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Abstract Let (Ht )t≥0 be the Ornstein–Uhlenbeck semigroup on R
d with covariance

matrix I and drift matrix λ(R − I ), where λ > 0 and R is a skew-adjoint matrix, and
denote by γ∞ the invariant measure for (Ht )t≥0. Semigroups of this form are the ba-
sic building blocks of Ornstein–Uhlenbeck semigroups which are normal on L2(γ∞).
We prove that if the matrix R generates a one-parameter group of periodic rotations,
then the maximal operator H∗f (x) = supt≥o |Ht f (x)| is of weak type 1 with respect
to the invariant measure γ∞. We also prove that the maximal operator associated to
an arbitrary normal Ornstein–Uhlenbeck semigroup is bounded on Lp(γ∞) if and
only if 1 < p ≤ ∞.
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1 Introduction

Let Q be a real, symmetric, and positive definite d ×d-matrix, and let B be a nonzero
real d × d-matrix whose eigenvalues have negative real part. Then, for every t ∈
(0,∞], we can define the family of Gaussian measures γt on R

d with mean zero and
covariance operators

Qt =
∫ t

0
esBQesB∗

ds, t ∈ (0,∞], (1.1)
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i.e., the measures

dγt (x) = (2π)−d/2(detQt)
−1/2e− 1

2 〈Q−1
t x,x〉 dλ(x), ∀t ∈ (0,∞].

The Ornstein–Uhlenbeck semigroup is the family of operators (HQ,B
t )t≥0 defined by

HQ,B
t f (x) =

∫
Rd

f
(
etBx − y

)
dγt (y) (1.2)

on the space Cb(R
d) of bounded continuous functions. The matrices Q and B are

called the covariance and the drift matrix, respectively.
It is well known that γ∞ is the unique invariant measure for HQ,B

t and that
(HQ,B

t )t≥0 is a diffusion semigroup on (Rd , γ∞) (see, for instance, [2]). Thus, for-
mula (1.2) defines a semigroup of positive contractions on Lp(γ∞) for every p ≥ 1,
which we shall also denote by (HQ,B

t )t≥0.
In this paper we are concerned with the boundedness of the maximal operator

HQ,B∗ f (x) = sup
t≥0

∣∣HQ,B
t f (x)

∣∣.

It is well known that by Banach’s principle (see [3]) this maximal operator is a key
tool to investigate the almost everywhere convergence of HQ,B

t f to f as t tends to 0
for f in Lp(γ∞).

If the semigroup (HQ,B
t )t≥0 is symmetric, i.e., if HQ,B

t is self-adjoint on L2(γ∞)

for every t ≥ 0, then HQ,B∗ is bounded on Lp(γ∞) for every p in (1,∞] by the
Littlewood–Paley–Stein theory for symmetric semigroups of contractions on all Lp

spaces [11]. Is the result still true if we drop the symmetry assumption? In the same
monograph [11] Stein says that, for general diffusion semigroups, the condition of
self-adjointness cannot be much modified. Indeed, if one considers the semigroup
of translations Tt f (x) = f (x + t) on the one-dimensional torus T, for every p in
[1,∞], it is easy to construct a function f in Lp(T) such that supt≥0 |Ttf (x)| = ∞
everywhere. Notice that (Tt )t≥0 is a semigroup of normal, actually unitary, operators.

However, in Theorem 4.2 below we show that Stein’s proof of the maximal the-
orem for semigroups of symmetric contractions on all Lp(μ), 1 ≤ p ≤ ∞, can be
adapted to semigroups of normal contractions such that the generator of the semi-
group on L2(μ) is a sectorial operator of angle φ < π/2. Since the generator of
the Ornstein–Uhlenbeck on L2(γ∞) is sectorial of angle strictly less than π/2, this
implies that if (HQ,B

t )t≥0 is normal on L2(γ∞), then the maximal operator H∗ is
bounded on Lp(γ∞) for every p in (1,∞].

It remains to investigate the boundedness of the Ornstein–Uhlenbeck maximal
operator HQ,B∗ on L1(γ∞). In Sect. 4 we show that HQ,B∗ is always unbounded on
L1(γ∞). This still leaves open the question of the validity of the weak type 1 estimate

γ∞
({

x ∈ R
d : ∣∣HQ,B∗ f (x)

∣∣ > α
}) ≤ C‖f ‖1

α
, ∀f ∈ L1(γ∞), ∀α > 0.

Even in the symmetric case very little is known about the weak type 1 boundedness
of the Ornstein–Uhlenbeck maximal operator. The only result which is known is for
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the semigroup with covariance matrix Q = I and drift matrix B = −I for which
the weak type 1 boundedness of HQ,B∗ is due to B. Muckenhoupt [9] in dimension
one and to P. Sjögren [10] in arbitrary dimension. Sjögren’s proof was subsequently
simplified in [6] and [4]. The arguments in these papers easily extend to the case
where B = −λI for some λ > 0. However, already the case where B is a diagonal
matrix with at least two different eigenvalues seems to require new ideas.

