
��(X − XM)‖p,∞.

(4.5)

From Corollary 2 we have ‖X − XM‖p,∞ ≤ |||(��
���)−1|||1→1 · ‖��

���(X −
XM)‖p,∞, and using the fact2 that XM has at most M nonzero entries, we also
get ‖X − XM‖p,∞ ≥ X (M+1). Combining these facts with an estimate due to Tropp
[24, 28] and Chen and Huo [6] (which is also recovered using Corollary 2)

2See also [10, Lemma 4.4].
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‖��

�
��(X − XM)‖p,∞

‖��
���(X − XM)‖p,∞

≤ sup
Z

‖��

�
��(��

���)−1Z‖p,∞
‖Z‖p,∞

= sup
k /∈�

‖(��
���)−1��

�ψk‖1 (4.6)

shows that the r.h.s in (4.5) is lower bounded by(
1 − sup

k /∈�

‖(��
���)−1��

�ψk‖1

)
· |||(��

���)−1|||−1 · X (M+1)

which yields the sufficient condition (4.4). The statement on the approximation er-
ror of the reconstructed coefficients X̃ is shown in the same way as in the proof of
Theorem 9. �

Standard techniques based on von Neumann series, see e.g. [12, 24] can be used
to prove that(

1 − sup
k /∈�

‖(��
���)−1��

�ψk‖1

)
· |||(��

���)−1|||−1 ≤ 1 − μ1(�) + μin
1 (�).

This enables us to obtain Theorem 5 as a corollary of Theorem 10, since the main
assumption (3.9) of Theorem 5 will imply both that (4.4) is satisfied for M = |�| and
that (4.3) holds true.

5 Average Case Analysis for Thresholding

In this section we will study the average performances of simultaneous p-threshold-
ing. Our goal, as announced in Sect. 4, is to show that under the multichannel

Gaussian signal model X = �
1
2 U , the typical behaviour of the algorithm is much

better than in the worst case. More precisely, we will prove that the probability that
p-thresholding fails to identify a sparse superposition of atoms decays exponentially
with the number of channels. Interestingly, the hypotheses under which our result
holds are reminiscent of the worst case conditions (4.1) but involve switching from
the usual cumulative coherence μ1 to the milder 2-cumulative coherence μ2.

5.1 Spirit of the Proof

Let us first streamline our reasoning so the busy or lazy readers can get enough insight
and intuition to go directly to Theorem 12, which can be simplified to get Featured
Theorem 4, and skip its proof. If we want thresholding to succeed we need to show
that

min
i∈�

‖ψ�
i ���

1
2 U‖p − max

�∈�

‖ψ�
����

1
2 U‖p > ‖��

�E‖p,∞ + ‖��

�
E‖p,∞.

The main idea of the proof is based on concentration of measure appearing when
the number of channels N is sufficiently large. Then for each p-correlation of the
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noiseless multichannel signal with a sensing atom we have with very large probability

‖ψ�
j ���

1
2 U‖p ≈ Cp(N) · ‖ψ�

j ���
1
2 ‖2,

where Cp(N) grows with N . Therefore the recovery condition will be satisfied with
high probability as long as

min
i∈�

‖ψ�
i ���

1
2 ‖2 − max

�/∈�
‖ψ�

����
1
2 ‖2 �

‖��

�
E‖p,∞ + ‖��

�E‖p,∞
Cp(N)

,

and all we need to check is under which conditions on the dictionary and the coeffi-
cient ranges the left hand side in the above is large enough.

The next section will supply us with tools to estimate the typicality and precision

of the approximation ‖ψ�
j ���

1
2 U‖p ≈ Cp(N) ·‖ψ�

j ���
1
2 ‖2 in order to give a fully

detailed proof.

5.2 Concentration of Measure

As mentioned above the corner stone on which both the average case analyses of
thresholding and OMP rely are the following concentration of measure inequalities.
Their actual proofs in all gory mathematical detail are awaiting the interested reader
in Appendix A.

