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Abstract Pseudoframes for subspaces have been recently introduced by Li and
Ogawa as a tool to analyze lower dimensional data with arbitrary flexibility of both
the analyzing and the dual sequence.

In this paper we study Gabor pseudoframes for affine subspaces by focusing on
geometrical properties of their associated sets of parameters. We first introduce a
new notion of Beurling dimension for discrete subsets of R

d by employing a certain
generalized Beurling density. We present several properties of Beurling dimension
including a comparison with other notions of dimension showing, for instance, that
our notion includes the mass dimension as a special case. Then we prove that Gabor
pseudoframes for affine subspaces satisfy a certain Homogeneous Approximation
Property, which implies invariance under time–frequency shifts of an approximation
by elements from the pseudoframe.

The main result of this paper is a classification of Gabor pseudoframes for affine
subspaces by means of the Beurling dimension of their sets of parameters. This pro-
vides us, in particular, with a Nyquist dimension which separates sets of parameters
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of pseudoframes from those of non-pseudoframes and which links a fixed value to
sets of parameters of pseudo-Riesz sequences. These results are even new for the
special case of Gabor frames for an affine subspace.

Keywords Beurling density · Beurling dimension · Frame · Gabor system · Discrete
Hausdorff dimension · Homogeneous Approximation Property · Mass dimensions ·
Nyquist density · Pseudoframe · Pseudoframe for subspaces
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1 Introduction

Frames are a well-established tool both in applied and pure mathematics which pro-
vides robust and stable—but usually nonunique—representations of vectors. For in-
stance, in wireless communications frames ensure robustness of transmission against
erasures [22], in image processing they serve as building blocks for novel directional
representation systems [3], and just recently it has been discovered that the theory
of frames may provide a means to attack the Kadison–Singer Conjecture in operator
theory from 1959 [5].

However, for some applications, frames lack enough flexibility, for instance, in the
design of the dual frame needed for reconstruction. Several different approaches have
been recently proposed to circumvent this problem, e.g., fusion frames [4], g-frames
[23], and oblique frames [7]. In this paper we will focus on pseudoframes introduced
by Li and Ogawa [16] as a tool to analyze lower dimensional data with arbitrary flex-
ibility of both the analyzing and the dual sequence. In the situation of a pseudoframe,
the “dual sequence” is only required to provide a reconstruction formula. In some
instances, data that we wish to analyze is contained in a subspace, which naturally
leads to the idea of pseudoframes for subspaces [17, 18].

In this paper we study a special class of pseudoframes for subspaces which are of
particular interest in time–frequency analysis. A Gabor system consists of a collection
of time–frequency shifts of a single function or a finite family of functions in L2(Rd)

with respect to a discrete set of parameters in R
d × R

d . Due to this structure, Gabor
systems are especially suitable for applications involving time-dependent frequency
content, for example, for the analysis of acoustic signals such as music [9].

Classical Gabor systems, which employ a lattice as set of parameters, have been
studied extensively over the past 20 years. Recently, the more general irregular Ga-
bor systems with arbitrary sets of parameters in R

d × R
d have attracted increasing

attention, in particular, due to applications from sampling and perturbation theory.
Questions concerning (frame) properties of irregular Gabor systems lead naturally to
the study of the associated sets of parameters. A very elegant way to classify sets of
parameters is the consideration of their Beurling densities. For a recent survey article
with extensive list of references, we refer to [10].

However, we intend to focus on the study of Gabor pseudoframes for (affine)
subspaces. Beurling density alone does not serve our needs here, and instead the
“dimensionality” of the set of parameters will play an essential role. Beurling den-
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sity only serves as a classifying tool for sets of parameters of the same “dimension.”
Comparable problems occur in the study of sets of parameters of wave packet sys-
tems, which are systems consisting of dilates, translates, and modulates of a single
function in L2(R) with their sets of parameters being contained in the affine Weyl–
Heisenberg group. Progress on the problem of classifying sets of parameters of wave
packet systems was recently made by the authors through the introduction of upper
and lower Beurling dimensions based on Beurling density and inspired by the notion
of Hausdorff dimension [8].

In this paper, we present a notion of Beurling dimension for discrete subsets of
R

d by employing a certain generalized Beurling density. First, we study several of
its properties, including behavior under perturbations, monotonicity, stability, and
geometric invariance. We further compare the new notion with the most well-known
notions of dimension for discrete subsets of R

d , such as the mass dimension, which
we show to be a special case of our notion. Secondly, we apply the new notion of
Beurling dimension to Gabor pseudoframes for (affine) subspaces. In particular, in-
spired by techniques from [11, 21], we determine the Beurling dimensions of the
sets of parameters of Gabor pseudoframes for affine subspaces. This leads to a clas-
sification of Gabor pseudoframes for affine subspaces and Gabor pseudo-Riesz se-
quences by means of Beurling dimensions of their associated sets of parameters (The-
orem 3.3).

These main results and the techniques of their proofs have several interesting im-
plications. One implication concerns an improvement of the applicability of Gabor
pseudoframes. In fact, we prove that Gabor pseudoframes for affine subspaces always
satisfy a certain Homogeneous Approximation Property. This property which can be
interpreted as invariance of the quality of an approximation by elements from a Ga-
bor pseudoframe for an affine subspace associated with a boxed set of parameters
under time–frequency shifts of this box. This, in turn, provides us with more flexibil-
ity to approximate signals by means of Gabor pseudoframes for an affine subspace.
The other implication we mention is of theoretical nature. It is well known that Gabor
frames exhibit a Nyquist density phenomenon, i.e., the Beurling density separates sets
of parameters of frames from those of non-frames [6], whereas for wavelet frames
this was recently shown to be false [12, 14] by employing a notion of density adapted
to affine systems. Due to the fact that a suitable notion of density does not provide
useful information as already discussed earlier, Gabor pseudoframes for affine sub-
spaces cannot be expected to possess a Nyquist density. However, our results show
that, instead, there exists a Nyquist dimension which separates sets of parameters of
pseudoframes from those of non-pseudoframes and yields a fixed value for sets of
parameters of pseudo-Riesz sequences. This result is new even in the special case of
Gabor frames for an affine subspace and provides us with a deeper understanding of
the nature of Nyquist phenomena.

This paper is organized as follows. The definition and general theory of Beurling
dimension for discrete subsets of R

d is given in Sect. 2, including a comparison of
Beurling dimension with the mass dimension and the discrete Hausdorff dimension.
In Sect. 3 we determine the Beurling dimensions of the sets of parameters of Gabor
pseudoframes for affine subspaces and prove the classification result.
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2 Beurling Dimension

2.1 Definition of Beurling Dimension

We will define a notion of Beurling dimension for sequences � in R
d suited to

Euclidean geometry by using as a backbone a generalization of Beurling density. No-
tice that throughout this paper, although � will always denote a sequence of points
in R

d and not merely a subset, for simplicity we will write � ⊂ R
d .

First we require some notation. Let Q denote the box [−1,1]d and, for h > 0, let
Qh be the dilation of Q by the factor of h:

Qh = hQ = [−h,h]d .

For any x = (x1, . . . , xd) ∈ R
d , we let Qh(x) be the set Qh translated in such a way

that it is centered at x, i.e.,

Qh(x) =
d∏

i=1

[xi − h,xi + h].

Employing these notions, we define a generalization of Beurling density.

