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Abstract Using coherent-state techniques, we prove a sampling theorem for Ma-
jorana’s (holomorphic) functions on the Riemann sphere and we provide an exact
reconstruction formula as a convolution product of N samples and a given recon-
struction kernel (a sinc-type function). We also discuss the effect of over- and under-
sampling. Sample points are roots of unity, a fact which allows explicit inversion
formulas for resolution and overlapping kernel operators through the theory of Cir-
culant Matrices and Rectangular Fourier Matrices. The case of band-limited func-
tions on the Riemann sphere, with spins up to J , is also considered. The connection
with the standard Euler angle picture, in terms of spherical harmonics, is established
through a discrete Bargmann transform.
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1 Introduction

The Fourier transform on the sphere is applied in a wide variety of fields: geophysics,
seismology, tomography, atmospheric science, computer vision, atomic physics, as-
trophysics, statistics, signal processing, crystallography, etc. It is therefore of great
interest to develop efficient techniques for the computation of Fourier coefficients,
spherical convolutions, etc.

Sometimes we have at our disposal just a set of samples of our signal and we
ask ourselves whether the Fourier transform may be computed, or the whole signal
be reconstructed (up to a certain degree of accuracy), from the discrete samples. In
the case of band-limited functions on the line (or Abelian harmonic analysis in gen-
eral), the classical (Shannon) sampling theorem provides the necessary and sufficient
conditions for this problem. However, the establishment of sampling theorems for
harmonic analysis on non-Abelian groups and their homogeneous spaces is still rela-
tively scarce in the literature, apart from some important general results for compact
groups [1, 2] and the (noncompact) motion group [3]. Moreover, we would want our
algorithms to be fast and efficient. The Fast Fourier Transform (FFT), in the setting
of Abelian harmonic analysis (i.e., the well-known Cooley–Tukey algorithm [4] for
time series analysis), has been extensively studied in both the theoretical and applied
literature but, again, there are few algorithms for the efficient computation of Fourier
transforms associated with non-Abelian groups and their homogeneous spaces (see
again Refs. [1, 2] for compact groups and [5] for the motion group and its engineering
applications [3], namely in robotics [6]). For finite non-Abelian groups, like the sym-
metric group Sn, the reference [7] provides efficient algorithms to compute Fourier
transforms.

For the two-dimensional sphere S
2, the efficient computation of Fourier transforms

of band-limited functions (those functions in L2(S2) which expansion requires only
spherical harmonics of angular momentum at most J ) has been achieved in, for in-
stance, Refs. [8–12]. In references [8, 9], the authors develop a sampling theorem on
the sphere, which reduces the computation of Fourier transforms and convolutions of
band-limited functions to discrete (finite) calculations. Here, band-limited functions
on S

2, of bandwidth J , are expanded in terms of spherical harmonics and sampled at
an equiangular grid of 4J 2 points.

The point of view followed in these references is a group theoretic one. In this
setting, the FFT on S

2 is an algorithm for the efficient expansion of a function defined
on the sphere S

2 = SO(3)/SO(2) in terms of a set of irreducible matrix coefficients
for the special orthogonal group in three dimensions, G = SO(3), which, in this case,
are the standard family of spherical harmonics.

In this article we consider the group G = SU(2) (double cover of SO(3)), which
allows for (extra) half-integer angular momenta (spin). Moreover, we shall work in
a different (holomorphic) picture and use, instead of spherical harmonics (based
on an Euler angle characterization), another system of (less standard) orthogonal
polynomials: “Majorana’s (holomorphic) functions” [13, 14] on the Riemann sphere
C̄ = C ∪ {∞} (one-point compactification of the complex plane). The advantage of
using this “complex holomorphic picture”, instead of the standard “Euler angle pic-
ture,” is twofold: firstly, we can take advantage of the either diagonal or circulant
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structure of resolution and overlapping kernel operators, respectively, to provide ex-
plicit inversion formulas and, secondly, we can extend the sampling procedure to
half-integer angular momenta s, which could be useful when studying, for example,
discrete frames for coherent states of spinning particles in Atomic Physics (see, e.g.,
Refs. [15, 16] for a thorough exposition on coherent states and its applications in
Physics). Moreover, for integer angular momenta s = j , we could always pass from
one picture to another through the Bargmann transform (3.31).

Working with a fixed angular momentum (spin) s, we shall introduce a system
of coherent states for SU(2) (the spin coherent states), which is a set of states shar-
ing similar properties with wavelets (in fact, they can be considered the same thing,
see [18, 19]). We shall provide a generalized Bargmann Transform [17] relating both
pictures (representations): the “holomorphic” one and the “standard” one, which is a
particular case of coherent-state transform [15, 16]. Then we shall choose in C̄ the
roots of unity as sampling points, so that the sampling of the coherent-state overlap
(or Reproducing Kernel) has a “circulant” structure [20]. Using the properties of the
Rectangular Fourier Matrices (RFM) and the theory of Circulant Matrices, we will
be able to invert the (sampled) reproducing kernel B and provide a reconstruction
formula for Majorana’s (holomorphic) functions on the Riemann sphere. The inver-
sion formula is accomplished through an eigen-decomposition B = FDF−1 of B,
where F turns out to be the standard discrete Fourier transform matrix. This fact al-
lows for a straightforward fast extension of the reconstruction algorithm. The case
of band-limited functions is also considered, but in this case the inversion should be
done numerically, and no fast algorithm is available, for the moment.

In order to keep the article as self-contained as possible, we shall introduce in
the next two sections general definitions and results about coherent states and frames
based on a group G and the standard construction of spin coherent states for the case
G = SU(2). We refer the reader to Refs. [15, 16, 18, 21] for more information. In
Sect. 4 we provide sampling theorems and reconstruction formulas for Majorana’s
functions on the Riemann sphere and discuss the effect of over- and under-sampling
and the analogies with the so called “covariant interpolation.” We also discuss the
case of band-limited functions, where a negative result is proved in the case of sam-
pling at roots of unity. A reconstruction theorem is provided for another set of sam-
pling points, but the inversion should be done numerically. In Sect. 5 we provide
explicit expressions (discrete Bargmann transforms) which connect our “complex
holomorphic picture” and the standard “Euler angle picture,” and we discuss some
obstructions that arise. Appendices A and B are devoted to a brief review of rectan-
gular Fourier matrices and circulant matrices, respectively.

2 A Brief on Coherent States and Frames

Let us consider a unitary representation U of a Lie group G on a Hilbert space
(H, 〈·|·〉). Consider also the space L2(G,dg) of square-integrable complex functions
� on G, where dg = d(g′g), ∀g′ ∈ G, stands for the left-invariant Haar measure,
which defines the scalar product

(�|�) =
∫

G

�̄(g)�(g)dg. (2.1)
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A nonzero function γ ∈ H is called admissible (or a fiducial vector) if �(g) ≡
〈U(g)γ |γ 〉 ∈ L2(G,dg), that is, if

cγ =
∫

G

�̄(g)�(g)dg =
∫

G

∣∣〈U(g)γ |γ 〉∣∣2 dg < ∞. (2.2)

Let us assume that the representation U is irreducible and that there exists a func-
tion γ admissible. Then a system of coherent states (CS) of H associated to (or in-
dexed by) G is defined as the set of functions in the orbit of γ under G

γg = U(g)γ, g ∈ G. (2.3)

We can also restrict ourselves to a suitable homogeneous space Q = G/H for
some closed subgroup H . Then, the nonzero function γ is said to be admissi-
ble mod(H,σ ) (with σ : Q → G a Borel section), and the representation U square-
integrable mod(H,σ ) if the condition

∫
Q

∣∣〈U(σ(q))γ |ψ〉∣∣2 dq < ∞, ∀ψ ∈ H (2.4)

holds, where dq is a measure on Q “projected” from the left-invariant measure dg on
the whole G. The coherent states indexed by Q are defined as γσ(q) = U(σ(q))γ, q ∈
Q, and they form an overcomplete set in H.

Condition (2.4) could also be written as the “expectation value”

0 <

∫
Q

∣∣〈U(σ(q))γ |ψ〉∣∣2 dq = 〈ψ |Aσ |ψ〉 < ∞, ∀ψ ∈H, (2.5)

where Aσ = ∫
Q

|γσ(q)〉〈γσ(q)|dq is a positive, bounded, and invertible operator.1

If the operator A−1
σ is also bounded, then the set Sσ = {|γσ(q)〉, q ∈ Q} is called a

frame, and a tight frame if Aσ is a positive multiple of the identity, Aσ = λI,λ > 0.
To avoid domain problems in the following, let us assume that γ generates a frame

(i.e., that A−1
σ is bounded). The CS map is defined as the linear map

Tγ : H −→ L2(Q,dq)

ψ �−→ �γ (q) = [Tγ ψ](q) = 〈γσ(q)|ψ〉√
cγ

.
(2.6)

Its range L2
γ (Q,dq) ≡ Tγ (H) is complete with respect to the scalar product

(�|�)γ ≡ (�|Tγ A−1
σ T −1

γ �)Q, and Tγ is unitary from H onto L2
γ (Q,dq). Thus,

the inverse map T −1
γ yields the reconstruction formula

ψ = T −1
γ �γ =

∫
Q

�γ (q)A−1
σ γσ(q) dq, �γ ∈ L2

γ (Q,dq), (2.7)

1In this paper we shall extensively use the Dirac notation in terms of “bra” and “kets” (see, e.g., [18, 22]).
The Dirac notation is justified by the Riesz Representation Theorem and is valid in more general settings
than Hilbert spaces of square-integrable functions.
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which expands the signal ψ in terms of CS A−1
σ γσ(q) with wavelet coefficients

�γ (q) = [Tγ ψ](q). These formulas acquire a simpler form when Aσ is a multiple of
the identity, as is for the case considered in this article.