In this paper we investigate the weak type 1 estimate for the maximal operator
associated to the Ornstein–Uhlenbeck semigroup with covariance matrix Q = I and
drift B = −λ(I −R), where λ > 0 and R is a nonzero real d ×d skew-adjoint matrix.
The interest of these semigroups is motivated by the fact that they are the basic build-
ing blocks of normal Ornstein–Uhlenbeck semigroups. Indeed, in Sect. 2 we show
that, after a change of variables, any normal Ornstein–Uhlenbeck semigroup can be
written as the product of commuting semigroups of this form.

For these particular semigroups, we shall prove two results. First, we shall prove
that the “truncated” maximal operator

HQ,B
∗,[0,T ]f (x) = sup

t∈[0,T ]

∣∣HQ,B
t f (x)

∣∣

is of weak type 1. Second, we shall prove that if the one-parameter group of rotations
(etR)t∈R generated by R is periodic, then the full maximal operator HQ,B∗ is of weak
type 1.

Finally we mention that, by using the results of the present paper, in [5] we have
proved that first-order Riesz transforms associated to the generators of these ‘peri-
odic’ semigroups are of weak type 1.

We now briefly describe the content of the paper. In Sect. 2 we characterize
the generators of normal Ornstein–Uhlenbeck semigroups and we show that, after
a change of coordinates, normal semigroups are the products of commuting semi-
groups with covariance matrix Q = I and drift B = −λ(I − R) with λ > 0 and R a
real skew-adjoint matrix.

In Sect. 3 we give an explicit representation of the integral kernel of these semi-
groups with respect to the invariant measure. We show that, modulo an orthogonal
change of coordinates, the semigroup kernel is the product of the kernel of a sym-
metric semigroup and some two-dimensional kernels. Ultimately, this will enable us
to reduce the problem of the weak type 1 boundedness of the maximal operator to
proving estimates of kernels defined on R

2 × R
2.

In Sect. 4 we study the boundedness of the maximal operator HQ,B∗ on Lp(γ∞),
1 ≤ p ≤ ∞, for arbitrary Q and B . We prove that the truncated maximal operator
is always unbounded on L1(γ∞) and that, when the semigroup is normal, the full
maximal operator is bounded on Lp(γ∞), 1 < p ≤ ∞.

Finally, in Sect. 5 we prove the weak type estimate for the truncated and the full
maximal operator when Q = I and B = −λ(I − R). By the results of Sect. 3 the
kernel of the semigroup is a perturbation of the kernel of a symmetric semigroup.
When t is close to zero, the perturbation is small, and the kernel of the nonsymmetric
semigroup can be controlled by the kernel of the symmetric semigroup. The same
thing happens in the periodic case when t is close to an integer multiple of a period.
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This enables us to apply the results of [4] to prove the weak-type estimate for the
truncated maximal operator and of the full maximal operator in the periodic case.

2 Preliminaries

The Schwartz space S(Rd) is a core for the infinitesimal generator LQ,B of the semi-
group (HQ,B

t )t≥0 on Lp(γ∞) for every p, 1 < p < ∞, and

LQ,Bf = 1

2
tr
(
Q∇2)f + 〈Bx,∇〉f, ∀f ∈ S

(
R

d
)
.

By a result of G. Metafune, J. Prüss, A. Rhandi, and R. Schnaubelt (see [8,
Lemma 2.2]) there exists a linear change of coordinates in R

d which allows us to
reduce the analysis of the operator LQ,B to the case where Q = I and Q∞ is a diag-
onal matrix. Indeed, let M1 be an invertible real matrix such that M1QM∗

1 = I and
M2 an orthogonal matrix such that M2M1Q∞M∗

1 M2 = diag(λ1, . . . , λd) := Dλ for
some λj > 0. Then, if we take M = M2M1 and denote by ΦM : S(Rd) → S(Rd)

the similarity transformation defined by ΦMf (x) = f (M−1x), we have that LQ,B =
Φ−1

M L
I,B̃

ΦM , where

B̃ = −1

2
D1/λ + R, (2.1)

and R is a matrix such that

RDλ = −DλR
∗. (2.2)

The invariant measure for the semigroup generated by L
I,B̃

is

dγ̃∞(x) = (2π)−d/2(detDλ)
−1/2e− 1

2 〈D−1
λ x,x〉 dλ(x).

Moreover, γ̃∞(E) = γ∞(M−1E) for every Borel subset E of R
d , and ΦM extends to

an isometry of Lp(γ∞) onto Lp(γ̃∞).
By (2.1) we can write the operator L

I,B̃
as the sum

L
I,B̃

= L0 + R, (2.3)

where L0 = 1
2� − 1

2 〈D1/λx,∇〉 and R = 〈Rx,∇〉 are the symmetric and antisym-
metric parts of L

I,B̃
on L2(γ̃∞), respectively. Thus, the operator LQ,B is symmetric

on L2(γ∞) if and only if R = 0.

Let (HI,B̃
t )t≥0 be the semigroup generated by L

I,B̃
and HI,B̃∗ the corresponding

maximal operator. Clearly, HQ,B∗ is bounded on Lp(γ∞) or of weak type 1 with

respect to γ∞ if and only if HI,B̃∗ is bounded on Lp(γ̃∞) or of weak type 1 with
respect to γ̃∞. Thus, the analysis of the maximal operator HQ,B∗ can be reduced to
the case where Q = I and Q̃∞ = diag{λ1, . . . , λd} for some λj > 0.
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Proposition 2.1 Let B̃ , Dλ, and R be the matrices associated to Q and B as in (2.1).
Denote by L0 and R the symmetric and antisymmetric parts of L

I,B̃
as in (2.3). Then

the following properties are equivalent:

(i) The semigroup (HQ,B
t )t≥0 is normal on L2(γ∞).