Theorem 11 Let U be an N ×S matrix with independent standard Gaussian entries,
and {vk}k∈
 ⊂ R

S a finite family of nonzero vectors. Then for ε1 > 0 and 0 < ε2 < 1,

P

(
‖v�

kU‖p ≥ (1 + ε1)Cp(N)‖vk‖2

)
≤ exp(−ε2

1Ap(N)), (5.1)

P

(
‖v�

kU‖p ≤ (1 − ε2)Cp(N)‖vk‖2

)
≤ exp(−ε2

2Ap(N)) (5.2)

for each vector vk , and

P

(
max
k∈


‖v�
kU‖p ≥ (1 + ε1)Cp(N)max

k∈

‖vk‖2

)
≤ |
| · exp(−ε2

1Ap(N)), (5.3)

P

(
max
k∈


‖v�
kU‖p ≤ (1 − ε2)Cp(N)max

k∈

‖vk‖2

)
≤ exp(−ε2

2Ap(N)), (5.4)

P

(
min
k∈


‖v�
kU‖p ≥ (1 + ε1)Cp(N)min

k∈

‖vk‖2

)
≤ exp(−ε2

1Ap(N)),

P

(
min
k∈


‖v�
kU‖p ≤ (1 − ε2)Cp(N)min

k∈

‖vk‖2

)
≤ |
| · exp(−ε2

2Ap(N)). (5.5)

Concrete values for the constants Cp(N) and Ap(N) for p = 1,2,∞ can be found
in Table 1.
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Table 1 Constants Ap(N) and
Cp(N), the computations can be
found Appendix B

p = 1 p = 2 p = ∞

Cp(N)

√
2
π N

√
2 �(N/2)

�((N−1)/2)
∼ √

N � √
log(N)

Ap(N) N
π

�2(N/2)

�2((N−1)/2)
∼ N/2 � log(N)

5.3 Main Result for p-Thresholding

To keep the notational mess in the proof to a minimum we use the following abbre-
viations. We capture all the noise related terms in

η := ‖��

�
E‖p,∞ + ‖��

�E‖p,∞, (5.6)

and to deal with the coefficients more efficiently we use for the minimal and maximal
entry in � = diag(σ 2

i )i∈�

σmin := min
i∈�

σi and σmax := max
i∈�

σi.

Theorem 12 Assume that the noise level η is sufficiently small, i.e.

η < Cp(N) · (β · σmin − μ2(�) · σmax
)
. (5.7)

Then, under the multichannel Gaussian signal model X = �
1
2 U , the probability

that p-thresholding fails to recover the indices of the atoms in � does not exceed

P(p-thresholding fails) ≤ K · exp
(
−Ap(N) · γ 2

)
with

γ := β · σmin − μ2(�) · σmax − η/Cp(N)

β · σmin + μ2(�) · σmax
. (5.8)

Proof We can bound the probability that thresholding fails with the following trick,

P

(
min
i∈�

‖ψ�
i ���

1
2 U‖p − max

�∈�

‖ψ�
����

1
2 U‖p ≤ η

)

≤ P

(
min
i∈�

‖ψ�
i ���

1
2 U‖p ≤ C

)
+ P

(
max
�∈�

‖ψ�
����

1
2 U‖p ≥ C − η

)
.

Motivated by the concentration of measure results we set

C = (1 − ε1) · Cp(N) · min
i∈�

‖ψ�
i ���

1
2 ‖2,

where we choose ε1 later. Using (5.5) we can bound the first probability in the above
as:

P

(
min
i∈�

‖ψ�
i ���

1
2 U‖p ≤ (1 − ε1) · Cp(N) · min

i∈�
‖ψ�

i ���
1
2 ‖2

)

≤ |�| · exp
( − Ap(N) · ε2

1

)
.
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To bound the second probability we have to work a little bit more before apply-
ing (5.3)

P

(
max
�∈�

‖ψ�
����

1
2 U‖p ≥ C − η

)

= P

(
max
�∈�

‖ψ�
����

1
2 U‖p

≥ C − η

Cp(N) · max�∈� ‖ψ�
����

1
2 ‖2︸ ︷︷ ︸

=:1+ε2

·Cp(N) · max
�∈�

‖ψ�
����

1
2 ‖2

)

≤ |�| · exp
( − Ap(N) · ε2

2

)
.

For the last equality to hold we need to make sure that ε2 > 0. We will do this by
adjusting the choice of ε1 so that ε2 = ε1,

ε2 = (1 − ε1) · Cp(N) · mini∈� ‖ψ�
i ���

1
2 ‖2 − η

Cp(N) · max�∈� ‖ψ�
����

1
2 ‖2

− 1 = ε1.

Solving the equation above for ε1 we get

ε1 := mini∈� ‖ψ�
i ���

1
2 ‖2 − max�∈� ‖ψ�

����
1
2 ‖2 − η/Cp(N)

mini∈� ‖ψ�
i ���

1
2 ‖2 + max�∈� ‖ψ�

����
1
2 ‖2

. (5.9)

To see that ε1 > 0 observe that

min
i∈�

‖ψ�
i ���

1
2 ‖2

2 = min
i∈�

∑
k∈�

|σk|2|〈ϕk,ψi〉|2

≥ σ 2
min · min

i∈�
(|〈ψi,ϕi〉|2 + ‖��

�/iψi‖2
2) ≥ σ 2

min · β2,

max
�∈�

‖ψ�
����

1
2 ‖2

2 = max
�∈�

∑
k∈�

|σk|2|〈ϕk,ψ�〉|2

≤ σ 2
max · max

�∈�

∑
k∈�

|σk|2|〈ϕk,ψ�〉|2 ≤ σ 2
max · μ2

2(�).