When it comes to numerical calculations, the integral Aσ = ∫
Q

|γσ(q)〉〈γσ(q)|dq

has to be discretized, which means to restrict ourself to a discrete subset Q⊂ Q. The
question is whether this restriction will imply a loss of information, that is, whether
the set S = {|qk〉 ≡ |γσ(qk)〉, qk ∈Q} constitutes a discrete frame itself, with the reso-
lution operator

A =
∑
qk∈Q

|qk〉〈qk|. (2.8)

The operator A need not coincide with the original Aσ . In fact, a continuous tight
frame might contain discrete nontight frames, as happens in our case (see later on
Sect. 4).

Let us assume that S generates a discrete frame, that is, there are two positive
constants 0 < b < B < ∞ (frame bounds) such that the admissibility condition

b‖ψ‖2 ≤
∣∣∣∣
∑
qk∈Q

〈qk|ψ〉
∣∣∣∣
2

≤ B‖ψ‖2 (2.9)

holds ∀ψ ∈ H. To discuss the properties of a frame, it is convenient to define the
frame (or sampling) operator T : H → 	2 given by T (ψ) = {〈qk|ψ〉, qk ∈ Q}. Then
we can write A = T ∗T , and the admissibility condition (2.9) now adopts the form

bI ≤ T ∗T ≤ BI, (2.10)

where I denotes the identity operator in H. This implies that A is invertible. If we
define the dual frame {|q̃〉 ≡ A−1|q〉}, one can easily prove that the expansion (re-
construction formula)

|ψ〉 =
∑
qk∈Q

〈qk|ψ〉|q̃k〉 (2.11)

converges strongly in H, that is, the expression

T +
l T =

∑
qk∈Q

|q̃k〉〈qk| = T ∗(T +
l

)∗ =
∑
qk∈Q

|qk〉〈q̃k| = I (2.12)

provides a resolution of the identity, where T +
l ≡ (T ∗T )−1T ∗ is the (left) pseudoin-

verse (see, for instance, [23]) of T (see, e.g., [18, 21] for a proof, where they introduce
the dual frame operator T̃ = (T +

l )∗ instead).
It is interesting to note that the operator P = T T +

l acting on 	2 is an orthogonal
projector onto the range of T .

We shall also be interested in cases where there are not enough points to com-
pletely reconstruct the signal, i.e., undersampling, but a partial reconstruction is still
possible. In these cases, S does not generate a discrete frame, and the resolution
operator A would not be invertible. But we can construct another operator from T ,
B = T T ∗, acting on 	2.
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The matrix elements of B are Bkl = 〈qk|ql〉, therefore B is the discrete reproducing
kernel operator, see (3.30). If the set S is linearly independent, the operator B will be
invertible and a (right) pseudoinverse can be constructed for T , T +

r ≡ T ∗(T T ∗)−1,
in such a way that T T +

r = I	2 . As in the previous case, there is another operator,
PS = T +

r T acting on H, which is an orthogonal projector onto the subspace spanned
by S . A pseudo-dual frame can be defined as

|q̃k〉 =
∑
ql∈Q

(
B−1)

lk
|ql〉 (2.13)

providing a resolution of the projector PS ,

T +
r T =

∑
qk∈Q

|q̃k〉〈qk| = T ∗(T +
r

)∗ =
∑
qk∈Q

|qk〉〈q̃k| = PS . (2.14)

Using this, an “alias” |ψ̂〉 of the signal |ψ〉 is obtained,

|ψ̂〉 =
∑
qk∈Q

〈qk|ψ〉|q̃k〉, (2.15)

which is the orthogonal projection of |ψ〉 onto the subspace spanned by S , |ψ̂〉 =
PS |ψ〉. An example of this can be found in Sect. 4.1.2.

The two operators A and B are intertwined by the frame operator T , T A = BT .
If T is invertible, then both A and B are invertible and T +

r = T +
l = T −1. This case

corresponds to critical sampling, where both operators A and B can be used to fully
reconstruct the signal.

It should be noted that in the case in which there is a finite number N of sampling
points qk , the space 	2 should be substituted by C

N , and the operator B can be iden-
tified with its matrix once a basis has been chosen. If the Hilbert space H is finite
dimensional, as it is the case for all irreducible and unitary representations of SU(2),
all operators appearing in this section can be identified with their matrices.

3 Representations of SU(2): Spin Coherent States

The subject of Harmonic Analysis on the rotation group has been extensively treated
in the literature. Here we shall try to summarize what is important for our purposes,
in order to keep the article as self-contained as possible.

3.1 Coordinate Systems and Generators

The (two-dimensional) fundamental representation of the Lie group SU(2) corre-
sponds to the group of complex 2 × 2 unitary matrices with determinant one:

SU(2) = {U(ζ ) =
(

ζ1 ζ2
−ζ̄2 ζ̄1

)
, ζ1, ζ2 ∈ C : det(U) = |ζ1|2 + |ζ2|2 = 1}. (3.1)
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The coordinates ζ1, ζ2 are called “Cayley–Klein” parameters in the literature. Writing

ζ1 = ε0 + iε3, ζ2 = ε2 + iε1, εj ∈ R, (3.2)

we have that

det(U) = |ζ1|2 + |ζ2|2 = ε2
0 + ε2

1 + ε2
2 + ε2

3 = 1, (3.3)

which tells us that SU(2) ≈ S
3 (the four-dimensional sphere) as a (three-dimensional)

manifold. Denoting by

J1 = 1

2

(
0 1
1 0

)
, J2 = 1

2

(
0 −i

i 0

)
, J3 = 1

2

(
1 0
0 −1

)
, (3.4)

a basis of 2 × 2 traceless Hermitian (halved Pauli) matrices, we can also write any
matrix U ∈ SU(2), in a compact way, as

U(ε) = ε0I + 2i

3∑
k=1

εkJk, (3.5)

where I stands for the 2×2 identity matrix. The matrices (3.4) are also called the gen-
erators of infinitesimal (small) transformations U = I + iεA, ε � 1, since UU∗ = I

and det(U) = 1 imply (up to quantities of order two) that A is a traceless Hermitian
matrix, that is, it can be written as A =∑3

k=1 akJk . The Lie algebra of infinitesimal
generators of SU(2) is defined as the (real) vector space su(2) = Span{J1, J2, J3} of
traceless Hermitian matrices satisfying the standard (angular momentum) commuta-
tion relations (easy to check):

[J1, J2] = iJ3, [J2, J3] = iJ1, [J3, J1] = iJ2. (3.6)

Any connected Lie group like SU(2) can be built up by means of its infinitesimal
generators via the exponential:

U(α) = ei
∑3

k=1 αkJk = cos
α

2
I + 2i

3∑
k=1

nk sin
α

2
Jk, (3.7)

where αk ∈ R, k = 1,2,3, are called canonical coordinates at the identity element

U = I and α =
√

α2
1 + α2

2 + α2
3 , nk = αk

α
. Comparing (3.5) with (3.7) gives a relation

between the Cayley–Klein parameters ε and the canonical coordinates α.
Let us introduce another complex parametrization of SU(2), adapted to the Hopf

fibration of S
3, which will be of use in what follows. Let us define the following

equivalence relation in SU(2):
(
ζ ′

1, ζ
′
2

)∼ (ζ1, ζ2) ⇔ (
ζ ′

1, ζ
′
2

)= η(ζ1, ζ2); η ∈ C, |η| = 1, (3.8)

so that the quotient space (coset) (SU(2)/∼) coincides with the complex projective
space CP 1, which is isomorphic to S

2. Indeed, let us denote by [ζ1, ζ2] an element
(equivalence class) of CP 1. If ζ2 �= 0, then [ζ1, ζ2] = [ ζ1

ζ2
,1] = [z,1] represents a



J Fourier Anal Appl (2008) 14: 538–567 545

point z ∈ C, which is related to the stereographic projection of the Riemann sphere
on C (see later on this section). If ζ2 = 0, then [ζ1,0] = [1,0] is just a point (the
north/south pole). The other chart corresponds to ζ1 �= 0, which contains the iden-
tity element U = I of SU(2). We shall work in this chart and define z ≡ ζ2

ζ1
. The

projection

π : SU(2) → S
2, (z1, z2) �→ [z1, z2] (3.9)

gives SU(2) a principal fibre bundle structure with the structural group

π−1([z1, z2]) = {η ∈ C : |η| = 1} � U(1). (3.10)

In our chart, we can take η = eiϕ = ζ1|ζ1| . The Cayley–Klein parameters can be written
in these Hopf-fibration coordinates as