Definition 2.1 We say that S ⊂ R
d is an affine subspace of R

d if it is a coset of some
linear subspace of R

d .
Let � ⊂ R

d , let S be an affine subspace of R
d , and let r > 0. The lower Beurling

density of � with respect to S and r is defined by

D−
S,r (�) = lim inf

h→∞ inf
x∈S

#(� ∩ Qh(x))

hr
,

and the upper Beurling density of � with respect to S and r is defined by

D+
S,r (�) = lim sup

h→∞
sup
x∈S

#(� ∩ Qh(x))

hr
.

If D−
S,r (�) = D+

S,r (�), then we say that � has uniform Beurling density with
respect to S and r and we denote this density by DS,r (�).

We remark that the Beurling density with respect to R
d and d coincides with

the classical Beurling density. In particular, for S = R
d and r = d , the definition of

Beurling density is independent of the particular choice of the set Q (see [15]). By
using a similar argument for each r > 0, we obtain:

Proposition 2.2 Let � ⊂ R
d , and let U ⊂ R

d be a compact set of measure 2d whose
boundary has measure zero. Then, for any r > 0 and any affine subspaces S of R

d ,

D−
S,r (�) = lim inf

h→∞ inf
x∈S

#(� ∩ (x + hU))

hr
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and

D+
S,r (�) = lim sup

h→∞
sup
x∈S

#(� ∩ (x + hU))

hr
.

For y ∈ R
d , the Beurling density with respect to S = {y} and r = d is also a

commonly used density, and it is known that this density does not depend on y. More
generally, we have the following:

Proposition 2.3 Let � ⊂ R
d , T a linear subspace of R

d , and y ∈ R
d be given. Then,

for all r > 0,

D+
T +y,r (�) = D+

T ,r (�)

and

D−
T +y,r (�) = D−

T ,r (�).

Proof Note that there exists R > 0 such that, for all x ∈ T and h > 0, Qh+R(x) ⊃
Qh(x + y) and Qh+R(x + y) ⊃ Qh(x). The result follows. �

We now define the Beurling dimension of a set, which will be used to characterize
the Nyquist dimension of Gabor pseudoframes for an affine subspace.

Definition 2.4 Let � ⊂ R
d , and let S be an affine subspace of R

d . The lower Beurl-
ing dimension of � ⊂ R

d with respect to S is defined by

dim−
S (�) = inf

{
r > 0 :D−

S,r (�) < ∞}
,

and the upper Beurling dimension of � ⊂ R
d with respect to S is

dim+
S (�) = sup

{
r > 0 : D+

S,r (�) > 0
}
.

When these two quantities are equal, we refer to them as the Beurling dimension of
� with respect to S and we denote them by dimS(�).

It follows immediately from the definition that we always have dim−
S (�) ≤

dim+
S (�).

The following result presents possible equivalent definitions of Beurling dimen-
sions. Since the proof is rather technical and uses the same arguments as the proof of
a similar result in [8], we omit it here.

Proposition 2.5 Let � ⊂ R
d , and let S be an affine subspace of R

d . Then,

(i) dim−
S (�) = sup {r > 0 :D−

S,r (�) > 0},
(ii) dim+

S (�) = inf {r > 0 :D+
S,r (�) < ∞}.

We note here that, while Beurling dimension is defined above for arbitrary subsets
of R

d , the upper Beurling dimension will be infinite unless � is discrete. Indeed, if x

is an accumulation point of �, then, for all h > 0, #(� ∩ Qh(x)) = ∞. Thus, we will
restrict our attention to discrete subsets of �.
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2.2 Properties of Beurling Dimension

In this section we present several properties of the Beurling dimension with respect
to S ⊂ R

d .

2.2.1 Perturbation

We first show that Beurling density is robust against perturbations of the elements in
the set under consideration. Given ε > 0, we say that � ⊂ R

d is an ε-perturbation of
� ⊂ R

d if � = {λ + δλ : λ ∈ �, δλ ∈ [−ε, ε]}. As before, � should be considered as
a sequence rather than a subset of R

d .

Lemma 2.6 Let � ⊂ R
d , S an affine subspace of R

d , and ε > 0 be given. For any
ε-perturbation � of � and any r > 0, we have

D−
S,r (�) = D−

S,r (�) and D+
S,r (�) = D+

S,r (�).

Proof For h > 0 and x ∈ S, we obtain the following estimates for #(� ∩ Qh(x)):

#
(
� ∩ Qh−ε(x)

) ≤ #
(
� ∩ Qh(x)

) ≤ #
(
� ∩ Qh+ε(x)

)
.

Dividing the terms by hr for r > 0 and observing that

lim sup
h→∞

supx∈S #(� ∩ Qh−ε(x))

hr
= D+

r (�) = lim sup
h→∞

supx∈S #(� ∩ Qh+ε(x))

hr

implies D+
S,r (�) = D+

S,r (�).
The claim concerning the lower Beurling density with respect to S and r can be

treated similarly. �

Combining Lemma 2.6 and the definition of upper and lower Beurling dimension
yields the following perturbation result.

Theorem 2.7 Let � ⊂ R
d , S an affine subspace of R

d , and ε > 0 be given. For any
ε-perturbation � of �, we have

dim−
S (�) = dim−

S (�) and dim+
S (�) = dim+

S (�).

2.2.2 Geometric Properties

Our next result shows that the upper, lower, and uniform Beurling dimensions satisfy
properties which are typically associated with dimensions.

Proposition 2.8 Let �1,�2,� ⊂ R
d , and S an affine subspace of R

d be given. Then
the following conditions hold:

(i) Monotonicity: If �1 ⊆ �2, then

dim−
S (�1) ≤ dim−

S (�2) and dim+
S (�1) ≤ dim+

S (�2).



520 J Fourier Anal Appl (2008) 14: 514–537

(ii) Stability: We have

dim−
S (�1 ∩ �2) ≤ min

(
dim−

S (�1),dim−
S (�2)

)

and

dim+
S (�1 ∪ �2) = max

(
dim+

S (�1),dim+
S (�2)

)
.

(iii) Geometric invariance: Let f : R
d → R

d be a uniform homeomorphism such that
f (S) = S + y for some y ∈ R

d . Then

dim−
S

(
f (�)

) = dim−
S (�) and dim+

S

(
f (�)

) = dim+
S (�).

Proof We will only prove the claims for the upper Beurling dimension. The lower
Beurling dimension can be treated similarly.

(i) If �1 ⊆ �2, it follows that D+
S,r (�1) ≤ D+

S,r (�2) for all r > 0. Using the defi-
nition of Beurling dimension proves the claim.

(ii) For all r > 0, we have D+
S,r (�1 ∪ �2) ≥ max(D+

S,r (�1),D+
S,r (�2)). Thus

dim+
S (�1 ∪ �2) ≥ max(dim+

S (�1),dim+
S (�2)). (1)

Now fix r > 0. Since

sup
x∈S

#
(
(�1 ∪ �2) ∩ Qh(x)

) ≤ sup
x∈S

#
(
�1 ∩ Qh(x)

) + sup
x∈S

#
(
�2 ∩ Qh(x)

)
,

it follows that D+
S,r (�1 ∪�2) ≤ D+

S,r (�1)+D+
S,r (�2). This implies D+

S,r (�1 ∪�2) ≤
2 max(D+

S,r (�1),D+
S,r (�2)). Due to the definition of dim+

S , this yields

dim+
S (�1 ∪ �2) ≤ max

(
dim+

S (�1),dim+
S (�2)

)
. (2)

Equations (1) and (2) settle the claim.
(iii) Note that, if f is a uniformly continuous surjection of one normed linear space

onto another, then it is Lipschitz for large distances, see, for example, [2, Lemma 5.1].
That is, for all h0 > 0, there exists C > 0 such that f (Qh(x)) ⊂ QCh(f (x)) for all
x ∈ R

d and h ≥ h0. In particular, we conclude that, for each r > 0,

lim sup
h→∞

sup
x∈S

#(f −1(�) ∩ Qh(x))

hr
≤ lim sup

h→∞
sup
x∈S

#(� ∩ QCh(f (x)))

hr

≤ Cr lim sup
h→∞

sup
x∈S+y

#(� ∩ Qh(x))

hr
.