Thus we can estimate ε1 from below as,

ε1 >
β · σmin − μ2(�) · σmax − η/Cp(N)

β · σmin + μ2(�) · σmax
=: γ. (5.10)

This is larger than zero by condition (5.7) and we get as final bound for the probability
that thresholding fails,

P(p-thresholding fails) ≤ K · exp
( − Ap(N) · ε2

1

) ≤ K · exp
( − Ap(N) · γ 2). �
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To get from the above theorem to Featured Theorem 4 we need to insert the ex-
pression for η and the concrete values for Cp(N),Ap(N) for p = 1 and observe that
because μ2(�) ≤ μ2(S) we can use it instead in the above formulas.

6 Average Case Analysis of OMP

In the previous section we have seen that even in the average case thresholding re-
quires balanced coefficients in order to ensure viable recovery results. This is quite
a strong limitation. Motivated by the fact that in the worst case OMP enabled us to
overcome this restriction we will now analyse the average performance of OMP.

6.1 Spirit of the Proof

A sufficient condition for OMP to succeed is that it will always pick another com-

ponent in the support, whatever residual RJ = QJ Y = (I − PJ )(���
1
2 U + E) we

have. So for all J ⊂ � we want to ensure

‖��
�QJ ���

1
2 U‖p,∞−‖��

�
QJ ���

1
2 U‖p,∞ > ‖��

�QJ E‖p,∞+‖��

�
QJ E‖p,∞.

(6.1)
Concentration of measure tells us that for any matrix A we have with very high prob-
ability

‖AU‖p,∞ ≈ Cp(N) · ‖A‖2,∞.

Therefore, condition (6.1) should be satisfied with high probability as long as

‖��
�QJ ���

1
2 ‖2,∞ − ‖��

�
QJ ���

1
2 ‖2,∞ >

‖��
�QJ E‖p,∞ + ‖��

�
QJ E‖p,∞

Cp(N)
.

(6.2)
To ensure the condition above we need to find a lower bound for the left hand side
that does not depend on J itself but only on its size.

The first term on the left hand side in (6.2) can be estimated from below as

‖��
�QJ ���

1
2 ‖2

2,∞ = sup
i∈�

∑
k∈�

σ 2
k · |〈QJ ϕk,ψi〉|2

≥ sup
i∈�\J

σ 2
i · |〈QJ ϕi,ψi〉|2 ≥ sup

i∈�\J
σ 2

i · inf
i∈�\J |〈QJ ϕi,ψi〉|2.

Using QJ ϕi = 0 whenever i ∈ J , the second term can be estimated from above as

‖��

�
QJ ���

1
2 ‖2

2,∞ = sup
�/∈�

∑
i∈�

σ 2
i · |〈QJ ϕi,ψ�〉|2

= sup
�/∈�

∑
i∈�\J

σ 2
i · |〈QJ ϕi,ψ�〉|2

≤ sup
i∈�\J

σ 2
i · sup

�/∈�

∑
i∈�\J

|〈QJ ϕi,ψ�〉|2

≤ sup
i∈�\J

σ 2
i · ‖��

�
QJ ��\J ‖2

2,∞.
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The combination of these two bounds leads to

‖��
�QJ ���

1
2 ‖2,∞ − ‖��

�
QJ ���

1
2 ‖2,∞

> sup
i∈�\J

σ 2
i ·

(
inf

i∈�\J |〈QJ ϕi,ψi〉|2 − ‖��

�
QJ ��\J ‖2

2,∞
)
.

Now observe that if we denote with {σ (i)}|�|
i=1 the decreasing rearrangement of σi we

have supi∈�\J σi ≥ σ (M) for J of size at most M − 1. Therefore defining the two
constants

c0(�) = inf
J��

inf
i∈�\J |〈QJ ϕi,ψi〉|, and d0(�) = sup

J��

‖��

�
QJ ��\J ‖2,∞ (6.3)

we can finally lower bound the left hand side in (6.2) as

‖��
�QJ ���

1
2 ‖2,∞ − ‖��

�
QJ ���

1
2 ‖2,∞ > σ(M) · (c0(�) − d0(�)

)
.

Based on the bounds c0(�), d0(�) we can now formulate a general recovery result.