ζ1 = N (z, z̄)η, ζ2 = N (z, z̄)zη; N (z, z̄) ≡
√

1

1 + zz̄
, (3.11)

where we have defined the suitable normalization factor N for convenience. Denoting
by J± = J1 ± iJ2 the raising and lowering ladder operators, we can check that any
group element U ∈ SU(2) can also be written in complex coordinates z, η as

U(z, z̄, ϕ) = N (z, z̄)ezJ−e−z̄J+e−iϕJ3 . (3.12)

We have discussed the (two-dimensional) fundamental representation of SU(2).
There is also a three-dimensional (adjoint) representation of SU(2) on its Lie algebra

su(2) =
{

X =
3∑

k=1

xkJk = 1

2

(
x3 x1 − ix2

x1 + ix2 −x3

)
, xk ∈ R

}

� R
3 = {(x1, x2, x3), xk ∈ R} (3.13)

given by the action

U : su(2) −→ su(2), X �→ UXU∗, (3.14)

which reduces to the standard action of the rotation group SO(3), of 3 × 3 orthog-
onal matrices, on R

3. The fact that U and −U give the same rotation in (3.14) is a
consequence of the fact that SO(3) = SU(2)/Z2 or, in other words, SU(2) is the dou-
ble cover of SO(3). It is usual to parametrize SO(3) in terms of Euler angles, which
correspond to the choice (in the arrangement x3(ϕ) → x2(θ) → x3(φ))

U(θ,φ,ϕ) = e−iφJ3e−iθJ2e−iϕJ3 . (3.15)

After a little bit of algebra (power expansion of the exponentials), we can find a
relation between Cayley–Klein parameters and Euler angles given by

ζ1 = ei
ϕ+φ

2 cos
θ

2
, ζ2 = ei

ϕ−φ
2 sin

θ

2
, (3.16)
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so that z = ζ2
ζ1

= eiφ tan( θ
2 ) is the stereographic projection of the Riemann sphere on

the complex plane, as anticipated before.
We have discussed the two-dimensional (spin s = 1/2) and three-dimensional

(spin s = 1) representations of SU(2) in order to introduce coordinate systems. Let
us consider now higher-dimensional unitary irreducible representations of arbitrary
spin s.

3.2 Higher-Spin Representations

Unitary irreducible representations of the Lie algebra su(2) are (2s +1)-dimensional,
where s = 0,1/2,1,3/2, . . . is a half-integer parameter (spin or angular momentum)
that labels each representation. Each carrier space Hs � C

2s+1 is spanned by the
common angular momentum orthonormal basis B(Hs) = {|s,m〉,m = −s, . . . , s} (in
bra-ket notation) of eigenvectors of J3 and the Casimir (central) operator �J 2 = J 2

1 +
J 2

2 + J 2
3 , i.e.,

J3|s,m〉 = m|s,m〉, �J 2|s,m〉 = s(s + 1)|s,m〉. (3.17)

From the commutation relations

[J3, J±] = ±J± (3.18)

we see that J± play the role of raising and lowering ladder operators, respectively,
whose action on the basis vectors proves to be

J±|s,m〉 =√(s ∓ m)(s ± m + 1)|s,m ± 1〉. (3.19)

Indeed, it can be easily checked that the action (3.19) preserves the commutation
relations (3.6); for example:

[J+, J−]|s,m〉 = · · · = 2m|s,m〉 = 2J3|s,m〉, (3.20)

and so on.
Note that the structure subgroup U(1) ⊂ SU(2) in (3.10), generated by J3, sta-

bilizes any basis vector up to an overall multiplicative phase factor (a character of
U(1)), i.e., e−iϕJ3 |s,m〉 = e−imϕ |s,m〉. Thus, according to the general prescription
explained in Sect. 2, letting Q = SU(2)/U(1) = S

2, and taking the Borel section
σ : Q → G with σ(φ, θ) = (θ,φ,ϕ = 0), or σ(z, z̄) = (z, z̄,0), we shall define,
from now on, families of covariant coherent states mod(U(1), σ ) (see [18]). In sim-
ple words, we shall set ϕ = 0 and drop it from the vectors: U(θ,φ,ϕ)|s,m〉 and
U(z, z̄, ϕ)|s,m〉.

Therefore, we have different characterizations of spin coherent states according
to distinct choices of parameterizations. We shall concentrate on the (Hopf) com-
plex (3.12) and Euler angle (3.15) parameterizations.
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3.3 Euler Angle Characterization: Spherical Harmonics

For any choice of fiducial vector |γ 〉 = |s,m〉, the set of coherent states |θ,φ;m〉 ≡
U(θ,φ)|γ 〉 is overcomplete (for any m) in Hs . They can be easily computed by ex-
ponentiating the relations (3.17, 3.19). This set of coherent states is also a tight frame
with

Aσ = 2s + 1

4π

∫
S2

|θ,φ;m〉〈θ,φ;m|d� (3.21)

a resolution of unity and d� = sin θ dθ dφ the standard invariant measure on the 2-
sphere. Indeed, due to the invariance of the measure, it follows that UAσ = Aσ U

for all U ∈ SU(2). Since the representation is irreducible, we conclude from Schur’s
Lemma that Aσ = λI for some constant λ. Moreover, Tr(Aσ ) = 2s + 1 = Tr(I ) ⇒
λ = 1 ⇒ Aσ = I .

For the particular case of integer spin s = j and fiducial vector m = 0, the standard
spherical harmonics Ym

j (θ,φ) arise as the irreducible matrix coefficients (or Wigner
D-functions, see, e.g., Wigner’s text book [24]):

〈θ,φ;0|j,m〉 = 〈j,0|U(θ,φ)∗|j,m〉 =
√

4π

2j + 1
Ym

j (θ,φ), (3.22)

or, in other words, the components of spin coherent states |θ,φ;0〉 over the orthonor-
mal basis {|j,m〉}. Thus, for a general angular momentum j state |ψ〉 we have the
standard spherical harmonic decomposition [the wavelet coefficients (2.6)]

�(θ,φ) = 〈θ,φ;0|ψ〉 =
√

4π

2j + 1

j∑
m=−j

ψmYm
j (θ,φ) (3.23)

with Fourier coefficients ψm = 〈j,m|ψ〉.
Spherical harmonics are rather well-known special functions in the literature. In

this article, we shall work with a less standard set of basis functions for the (complex)
Riemann sphere: the Majorana functions.

3.4 Complex Holomorphic Characterization: Majorana Functions

In this case we shall use |γ 〉 = |s, s〉 as fiducial vector (i.e., the highest weight vector),
so that J+|γ 〉 = 0, and the coherent states

|z〉 ≡ U(z, z̄)|γ 〉 = Ns(z, z̄)e
zJ−e−z̄J+|s, s〉 = Ns(z, z̄)e

zJ−|s, s〉 (3.24)

are holomorphic (only a function of z), apart from the normalization factor Ns which,
for higher-spin representations s > 1/2, (slightly) differs from N in (3.12). In order
to determine Ns , we first recall the relation (3.19) which, by exponentiation, gives

ezJ−|s, s〉 = |s, s〉 + z
√

2s|s, s − 1〉 + 1

2
z2

√
2s
√

2(2s − 1)|s, s − 2〉

+ · · · + z2s |s,−s〉 ≡ N−1
s |z〉. (3.25)
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Then, imposing unitarity, i.e., 〈z|z〉 = 1, we arrive at Ns = N 2s with N given
in (3.11).

As for the Euler angle case, the frame {|z〉, z ∈ C} also is tight in Hs , with resolu-
tion of unity

I = 2s + 1

π

∫
C

|z〉〈z| d2z

(1 + zz̄)2
, (3.26)

where we denote d2z = d Re(z)d Im(z). Indeed, using (3.25), we have that

2s + 1

π

∫
C

|z〉〈z| d2z

(1 + zz̄)2
= 2s + 1

π

∫
C

2s∑
n,m=0

znz̄m

n!m! J
n−|s, s〉〈s, s|Jm+

× d Re(z)d Im(z)

(1 + zz̄)2s+2

= (2s + 1)

2s∑
n=0

(
2s

n

)∫ ∞

0
|s, s − n〉〈s, s − n|

× xndx

(1 + x)2s+2

=
s∑

m=−s

|s,m〉〈s,m| = I, (3.27)

where polar coordinates were used at intermediate stage. Also, the same argument as
in Sect. 3.3, based on Schur’s Lemma, is valid here.