It follows from Proposition 2.3 that dim+
S (f −1(�)) ≤ dim+

S (�). A similar argument
shows that dim+

S (f (f −1(�))) ≤ dim+
S (f −1(�)), which yields the result. �
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2.2.3 Range of Values

In this section, we will restrict attention to the case S = R
d . We present the possible

range of values of Beurling dimension, making use of Proposition 2.9 below. This
result provides a variety of different interpretations of finite upper and positive lower
Beurling density with respect to r = d . Recall that � ⊂ R

d is uniformly separated
if infλ1,λ2∈�,λ1 �=λ2 |λ1 − λ2| > 0. It is relatively uniformly separated if it is a finite
union of uniformly separated sets. Further, � is h-dense if

⋃
x∈� Qh(x) = R

d .

Proposition 2.9 Let S,V be affine subspaces of R
d , and suppose that � ⊂ V and

that there exists z0 such that V + z0 ⊂ S. Let n be the affine dimension of V .

(i) The following conditions are equivalent:

(a) D+
S,n(�) < ∞.

(b) D+
S,dim(S)(�) < ∞.

(c) There exists some h > 0 such that supx∈S #(� ∩ Qh(x)) < ∞.
(d) For all h > 0, supx∈S #(� ∩ Qh(x)) < ∞.
(e) � is relatively uniformly separated.
(f) For all h > 0, supx∈S #{λ ∈ � : x ∈ Qh(λ)} < ∞.

(ii) Also the following conditions are equivalent:

(a) D−
S,n(�) > 0.

(b) D−
S,dim(S)(�) > 0.

(c) There exists some h > 0 such that infx∈S #(� ∩ Qh(x)) > 0.
(d) � contains a subsequence of positive uniform density.
(e) There exists some h > 0 such that � is h-dense.

Proof Note that, under the hypotheses of Proposition 2.9, Propositions 2.2 and 2.3
and the proof of Proposition 2.8 (iii) imply that, without loss of generality, we may
restrict to the case that S = R

d and � ⊂ V = R
n × {0, . . . ,0} ⊂ R

d .
(i): (b), (c), (d), and (e) are equivalent by [6, Lemma 2.3]. To prove (d) ⇔ (f)

observe that

#
(
� ∩ Qh(x)

) = #{λ ∈ � : −x ∈ Qh − λ} = #{λ ∈ � : x ∈ Qh(λ)}.

This immediately settles the claim.
The fact that (a) implies (b) is immediate. To show that (b) implies (a), we proceed

a contrario and assume that D+
Rd ,n

(�) = ∞. First, we note that, as a consequence of

the assumption � ⊂ V , we may write � = �′ × {0, . . . ,0} ⊂ R
n × {0, . . . ,0} = R

d .
Hence, D+

Rd ,n
(�) = D+

Rn,n
(�′) and D+

Rd ,d
(�) = D+

Rn,d
(�′). Next, we again invoke

[6, Lemma 2.3] to conclude that supx∈Rn #(�′ ∩Qh(x)) = ∞, which, in turn, implies
that D+

Rn,d
(�′) = ∞.

(ii): Clearly, (b) implies (a). On the other hand, since � ⊂ R
n × {0, . . . ,0},

D−
Rd ,n

(�) > 0 only if n = d .
The implication (b) ⇒ (c) is immediate.
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To show (c) ⇒ (d), let h, δ > 0 be such that #(� ∩ Qh(x)) > δ for all x ∈ R
d .

Hence, in particular, each set �∩Qh(x) contains at least one element. Thus, for each
k ∈ Z

d , there exists some yk ∈ � ∩ Qh(2hk). Since (yk)k∈Zd is a 2h-perturbation of
(2hZ)d and DRd ,d ((2hZ)d) = (2h)−d , Lemma 2.6 implies that (yk)k∈Zd has uniform
density equal to (2h)−d , which proves the claim.

Next suppose that � contains a subsequence � of positive uniform density. Since
D−

Rd ,d
(�) > DRd ,d (�) > 0, (d) implies (b).

The equivalence of (c) and (e) is immediate. �

Theorem 2.10 Let S,V be affine subspaces of R
d , and suppose that � ⊂ V and that

there exists z0 such that V + z0 ⊂ S. Denote the affine dimension of V by n. Then,

(i) dim+
S (�) ∈ [0, n] ∪ {∞} and

(ii) dim−
S (�) ∈ {0} ∪ [n,∞].

Proof As before, we may assume without loss of generality that S = R
d . Assume

that dim+
Rd (�) =: s > n and s < ∞. By definition, this implies D+

Rd ,n
(�) = ∞.

By Proposition 2.9(i), supx∈Rd #(� ∩ Qh(x)) = ∞ for all h > 0. Hence
D+

Rd ,s+1
(�) = ∞, a contradiction to s = sup{r > 0 : D+

Rd ,r
(�) > 0} and s < ∞.

This proves (i).
To show (ii) assume that dim−

Rd (�) =: s ∈ (0, n). This implies D−
Rd ,n

(�) = 0. By

Proposition 2.9(ii), infx∈Rd #(� ∩ Qh(x)) = 0 for all h > 0. Hence also D−
Rd , s

2
(�) =

0, which contradicts to s = inf{r > 0 :D−
Rd ,r

(�) < ∞} and s > 0. �

Theorem 2.10 implies that the upper Beurling dimension with respect to R
d serves

as an extension of the Lebesgue dimension to discrete subsets by assigning a value
between 0 and the Lebesgue dimension of the Euclidean space or infinity to each such
subset. It further indicates that the lower Beurling dimension provides a subdivision
for those sets which have infinite upper Beurling dimension. Moreover, for subsets
with uniform Beurling dimension, i.e., for which the lower Beurling dimension coin-
cides with the upper Beurling dimension, it follows that this dimension is either 0, d ,
or ∞. There are, however, examples of �, S, and V not satisfying the conditions of
Theorem 2.10 such that the Beurling dimension with respect to S is any nonnegative
number, as can be seen by considering the sequence � = {±nα : n ∈ N} with S = {0}
and V = R.

We close this section by showing that Beurling dimension inherits the “intuitive”
dimension of a discrete set.