6.2 A General Recovery Result

Theorem 13 Assume that the noise is orthogonal to all the atoms in the support,
��

�E = 0, and that the noise level η is sufficiently small, i.e.

η <
(
c0(�) − d0(�)

) · Cp(N) · σ (M). (6.4)

Then, under the multichannel Gaussian signal model X = �
1
2 U , the probability that

one of the first M atoms selected by p-OMP is incorrect (not in �) does not exceed

P(p-OMP fails after at most M steps) ≤ (1 + |�|) · CM · exp
( − Ap(N) · γ 2

M

)
(6.5)

with CM := ∑M−1
m=0

(|�|
m

)
and

γM := c0(�) − d0(�) − η · (Cp(N) · σ (M))−1

c0(�) + d0(�)
.

Proof We have to show that for any subset J of size at most M − 1 (6.1) holds.
However since we assume that the noise is orthogonal to the span of the support we
have QJ E = E − PJ E = E and so it suffices to show that

‖��
�QJ ���

1
2 U‖p,∞ − ‖��

�
QJ ���

1
2 U‖p,∞ > ‖��

�E‖p,∞ + ‖��

�
E‖p,∞ = η.

We can bound the probability that the above condition is violated using the same
tricks as before for thresholding. Again we collect all the noise terms on the right
hand side in η
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P
(‖��

�QJ ���
1
2 U‖p,∞ − ‖��

�
QJ ���

1
2 U‖p,∞ < η

)
= P

(‖��
�QJ ���

1
2 U‖p,∞ < C

) + P
(‖��

�
QJ ���

1
2 U‖p,∞ > C − η

)
.

We choose C = (1−ε1) ·Cp(N) · |��
�QJ ���

1
2 ‖2,∞ and use concentration inequal-

ity (5.4) to bound the first probability as

P
(‖��

�QJ ���
1
2 U‖p,∞ < (1 − ε1) · Cp(N) · ‖��

�QJ ���
1
2 ‖2,∞

)
≤ exp

( − Ap(N) · ε2
1

)
.

To bound the second probability we proceed as for thresholding and use inequality
(5.3),

P
(‖��

�
QJ ���

1
2 U‖p,∞ > C − η

)
= P

(
‖��

�
QJ ���

1
2 U‖p,∞

>
C − η

Cp(N) · ‖��

�
QJ ���

1
2 ‖2,∞︸ ︷︷ ︸

=:1+ε2

·Cp(N) · ‖��

�
QJ ���

1
2 ‖2,∞

)

≤ |�| · exp
( − Ap(N) · ε2

2

)
.

Again we require ε1 = ε2,

ε2 = (1 − ε1) · ‖��
�QJ ���

1
2 ‖2,∞ − η/Cp(N)

‖��

�
QJ ���

1
2 ‖2,∞

− 1 = ε1.

Solving the above for ε1 we get

ε1 = ‖��
�QJ ���

1
2 ‖2,∞ − ‖��

�
QJ ���

1
2 ‖2,∞ − η/Cp(N)

‖��
�QJ ���

1
2 ‖2,∞ + ‖��

�
QJ ���

1
2 ‖2,∞

.

If we now insert the definition of c0(�), d0(�) from (6.3) we can estimate ε1 from
below as:

ε1 >
c0(�) − d0(�) − η · (Cp(N) · σ (M)

)−1

c0(�) + d0(�)
= γM > 0.

Condition (6.4) ensures that γM > 0 and so we can bound for any subset J of size at
most M − 1 the probability that OMP fails to pick another good atom as
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P(‖��
�QJ ���

1
2 U‖p,∞ − ‖��

�
QJ ���

1
2 U‖p,∞ > η)

< (1 + |�|) · exp
( − Ap(N) · γ 2

M

)
.

In the end to be independent of the sequence of subsets that OMP finds we use a
union bound over all CM := ∑M−1

m=0

(|�|
m

)
subsets J ⊂ � of size at most M − 1 to get

the upper estimate on the probability of failure in (6.5). �

Note that the union bound we take above leads to a constant CS = 2S if we want to
estimate recovering the whole support. This is a considerable factor, for which there
is no numerical evidence in either our simulations or the results in [3]. One of our
future goals therefore is to improve the probability estimate by finding a way around
taking the crude union bound.

Also note that in the proof instead of estimating ε1 in terms of c0(�), d0(�) we
could have used any other pair of constants c, d satisfying c ≤ c0(�) and d ≥ d0(�).
While these constants result in a smaller γM and a stronger restriction on the noise
level they may have the advantage of having a more tangible form than the original
ones. Thus the next subsection is dedicated to finding new constants c, d in terms of
properties of the dictionary, which lead directly to the results in the featured theorems
in Sect. 3 when used instead of c0(�), d0(�).