Using (3.25), the decomposition of the coherent state |z〉 over the orthonormal
basis {|s,m〉} gives the irreducible matrix coefficients

〈z|s,m〉 = 〈s, s|U(z, z̄)∗|s,m〉 =
(

2s

s + m

)1/2

(1 + zz̄)−s z̄s+m

≡ N (z, z̄)2sϒm
s (z̄), (3.28)

where now ϒm
s (z̄) is just a monomial in z̄ times a numeric (binomial) factor. A gen-

eral spin s state |ψ〉 is represented in the present complex characterization by the so
called Majorana function [13, 14]:

�(z) ≡ 〈z|ψ〉 = (1 + zz̄)−s

s∑
m=−s

ψmϒm
s (z̄) = N (z, z̄)2sf (z̄), (3.29)

which is an anti-holomorphic function of z (in this case, a polynomial).2

2Here we abuse notation when representing the nonanalytic function �(z, z̄) simply as �(z), which is

indeed anti-holomorphic up to the normalizing, nonanalytic (real), pre-factor N 2s = (1 + zz̄)−s . Usually,
this pre-factor is absorbed in the integration measure in (3.26). If we choose the lowest weight fiducial
vector |γ 〉 = |s,−s〉, we would obtain proper holomorphic functions f (z).
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Note that the set of CS {|z〉} is not orthogonal. The CS overlap (or Reproducing
Kernel) turns out to be

C
(
z, z′)= 〈z|z′〉= (1 + z′z̄)2s

(1 + zz̄)s(1 + z′z̄′)s
. (3.30)

This quantity will be essential in our sampling procedure on the Riemann sphere.
For completeness, let us provide an expression which allows us to translate be-

tween both characterizations of coherent states for integer spin s = j . It is given by
the Coherent State (or Bargmann-like) Transform (see, e.g., [15, 16]):

K(θ,φ; z) ≡ 〈θ,φ|z〉 =
j∑

m=−j

〈θ,φ|j,m〉〈j,m|z〉

= (1 + zz̄)−j

√
4π

2j + 1

j∑
m=−j

Ym
j (θ,φ)ϒm

j (z)

= (1 + zz̄)−j

√
(2j)!

2j j !
(
sin θ e−iφ + 2z cos θ − z2 sin θ eiφ

)j
, (3.31)

which can be seen as a generating function for the spherical functions Ym
j (θ,φ) when

we drop the normalization factor N 2j from the last expression.

4 Sampling Theorem and DFT on S
2

Sampling techniques consist in the evaluation of a continuous function (“signal”) on
a discrete set of points and later (fully or partially) recovering the original signal with-
out losing essential information in the process, and the criteria to that effect are given
by various forms of Sampling Theorems. Basically, the density of sampling points
must be high enough to ensure the reconstruction of the function in arbitrary points
with reasonable accuracy. We shall concentrate on fixed spin holomorphic (Majo-
rana’s) functions and sample them at the roots of unity.

4.1 Single Spin Case

Let us first restrict ourselves to functions in Hs , i.e., with well-defined spin or angular
momentum s. In this case there is a convenient way to select the sampling points in
such a way that the resolution operator A and/or the reproducing kernel operator B
are invertible and explicit formulas for their inverses are available. These are given by
the N th roots of unity in the complex plane, N ∈ N, which would be associated, by
inverse stereographic projection, to a uniformly distributed set of points in the equator
of the Riemann sphere. The choice of roots of unity is made for convenience, since the
N th roots of any nonzero complex number would also be valid and would correspond
to different parallels in the Riemann sphere, but then the formulas obtained are less
symmetrical than the ones corresponding to roots of unity. The most important reason
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to select roots of unity is that they are associated with the discrete cyclic subgroup
ZN ⊂ U(1) ⊂ SU(2). The choice N = 2s + 1 corresponds to critical sampling. We
shall also discuss the consequences of over-sampling, with N > 2s + 1, and under-
sampling, with N < 2s + 1, in the following subsections.

4.1.1 Over-Sampling and Critical Sampling

In the case of over-sampling, the set S generates Hs , and the resolution operator
A = T ∗T is invertible. The case of critical sampling is a particular case of this, and
therefore the following discussion also applies to it.

The previous statements are formalized by the following lemma.

Lemma 4.1 Let Q = {zk = e2πik/N , N ≥ 2s + 1, k = 0, . . . ,N − 1} be the discrete
subset of the homogeneous space Q = SU(2)/U(1) = S

2 = C̄ made of the N th roots
of unity. The discrete set of CS S = {|zk〉, zk ∈Q} constitutes a discrete frame in Hs ,
and the expression

I2s+1 =
N−1∑
k=0

|zk〉〈z̃k| =
N−1∑
k=0

|z̃k〉〈zk| (4.1)

provides a resolution of the identity in Hs . Here |z̃k〉 = A−1|zk〉, k = 0, . . . ,N − 1,
denotes the dual frame, and the resolution operator, A, is diagonal in the angular mo-
mentum orthonormal basis B(Hs), A = diag(λ0, . . . , λ2s), with λn = N

22s

( 2s
n

)
, n =

0, . . . ,2s.

Proof First, from (3.28) the expression for the matrix elements of T can be obtained,

Tkn = 〈zk|s, n − s〉 = 2−s
√( 2s

n

)
e−i 2πkn

N , k = 0,1, . . . ,N − 1, n = 0,1, . . . ,2s. Then,
the resolution operator turns out to be

Anm =
N−1∑
k=0

(Tkn)
∗Tkm = 2−2s

√( 2s
n

)( 2s
m

)N−1∑
k=0

e2πik(n−m)/N = N2−2s
( 2s

n

)
δnm, (4.2)

where we have used the well-known orthogonality relation

N−1∑
k=0

(
e2πi(n−m)/N

)k =
{

N, if n = mmodN

0, if n �= mmodN

}
= Nδnm, (4.3)

since N ≥ 2s + 1. Therefore A is diagonal with nonzero diagonal elements, thus it
is invertible and a dual frame and a (left) pseudoinverse for T can be constructed,
T +

l ≡ A−1T ∗, providing, according to (2.12), a resolution of the identity. �

Remark 4.2 It is interesting to rewrite this proof in terms of Rectangular Fourier
Matrices (see Appendix A). Let D = diag(λ0, . . . , λ2s) be a diagonal (2s +1)× (2s +
1) matrix, then T = FN,2s+1 D1/2 = FN ◦ ιN,2s+1 ◦ D1/2. From this the expression
A = T ∗T = D is readily recovered, and also B = T T ∗ is seen to be B = FN D↑ F∗

N ,
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where D↑ =
(

D 0

0 0

)
N×N

(see Appendix A). Note that B is a singular N × N matrix

with only 2s + 1 nonzero eigenvalues λn, n = 0,1, . . . ,2s, and that they coincide
with those of A. In fact, B = FN A↑ F∗

N .

Lemma 4.3 Under the conditions of the previous lemma, the operator P = T T +
l =

FN P2s+1 F∗
N is an orthogonal projector onto a (2s + 1)-dimensional subspace of

C
N , the range of T .

Proof By direct computation (and using Appendix A),

P = T T +
l = T A−1T ∗ = FN ιN,2s+1 D1/2 D−1 D1/2 p2s+1,N F∗

N

= FN ιN,2s+1 p2s+1,N F∗
N = FN P2s+1 F∗

N, (4.4)

where P2s+1 = (I2s+1)
↑ =

(
I2s+1 0

0 0

)
N×N

. This clearly shows that P is an orthogonal

projector, unitarily equivalent to P2s+1 and that PT = T . �

Theorem 4.4 (Reconstruction formula) Any function ψ ∈ Hs can be reconstructed
from N ≥ 2s + 1 of its samples (the data) �(zk) ≡ 〈zk|ψ〉 at the sampling points
zk = e2πik/N , k = 0, . . . ,N − 1, by means of

�(z) = 〈z|ψ〉 =
N−1∑
k=0

�(zk)�
(
zz−1

k

)
, (4.5)

where

�(z) = 2s

N
(1 + zz̄)−s 1 − z̄2s+1

1 − z̄
(4.6)

plays the role of a “sinc-type function.”

Proof From the resolution of the identity (4.1), any ψ ∈ Hs can be written as
|ψ〉 = ∑N−1

k=0 �(zk)|z̃k〉, and therefore �(z) = 〈z|ψ〉 =∑N−1
k=0 �(zk)〈z|z̃k〉. Using

that |z̃k〉 = A−1|zk〉, we derive that

〈z|z̃k〉 = 1√
N

2s∑
n=0

λ
−1/2
n e2πikn/N 〈z|s, n − s〉 = 2s

N
N 2s

2s∑
n=0

(
z̄z̄−1

k

)n

≡ �
(
zz−1

k

)
, k = 0,1, . . . ,N − 1, (4.7)

where (3.28) has been used. �

Remark 4.5 It is interesting to note that (4.5) can be interpreted as a Lagrange-
type interpolation formula, where the role of Lagrange polynomials is played by
the functions Lk(z) = �(zz−1

k ) satisfying the “orthogonality relations” Lk(zl) =
�(zlz

−1
k ) = Plk , where P is the projector of Lemma 4.3. In the case of critical sam-

pling, N = 2s + 1, the usual result Lk(zl) = δlk is recovered, but for the strict over-
sampling case, N > 2s + 1, a projector is obtained to account for the fact that an
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arbitrary set of overcomplete data �(zk), k = 0, . . . ,N −1, can be incompatible with
|ψ〉 ∈Hs .