(ii) The symmetric and antisymmetric parts of L
I,B̃

commute; i.e.,

[
L0, R

]
φ = 0, ∀φ ∈ S

(
R

d
)
.

(iii) R + R∗ = 0.
(iv) Dλ and R commute.

Proof We claim that L∗
I,B̃

= L0 − R. Indeed, on the one hand, (L0)∗ = L0, since L0

is symmetric. On the other hand, integrating by parts, we get that

R∗ = −R + 〈
Rx,D−1

λ x
〉 − trR

= −R,

since trR = 0 and that 〈Rx,D−1
λ x〉 = 0, since 〈Rx,D−1

λ x〉 = 〈x,R∗D−1
λ x〉 =

−〈x,D−1
λ Rx〉 = −〈D−1

λ x,Rx〉 by (2.2).

The semigroup (HQ,B
t )t≥0 is normal if and only if its generator LQ,B on

L2(γ∞) is normal, and this happens if and only if L
I,B̃

is normal on L2(γ̃∞), i.e.,

[L
I,B̃

, L∗
I,B̃

]φ = 0 for all φ in S(Rd). Now

[
L

I,B̃
, L∗

I,B̃

] = [
L0 + R, L0 − R

]

= 2
[

R, L0].
This shows that (i) and (ii) are equivalent. Next observe that

[
R, L0] = −〈∇,R∇〉 + 1

2

〈
(RD1/λ − D1/λR)x,∇〉

. (2.4)

Hence, [R, L0] vanishes if and only if 〈∇,R∇〉 and 〈(RD1/λ − D1/λR)x,∇〉 both
vanish, as can be easily seen by fixing any pair of indices j , k and an arbitrary point x0
and applying the commutator to a test function φ which coincides with (x −x0)j (x −
x0)k in a neighborhood of x0. Now, 〈∇,R∇〉 vanishes if and only if R + R∗ = 0.
Thus, (ii) implies (iii). To prove the converse observe that by (2.2) the identity R +
R∗ = 0 implies that R and Dλ commute. Thus, also D1/λ and R commute. Hence,
[R, L0] = 0 by (2.4). Finally, if (iv) holds, then R + R∗ = 0 by (2.2). This concludes
the proof of the proposition. �

In the last part of this section we show that operators of the form LQ,B with Q = I

and B = 1
2α

(R − I ), where α > 0 and R is a d × d skew-symmetric real matrix, are
the basic building blocks of normal Ornstein–Uhlenbeck operators. This motivates
the interest in studying the maximal operator associated to semigroups generated by
them.
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To simplify the notation we write

L(α,R) = L
I, 1

2α
(R−I )

= 1

2
� − 1

2α
〈x,∇〉 + 1

2α
〈Rx,∇〉. (2.5)

Let (HQ,B
t )t≥0 be a normal Ornstein–Uhlenbeck semigroup. By (2.1), after a change

of variables, we may assume that its generator is of the form

L
I,B̃

= 1

2
� − 1

2
〈D1/λx,∇〉 + 〈Rx,∇〉,

where R + R∗ = 0 and R commutes with Dλ by Proposition 2.1. Let α1, . . . , α	 be
the distinct eigenvalues of Dλ, and let

Dλ = α1P1 + · · · + α	P	

be the spectral resolution of Dλ. The matrix R commutes with the projections Pj ,
and if we set Rj = 2αRPj , then R∗

j = −Rj and R = 1
2α

∑	
j=1 Rj . Thus, denoting

by �j = tr(Pj∇2) and ∇j = Pj∇ the Laplacian and gradient with respect to the
variables in PjR

d , we have

L
I,B̃

=
	∑

j=1

L(αj ,Rj ),

where

L(αj ,Rj ) = 1

2
�j − 1

2αj

〈x,∇j 〉 + 1

2αj

〈Rjx,∇j 〉.

The semigroup generated by L
I,B̃

is the product of the commuting semigroups

(et L(αj ,Rj ))t≥0 generated by the operators L(αj ,Rj ), j = 1, . . . , 	, which are there-
fore the basic building blocks of normal Ornstein–Uhlenbeck semigroups.