6.3 Bounds on c0(�) and d0(�)

The following results estimate constants in terms of the 2-cross-Babel function
μ2(�) = μ2(�,�,�), the similarity β and the (local) restricted isometry constants
δ� = δ�(�).

Lemma 14 For any subset J � �

|||�†
J ||| ≤ (1 − δJ )−

1
2 ≤ (1 − δ�)−

1
2 ,

|||(�∗
J �J )−1||| ≤ (1 − δJ )−1 ≤ (1 − δ�)−1,

|||�∗
J ��\J ||| ≤ δ�,

|||�†
J ��\J ||| ≤ δ�

1 − δJ

≤ δ�

1 − δ�

, (6.6)

sup
�∈�

‖��
J ψ�‖2 ≤ μ2(�),

sup
�∈�

‖��
�\J ψ�‖2 ≤ μ2(�),

sup
i∈�\J

‖��
J ψi‖2 ≤ μin

2 (�).

Proof All the statements except for (6.6) essentially follow directly from Lemma 1
about matrix norms and the definitions of δ�, μ2(�) and μin

2 (�) in Sect. 2. To
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get to (6.6) note that by definition of the restricted isometry constants we have
|||�∗

��� − I||| ≤ δ�, therefore

|||��
�\J �J |||2 = sup

‖aJ ‖2≤1
‖��

�\J �J · aJ ‖2
2

≤ sup
‖aJ ‖2≤1

(
‖��

�\J �J · aJ ‖2
2 + ‖(��

J �J − I) · aJ ‖2
2

)

= sup
‖aJ ‖2≤1

∥∥∥∥
(

��
J �J − I ��

J ��\J
��

�\J �J ��
�\J ��\J − I

)(
aJ

0

)∥∥∥∥
2

2

≤ sup
‖a‖2≤1

∥∥(��
��� − I)a

∥∥2
2 ≤ δ2

�.
�

Lemma 15 Valid bounds for the constants c0(�), d0(�) are given by

c(�) := β − μin
2 (�)√
1 − δ�

, and d(�) := μ2(�)

1 − δ�

. (6.7)

Proof First we need to show that c(�) as defined above is smaller than c0(�) =
infJ�� infi∈�\J |〈QJ ϕi,ψi〉|. Recall the definition of the operator QJ = I − PJ . We

write the projection explicitely as PJ = (�
†
J )���

J = �J (��
J �J )−1��

J , where �
†
J

denotes the pseudo-inverse of �J . Fixing J � � for the moment we get (using self-
adjointness of PJ )

inf
i∈�\J |〈QJ ϕi,ψi〉| = inf

i∈�\J |〈(I − PJ )ϕi,ψi〉| ≥ inf
i∈�\J(|〈ϕi,ψi〉| − ‖PJ ψi‖2‖ϕi‖2)

≥ inf
i∈�\J(|〈ϕi,ψi〉| − ‖(�†

J )���
J ψi‖2)

≥ inf
i∈�\J(|〈ϕi,ψi〉| − |||�†

J |||‖��
J ψi‖2). (6.8)

Using Lemma 14 and the fact that infi |〈ϕi,ψi〉| ≥ β we obtain

inf
i∈�\J |〈QJ ϕi,ψi〉| ≥ β − (1 − δ�)−

1
2 · μin

2 (�).

Since the term on the right hand side no longer depends on the subset J , the in-
equation is valid for the infimum over all subsets J , thus leading to the first bound
in (6.7).

For the second claim we need to show that d(�) as defined above is larger than
d0(�) = supJ�� ‖��

�
QJ ��\J ‖2,∞. We again start by fixing J � �.

‖��

�
QJ ��\J ‖2,∞ = sup

�/∈�

‖��
�\J (I − PJ )ψ�‖2

≤ sup
�/∈�

(‖��
�\J ψ�‖2 + ‖��

�\J (�†
J )���

J ψ�‖2)

≤ sup
�/∈�

(‖��
�\J ψ�‖2 + |||�†

J ��\J |||‖��
J ψ�‖2). (6.9)
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Using Lemma 14 yields

‖��

�
QJ ��\J ‖2,∞ ≤ μ2(�) ·

(
1 + δ�

1 − δ�

)
= μ2(�)

1 − δ�

.

Again since the bound is independent of the subset J it is valid for the supremum
over all subsets and thus leads to the second part of (6.7). �

Based on the estimates for c(�) and d(�) as they appear above we can now give
proofs for the featured theorems in Sect. 3.