A reconstruction in terms of the Fourier coefficients can be directly obtained by
means of the (left) pseudoinverse of the frame operator T :

Corollary 4.6 The Fourier coefficients am of the expansion |ψ〉 =∑s
m=−s am|s,m〉

of any ψ ∈ Hs in the angular momentum orthonormal basis B(Hs) can be deter-
mined in terms of the data �(zk) = 〈zk|ψ〉 as

an−s = 2s

N

( 2s
n

)−1/2
N−1∑
k=0

�(zk)e
2πikn/N , n = 0, . . . ,2s. (4.8)

Proof Taking the scalar product with 〈zk| in the expression of |ψ〉, we arrive at the
over-determined system of equations

2s∑
n=0

Tknan−s = �(zk), Tkn = 〈zk|s, n − s〉, (4.9)

which can be solved by left multiplying it by the (left) pseudoinverse of T , T +
l =

(T ∗T )−1T ∗ = A−1T ∗. Using the expressions of A−1 = diag(λ−1
0 , λ−1

1 , . . . , λ−1
2s )

given in Lemma 4.1 and the matrix elements Tkn given by formula (3.28), we arrive
at the desired result. �

Remark 4.7 Actually, using the vector notation, we have T �a = �� , where �a =
(a−s , . . . , as), and �� denotes the vector of samples �(zk), k = 0, . . . ,N − 1. Using
the (left) pseudoinverse of T , we can solve it obtaining �a = D−1/2 p2s+1,N F∗

N
�� ,

which coincides with (4.8). Note also that the last expression is a map from C
N to

C
2s+1 ≈ Hs due to the presence of the projector p2s+1,N (see Appendix A), and

this prevents the appearance of infinities in the reciprocal of the binomial coefficient( 2s
n

)−1/2 with n > 2s. This is clearer if we apply T to the expression of �a to obtain

T �a = FN ιN,2s+1 D1/2 D−1/2 p2s+1,N F∗
N

�� = P �� , that is, the data �� should be first
projected in order to obtain a compatible set of data.

Next we provide an interesting expression.

Proposition 4.8 If we define the “dual data” as �(k) ≡ 〈z̃k|ψ〉, then they are related
to the data �(k) ≡ �(zk) = 〈zk|ψ〉 through the convolution product

�(k) = [� ∗ �](k) =
N−1∑
l=0

�(k − l)�(l), (4.10)
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where �(k) (the filter) turns out to be the Rectangular Fourier Transform of �δ ≡
(λ−1

0 , . . . , λ−1
2s ), i.e.,

�(k) = [FN,2s+1δ](k) = 1√
N

2s∑
n=0

λ−1
n e−i2πnk/N = 22s

N3/2

2s∑
n=0

( 2s
n

)−1
e−i2πnk/N .

(4.11)

Proof Applying (4.1) to ψ , we obtain:

|ψ〉 =
N−1∑
k=0

�(k)|zk〉.

Taking the scalar product with 〈zl | in the last equation, we arrive at �� = B ��, where
B = T T ∗ shows a circulant matrix structure (see Appendix B). Using the diagonal-
ization B = FND↑F∗

N of B, a Moore–Penrose pseudoinverse can be computed as
B+ = FN(D−1)↑F∗

N , and this allows us to obtain �� = B+ �� = FN(D−1)↑F∗
N

�� .
This last expression, by duality, can be interpreted as the convolution �� = �� ∗ ��
between the data and the filter (4.11). �

Remark 4.9 The relation between �(k) and �(k) is simply a “change of basis,” but
with nonorthogonal sets of generators {|zk〉} and {|z̃k〉}. Due to the particular choice
of sampling points, the change of basis involves Fourier transforms, and this can be
interpreted as a convolution.

Remark 4.10 For high spin values s � 1 (and N ≥ 2s + 1), it is easy to realize that
the filter (4.11) acquires the simple form

�(k) = 22s

N3/2

(
1 + ei2πrk/N + O

(
1

2s

))
, (4.12)

where r = N −2s. There is also a more manoeuvrable closed expression for the exact
value of the filter zero mode

�(0) = 22s

N3/2

2s∑
n=0

( 2s
n

)−1 = 2s + 1

N3/2

2s∑
n=0

2n

n + 1
, (4.13)

where we have used the result of Ref. [25] concerning sums of the reciprocals of
binomial coefficients. For large values of s, we can also prove that

lim
s→∞

2s∑
n=0

(
2s

n

)−1

= 2. (4.14)

In the case of critical sampling all formulae are still valid, we only have to sub-
stitute N = 2s + 1, the difference being that T is directly invertible and T −1 = T +

l .
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The projector P is the identity, and A and B are both invertible. The reason for con-
sidering the case of oversampling is twofold: first, by its intrinsic interest leading to
overcomplete frames, and second, in order to apply fast extensions (as FFT, see [4])
of the reconstruction algorithms, it would be useful to consider N the smallest power
of 2 greater or equal to 2s + 1.

4.1.2 Under-Sampling and Critical Sampling

Let us suppose now that the number of sampling points is N ≤ 2s + 1. We shall see
that, for N < 2s + 1, we cannot reconstruct exactly an arbitrary function ψ ∈ Hs

but its orthogonal projection ψ̂ ≡ PNψ onto the subspace Ĥs of Hs spanned by the
discrete set S = {|zk〉, k = 0, . . . ,N} of CS. In other words, the restriction to this
discrete subset implies a loss of information.

This loss of information translates to the fact that the resolution operator A is
not invertible, and therefore we do not have a frame nor a resolution of the identity
like in the previous subsection, see the discussion at the end of Sect. 2. But, since
the set S is linearly independent, we can construct another operator, the overlapping
kernel B = T T ∗, which is invertible and provides a partial reconstruction formula. In
addition, the overlapping kernel operator has a circulant structure, and this provides
a deep insight in the reconstruction process.

Let us formalize again the previous assertions.

Lemma 4.11 Let Q= {zk = e2πik/N , k = 0, . . . ,N −1} be the discrete subset of the
homogeneous space Q = SU(2)/U(1) = S

2 = C̄ made of the N th (N ≤ 2s + 1) roots
of unity. The pseudo-frame operator T : Hs → C

N given by T (ψ) = {〈zk|ψ〉, zk ∈
Q} [remember the construction after (2.9)] is such that the overlapping kernel opera-
tor B = T T ∗ is an N ×N Hermitian positive definite invertible matrix, admitting the
eigen-decomposition B = FND̂F∗

N , where D̂ = diag(λ̂0, . . . , λ̂N−1) is the diagonal

matrix with λ̂k = N

22s

∑q̄−1
j=0

( 2s
k+jN

)
, q̄ being the ceiling of (2s + 1)/N .

Proof Let us see that the eigenvalues λ̂k of B = T T ∗ are indeed all strictly positive,
and hence B is invertible. This can be done by using RFM or taking advantage of the
circulant structure of B (see Appendix B). With RFM we start with the expression
of T = FN,2s+1 D1/2 to obtain B = T T ∗ = FN,2s+1 DF∗

N,2s+1, which should be
further worked on in order to fully diagonalize it.

This can be done by using the “trick” mentioned in Appendix A consisting in
enlarging the RFM FN,2s+1 to FNM̄ , where M̄ is the smaller multiple of N greater
or equal to 2s + 1, and q̄ = M̄/N is the ceiling of (2s + 1)/N (see Appendix A). In
this way, FNM̄ always contains an integer number of ordinary Fourier matrices FN .

Using this, we obtain that B = FNM̄ D↑F∗
NM̄

, where D↑ is the extension of D to a

M̄ × M̄ matrix, and with a little of algebra the expression B = FN D̂F∗
N is obtained,

where D̂ = diag(λ̂0, . . . , λ̂N−1) and

λ̂k =
q̄−1∑
l=0

λk+lN = N

22s

q̄−1∑
l=0

(
2s

k + lN

)
. (4.15)
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All the eigenvalues are strictly positive, and therefore B is invertible. �

Following Sect. 2, we introduce the following result:

Lemma 4.12 Under the conditions of the previous Lemma, the set
{|z̃k〉 = ∑N−1

l=0 (B−1)lk|zl〉, k = 0, . . . ,N − 1} constitutes a dual pseudo-frame for
S , the operator PS = T +

r T is an orthogonal projector onto the subspace of Hs

spanned by S , where T +
r = T ∗B−1 is a (right) pseudoinverse for T , and

N−1∑
k=0

|z̃k〉〈zk| =
N−1∑
k=0

|zk〉〈z̃k| = PS (4.16)

provides a resolution of the projector PS .

Proof If we define T +
r = T ∗B−1, it is easy to check that T T +

r = IN is the identity
in C

N . In the same way, PS = T +
r T is a projector, since P 2

S = T +
r T T +

r T = T +
r T =

PS and it is orthogonal, P ∗
S = (T ∗B−1T )∗ = T ∗B−1T = PS , since B is self-adjoint.

The resolution of the projector is provided by (2.14). �

Although the full reconstruction of the original signal is not possible in the case
of undersampling, a partial reconstruction is still possible in the following sense.

Theorem 4.13 (Partial reconstruction formula) Any function ψ ∈ Hs can be par-
tially reconstructed from N ≤ 2s + 1 of its samples (the data) �(zk) ≡ 〈zk|ψ〉 at the
sampling points zk = e2πik/N , k = 0, . . . ,N −1, by the alias |ψ̂〉 = PS |ψ〉, by means
of

�̂(z) = 〈z|ψ̂ 〉=
N−1∑
k=0

�(zk)�̂
(
zz−1

k

)
, (4.17)

where

�̂(z) = 2s

N
(1 + zz̄)−s

N−1∑
p=0

λ̂−1
p

q̄−1∑
l=0

λp+lN z̄p+lN (4.18)

plays the role of a “sinc-type function.”.