3 The Kernel of the Semigroup with Respect to the Invariant Measure

For our purposes, it is convenient to write the Ornstein–Ulenbeck semigroup as a
semigroup of integral operators with respect to the invariant measure γ∞. We recall
that the Gauss measure with mean zero and covariance matrix Qt on R

d is the mea-
sure

dγt (x) = (2π)−d/2(detQt)
−1/2e− 1

2 〈Q−1
t x,x〉 dλ(x), ∀t ∈ (0,∞],

where λ denotes the Lebesgue measure. In the following, with a slight abuse of no-
tation, we shall also denote by the same symbol γt the density of the measure with
respect to λ. A simple change of variables in (1.2) yields

HQ,B
t f (x) =

∫
ht (x, y)f (y)dγ∞(y),
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where

ht (x, y) = det
(
Q∞Q−1

t

)1/2e− 1
2 [〈Q−1

t (etBx−y),(etBx−y)〉−〈Q−1∞ y,y〉]. (3.1)

The main result of this section is that, after an orthogonal change of coordinates,
the kernel of the semigroup generated by an operator of the form

L(α,R) = 1

2
� − 1

2α
〈x,∇〉 + 1

2α
〈Rx,∇〉

with α > 0 and R + R∗ = 0 can be written as the product of the kernel of the semi-
group generated by its symmetric part L(α,0) and some two-dimensional kernels
(see Theorem 3.1 and formula (3.9)). To simplify the notation, for the rest of this
section, we write L = L(α,R) and L0 = L(α,0). Thus,

L0 = 1

2
� − 1

2α
〈x,∇〉, L = L0 + 1

2α
〈Rx,∇〉.

Henceforth, we shall denote by (et L0
)t≥0 and by (et L)t≥0 the semigroups generated

by L0 and by L, respectively, and by h0
t (x, y) and ht (x, y) their kernels with respect

to the invariant measure

dγ∞(x) = (2πα)−d/2e− |x|2
2α .

By the results of the previous section, the operator L0 is symmetric, and L is normal.
To avoid having many α’s floating around and to be consistent with the notation

in [4], we fix α = 1/2. The formulas for arbitrary α > 0 can be obtained from this
special case by replacing t by t/2α and (x, y) by (x/

√
2α,y/

√
2α) in formulas (3.2)

and (3.3) below.
The kernel of the semigroup (et L0

)t≥0 is

h0
t (x, y) = (

1 − e−2t
)−d/2

exp

{
1

2

[ |x + y|2
et + 1

− |x − y|2
et − 1

]}
. (3.2)

The operator R = 〈Rx,∇〉 generates the semigroup of isometries et Rf (x) =
f (etRx) of Lp(γ∞), 1 ≤ p ≤ ∞. Since et R commutes with et L0 for every t ≥ 0,
the kernel of (et L)t≥0 is

ht (x, y) = h0
t

(
etRx, y

)
. (3.3)

We shall exploit the facts that the matrix R is skew-adjoint and that the symmetric
semigroup (et L0

)t≥0 commutes with orthogonal transformations to prove that, after
an orthogonal change of coordinates, the operator L and the kernel ht (x, y) can be
written in a more convenient form.

First, we consider a special two-dimensional case. For every real number θ , we
denote by R(θ) the 2 × 2 matrix

R(θ) =
(

0 θ

−θ 0

)
. (3.4)



186 J Fourier Anal Appl (2009) 15: 179–200

Let x ∧ y denote the skew-symmetric bilinear form on R
2 defined by

x ∧ y = x1y2 − x2y1.

Then
∣∣etR(θ)x ± y

∣∣2 = |x|2 + |y|2 + 2 cos(tθ)〈x, y〉 ± sin(tθ)x ∧ y,

∀x, y ∈ R
2. (3.5)

Now, consider the Ornstein–Uhlenbeck operator L( 1
2 ,R(θ)) on R

2. To simplify the
notation, henceforth we write Lθ = L( 1

2 ,R(θ)). Thus,

Lθ = 1

2
� − 〈x,∇〉 + 〈

R(θ)x,∇〉

is the operator with covariance matrix Q = I and drift B = −I + R(θ). By using
(3.2), (3.3), and (3.5) it is straightforward to see that the kernel of the semigroup
generated by Lθ is

hθ
t (x, y) = h0

t (x, y)ktθ (x, y), (3.6)

where h0
t (x, y) is as in (3.2) with d = 2 and

ktθ (x, y) = exp

{
− e−t

1 − e−2t

[(
1 − cos(tθ)

)〈x, y〉 + sin(tθ)x ∧ y
]}

. (3.7)

Next, we consider the case where the matrix R is a d × d matrix in block diagonal
form with 2 × 2 blocks of the form (3.4). Let n = [[d/2]] be the greatest integer less
than or equal to d/2. If Θ = (θ1, . . . , θn) is in R

n, we denote by R(Θ) the d × d

block-diagonal matrix

⎛
⎝

R(θ1)
. . .

R(θn)

⎞
⎠ or

⎛
⎜⎜⎝

R(θ1)
. . .

R(θn)

0

⎞
⎟⎟⎠

according to whether d is even or odd, respectively.
Assume first that d is even. Given a vector x in R

d � (R2)n, we write x =
(ξ1, . . . , ξn), where ξk = (x2k−1, x2k) ∈ R

2 for k = 1, . . . , n. Let LΘ = L( 1
2 ,R(Θ))

be the Ornstein–Uhlenbeck operator on R
d of the form

LΘ = 1

2
� − 〈x,∇〉 + 〈

R(Θ)x,∇〉
. (3.8)

Then LΘ = Lθ1 + · · · + Lθn , where each Lθk
for k = 1, . . . , n is a two-dimensional

Ornstein–Uhlenbeck operator acting in the variables ξk = (x2k−1, x2k) of the form

Lθk
= 1

2
�k − 〈ξk,∇k〉 + 〈

R(θk)ξk,∇k

〉
.
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Here �k and ∇k denote the two-dimensional Laplacian and gradient in the variables
(x2k−1, x2k).