6.4 Proof of Theorem 6

All we need to do is replace c0(�), d0(�) in Theorem 13 by the bounds derived in
the lemma above. However to make the formulas less ugly we further estimate

c0(�) ≥ β − μin
2 (�)√
1 − δ�

≥ β − μin
2 (�)

1 − δ�

:= c(�).

To finally arrive at Theorem 6 simply note that whenever � = � we have β = 1 and
because of the assumption that E is orthogonal to the atoms in � the noise level
reduces to η = ‖��

�
E‖1,∞.

6.5 Proof of Theorem 7

The only missing ingredient we need for this proof is the following lemma, providing
further bounds for the constants c0(�), d0(�) to be used instead in Theorem 13.

Lemma 16 Suppose that � = �, and let S be the cardinality of �. Then we can
bound c0(�), d0(�) by

cS := 1 − δS+1√
1 − δS

and dS := δS+1

1 − δS

.

Proof We first show that for any S we have μ2(�,�, S) ≤ δS+1. For � /∈ J we define
� = J ∪ {�} and obtain from (6.6) that ‖��

J ϕ�‖2 = |||��
J ϕ�||| ≤ δJ∪{�}. Therefore

μ2(�,�, J ) ≤ sup��∈J δJ∪{�} and

μ2(�,�, S) = sup
|J |≤S

μ2(�,�, J ) ≤ sup
|J |≤S

sup
�/∈J

δJ∪{�} = δS+1.

Combing this estimate with Lemma 15 then leads to

c0(�) ≥ 1 − μin
2 (�)√
1 − δ�

≥ 1 − μ2(S)√
1 − δS

≥ 1 − δS+1√
1 − δS

,

d0(�) ≤ μ2(�)

1 − δ�

≤ μ2(S)

1 − δS

≤ δS+1

1 − δS

. �



J Fourier Anal Appl (2008) 14: 655–687 681

Again to prove the theorem we replace c0(�), d0(�) by cS, dS in Theorem 13 and
then need the noise level η to satisfy

η ≤ C1(N) · σmin · (cS − dS

) =
√

2

π
N · σmin ·

(
1 − δS+1 ·

√
1 − δS + 1

1 − δS

)
.

The above condition is ensured by η <

√
2
π
N ·σmin · (1−3δS+1) since for δS+1 < 1/3

the fraction in the expression above is smaller than 3 (it is always larger than 2) and
so by Theorem 13 the probability of failure is smaller than

(1 + K − S)2S exp(−Ap(N)γ 2
S ) with γS =

cS − dS − η · (
√

2
π
N · σmin)

−1

cS + dS

.

Inserting the explicit values for cS, dS and δS+1 < 1/3 we get from a lengthy but
uninteresting calculation that γS > 1 − 3δS+1 − η · (N

π
· σmin)

−1 = γ . Together with
the observation that for p = 1 we have Ap(N) = N/π this leads to the final bound
for failure featured in Theorem 7

P(failure of 1-OMP) ≤ K · 2S · exp(−Nγ 2/π).

6.6 Proof of Theorem 8

In order to prove the second main theorem we need Joel Tropp’s result that for a
random support set � the local isometry constants δ� are well behaved provided the
coherence μ is small. The following statement is [27, Theorem B] rewritten.

Theorem 17 Suppose � is selected uniformly at random among all subsets of
{1, . . . ,K} of size S ≥ 3. If cδ − |||�|||2S/K > 0 then

P (δ� > δ) < 2 exp

(
−

(
cδ − |||�|||2S/K

μ
√

S

)2)
,

where the constant c is not smaller than 0.0818.

With this theorem we can now estimate the probability that 1-OMP fails as:

P(1-OMP fails) ≤ P(1-OMP fails|δ� < 1/3) + P(δ� > 1/3).

To estimate the first term on the right hand side we can proceed as before. Because
of Lemma 15 and μ2(S − 1) ≤ μ2(S) we can replace c0(�), d0(�) by

cS = 1 − μ2(S)√
1 − δ�

and dS = μ2(S)

1 − δ�

.

We then need the noise η to satisfy

η ≤ C1(N) · σmin · (cS − dS

) =
√

2

π
N · σmin ·

(
1 − μ2(S) ·

√
1 − δ� + 1

1 − δ�

)
,
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which is again ensured by δ� < 1/3 and η <

√
2
π
N ·σmin · (1−3μ2(S)). Inserting all

the values, i.e. δ� < 1/3 and μ2(S) < 1/3 (as a consequence of the condition on the
noise), into the formula for γS leads to the estimate γS > 0.9(1 − 3μ2(S) − η · (N

π
·

σmin)
−1) = γ and we get the bound,

P(1-OMP fails|δ� < 1/3) ≤ K · 2S · exp(−Nγ 2/π).