Proof The proof follows the same lines as in Theorem 4.4. From the resolution of
the projector (4.16), any ψ ∈ Hs has a unique alias ψ̂ = PSψ which can be written
as |ψ̂〉 =∑N−1

k=0 �(zk)|z̃k〉, and therefore �̂(z) = 〈z|ψ̂〉 =∑N−1
k=0 �(zk)〈z|z̃k〉. Using

that |z̃k〉 =∑N−1
l=0 (B−1)lk|zl〉, we derive that

〈
z|z̃k

〉 = 1√
N

N−1∑
l=0

(
B−1)

lk

2s∑
n=0

λ
1/2
n e

2πikn
N 〈z|s, n − s〉
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= 2s

N
N 2s

N−1∑
p=0

λ̂−1
p

q̄−1∑
l=0

λp+lN

(
z̄z̄−1

k

)p+lN = �̂
(
zz−1

k

)
, (4.19)

where (3.28) and the orthogonality relations (4.3) have been used (but with N ≤
2s + 1, as in Appendix B). �

Remark 4.14 As in the case of oversampling, (4.17) can be interpreted as a Lagrange-
type interpolation formula, where the role of Lagrange polynomials is played by the
functions L̂k(z) = �̂(zz−1

k ), this time satisfying the proper orthogonality relations
L̂k(zl) = �̂(zlz

−1
k ) = δlk . The reason for this is that, in the case of under-sampling,

there is no an overcomplete set of data, and therefore the “Lagrange functions” are
orthogonal, although not complete.

A partial reconstruction can also be obtained, in a natural way, from the “dual
data”:

Proposition 4.15 If we define the “dual data” as �(k) ≡ 〈z̃k|ψ〉, then they are re-
lated to the data �(k) = 〈zk|ψ〉 through the convolution product

�(k) = [�̂ ∗ �
]
(k) =

N−1∑
l=0

�̂(k − l)�(l), (4.20)

where �̂(k) (the filter) turns out to be the discrete Fourier transform of δ̂ ≡
(λ̂−1

0 , . . . , λ̂−1
N−1), where λ̂k are the eigenvalues (4.15) of the overlapping kernel op-

erator B:

�̂(k) = [FN δ̂
]
(k) = 1√

N

N−1∑
n=0

λ̂−1
k e−i2πnk/N . (4.21)

Proof The proof follows the same lines as in Proposition 4.8, with the difference that
now B is not singular, and there is no need for a pseudoinverse. From �� = B �� and us-
ing the diagonalization B = FND̂F∗

N of B, the inverse is directly B−1 = FND̂−1F∗
N ,

and this allows one to obtain �� = B−1 �� = FND̂−1F∗
N

�� . This last expression, by

duality, can be interpreted as the convolution �� = �̂
� ∗ �� between the data and the

filter (4.21). �

The comments made in Remark 4.9 also apply here.
Again, a reconstruction in terms of the Fourier coefficients can be directly obtained

by means of the (right) pseudoinverse of the frame operator T :

Corollary 4.16 The Fourier coefficients âm of the expansion |ψ̂〉 =∑s
m=−s âm|s,m〉

of the alias of any ψ ∈ Hs in the angular momentum orthonormal basis B(Hs) can
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be determined in terms of the data �(k) = 〈zk|ψ〉 as

ân−s = N

2s

( 2s
n

)1/2
N−1∑
k=0

e2πikn/N

N−1∑
l=0

(
B−1)

kl
�(l), n = 0, . . . ,2s. (4.22)

Proof Taking the scalar product with 〈zk| in the expression of |ψ̂〉, we arrive at the
system of equations

2s∑
n=0

Tknân−s = �(k), Tkn = 〈zk|s, n − s〉, (4.23)

which can be solved by left multiplying it by the (right) pseudoinverse of T , T +
r =

T ∗ = T ∗B−1. Using the expressions of B given in Lemma 4.11 and the matrix ele-
ments Tkn given by the formula (3.28), we arrive at the desired result by noting that
T +

r T = PS , and this acts as the identity on ân−s . �

Remark 4.17 Using the vector notation, this can be written as �̂a = T +
r T �a =

T +
r

�� = T ∗B−1 �� , and this is even simpler in terms of the dual data, �̂a = T ∗ �� =
D1/2 F∗

N,2s+1
��.

It is interesting to establish the connection between our results and others in the
literature [26].

Corollary 4.18 (Covariant interpolation) For 0 ≤ k ≤ N − 1, define on Q the func-
tions �k(z) ≡ 〈z|zk〉, z ∈ C. Let ζ0, . . . , ζN−1 be N complex numbers and Bkl the
overlapping kernel operator. Define on Q the function

�(z) = �(z0, . . . , zN−1; ζ0, . . . , ζN−1; z)

≡ − 1

det(B)
det

⎛
⎜⎜⎝

0 �1(z) . . . �N−1(z)

ζ0 B0,0 . . . B0,N−1
...

...
. . .

...

ζN−1 BN−1,0 . . . BN−1,N−1

⎞
⎟⎟⎠ . (4.24)

Then we have that

1. �(z) = 〈z|φ〉 for some φ ∈ Hs .
2. � is a solution of the interpolation problem, i.e., �(zk) = ζk, z = 0, . . . ,N − 1.
3. � is of minimal norm, in the sense that if �̃ is any other function on Q with

�̃(z) = 〈z|φ̃〉 for some φ̃ ∈ Hs and �̃(zk) = ζk , then ‖�̃‖ ≥ ‖�‖.
4. The interpolation procedure is invariant under left multiplication in G in the sense

that U(g)BU(g)∗ = B and

�(gz0, . . . , gzN−1; ζ0, . . . , ζN−1;gz) = �(z0, . . . , zN−1; ζ0, . . . , ζN−1; z)
(gz denotes the natural action of the group G on its homogeneous space Q =
G/H ), so that the left-displaced interpolation problem �̌(gzk) = ζk is solved by
the function �̌(z) = �(g−1z).
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Proof It is a direct consequence of Theorem 4.13 if we identify the data ζk =
�(zk), �(z) = �̂(z), and

∑N−1
k=0 (B−1)kl�l(z) = �̂(zz−1

k ). The fact that � is of min-
imal norm is a direct consequence of the orthogonality of the projector PS . The in-
variance under left multiplication is a consequence of the invariance of the overlap-
ping kernel B under left multiplication. �

4.2 Several Spin Case

The case of several spins, i.e., band limited functions, is more involved than the single
spin case, and it is not so easy to select the sampling points in such a way that an
explicit expression for the inverse of the resolution or overlapping kernel operators
be available.

Denoting by3 H(J ) =⊕J
s=0 Hs the Hilbert space of band-limited functions, up to

spin J , the set of coherent states can be defined in an analogous way to the single
spin case.

First, let us denote by U(J)(z, z̄) =⊕J
s=0 Us(z, z̄) the unitary and reducible rep-

resentation of SU(2) acting on H(J ), where Us(z, z̄) stands for the unitary and ir-
reducible representation of spin s. The Hilbert space H(J ) has an orthogonal basis
given by {|s,m〉}, in such a way that IH(J ) = 1

J+1

∑J
s=0
∑s

m=−s |s,m〉〈s,m| is a res-

olution of the identity. Selecting the fiducial vector |γ 〉J = 1√
J+1

⊕J
s=0 |s, s >, the

set of coherent states is defined as |z〉J = U(J)(z, z̄)|γ 〉J .
The CS overlap, for the several spins case, is now

C(J)
(
z, z′)= 〈z|z′〉J = 1

J + 1

J∑
s=0

(1 + z′z̄)2s

(1 + zz̄)s(1 + z′z̄′)s
. (4.25)

The first, naive choice, of sampling points would be the N th roots of unity, zk =
e2πik/N , where now N = dimH(J ) = (J + 1)2 in order to have critical sampling. In
this way, the operators A(J ) and B(J ) would have nice structure, and their inverse
matrices would be easily computed.

However, the following negative result prevents us from proceeding in this way:

Proposition 4.19 For N ≥ 2J + 1, the overlapping kernel operator B(J ) has rank
2J + 1.

Proof Let λs , T s , Bs , and D2s+1 be the eigenvalues, frame, overlapping kernel op-
erators, and diagonal matrix appearing in the previous sections corresponding to an-
gular momentum s. Then the frame operator T (J ) : H(J ) → C

N can be written as a
N × (J + 1)2 matrix given by T (J )

k,(s,n) = T s
kn = FN,2s+1 D

1/2
2s+1.