Thus, the operators Lθk
, k = 1, . . . , n, commute as do the semigroups generated by

them. This implies that the kernel hΘ
t (x, y) of the semigroup (et LΘ )t≥0 is the product

of the kernels of the semigroups (et Lθk )t≥0, k = 1, . . . , n; i.e.,

hΘ
t (x, y) =

n∏
k=1

h
θk
t (ξk, ηk)

with ξk = (x2k−1, x2k) and ηk = (y2k−1, y2k) in R
2, where h

θk
t (ξk, ηk) are as in (3.6).

If d is odd, then LΘ = Lθ1 + · · · + Lθn + Ln+1, where Lθk
, k = 1, . . . , n, are as

before, and Ln+1 is the one-dimensional symmetric Ornstein–Uhlenbeck operator
1
2∂2

xn+1
− xn+1∂xn+1 acting in the variable xn+1. Thus, the kernel ht (x, y) has an ad-

ditional factor h0
t (xn+1, yn+1), which is the kernel of a one-dimensional symmetric

Ornstein–Uhlenbeck semigroup.
In any case, regardless of the parity of d , by (3.6) we may write the kernel of et LΘ

in the following way

hΘ
t (x, y) = h0

t (x, y)

n∏
j=1

ktθj
(ξj , ηj )

= h0
t (x, y)

∏
θj �=0

ktθj
(ξj , ηj ), (3.9)

where h0
t (x, y) is the kernel of the d-dimensional symmetric semigroup generated by

1
2� − 〈x,∇〉, and each ktθj

is a two-dimensional kernel as in (3.7).

Finally, we show that the analysis of any operator L = 1
2� − 〈x,∇〉 + 〈Rx,∇〉,

where R is a skew adjoint matrix, can be reduced to that of an operator of the form
LΘ . As in Sect. 2, given an invertible real d × d-matrix M , we denote by ΦM :
C(Rd) → C(Rd) the transformation defined by ΦMu(y) = u(M−1y).

Theorem 3.1 Let n = [[d/2]] be the greatest integer less than or equal to d/2, and
let L be the operator 1

2� − 〈x,∇〉 + 〈Rx,∇〉, where R is a d × d real skew-adjoint
matrix. Then there exists a d × d orthogonal matrix g and a vector Θ = (θ1, . . . , θn)

with θj ≥ 0 such that Φg LΦ−1
g = LΘ . Moreover, the kernels ht (x, y) and hΘ

t (x, y)

of the semigroups generated by L and LΘ , respectively, satisfy the identity

ht (x, y) = hΘ
t (gx, gy), ∀x, y ∈ R

d , t > 0.

Proof The set a = {R(Θ) : Θ ∈ R
n} is a maximal abelian subalgebra of the Lie

algebra so(d) of skew-symmetric d × d matrices. Since, by a well-known result
of Lie algebras (see [1]), every element of so(d) is conjugated to an element of
a+ = {R(Θ) : Θ ∈ R+ n}, given a skew-symmetric matrix R, there exists an orthog-
onal matrix g and a vector Θ = (θ1, . . . , θn) with θj ≥ 0 such that R = gR(Θ)g−1.
The identity Φg LΦ−1

g = LΘ follows, because the symmetric part 1
2�−〈x,∇〉 of the

operator L commutes with Φg .
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This implies that Φget LΦ−1
g = et LΘ for every t ≥ 0. From this the identity be-

tween the kernels of the semigroups immediately follows. �

4 Strong Type Estimates

In this section we return to consider an Ornstein–Uhlenbeck semigroup (HQ,B
t )t≥0

with arbitrary covariance Q and drift B . We prove that the truncated Ornstein–
Uhlenbeck maximal operator HQ,B

∗,[0,T ] is always unbounded on L1(γ∞) and, when

the semigroup is normal, the full maximal operator HQ,B∗ is bounded on Lp(γ∞),
1 < p ≤ ∞.

Theorem 4.1 For all T > 0, the operator HQ,B
∗,[0,T ] is unbounded on L1(γ∞).

Proof Suppose, by contradiction, that HQ,B
∗,[0,T ] is bounded on L1(γ∞) for some

T > 0. Denote by γ∞ the density of the invariant measure with respect to the
Lebesgue measure. Let (fn) be a sequence of nonnegative functions of norm 1 in
L1(γ∞) which converges in the sense of distributions to γ∞(0)−1δ0. Then there ex-
ists a constant C such that ‖HQ,B

∗,[0,T ]fn‖1 ≤ C for every n. Moreover,

lim
n→∞ HQ,B

t fn(x) = lim
n→∞

∫
ht (x, y)fn(y)dγ∞(y) = ht (x,0)

uniformly on compact subsets of R
d . Thus, for n sufficiently large,

HQ,B
∗,[0,T ]fn(x) ≥ HQ,B

t fn(x) ≥ ht (x,0) − 1, ∀x ∈ B(0,1), ∀t ∈ [0, T ].
Hence, ∫

|x|≤1
sup

t∈[0,T ]
ht (x,0)dγ∞(x) ≤ C. (4.1)

Now recall the expression of the kernel ht (x, y) given in (3.1). Since Qt ∼ tQ for
t → 0+, if t ∈ (0, ε) for some ε > 0 sufficiently small, then there exist positive con-
stants c0, c1, and c2 such that

ht (x,0) =
(

detQ∞
detQt

)1/2

exp

{
−1

4

〈
Q−1

t etBx, etBx
〉}

≥ c0t
−d/2 exp

{
−c1

|etBx|2
t

}

≥ c0t
−d/2 exp

{
−c2

|x|2
t

}
.