Theorem 2.11 Let � ⊂ R
d with D+

d (�) < ∞, and let 0 ≤ n < d . Suppose that �

is contained in a translated bounded neighborhood of an n-dimensional subspace V

of R
d , i.e., � ⊂ y0 + {x ∈ R

d : dist(x,V ) ≤ ε} for y0 ∈ R
d and ε > 0. Then, for any

affine subspace S such that there exists z0 ∈ R
d satisfying S + z0 ⊃ V , we have

dim+
S (�) ≤ n.
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Proof Let P be the orthogonal projection onto V . Note that P(�) is an ε-
perturbation of �, so by Theorem 2.7, dim+

S (P (�)) = dim+
S (�). Moreover, since

S + z0 ⊃ V , Theorem 2.10 and Proposition 2.3 imply that dim+
S (P (�)) ∈ [0, n] ∪

{∞}, since P(�) is contained in an n-dimensional subspace. Therefore, since
dim+

S (�) < ∞, dim+
S (�) = dim+

S (P (�)) ≤ n. �

2.3 Comparison with Other Dimensions

In this section, we compare Beurling dimensions with other dimensions; namely, the
mass dimensions, dimLM and dimUM , and the discrete Hausdorff dimension, dimH .
The first can be defined as

dimLM(�) = lim inf
n→∞

ln #(� ∩ Qn)

lnn

and

dimUM(�) = lim sup
n→∞

ln #(� ∩ Qn)

lnn
,

see, e.g., [1]. (We shall see in this section that mass dimensions are special cases
of Beurling dimensions.) For the precise definition of the discrete Hausdorff dimen-
sion, we refer to [1]. For other notions of discrete dimensions and for a discussion of
relations between them, we refer to [19] and [20].

First, we present yet another version of the definition of the Beurling dimension,
which will facilitate comparisons to the mass dimensions.

Proposition 2.12 Let � ⊂ R
d and S be an affine subspace of R

d . Then we have

dim−
S (�) = lim inf

h→∞ inf
x∈S

ln #(� ∩ Qh(x))

lnh

and

dim+
S (�) = lim sup

h→∞
sup
x∈S

ln #(� ∩ Qh(x))

lnh
.

Proof We only study the upper dimension. The proof for the lower dimension is
similar.

First, consider 0 < r < dim+(�). In this case, we have D+
S,r (�) = ∞. Therefore

there exists a sequence (hn)n∈N with limn→∞ hn = ∞ such that

lim
n→∞

supx∈S #(� ∩ Qhn(x))

hr
n

= ∞.

Without loss of generality we can assume that, for all n ∈ N,

supx∈S #(� ∩ Qhn(x))

hr
n

> 1.
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This yields

lim sup
h→∞

sup
x∈S

ln #(� ∩ Qh(x))

lnh
≥ lim sup

n→∞
sup
x∈S

ln #(� ∩ Qhn(x))

lnhn

> lim sup
n→∞

ln(hr
n)

lnhn

= r.

Since this holds for every r < dim+
S (�), we obtain

lim sup
h→∞

sup
x∈S

ln #(� ∩ Qh(x))

lnh
≥ dim+

S (�). (3)

Secondly, let r > dim+
S (�), which implies D+

S,r (�) = 0. Fix ε > 0. Then there
exists H > 0 such that for all h > H :

supx∈S #(� ∩ Qh(x))

hr
≤ ε.

Therefore we obtain

lim sup
h→∞

sup
x∈S

ln #(� ∩ Qh(x))

lnh
≤ lim sup

h→∞
ln(εhr)

lnh
= lim sup

h→∞
ln ε + r lnh

lnh
= r.

Thus

lim sup
h→∞

sup
x∈S

ln #(� ∩ Qh(x))

lnh
≤ dim+

S (�). (4)

Now (3) and (4) yield the claim. �

Proposition 2.12 implies that mass dimension is Beurling dimension with respect
to S = {0}. We state it formally in the following corollary, where dimLM and dimUM

denote the lower and upper mass dimensions, respectively.

Corollary 2.13 For every � ⊂ R
d and S an affine subspace of R

d ,

dim−
S (�) ≤ dimLM(�) = dim−

{0}(�) ≤ dimUM(�) = dim+
{0}(�) ≤ dim+

S (�).

Proof This follows immediately from Proposition 2.12 and the definition of mass
dimension. �

We present now several examples which illustrate the differences between Beurl-
ing dimension with respect to S = R

d , mass dimensions, and (to a lesser extent)
discrete Hausdorff dimension.

Example 2.14 Let � = {(m,n) : m ∈ N, n ∈ Z} ⊂ R
2. Then, dim−

Rd (�) = 0 and

dim+
Rd (�) = 2, whereas we have dimLM(�) = dimUM(�) = 2.
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Example 2.15 Define the set � ⊂ Z
2 to be the union of sets �n,n ∈ N, where �n =

{(k, l) : 2n ≤ k < 2n + 2n−1,0 ≤ l < 2n−1}. Then, it is not difficult to observe that
dim−

Rd (�) = 0 and dim+
Rd (�) = 2, since the set � contains arbitrarily large pieces of

the lattice Z
2. On the other hand, the mass dimension of � exists and is equal to 1,

and the discrete Hausdorff dimension of � is equal to 0.

Example 2.16 Define the set � ⊂ R
2 as follows: for each n ∈ N, define �n =

{(2n − k/2n, l/2n) : 1 ≤ k, l ≤ 2n}; let � = ⋃∞
n=1 �n. It follows immediately from

the definition that the upper Beurling dimension of � with respect to S = R
d is in-

finity, because of the increasing concentration of points. On the other hand, it is not
difficult to observe that the upper mass dimension of � satisfies dimUM(�) = 2.
Moreover, the discrete Hausdorff dimension of any set is bounded from above by the
upper mass dimension, and so dimH (�) ≤ 2.

3 Application to Pseudoframes for Subspaces

We start by stating the definition of a pseudoframe for subspaces (see [17]). In the
following, given a closed subspace E of a separable Hilbert space, we always denote
the orthogonal projection onto this subspace by PE .

Definition 3.1 Let E be a closed subspace of a separable Hilbert space H, and let
{xi}i∈I be a sequence in H. Then {xi}i∈I is a Bessel sequence with respect to E if

∑

i∈I

|〈f,xi〉|2 < ∞ for all f ∈ E.

A Bessel sequence {xi}i∈I w.r.t. E is called a pseudoframe for the subspace E

(PFFS for E) if there exists another Bessel sequence {x∗
i }i∈I in H such that

f =
∑

i∈I

〈f,xi〉x∗
i for all f ∈ E.

The collection {x∗
i }i∈I is called a dual pseudoframe of {xi}i∈I for the subspace E.

A Bessel sequence {xi}i∈I w.r.t. E is called a pseudo-Riesz sequence for the sub-
space E (PRFS for E) if {PExi}i∈I is a Riesz sequence in E.

In the sequel we will make use of the following characterization of PFFS’s.

Theorem 3.2 [17, Theorem 4] Let E be a closed subspace of a separable Hilbert
space H, let {xi}i∈I ⊂ H be a Bessel sequence w.r.t. E, and let {x∗

i }i∈I be a Bessel
sequence in H. Then the following conditions are equivalent:

(i) {xi}i∈I is a PFFS for E with dual pseudoframe {x∗
i }i∈I ;

(ii) The following conditions hold:
(a) {PExi}i∈I is a frame for E with dual frame {PEx∗

i }i∈I ,
(b) For all f ∈ H ,

∑
i∈I 〈f,PExi〉(I − PE)x∗

i = 0.
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Note that in the case where {PExi}i∈I is a frame for the subspace E, one can
always find {x∗

i }i∈I ⊂ E satisfying the conditions for PFFS. Thus, for our purposes,
we will not refer to the dual frame, and we write briefly that {xi}i∈I is a PFFS for E.
Furthermore, we say that the frame bounds of a PFFS for E are the frame bounds of
the frame {PExi : i ∈ I } for E.