3For the time being, we shall restrict ourselves to integer values of spin, in order to compare with standard
Fourier analysis on the sphere.
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Then B(J ) = T (J )T (J )∗ = B0 + B1 + · · · + BJ = FN (D
↑
1 + D

↑
3 + · · · +

D
↑
2J+1)F∗

N = FN D̃
↑
2J+1 F∗

N , where D̃2J+1 is a diagonal matrix with eigenvalues

λ̃n = 1

J + 1

J∑
s=(n−1)/2

λs
n, n = 0,1, . . . ,2J, (4.26)

where (n − 1)/2 stands for the ceiling of n−1
2 . �

The proof could also have been done by using the circulant structure of B(J ),
which can be written as B(J )

kl = Cl−k , where now

Ck ≡ 1

J + 1

J∑
s=0

1

22s

(
1 + e2πik/N

)2s
,

and computing its eigenvalues as in Appendix B.
Therefore, putting all sampling points in the equator of the Riemann sphere is

not a good choice, and other alternatives should be looked for. The problem is that
other choices of sampling points lead to resolution operators with less structure and
therefore without the possibility of having an explicit inverse.

Another possibility is to use an equiangular grid in (θ,φ), as the one used in [8, 9].
If (θj ,φk) = ( π

N
j, 2π

N
k) , j, k = 0,1, . . . ,N − 1, is a grid of N2 points in the sphere,

where N ≥ J + 1, the corresponding points in the complex plane by stereographic

projection are given by zk
j = eiφk tan

θj

2 = ei 2π
N

k tan( π
2N

j) = rj e
i 2π

N
k . However, it can

be checked that in this case the resolution operator also is singular.
We shall follow a mixture of both approaches consisting in using, as sampling

points, the (2s+1)th roots of (rs)
2s+1 for s = 0,1, . . . , J . Here rs is a positive number

depending on s, in such a way that if s �= s′, then rs �= rs′ . Thus, we shall continue to
use N = (J + 1)2 sampling points but distributed in circles of different radius. In the
Riemann sphere, these would be distributed in different parallels, one for each value
of spin. These points are given by

z(s)
m = rs e

2πim
2s+1 , s = 0, . . . , J, m = 0, . . . ,2s,

where s denotes spin index, and m the index for the roots.
The frame operator T is a (J +1)2 × (J +1)2 square matrix with a block structure

given by (2s′ + 1) × (2s + 1) blocks

T s′,s = F2s′+1,2s+1
(
D

s′,s
2s+1

)1/2 with D
s′,s
2s+1 = diag

(
λ

s′,s
0 , . . . , λ

s′,s
2s

)
, (4.27)

where λ
s′,s
n = 1

J+1
2s′+1

(1+r2
s′ )

2s

( 2s
n

)
r2n
s′ . The diagonal blocks are the frame operators for

the case of critical sampling with fixed spin s for each value of s = 0,1, . . . , J , and
they coincide with the previous expressions fixing rs = 1 (up to the factor 1

J+1 ).
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The resolution operator A and the overlapping kernel operator B share this block
structure with blocks given by

As′,s =
J∑

s′′=0

(
T s′′,s′)∗T s′′,s =

J∑
s′′=0

(
D

s′′,s′
2s′+1

)1/2F∗
2s′′+1,2s′+1F2s′′+1,2s+1

(
D

s′′,s
2s+1

)1/2
,

Bs′,s =
J∑

s′′=0

T s′,s′′(T s,s′′)∗ =
∑
s′′=0

F2s′+1,2s′′+1
(
D

s′,s′′
2s′′+1

)1/2(
D

s,s′′
2s′′+1

)1/2F∗
2s+1,2s′′+1.

(4.28)
The overlapping kernel operator B can be computed directly from the CS over-

lap (4.25) evaluated a the sampling points, turning out to be

Ba,b
m,n ≡ 〈z(a)

m |z(b)
n

〉J = 1

J + 1

J∑
s=0

(
(1 + rarb e

2πi
n(2a+1)−m(2b+1)

(2a+1)(2b+1) )2

(1 + r2
a )(1 + r2

b )

)s

=

⎧⎪⎨
⎪⎩

1 if z
(a)
m = z

(b)
n ,

1
J+1

1−(κ
a,b
m,n)J+1

1−κ
a,b
m,n

otherwise,
(4.29)

where

κa,b
m,n ≡ (1 + rarb e

2πi
n(2a+1)−m(2b+1)

(2a+1)(2b+1) )2

(1 + r2
a )(1 + r2

b )
(4.30)

is the multiplier of a geometric sum.
The overlapping kernel operator Ba,b

m,n is an Hermitian matrix having the following
structure:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

circ(1) B01 B02 . . . B0k B0 k+1 . . .

B∗
01 circ(C(1)

0 ,C(1)
1 ,C(1)

2 ) B12 . . . B1k B1 k+1 . . .

B∗
02 B∗

12 circ(C(2)
0 , . . . ,C(2)

4 ) . . . B2k B2 k+1 . . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.

B∗
0k

B∗
1k

B∗
2k

. . . circ(C(k)
0 , . . . ,C(k)

2k
) Bk k+1 . . .

B∗
0 k+1 B∗

1 k+1 B∗
2 k+1 . . . B∗

k k+1

. . . . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The diagonal blocks are circulant matrices of dimension 2s + 1 with C(s)
n =

(1+r2
s e2πin/(2s+1))2

(1+r2
s )2 , and the nondiagonal blocks Bpq are matrices of dimension (2p +

1) × (2q + 1).
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The overlapping kernel operator Ba,b
m,n is not a circulant matrix,4 not even a block

circulant matrix, therefore the computation of its inverse needed for the reconstruc-
tion formula must be done numerically. Even the checking that it is nonsingular must
be done numerically.

For different choices of rs , we have checked that the overlapping kernel operator
is invertible, and therefore the reconstruction formula can be used, although nice
expressions like (4.5) or (4.17) are not available.

Once the overlapping kernel operator has been inverted, the Fourier coefficients of
the signal can be obtained in the same fashion as in Corollary 4.6 or 4.16, using the
vector notation of Remarks 4.7 and 4.17.

Corollary 4.20 The Fourier coefficients as
m of the expansion |ψ〉 =∑J

s=0
∑s

m=−s as
m|s,m〉 of any ψ ∈ H(J ) in the angular momentum orthonormal ba-

sis B(H(J )) can be determined in terms of the data �(z
(s)
k ) = 〈z(s)

k |ψ〉 as

�a = T ∗B−1 ��. (4.31)

In this expression, �a and �� stand for vectors formed by gathering the vectors �a
and �� of Remarks 4.7 and 4.17 for each spin s.

Proof As in Corollaries 4.6 and 4.16, using the vector notation, we have T �a = �� .
Applying the right pseudoinverse for T , the desired result is obtained. �

Remark 4.21 For this choice of sampling points, both A and T turn out to be invert-
ible, therefore we could have used the left pseudoinverse of T for the reconstruction,
which requires the inverse of A, or we could have directly inverted T .

From the computational point of view, the most expensive step is the inversion of
B (or A or T ), which is of order O(N3) with N = (J + 1)2. But this is done only
once and can be stored for future uses. The determination of the Fourier coefficients
from the data requires O(N2) operations. More efficient algorithms, to compete with
the O(N log(N)2) of [8, 9] would require taking advantage of the block structure of
the matrices B or A, or maybe choosing a different set of sampling points that leads
to more structured matrices in such a way that the inverse is easily computed.

5 Connection with the Euler Angle Picture

We have provided reconstruction formulas for Majorana functions �(z) from N of its
samples �k = 〈zk|ψ〉 at the sampling points zk = e2πik/N in the Riemann sphere. As
stated in the Introduction, the advantage of using this “complex holomorphic picture,”

4This is traced back to the fact that the sampling points do not form an Abelian group. Only the sets

of the form z
(s)
m ,m = 0,1, . . . ,2s, with fixed s form cyclic subgroups, and they are responsible for the

appearance of circulant blocks at the diagonal.
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instead of the standard “Euler angle picture,” is twofold: firstly, we can take advan-
tage of the either diagonal or circulant structure of resolution and overlapping kernel
operators, respectively, to provide explicit inversion formulas and, secondly, we can
extend the sampling procedure to half-integer angular momenta s, which could be
useful when studying, for example, discrete frames for coherent states of spinning
particles in Quantum Mechanics.

Moreover, for integer angular momenta s = j , we could always pass from one
picture to another through the Bargmann transform (3.31). Indeed, let us work for
simplicity in the critical case N = 2j + 1 and let us denote by �k = 〈θ0, φk|ψ〉 the
samples of the function (3.23), in the Euler angle characterization, at the sampling
points θ0 �= 0,π and φk = − 2π

N
k, k = 0, . . . ,N − 1 (i.e., a uniformly distributed set

of N points in a parallel of the sphere S
2 but counted clockwise). Denoting by

Kkl ≡ K(θ0, φk; zl) = 〈θ0, φk|zl〉

=
√

(2j)!
22j j ! ei 2π

N
jk sinj (θ0)

(
1 + 2 cot(θ0) ei 2π

N
(l−k) − ei 4π

N
(l−k)

)j (5.1)

the discrete N ×N matrix version of the Bargmann transform (3.31) and inserting the
resolution of identity (4.1) in 〈θ0, φk|ψ〉, we easily arrive at the following expression:

�k =
N−1∑
l,m=0

KklB−1
lm �m, (5.2)

which relates data between both characterizations or pictures through the CS trans-
form and CS overlap matrices K and B in (5.1) and (B.1), respectively.