Thus, if |x| ≤ 1, we have

sup
0<t<ε

ht (x,0) ≥ c0 sup
0<t<ε

t−d/2e−c2
|x|2

t ≥ cε |x|−d ,

which contradicts (4.1). �
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The positive result for Lp(γ∞), 1 < p ≤ ∞, for normal Ornstein–Uhlenbeck
semigroups follows from a more general result for normal semigroups of contrac-
tions on all Lp-spaces, whose generators on L2 are sectorial. Indeed, we have the
following theorem.

Theorem 4.2 Let (X,μ) be a σ -finite measure space. Let (Tt )t≥0 be a semigroup of
contractions on Lp(μ) for every p in [1,∞], which is strongly continuous for p < ∞.
Suppose that each Tt is normal on L2(μ) and that the spectrum of the generator G
on L2(μ) is contained in the sector −Sθ for some θ ∈ [0,π/2). Then the maximal
operator

T∗f (x) = sup
t>0

∣∣Ttf (x)
∣∣

is bounded on Lp(μ) for 1 < p ≤ ∞.

Proof By examining carefully Stein’s proof of the maximal theorem for self-adjoint
semigroups of contractions (see [11, pp. 73–81]) one realizes that the self-adjointness
plays a rôle only in the proof of the boundedness on L2(μ) of the Littlewood–Paley
functions

gk(f )(x) =
(∫ ∞

0

∣∣tkDk
t Ttf (x)

∣∣2 dt

t

)1/2

, k = 1,2, . . . .

However, the same result can also be obtained under the assumptions of the theorem.
Indeed, let

−G =
∫

Sθ

zdPz

be the spectral resolution of −G . By the spectral theorem for normal operators,

Dk
t Ttf = (−1)k

∫
S

+
θ

zke−tz dPzf,

where S
+
θ = Sθ \ {

0
}
. Hence,

∥∥Dk
t Ttf

∥∥
2
2 =

∫
S

+
θ

|z|2ke−2t Re z〈dPzf, f 〉.

Thus,
∫

X

∣∣gk(f )(x)
∣∣2 dμ(x) =

∫
X

∫ ∞

0

∣∣tkDk
t Ttf (x)

∣∣2 dt

t
dμ(x)

=
∫ ∞

0
t2k

∫
X

∣∣Dk
t Ttf (x)

∣∣2 dμ(x)
dt

t

=
∫ ∞

0

∫
S

+
θ

|tz|2ke−2t Re z〈dPzf, f 〉 dt

t
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=
∫

S
+
θ

∫ ∞

0
|tz|2ke−2t Re z dt

t
〈dPzf, f 〉

≤ �(2k)

(2 cos θ)2k

∫
S

+
θ

〈dPzf, f 〉

≤ �(2k)

(2 cos θ)2k
‖f ‖2

2,

since |z| ≤ (cos θ)−1Re z in Sθ . This proves that f �→ gk(f ) is bounded on L2(μ).
The rest of the proof is just as in [11, pp. 76–81]. �

Corollary 4.3 Let (HQ,B
t )t≥0 be a normal Ornstein–Uhlenbeck semigroup. Then the

maximal operator HQ,B∗ is bounded on Lp(γ∞) for every p in (1,∞).

Proof By [7] the spectrum of the generator of (HQ,B
t )t≥0 is contained in a sector of

angle less than π/2. Hence, the conclusion follows from Theorem 4.2. �

5 The Weak-Type Estimate

In this section we shall prove the weak type 1 estimate for the maximal operators
associated to the normal Ornstein–Uhlenbeck semigroup (HQ,B

t )t≥0 with covariance
Q = I and drift B = 1

2α
(R − I ), where α > 0 and R is a skew-symmetric real matrix,

i.e., for the semigroup generated by the operator

L(α,R) = 1

2
� − 1

2α
〈x,∇〉 + 1

2α
〈Rx,∇〉.

Namely, we shall prove the following theorem.

Theorem 5.1 For every T > 0, the truncated maximal operator

H∗,[0,T ]f (x) = sup
t∈[0,T ]

∣∣et L(α,R)f (x)
∣∣

is of weak type 1. If the one-parameter group (etR)t∈R is periodic, then the full max-
imal operator H∗f (x) = supt≥0 |et L(α,R)f (x)| is of weak type 1.

As we have already remarked in Sect. 3, by a scaling argument we may assume
that 2α = 1.

First, we reduce the problem to proving that two smaller maximal operators are of
weak type 1. For every subset A of R+, denote by H∗,A the maximal operator defined
by

H∗,Af (x) = sup
t∈A

∣∣et L(1/2,R)f (x)
∣∣, f ∈ L1(γ∞).