Finally to bound the probability that P(δ� > 1/3) we simply note that c/3 > 1/37
and that for a tight frame we have |||�|||2 = K/d . Thus whenever S < d/37 the con-
dition of Theorem 17 is satisfied and

P (δ� > 1/3) < 2 exp

(
−

(
1/37 − S/d

μ
√

S

)2
)

.

7 Conclusions and Outlook

Sparse approximations of signals over redundant dictionaries is an emerging method-
ology that has attracted researchers from a remarkably broad community, from sig-
nal processing practitioners to mathematicians. Despite remarkable practical success,
there has always been quite a gap between the performances predicted by theory and
those achieved in practice. Clearly, the weak element in theory was the prominent
role of worst case analysis, casting overly pessimistic shadows on achievable results.
In this paper we shed new light on the problem by turning to average case analysis,
showing that greedy algorithms perform much better than the worst case prediction
in most cases.

Nevertheless, our results are far from being the final answer. First, we had to re-
strict ourselves to the multichannel case where we could take advantage of the collec-
tive behaviour of atoms across channels. A similar average case analysis in the single
channel case would be a major breakthrough. Advances have been reported for the
simple thresholding algorithm [21], but success for iterative greedy algorithms re-
mains elusive. Second, some of our theorems, most notably in the case of p-SOMP,
use pachydermal union bounds that seem to require many channels in order to reach
practical success probabilities. Solving this issue with finer arguments would also
lead to further bridging the gap between theory and practice.

Appendix A: Proof of Theorem 11

The proof of Theorem 11 relies heavily on the following standard result, see e.g. [15,
(2.35)] or [16, (1.6)].

Theorem A.1 Let f be a Lipschitz function on R
N , i.e., |f (x)−f (y)| ≤ L‖x − y‖2

for all x, y ∈ R
N . Further assume that Z = (Z1, . . . ,ZN) is a vector of independent

standard Gaussian random variables. Then
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P(f (Z) ≥ E[f (Z)] + t) ≤ exp

(
− t2

2L2

)
and

P(f (Z) ≤ E[f (Z)] − t) ≤ exp

(
− t2

2L2

)
.

Let us specialize this theorem to the p-norm (with the usual modification for
p = ∞). To this end we let

Cp(N) := E
[‖Z‖p

] = E

(
N∑

n=1

|Zn|p
)1/p

.

Further, we let Lp(N) be the smallest constant such that

‖x‖p ≤ Lp(N)‖x‖2 for all x ∈ R
N.

Further, we define

Ap(N) := Cp(N)2

2Lp(N)2
.

We will later on give estimates of these constants for the most interesting cases, i.e.
p = 1, 2, ∞. Theorem A.1 thus leads to the following.

Corollary A.2 Let 1 ≤ p ≤ ∞. Suppose Z = (Z1, . . . ,ZN) is a vector of indepen-
dent standard Gaussians. Then

P(‖Z‖p ≥ (1 + ε)Cp(N)) ≤ exp
(
−ε2Ap(N)

)
(A.1)

and

P(‖Z‖p ≤ (1 − ε)Cp(N)) ≤ exp
(
−ε2Ap(N)

)
. (A.2)

Proof The Lipschitz constant of the function f (x) = ‖x‖p can be estimated as

|‖x‖p − ‖y‖p| ≤ ‖x − y‖p ≤ Lp(N)‖x − y‖2. (A.3)

Taking y = 0 shows that this estimation is sharp. Applying Theorem A.1 with t =
εCp(N) and using the definition of Ap(N) yields the statement. �

Remark A.1 We could even worked with 0 < p < 1. Then one has to replace Lp(N)

by 21/p−1Lp(N), and hence Ap(N) by 41−1/pAp(N). Indeed, though ‖.‖p is not a

norm for p < 1, we have the quasi-triangle inequality ‖x + y‖p ≤ 21/p−1(‖x‖p +
‖y‖p), see e.g. [8]. This would then be used in the first inequality in (A.3) instead of
the usual triangle inequality.