Except for some values of θ0 (see later in this section), the transformation (5.2) is
invertible, and explicit formulas of K−1 are available. Actually, K can be written as
the product K = �Q,

�kp =
√

(2j)!
22j j ! ei 2π

N
jk sinj (θ0)δkp,

Qpl = (1 + 2 cot(θ0) ei 2π
N

(l−p) − ei 4π
N

(l−p)
)j ≡ ql−p,

(5.3)

of a diagonal matrix � times a circulant matrix Q, which can be easily in-
verted (following the procedure of Appendix B) as Q−1 = FN�−1F∗

N , where � =
diag(ω0, . . . ,ωN−1) with eigenvalues

ωk =
N−1∑
n=0

qn e−i 2π
N

kn = N

j∑
p=0

p∑
r=0

′(−1)r
( p

r

)(
2 cot(θ0)

)p−r
, (5.4)

where the prime over
∑

implies the restriction p + r = k. Therefore, we can also
obtain data in the holomorphic characterization, �� , from data in the Euler angle char-
acterization, ��, through the formula

�� = BQ−1�−1 �� = FND�−1F∗
N�−1 ��, (5.5)
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which can be seen as a convolution �� = �� ∗ ��′ of the re-scaled data ��′ = �−1 ��
times the filter �� = FN

�θ with θk = λk/ωk the quotient of eigenvalues of B and Q.
Note that there are values of θ0 for which K is not invertible. Such is the case of

θ0 = π/2 (the equator), for which ωk = N(−1)k/2
( j

k/2

)
if k even and zero otherwise.

Let us show that this situation is linked to the fact that general functions (3.23) in
the Euler angle picture cannot be reconstructed from its samples �k on a uniformly
distributed set of N points in the equator of the sphere. Indeed, let us insert this
time the resolution of unity I2j+1 =∑j

m=−j |j,m〉〈j,m| in 〈θ0, φk|ψ〉 with |ψ〉 =∑j
m=−j am|j,m〉, which results in

�k =
j∑

m=−j

√
4π

2j + 1
Ym

j (θ0, φk) am, (5.6)

where we have used the definition (3.22). Denoting Ykn(θ0) ≡
√

4π
N

Y
n−j
j (θ0, φk) and

knowing from Remark 4.7 that the Fourier coefficients an−j are given in terms of
data �k trough �a = D−1/2F∗

N
�� , we arrive at a variant of the formula (5.2):

�� = Y(θ0)D
−1/2F∗

N
��, (5.7)

which again connects data between both pictures. Knowing that spherical harmonics
can be expressed in terms of associated Legendre functions P m

j by

Ym
j (θ,φ) = eimφP m

j (cos θ), (5.8)

whose value at the equator θ0 = π/2 is given in terms of Gamma functions as

P m
j (0) = 2m

√
π

cos

(
1

2
π(j + m)

)
�( 1

2j + 1
2m + 1

2 )

�( 1
2j − 1

2m + 1)
, (5.9)

we immediately realize that Y(π/2)kn = 0 for n odd. In other words, for θ0 = π/2,
the reconstruction process in the Euler angle picture fails unless we restrict to the
subspace of functions ψ with null odd Fourier coefficients (i.e., an−j = 0 for n odd).

Appendix A: Rectangular Fourier Matrices

Let N,M ∈ N, and let FNM be the N × M matrix

(FNM)nm = 1√
N

e−i2πnm/N, n = 0,1, . . . ,N − 1 , m = 0,1, . . . ,M − 1. (A.1)

We shall denote these matrices Rectangular Fourier Matrices (RFM). For N =
M , we recover the standard Fourier matrix FN . Let us study the properties of these
matrices in the other two cases, N > M and N < M .
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A.1 Case N > M

The case N > M is the one corresponding to oversampling, and it is the easiest one,
since it is very similar to the N = M case. Let us first introduce some notation.

Let ιNM : C
M → C

N be the inclusion into the first M rows of C
N (i.e., padding a

M-vector with zeros). And let pMN : C
N → C

M be the projection onto the first M

rows of C
N (i.e., truncating an N -vector). The matrix expression for this applications

are

ιNM =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . 1
...

...
...

...

0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, pMN =

⎛
⎜⎜⎝

1 0 . . . 0 . . . 0
0 1 . . . 0 . . . 0
...

...
. . .

...
...

...

0 0 . . . 1 . . . 0

⎞
⎟⎟⎠ . (A.2)

It can be easily checked that

pMN = (ιNM)∗, pMN ιNM = IM, ιNM pMN = PM ≡
(

IM 0

0 0

)
N×N

,

(A.3)
where IM stands for the identity matrix in C

M .
Given the square matrices A and B acting on C

N and C
M , respectively, we define

the square matrices A↓ and B↑ through the commutative diagrams

C
M A↓−−−−→ C

M

ιNM

⏐⏐%
&⏐⏐pMN

C
N A−−−−→ C

N

C
N B↑−−−−→ C

N

pMN

⏐⏐%
&⏐⏐ιNM

C
M B−−−−→ C

M

(A.4)

The matrix A↓ = pMN AιNM is the truncation of A to an M × M matrix, and the

matrix B↑ = ιNM B pMN ≡
(

B 0

0 0

)
N×N

is the padded version of B . Also note that

PM = (IM)↑.
From these definitions the following properties of the Rectangular Fourier Matri-

ces are derived:

FNM = FN ιNM, F∗
NM = pMN F∗

N,

F∗
NM FNM = IM, FNM F∗

NM = FN PM F∗
N.

(A.5)

A.2 Case N < M

The case N < M is the one corresponding to undersamplig, and it is not as easy as
the N > M case. The same definitions as in the previous case also apply here, but
interchanging the roles of N and M . Thus, in this case we have

pNM ιMN = IN , ιMN pNM = PN ≡
(

IN 0

0 0

)
M×M

= (IN)↑. (A.6)
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The RFM in this case now read

FNM = (FN

∣∣FN

∣∣ q times. . .
∣∣FN

∣∣FNp

)
,

F∗
NM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

F∗
N

F∗
N

... q times

F∗
N

F∗
Np

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,
(A.7)

where p = M mod N and q = M div N .
Instead of working with these matrices, it is more convenient to “complete" them

so as to have an integer multiple of Fourier matrices. Let M̄ be the smaller multiple
of N greater or equal to M , and q̄ = M̄/N the ceiling of M/N . Note that

q̄ =
{
q p = 0,

q + 1, p �= 0.
(A.8)

Then

FNM̄ = (FN

∣∣FN

∣∣ q̄ times. . .
∣∣FN

)
, (A.9)

a similar expression for F∗
NM̄

is obtained, and

FNM = FNM̄ ιM̄M, F∗
NM = pMM̄ F∗

NM̄
,

FNM F∗
NM = qIN +FN Pp F∗

N, F∗
NM FNM = (ÎM̄

)↓ ≡ ÎM,

(A.10)

where

ÎM̄ =

⎛
⎜⎜⎜⎜⎝

IN IN
q̄ times. . . IN

IN IN . . . IN

... q̄ times
...

. . .
...

IN IN . . . IN

⎞
⎟⎟⎟⎟⎠

M̄×M̄

. (A.11)

Appendix B: Circulant Matrices

The overlapping kernel operator B has a circulant matrix structure which gives a
deep insight into the process taking place, and we may take advantage of this fact to
diagonalize it in the case of undersampling, where RFM are more difficult to handle.

Indeed, note that

Bkl = 〈zk|zl〉 = 1

22s

(
1 + e2πi(l−k)/N

)2s = Cl−k, k, l = 0, . . . ,N − 1, (B.1)
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where Cn = 1
22s (1 + e2πin/N )2s , which shows a circulant matrix structure

B = circ(C0,C1, . . . ,CN−1) =

⎛
⎜⎜⎝

C0 C1 . . . CN−1
CN−1 C0 . . . CN−2

...
...

. . .
...

C1 C2 . . . C0

⎞
⎟⎟⎠=

N−1∑
j=0

Cj�
j ≡ Pc(�),

(B.2)
where

� =

⎛
⎜⎜⎝

0 1 . . . 0
...

...
. . .

...
...

... . . . 1
1 0 . . . 0

⎞
⎟⎟⎠ ,

(
�N = IN , �t = �∗ = �−1 = �N−1),

is the generating matrix of the circulant matrices, and Pc(t) is the representative
polynomial of the circulant (we put �0 ≡ IN ). According to the general theory
(see, e.g., [20]), every circulant matrix is diagonalizable, whose eigenvectors are the
columns of the Vandermonde matrix VN = V (z0, . . . , zN−1) = √

NF∗ and whose
eigenvalues λ̂k can be computed through its representative polynomial as5

λ̂k = Pc(z̄k) =
N−1∑
l=0

Clz
−l
k = 2−(2s)

N−1∑
l=0

2s∑
n=0

( 2s
n

)
e2πil(2s−n)/N e−2πikl/N

= N

22s

q̄−1∑
l=0

( 2s
k+lN

)
, k = 0, . . . ,N − 1, (B.3)

where q̄ is the ceiling of (2s + 1)/N , and we have used the orthogonality rela-
tion (4.3), although in this case, since N ≤ 2s + 1, there can be more terms in the
sum. All of them are strictly positive, and it is easy to prove that B = FND̂F∗

N ,
where D̂ = diag(λ̂0, . . . , λ̂N−1).
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