In this section, we consider PFFS’s with more structure than the general case. In
the following, let G = {g1, . . . , gK } be some finite collection of functions in L2(Rd),
let � = {�1, . . . ,�K} be a finite collection of subsets of R

2d , and let the associated
Gabor system be defined by

G(G,�) = {
e2πix·t gk(t − y) : (x, y) ∈ �k, 1 ≤ k ≤ K

}

= {MxTygk : (x, y) ∈ �k, 1 ≤ k ≤ K},
where Mx and Ty are the modulation and translation operators, respectively. The dis-
crete set � will be referred to as the set of parameters. We will consider those Gabor
systems which are PFFS’s for L2(E) for some E ⊂ R

d . When E is, for example, a
bounded set, one would expect that the modulations and translations together would
need to be “sufficiently dense” in order to form a PFFS for L2(E). One would also
expect that the collection of modulations and translations needs to be “sufficiently
sparse” in order to form a PRFS. We make these intuitive notions precise in Theo-
rem 3.3 below.

The sets E we will consider will be of the following form. For E ⊂ R
d and

0 ≤ m ≤ d , we say E contains a tube around an m-dimensional space if there ex-
ists an affine subspace A of R

d of dimension m and an ε > 0 such that {z ∈ R
d :

dist(z,A) < ε} ⊂ E.
With this notation, we are ready to state our main theorem, whose proof will be

given at the end of this section.

Theorem 3.3 Let G = {g1, . . . , gK} ⊂ L2(Rd) \ {0}, and let � = {�1, . . . ,�K } be
a finite collection of subsets of R

2d . Furthermore, let E be a subset of R
d which

contains a tube around an m-dimensional affine subspace A of R
d .

(i) If G(G,�) is a PFFS for L2(E), then either dim−
Rd×A

(�) ≥ d + m or � is not
relatively uniformly separated.

(ii) If G(G,�) is a PRFS for L2(E), then dim−
Rd×A

(�) = dim+
Rd×A

(�) = d + m.

Let us briefly compare Theorem 3.3 with Nyquist density results of Gabor sys-
tems. For Gabor systems, we have the following result from [6].

Theorem 3.4 [6, Theorem 1.1 and 3.6] Let G = {g1, . . . , gK } ⊂ L2(Rd) \ {0}, and
let � ⊂ R

2d .

(i) If G(G,�) is a frame for L2(Rd), then D−
R2d ,d

(�) ≥ 1.

(ii) If G(G,�) is a Riesz basis for L2(Rd), then D−
R2d ,d

(�) = D+
R2d ,d

(�) = 1.

It can be easily seen that in the situation of Gabor PFFS’s Beurling dimension plays
the role which Beurling density plays for Gabor frames. It is in this sense that it is
justified to regard the Beurling dimension as a Nyquist dimension.
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Note also that, in particular, Theorem 3.3 implies that if a collection of modula-
tions is a frame for L2([0,1]), then the modulations must have positive upper Beurl-
ing density, recovering a result of Christensen, Deng, and Heil [6].

In general, for a PFFS G(G,�), if � is not relatively separated (in particular,
G(G,�) is not Bessel in L2(Rd)), then the � can be quite odd. For example, in the
case E ⊂ R, there is no restriction on those (x, y) ∈ � for which the support of Txg is
disjoint from E for PFFS’s, so the lower dimension can be made as large as desired.
It is also possible to construct examples of PFFS’s for L2(E) for which dim−

Rd×A
(�)

is less than d + m, see Example 3.13. It is thus more surprising that in the case of
PRFS’s, we are able to obtain a Nyquist dimension as in Theorem 3.3(ii).

Our method of proof is inspired by techniques to prove density results given in the
recent preprint [11]. We will show that PFFS’s for L2(E) of the type mentioned in
Theorem 3.3 satisfy a modified version of the Homogeneous Approximation Property
(HAP) of Ramanathan and Steger. Using this modified HAP, we will then show that
the set of parameters � has lower dimension greater than or equal to d + m. We
will also use the results from Sect. 2 to show that the upper dimension of a PRFS is
bounded above by d + m.

3.1 Preliminary Lemmas

We begin by recalling the following definition and lemma from [11].

Definition 3.5 (i) Given a set U ⊂ R
2d , for each t ≥ 0, define

Ut = {
x ∈ R

2d : dist(x,U) < t
}
.

(ii) The Fréchet distance between two closed sets U,V ⊂ R
2d is

[U,V ] = inf{t ≥ 0 : U ⊂ Vt and V ⊂ Ut }.
(iii) Given closed sets Un ⊂ R

2d and given a closed set V ⊂ R
2d , we say that Un

converges weakly to V if

lim
n→∞[Un ∩ K,V ∩ K] = 0 for all compact K ⊂ R

2d .

In this case, we write Un
w→ V .

Lemma 3.6 [11, Lemma 2.10] Let � ⊂ R
2d be a countable sequence which is δ-

uniformly separated for some δ > 0. Then given any sequence {zn}n∈N of points in
R

2d , there exists a subsequence {wn}n∈N of {zn}n∈N and a sequence �′ ⊂ R
2d such

that

� − wn
w→ �′ as j → ∞, k = 1, . . . ,N.

The following two lemmas will be heavily employed in the proof of Theorem 3.10.

Lemma 3.7 Let a ≤ d be a nonnegative integer, G = {g1, . . . , gK } ⊂ L2(Rd) \ {0},
� = {�1, . . . ,�K} be a finite collection of subsets of R

2d , and E ⊂ R
d be such that

the following conditions hold:
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(a) Each �k is 2δ-uniformly separated for some δ > 0;
(b) E is a tube around the subspace {x ∈ R

d : xd−a+1 = · · · = xd = 0} for 1 ≤ a ≤ d ,
or E is a convex neighborhood of the origin if a = 0;

(c) G(G,�) is a PFFS for L2(E) with frame bounds A and B .

Then, for each x0 ∈ R
d , y0 ∈ R

a , and 0 ∈ R
d−a , {MxTygk : (x, y) ∈ �k + (x0, y0,0) :

1 ≤ k ≤ K} is a PFFS for L2(E) with frame bounds A and B .

Proof Let h ∈ L2(E), and define h̃(t) = e−2πix0t h(t + (y0,0)). Note that ‖h‖2 =
‖h̃‖2, PL2(E)h = h, and PL2(E)h̃ = h̃. The result follows from the following compu-
tation:

K∑

k=1

∑

(x,y)∈�k+(x0,y0,0)

|〈PL2(E)MxTygk,h〉|2 =
K∑

k=1

∑

(x,y)∈�k+(x0,y0,0)

|〈MxTygk,h〉|2

=
K∑

k=1

∑

(x,y)∈�k

∣∣〈MxTygk, h̃
〉∣∣2

=
K∑

k=1

∑

(x,y)∈�k

∣∣〈PL2(E)MxTygk, h̃
〉∣∣2

.
�

Lemma 3.8 Let a, E, G, and � = {�1, . . . ,�K} be as in Lemma 3.7. Let {xn}n∈N

be a sequence in R
d , {yn}n∈N a sequence in R

a , and, for each n, let zn = (xn, yn,0) ∈
R

2d . Suppose that, for each 1 ≤ k ≤ K , �k − zn
w→ �′

k . Then, G(G,�′) is a PFFS
for L2(E) with the same frame bounds, where �′ = {�′

1, . . . ,�
′
K}.

Proof Note that, for each 1 ≤ k ≤ K , a cube of the form Qδ(z) can contain at most
one point in �k . Using the weak convergence of �k − zn

w→ �′
k , it can also be shown

that each cube Qδ(z) can contain at most one point of �′
k .