Proof Consider the vector v�
kU ∈ R

N . Its entries are given by 〈vk,Un〉, n = 1, . . . ,N

where Un = (Un1, . . . ,UnS) is a vector of independent standard Gaussians. Observe
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that the inner products 〈vk,Un〉, n = 1, . . . ,N are stochastically independent with
the same distribution as the (univariate) scaled Gaussian ‖vk‖2Un1. Denoting Z =
(U11, . . . ,UN1), Corollary A.2 yields

P

(
‖v�

kU‖p ≥ (1 + ε1)Cp(N)‖vk‖2

)
= P

(∥∥∥(‖vk‖2Un1)
N
n=1

∥∥∥
p

≥ (1 + ε1)Cp(N)‖vk‖2

)
= P

(‖Z‖p ≥ (1 + ε1)Cp(N)
) ≤ exp(−ε2

1Ap(N)).

In the same fashion we obtain the second inequality. Now by a union bound

P

(
max
k∈


‖v�
kU‖p ≥ (1 + ε1)Cp(N)max

k∈

‖vk‖2

)

≤
∑
k∈


P

(
‖v�

kU‖p ≥ (1 + ε1)Cp(N)max
k′∈


‖vk′‖2

)

≤
∑
k∈


P

(
‖v�

kU‖p ≥ (1 + ε1)Cp(N)‖vk‖2

)
≤ |
| · exp(−ε2

1Ap(N)) (A.4)

and, denoting k0 ∈ 
 such that ‖vk0‖2 = maxk′∈
 ‖vk′‖2

P

(
max
k∈


‖v�
kU‖p ≤ (1 − ε2)Cp(N)max

k∈

‖vk‖2

)

≤ min
k∈


P

(
‖v�

kU‖p ≤ (1 − ε2)Cp(N)‖vk0‖2

)

≤ P

(
‖vk0U‖p ≤ (1 − ε2)Cp(N)‖vk0‖2

)
≤ exp(−ε2

2Ap(N)). (A.5)

Similar techniques yield the last two estimates. �

We could actually slightly improve the probability bound in the previous lemma.
Indeed, in inequality (A.4) we were a bit crude when replacing maxk′∈
 ‖vk′‖2 with
‖vk‖2 for each k. However, the resulting estimates improving (5.3) and (5.5) would
be much more complicated, and in particular, if all the norms ‖vk‖2 were roughly the
same the gain would be marginal (which might be expected when vk = ���

�ψk as
used below). So we preferred to state the result in the current form. We thus sacrificed
a little bit of precision to gain a much simpler looking result.

Appendix B: Computation of Ap(N) and Cp(N)

Let us now determine Ap(N) and Cp(N) for the important cases p = 1,2,∞.
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Lemma B.3

(a) For p = 1 it holds C1(N) =
√

2
π
N , L1(N) = √

N and

A1(N) = N

π
.

(b) For p = 2 we have C2(N) = √
2 �(N/2)

�((N−1)/2)
∼ √

N , where � denotes the � func-
tion. Hence,

A2(N) = �2(N/2)

�2((N − 1)/2)
∼ N/2.

(c) For p = ∞ there is a constant D such that D−1
√

log(N) ≤ C∞(N) ≤
D

√
log(N) and hence

A∞(N) � log(N).

Proof Case (a) (p = 1) is obvious. For p = ∞, case (c), we have L∞(N) = 1 and
[16, (3.14)] tells us that there exists a constant K such that

K−1
√

log(N) ≤ E‖Z‖∞ ≤ K
√

log(N).

Hence,

A∞(N) � log(N).

Concerning p = 2, case (b), we clearly have L2(N) = 1. The claim on C2(N) =
E‖Z‖2 is proved as follows.

The random variable

Y :=
N∑

n=1

Z2
n

has the χ2(N − 1) distribution (see e.g. [14]), that is, its probability density is given
by

f (x) = 1

�((N − 1)/2)
(1/2)(N−1)/2x(N−1)/2−1e−x/2, x ≥ 0.

Hence,

E‖Z‖2 = E

√
Y =

∫ ∞

0
x1/2f (x)dx

= 1

�((N − 1)/2)
(1/2)(N−1)/2

∫ ∞

0
xN/2−1e−x/2dx

= 1

�((N − 1)/2)
(1/2)(N−1)/22N/2

∫ ∞

0
xN/2−1e−xdx

= √
2

�(N/2)

�((N − 1)/2)
.
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Here, we used a substitution in the integral and the definition of the �-function,
�(z) = ∫ ∞

0 xz−1e−xdx. Further, using Stirling’s formula, �(z) ∼ √
2πzz−1/2e−z, we

obtain

�(N/2)

�((N − 1)/2)
∼ (N/2)(N−1)/2e−N/2

((N − 1)/2)(N−2)/2e−(N−1)2
=

√
1

2e

N(N−1)/2

(N − 1)(N−2)/2

=
√

1

2e

√
N

[
(1 − 1/N)N+2

]−1/2 ∼
√

N

2
.

The claim for A2(N) follows immediately. �
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