If I is a closed interval in R+ and P is a positive number, we denote by I
�
P the union

of PN-translates of I , i.e., I � = ⋃
n∈N

(I + Pn).



J Fourier Anal Appl (2009) 15: 179–200 191

Lemma 5.2 Suppose that, for some t0 > 0, the maximal operator H∗,[0,t0] is of weak
type 1. Then the truncated maximal operator H∗,[0,T ] is of weak type 1 for every
T > 0. If, furthermore, there exists an interval I in R+ such that the operator H∗,I

�
P

is of weak type 1, then the full maximal operator H∗ is of weak type 1.

Proof First, we show that if A is a subset of R+ such that the operator H∗,A is of
weak type 1 and B = ⋃N

i=1(A + ti ) is a finite union of translates of A, then H∗,B is
of weak type 1. Indeed,

H∗,Bf (x) = sup
t∈B

∣∣et L(1/2,R)f (x)
∣∣ = max

i=1,...,N
sup
t∈A

∣∣e(t+ti )L(1/2,R)f (x)
∣∣

= max
i=1,...,N

sup
t∈A

∣∣et L(1/2,R)eti L(1/2,R)f (x)
∣∣

= max
i=1,...,N

H∗,Aeti L(1/2,R)f (x).

Hence, for λ > 0 fixed,

γ∞
({

x ∈ R
d : H∗,Bf (x) > λ

})

≤
N∑

i=1

γ∞
({

x ∈ R
d : H∗,Aeti L(1/2,R)f (x) > λ

})

≤ C

λ

N∑
i=1

∥∥eti L(1/2,R)f
∥∥

L1(γ∞)

≤ CN

λ
‖f ‖L1(γ∞),

since eti L(1/2,R) is a contraction on L1(γ∞) for every i = 1, . . . ,N .
The conclusion follows because the set [0, T ] is a finite union of translates of

(0, t0) and R+ is a finite union of translates of [0, T ] and I
�
P . �

Thus, we only need to prove the weak type 1 estimate for the operator H∗,A when
A = (0, t0) and A = I

�
P for some t0 > 0 and some closed interval I in R+. As in the

analysis of the maximal operator for the symmetric Ornstein–Uhlenbeck semigroup
(et L(1/2,0))t≥0 (see [4]), we shall decompose each of these two maximal operators in
a “local” part, given by a kernel living close to the diagonal, and the remaining or
“global” part. To this end consider the set

L = {
(x, y) ∈ R

d × R
d : |x − y| ≤ min

(
1, |x + y|−1)}
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and denote by G its complement. We shall call L and G the ‘local’ and ‘global’
regions, respectively. The local and global parts of the operator H∗,A are defined by

Hloc∗,Af (x) = sup
t∈A

∣∣∣∣
∫

ht (x, y)1L(x, y)f (y)dγ (y)

∣∣∣∣,
Hglob

∗,Af (x) = sup
t∈A

∣∣∣∣
∫

ht (x, y)1G(x, y)f (y)dγ (y)

∣∣∣∣,
(5.1)

where 1L and 1G are the characteristic functions of the sets L and G respectively.
Clearly,

H∗,Af (x) ≤ Hloc∗,Af (x) + Hglob

∗,Af (x).

We shall prove separately the weak type 1 estimate for Hloc∗,A and Hglob

∗,A.
First, we deal with the local part. We shall actually prove that for all Ornstein–

Uhlenbeck semigroups (Ht )t≥0, without restrictions on covariance and drift, the local
maximal operator Hloc∗ = Hloc

∗,R+ is of weak type 1.

Lemma 5.3 Let (Ht )t≥0 be an Ornstein–Uhlenbeck semigroup with arbitrary co-
variance and drift. Then there exist positive constants c and C such that, for all (x, y)

in the local region L,

ht (x, y) ≤ C
(
1 − e−t

)−d/2
γ∞(y)−1 exp

(
−c

∣∣x − y
∣∣2

1 − e−t

)
, ∀t > 0. (5.2)

Proof Since the real part of the eigenvalues of B is negative, there exist positive
constants α ≤ β and C0 such that C−1

0 e2αs |x|2 ≤ C0|esB∗ | ≤ e2βs |x|2 for all x ∈ R
d

and all s ∈ R. Thus, by (1.1) there exists a positive constant C such that

C−1(1 − e−t
)
I ≤ Qt ≤ C

(
1 − e−t

)
I, ∀t ∈ (0,∞],

and, by (3.1), there exist two positive constants c and C such that

ht (x, y) ≤ C
(
1 − e−t

)−d/2
γ∞(y)−1 exp

(
−c

|etBx − y|2
1 − e−t

)
. (5.3)

Now, for all (x, y) in the local region L,

∣∣etBx − y
∣∣2 = ∣∣x − y + (

etB − I
)
x
∣∣2

= |x − y|2 + ∣∣(etB − I
)
x
∣∣2 + 2

〈
x − y,

(
etB − I

)
x
〉

≥ |x − y|2 − 2
∥∥etB − I

∥∥|x − y||x|
≥ |x − y|2 − C

(
1 − e−t

)
,

since ‖etB − I‖ ≤ C(1 − e−t ) and |x − y||x| ≤ C in the local region L. �

Proposition 5.4 Let (Ht )t≥0 be an Ornstein–Uhlenbeck semigroup with arbitrary
covariance and drift. Then the maximal operator Hloc∗ is of weak type 1.
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Proof By Lemma 5.3 one has that, for each f ≥ 0,