Choose ε > 0 and let f ∈ M1(Rd) ∩ L2(E). Then, for each 1 ≤ k ≤ K , the short-
time Fourier transform Vgk

f defined by Vgk
f (x, y) = 〈f,MxTygk〉, (x, y) ∈ R

d ×
R

d , is an element of the amalgam space W(L∞, 	2). By using an equivalent norm of
this space, we can find m ∈ N such that, for each 1 ≤ k ≤ K ,

∑

j∈Z2d\Qm(0)

‖Vgk
f · 1Qδ(δj)‖2∞ <

ε

2
.

Fix 1 ≤ k ≤ K . Set R = (2m+ 1)δ. If (x, y) ∈ R
2d \QR(0), then there is a unique

j ∈ Z
2d \ Qm(0) such that (x, y) ∈ Qδ(δj). Hence,

∑

(x,y)∈�′
k\QR(0)

|〈f,MxTygk〉|2 =
∑

(x,y)∈�′
k\QR(0)

|Vgk
f (x, y)|2

≤
∑

j∈Z2d\Qm(0)

sup
(u,v)∈Qδ(δj)

|Vgk
f (u, v)|2 <

ε

2
.
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Similarly, for each n ∈ N, we have

∑

(x,y)∈(�k−zn)\QR(0)

|〈f,MxTygk〉|2 <
ε

2
.

Let D = supn∈N #((�k − zn)∩QR(0)). We estimate the difference in the 	2 norm
of the inner products of f with MxTygk in the cases that (x, y) ∈ �′

k ∩ QR(0) and
(x, y) ∈ �k − zn ∩ QR(0). Clearly, when D = 0, the difference is 0, so we consider
the case D > 0. Using the continuity of the modulation and translation operators
and the fact that QR(0) is compact, find θ > 0 such that, for all (x, y) ∈ QR(0) and
all |u|, |v| < θ , ‖MuTvMxTyf − MxTyf ‖2 < ε(2(ND)1/2‖f ‖2)

−1. Let n be large
enough so that

[
(�k − zn) ∩ QR(0),�′

k ∩ QR(0)
]
< θ.

Then, for each (x, y) ∈ (�k − zn) ∩ QR(0), there exist unique points |u(x, y)|,
|v(x, y)| < θ such that (x + u(x, y), y + v(x, y)) ∈ �′

k . Moreover, this correspon-
dence yields a bijection between (�k − zn)∩QR(0) and �k ∩QR(0). For notational
ease, we write �n,R = (�k − zn) ∩ QR(0), where the dependence on k is suppressed
since k is fixed. We compute

∣∣∣∣∣

( ∑

(x,y)∈�′
k∩QR(0)

|〈f,MxTygk〉|2
)1/2

−
( ∑

(x,y)∈�n,R

|〈f,MxTygk〉|2
)1/2

∣∣∣∣∣

≤
( ∑

(x,y)∈�n,R

|〈f,Mx+u(x,y)Ty+v(x,y)gk − MxTygk〉|2
)1/2

≤
( ∑

(x,y)∈�n,R

‖f ‖2‖Mx+u(x,y)Ty+v(x,y)gk − MxTygk‖2
2

)1/2

<
ε

2
.

Now let A and B denote the frame bounds of G(G,�), and recall that zn =
(xn, yn,0), where yn ∈ R

a and 0 ∈ R
d−a . Employing (b), for each f ∈ L2(E), we

have MxnT(yn,0)f ∈ L2(E). Therefore, 〈MxnT(yn,0)f,PL2(E)gk〉 = 〈MxnT(yn,0), gk〉.
In particular, ‖PL2(E)MxnT(yn,0)f ‖2 = ‖f ‖2. With this observation, we allow k to
vary again and we compute

( K∑

k=1

∑

(x,y)∈�′
k

|〈f,MxTygk〉|2
)1/2

≤
( K∑

k=1

∑

(x,y)∈�′
k∩QR(0)

|〈f,MxTygk〉|2
)1/2

+
( K∑

k=1

∑

(x,y)∈�′
k\QR(0)

|〈f,MxTygk〉|2
)1/2

≤
( K∑

k=1

∑

(x,y)∈�′
k∩QR(0)

|〈f,MxTygk〉|2
)1/2

+ ε

2
+ ε

2
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≤
( K∑

k=1

∑

(x,y)∈�k

|〈MxnT(yn,0)f,MxTygk〉|2
)1/2

+ ε

≤ B1/2‖MxnT(yn,0)f ‖2 + ε

= B1/2‖f ‖2 + ε.

On the other hand,

( K∑

k=1

∑

(x,y)∈�′
k

|〈f,MxTygk〉|2
)1/2

≥
( K∑

k=1

∑

(x,y)∈�′
k∩QR(0)

|〈f,MxTygk〉|2
)1/2

≥
( K∑

k=1

∑

(x,y)∈�′
k∩QR(0)

|〈f,MxTygk〉|2
)1/2

≥
( K∑

k=1

∑

(x,y)∈�k−zn∩QR(0)

|〈f,MxTygk〉|2
)1/2

− ε

2

≥
( K∑

k=1

∑

(x,y)∈�k−zn

|〈f,MxTygk〉|2
)1/2

−
( K∑

k=1

∑

(x,y)∈�k−zn\QR(0)

|〈f,MxTygk〉|2
)1/2

− ε

2

≥ A1/2‖f ‖2 − ε

2
− ε

2

= A1/2‖f ‖2 − ε.

In the last line, we have used Lemma 3.7. Since ε > 0 is arbitrary, {PL2(E)MxTygk :
(x, y) ∈ �′

k,1 ≤ k ≤ K} is a frame for L2(E), i.e., G(G,�′) is a PFFS for L2(E)

with frame bounds A and B . �

It is clear that Lemma 3.8 is not true for general zn. Indeed, consider E = [0,1],
g = 1E , and � = Z × {0}. Then {MxTyg : (x, y) ∈ �} is a PFFS for L2(E), but
� + (0,1) = Z × {1} is not.

3.2 The A-Ramanathan–Steger Weak Homogeneous Approximation Property

The Homogeneous Approximation Property (HAP) (cf. [6]) is a common tool to
study density conditions of Gabor systems. Lately, the HAP has also been proven
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for wavelet frames [13]. However, it is not difficult to see that PFFS’s do not gener-
ally satisfy the HAP. Therefore, we now define a weaker notion of the HAP which
PFFS’s do satisfy, thereby deriving interesting approximation properties of PFFS.

Definition 3.9 Let E ⊂ R
d . For h > 0 and (u, η) ∈ R

2d , we set W(h,u,η) =
span{MxTyPL2(E)g : (x, y) ∈ � ∩ Qh(u,η)}. Let A ⊂ R

2d . We say that the PFFS
for L2(E) G(G,�) possesses the Ramanathan–Steger Weak Homogeneous Approxi-
mation Property with respect to A if, for all f ∈ L2(E) and for all ε > 0, there exists
R > 0 such that, for all (u, η) ∈ A, dist(MηTuf,W(R,u,η)) < ε.

For this paper, we will abbreviate the Ramanathan–Steger Weak Homogeneous
Approximation Property with respect to A by simply the weak HAP with respect
to A.

Theorem 3.10 Let a ≤ d be a nonnegative integer, G = {g1, . . . , gK} ⊂ L2(Rd)\{0},
� ⊂ R

2d , and E ⊂ R
d be such that

(a) There exists δ > 0 such that for 1 ≤ k ≤ K , �k is 2δ-uniformly separated,
(b) E is a tube around the subspace {x ∈ R

d : xd−a+1 = · · · = xd = 0} for 1 ≤ a ≤
d , or E is a convex neighborhood of the origin if a = 0, and

(c) G(G,�) is a PFFS for L2(E).

Let A ⊂ R
d × R

d−a × {0}a . Then, G(G,�) possesses the weak HAP with respect
to A.

Proof Suppose that the weak HAP with respect to A fails. Then, there exists a func-
tion f ∈ L2(E) and ε > 0 such that, for each n ∈ N, there exists zn = (un, ηn) ∈ A

such that dist(MηnTunf,W(n,un, ηn)) > ε. By Lemma 3.6, there exists a subse-
quence {wn} of {zn} and �′

k such that, for each 1 ≤ k ≤ K , we have

�k − wn
w→ �′

k as n → ∞.

Therefore, by Lemma 3.8, G(G,�′) is a PFFS for L2(E) with the same frame
bounds. We claim now that, for any R > 0,

dist
(
f, span

{
MξTxPL2(E)gk : (x, ξ) ∈ �′

k ∩ QR(0), k = 1, . . . ,K
}) ≥ ε

2
. (5)

To see this, choose any scalars {ck,x,ξ : (x, ξ) ∈ �′
k ∩ QR(0), k = 1, . . . ,K}. Let

D =
K∑

k=1

∑

(x,ξ)∈�′
k∩QR(0)

|ck,x,ξ |.

From above we know that ‖f − 0‖2 ≥ ε, so we may assume that D �= 0.
Since the family of modulation-translation operators is strongly continuous (cf. [11,
Lemma 2.1]), there exists θ < δ/2 such that, whenever |x|, |ξ | < θ , (u, η) ∈ A, and
1 ≤ k ≤ K ,

‖Mξ+ηTx+uPL2(E)gk − MηTuPL2(E)gk‖2 <
ε

2D
.
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As in the proof of Lemma 3.8, we can find n large enough so that each point of
�′

k ∩ QR(0) is within θ of a unique point in �k − wn ∩ QR(0), and conversely. So,
we can write

�k − wn ∩ QR(0)

= {
(x + u(x, ξ, k), ξ + η(x, ξ, k) : (x, ξ) ∈ �′

k ∩ QR(0), k = 1, . . . ,K
}

with |u(x, ξ, k)|, |η(x, ξ, k)| < θ . Hence,

∥∥∥∥∥f −
K∑

k=1

∑

(x,ξ)∈�′
K∩QR(0)

ck,x,ξMξTxPL2(E)gk

∥∥∥∥∥
2

≥
∥∥∥∥∥f −

K∑

k=1

∑

(x,ξ)∈�K−wn∩QR(0)

ck,x,ξMξTxPL2(E)gk

∥∥∥∥∥
2

−
∥∥∥∥∥

K∑

k=1

∑

(x,ξ)∈�′
K∩QR(0)

ck,x,ξ (Mξ+η(x,ξ,k)Tx+u(x,ξ,k)PL2(E)gk

− MξTxPL2(E)gk)

∥∥∥∥∥
2

≥ dist
(
f, span{MξTxPL2(E)gk : (x, ξ) ∈ �k − wn ∩ QR(0), k = 1, . . . ,K})

−
K∑

k=1

∑

(x,ξ)∈�′
K∩QR(0)

|ck,x,ξ |‖Mξ+η(x,ξ,k)Tx+u(x,ξ,k)PL2(E)gk

− MξTxPL2(E)gk‖2

≥ ε −
K∑

k=1

∑

(x,ξ)∈�′
K∩QR(0)

|ck,x,ξ | ε

2D
= ε

2
.

Since this is true for every choice of scalars, we conclude that (5) holds. But since
R is arbitrary, this implies that f �∈ span(PL2(E)G(G,�′)). Therefore, there ex-
ists some 0 �= h ∈ L2(E) ∩ (span(PL2(E)G(G,�′)))⊥. This contradicts the fact that
PL2(E)G(G,�′) is a frame for L2(E) (hence complete in L2(E)). �

Employing the weak HAP as a main ingredient for the proof, we will show that sets
of parameters of PFFS’s are comparable with sets of parameters of Riesz sequences
by means of their densities D±

A,r (recall Definition 2.1). This Comparison Theorem
is directly inspired by the double-projection idea of Ramanathan and Steger [21].

Theorem 3.11 Let a, E, G, A, and � be as in Theorem 3.10. Let �1, . . . ,�L ⊂ A

and φ1, . . . , φL ∈ L2(E) \ {0}. Assume that � = PL2(E)G(φ1, . . . , φL,�1, . . . ,�L)
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is a Riesz sequence in L2(E). Let � = ∪K
k=1�k and � = ∪L

k=1�k . Then D+
A,r (�) ≥

D+
A,r (�) and D−

A,r (�) ≥ D−
A,r (�) for all 0 < r < ∞.

Proof Note that by Theorem 3.10 we have that G = G(G,�) possesses the weak
HAP with respect to A. Let

G̃ =
K⋃

k=1

{g̃x,ξ,k}(x,ξ)∈�k

denote the canonical dual frame of PL2(E)G in L2(E). Let

�̃ =
L⋃

k=1

{
φ̃x,ξ,k

}
(x,ξ)∈�k

denote the dual frame within the closed linear span of �.
Given h > 0 and (u, η) ∈ A, set

W̃ (h,u, η) = span{MξTxg̃k : (x, ξ) ∈ �k ∩ Qh(u,η), k = 1, . . . ,K},
V (h,u,η) = span{MξTxφk : (x, ξ) ∈ �k ∩ Qh(u,η), k = 1, . . . ,L}.

Since we have assumed that each �k is uniformly separated, we have that
D+

Rd ,r
(�k) < ∞. So, W̃ is a finite-dimensional space.

Fix ε > 0. Applying the definition of weak HAP with respect to A to the functions
f = φk , we see that there exists an R > 0 such that

dist
(
MηTuφk, W̃ (R,u,η)

)
<

ε

D
, for all (u, η) ∈ A, k = 1, . . . ,L,

where

D = sup
{∥∥φ̃u,η,k

∥∥ : (u, η) ∈ �k, k = 1, . . . ,L
}
.

Fix an h > 0 and (u, η) ∈ R
2d . For simplicity, set V = V (h,u,η) and W = W̃ (R +

h,u,η). Define T : V → V by T = PV PW . Note that T is self-adjoint and W is
finite-dimensional, so T has a finite, real trace.

We now estimate the trace of T . An easy upper bound is given by

trace(T ) ≤ rank(T ) ≤ dim(W) = #
(
� ∩ QR+h(u, η)

)
.

For a lower bound, note that {PL2(E)MξTxφk : (x, ξ) ∈ �k ∩ Qh(u,η), k =
1, . . . ,L} is a basis for the finite-dimensional space V . The dual basis in V is the
biorthogonal system in V , which is

{
PV φ̃x,ξ,k : (x, ξ) ∈ �k ∩ Qh(u,η), k = 1, . . . ,L

}
.
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Therefore, using that T PL2(E) = T , we compute

trace(T ) =
L∑

k=1

∑

(x,ξ)∈�k∩Qh(u,η)

〈
T (PL2(E)MξTxφk),PV φ̃x,ξ,k

〉

=
L∑

k=1

∑

(x,ξ)∈�k∩Qh(u,η)

(〈
MξTxφk,PV φ̃x,ξ,k

〉

+ 〈
(PW − I )(MξTxφk),PV φ̃x,ξ,k

〉)

=
L∑

k=1

∑

(x,ξ)∈�k∩Qh(u,η)

(
1 − 〈

(PW − I )(MξTxφk),PV φ̃x,ξ,k

〉)
.

Additionally, if (x, ξ) ∈ � ∩ Qh(u,η), then we have QR(x, ξ) ⊂ QR+h(u, η), hence
W(R,x, ξ) ⊂ W(R + h,u,η) and therefore

∣∣〈(PW − I )(MξTxφk),PV φ̃x,ξ,k

〉∣∣ ≤ ‖(PW − I )(MξTxφk)‖2
∥∥PV φ̃x,ξ,k

∥∥

≤ dist(MξTxφk,W(R,x, ξ))
∥∥φ̃x,ξ,k

∥∥
2

≤ ε

D
D = ε.

Therefore, we have that

trace(T ) ≥
L∑

k=1

∑

(x,ξ)∈�k∩Qh(x,ξ)

(1 − ε) = (1 − ε)#
(
� ∩ Qh(u,η)

)
.

Finally, combining our upper and lower estimates yields

(1 − ε)#
(
� ∩ Qh(u,η)

) ≤ #
(
� ∩ QR+h(u, η)

)
for all (u, η) ∈ A, h > 0,

and so, for each r > 0,

D+
A,r (�) = lim sup

h→∞
inf

(u,η)∈A

#(� ∩ Qh(u,η))

hr

≤ 1

1 − ε
lim sup
h→∞

sup
(u,η)∈A

#(� ∩ QR+h(u, η))

(R + h)r

(R + h)r

hr

= 1

1 − ε
D+

A,r (�).

Since ε > 0 is arbitrary, we conclude that D+
A,r (�) ≤ D+

A,r (�), and a similar

calculation shows that D−
A,r (�) ≤ D−

A,r (�). �
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3.3 Beurling Dimension of Gabor PFFS’s and PRFS’s

The following result gives a detailed account of the upper and lower dimensions of
sets of parameters of PFFS’s and PRFS’s for an arbitrary subset A ⊂ R

d × R
d−a ×

{0}a . This will give rise to Theorem 3.3 by choosing an appropriate subset A.

Theorem 3.12 Let 1 ≤ a ≤ d be an integer, G = {g1, . . . , gK } ⊂ L2(Rd) \ {0},
{�1, . . . ,�K } be a collection of subsets of R

2d , and E ⊂ R
d be such that

(a) E is a tube around the subspace {x ∈ R
d : xd−a+1 = · · · = xd = 0}, and

(b) G(G,�) is a PFFS for L2(E).

Further, let S = R
d × R

d−a × {0}a . Then the following conditions hold:

(i) Let F contain E. If G(G,�) is a PFFS for L2(F ), then for � = ∪K
k=1�k ,

dim−
S (�) ≥ 2d − a or dim+

Rd (�) = ∞.

In particular, if G(G,�) is a Bessel sequence in L2(Rd), then dim−
S (�) ≥

2d − a.
(ii) Let H be contained in E. If G(G,�) is a PRFS for L2(H), then

dim−
S (�) = dim+

S (�) = 2d − a.

Proof (i): Suppose that, for each 1 ≤ k ≤ K , dim+
Rd (�k) < ∞. Then, by Proposition

2.9 and repeating some �k’s if necessary, we may assume that each �k is uniformly
separated. Note that if E = {(x1, . . . , xd) ∈ R

d : |xi | ≤ ε for d − a + 1 ≤ i ≤ d and
some ε > 0}, then let φ = 1[−ε,ε] and � = 1

2ε
Z

d × 2εZ
d−a × {0}a and observe that

{MxTyφ : (x, y) ∈ �} is an ONB for L2(E). Moreover,

D+
S,r (�) = D−

S,r (�) =

⎧
⎪⎨

⎪⎩

∞ : 0 ≤ r < 2d − a,
(2ε)d−a

(2ε)d
: r = 2d − a,

0 : r > 2d − a.

Therefore, by Theorem 3.11, if G(G,�) is a PFFS for L2(E), then dim−
S (�) ≥

2d − a.
Moreover, if F merely contains E = {(x1, . . . , xd) ∈ R

d : |xi | ≤ ε for d − a + 1 ≤
i ≤ d and some ε > 0}, then since the projection of a frame is a frame, the result
follows from the case considered in the first part of this proof.

(ii): Clearly, it suffices to prove (ii) in the case K = 1. First, note that by apply-
ing Theorem 3.11 to compare the PRFS given in the statement of Theorem 3.12 to
the frame for L2(Rd) given by G(1[0,1]d ,Z

2d), it follows that, for all 0 < r < ∞,
D+

Rd ,r
(�) ≤ D−

Rd ,r
(Z2d). In particular, by part (i), this implies that dimR2d (�) < ∞,

so dim−
S (�) ≥ 2d − a.

Now, we will show that dim+
S (�) ≤ 2d −a. We will actually show the stronger re-

sult that � is contained in some tube around R
d × Y , where Y = {x ∈ R

d : xd−a+1 =
· · · = xd = 0}. Once we have shown this, Theorem 2.11 implies the theorem.
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In the case that g1 = g is compactly supported, since E is a tube around the sub-
space Y and PL2(H)MxTyg �= 0 for all (x, y) ∈ �, it follows that � must also be
contained in a tube around R

d × Y .
For the general case, note that if {PL2(H)MxTyg : (x, y) ∈ �} is a Riesz sequence,

then it is in particular true that, for some ε > 0, inf{‖PL2(H)MxTyg‖ : (x, y) ∈ �} >

ε > 0. Now, approximate g with a compactly supported function f so that ‖f −g‖ <

ε. Moreover,

inf
(x,y)∈�

‖PL2(H)MxTyf ‖ ≤ inf
(x,y)∈�

‖PL2(H)MxTy(f − g)‖ + inf
(x,y)∈�

‖PL2(H)MxTyg‖

≤ ε + inf
(x,y)∈�

‖PL2(H)MxTyg‖.

This implies that inf(x,y)∈� ‖PL2(H)MxTyg‖ > 0, which in turn implies that � is
contained in some tube around R

d × Y , as desired. �

Finally, we can give the proof of Theorem 3.3.

Proof of Theorem 3.3 (i): By a change of basis, we may assume that E is of the form
given in Theorem 3.12 with m = d − a. Let A also be of the form given in Theorem
3.12. Then, one simply notes that dim+

Rd (�) ≥ dim+
A(�) ≥ 2d − (d − m) = d + m,

as desired.
(ii): This claim follows from Theorem 3.12 by similar arguments, we only use part

(ii) instead. �

Example 3.13 There exists a PFFS satisfying the conditions given in Theorem 3.12
and such that dim−

S (�k) < 2d − a for all 1 ≤ k ≤ K .

Proof Let a = 1, K = 1, and E = R × [−1/2,1/2] so that S = R
3 × {0} ⊂ R

4.
We construct � and g such that G(G,�) is a tight PFFS for L2(E). Let

K0 = ∪∞
n=−∞[n,n + 1] × ([

0,2−|n|] + 22|n|)
.

Let

H0 = {0} × {−22|n| + j2−|n| : n ∈ N,0 ≤ j ≤ 2|n| − 1
}
.

See that {(K + h) ∩ E : h ∈ H } is a partition of E. It follows that setting g = 1K and
� = Z

2 × H yields that G(G,�) is a PFFS for L2(E). However, dim−
S (�) = 2. It is

clear in this case that dim+
R2d (�) = ∞, as Theorem 3.12 predicts. �
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