Hloc∗ f (x) ≤ C sup
0<s≤1

s−d/2
∫

e−c
|x−y|2

s 1L(x, y)f (y)dλ(y)

= W f (x),

say. Since the operator W is of weak type 1 with respect to the Lebesgue measure and
its kernel is supported in the local region L, the conclusion follows by well-known
arguments (see for instance [4, Sect. 3]). �

Now we turn to the proof of the weak-type estimate for the global part of the
maximal operator associated to the semigroup generated by the special Ornstein–
Uhlenbeck operator

L(1/2,R) = 1

2
� − 〈x,∇〉 + 〈Rx,∇〉,

where R is a skew-symmetric real matrix.
As in Sect. 3, we denote by ht (x, y) and h0

t (x, y) the kernels with respect to the
invariant measure of the semigroups generated by L(1/2,R) and its symmetric part

L0 = 1

2
� − 〈x,∇〉,

respectively (see (3.2) and (3.3)).
To estimate the semigroup kernel in the global region, it is convenient to simplify

the expression of h0
t (x, y) by means of the change of variables in the parameter t

introduced in [4]. We denote by τ the function defined by

τ(s) = log
1 + s

1 − s
, s ∈ (0,1). (5.4)

Notice that τ maps (0,1) onto R+. It is straightforward to check (see [4]) that, for all
s in (0,1),

h0
τ(s)(x, y) = (4s)−d/2(1 + s)de

|x|2+|y|2
2 − 1

4 (s|x+y|2+ 1
s
|x−y|2). (5.5)

Next, as in [4], we introduce the quadratic form

Qs(x, y) = ∣∣(1 + s)x − (1 − s)y
∣∣2

, x, y ∈ R
d . (5.6)

Thus,

s|x + y|2 + 1

s
|x − y|2 = 1

s
Qs(x, y) − 2|x|2 + 2|y|2,

and

h0
τ(s)(x, y) = s−d/2 exp

{
|x|2 − 1

4s
Qs(x, y)

}
, ∀s ∈ (0,1). (5.7)
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Lemma 5.5 If t0 > 0 is sufficiently small, there exists a positive constant C such that,
for all s in (0, τ−1(t0)) and all (x, y) in R

d × R
d ,

hτ(s)(x, y) ≤ Cs− d
2 e|x|2− 1

40 s
Qs (x,y). (5.8)

Proof Let n = [[d/2]]. The right-hand side of the inequality to prove is invariant un-
der orthogonal transformations. Hence, by Theorem 3.1, it is enough to prove the
inequality for the kernel hΘ

t (x, y) with Θ = (θ1, . . . , θn) ∈ R
n, θj ≥ 0.

By (3.9) and (5.7),

hΘ
τ(s)(x, y) ≤ s−d/2 exp

{
|x|2 − 1

4s
Qs(x, y)

} ∏
θj >0

kτ(s)θj
(ξj , ηj ),

∀s ∈ (0,1),

where ξj = (x2j−1, x2j ) and ηk = (y2j−1, y2j ) are in R
2, and each ktθj

is a two-
dimensional kernel as in (3.7).

Define

Ms(x, y) = exp

{
− 9

40s
Qs(x, y)

} ∏
θj >0

kτ(s)θj
(ξj , ηj ). (5.9)

Then

hΘ
τ(s)(x, y) ≤ s−d/2 exp

{
|x|2 − 1

40s
Qs(x, y)

}
Ms(x, y),

and to conclude the proof of the lemma, all we need to show is that there exist s0 > 0
sufficiently small and a constant C such that

Ms(x, y) ≤ C, ∀s ∈ (0, s0),∀(x, y) ∈ R
d × R

d . (5.10)

Let us denote by Q(m)
s the quadratic form defined in (5.6) when considered as a

function on R
m × R

m. Then

Q(d)
s (x, y) =

{∑n
j=1 Q(2)

s (ξj , ηj ) if d is even,
∑n

j=1 Q(2)
s (ξj , ηj ) + Q(1)

s (xn+1, yn+1) if d is odd.

Thus, since Q(m)
s is nonnegative,

Ms(x, y) ≤
∏
θj >0

exp

{
− 9

40s
Q(2)

s (ξj , ηj )

}
kτ(s)θj

(ξj , ηj )

regardless of the parity of d . Hence, we only need to show that each factor is bounded,
i.e., that for every θ > 0, there exist s0 ∈ (0,1) and a constant C such that, for all
(x, y) ∈ R

2 × R
2,

exp

{
− 9

40s
Qs(x, y)

}
kτ(s)θ (x, y) ≤ C, ∀s ∈ (0, s0), (5.11)

where now Qs = Q(2)
s , for the sake of brevity.
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To this end we fix β in (0,1), we let δ be a constant in (0,1) to be chosen later,
and we denote by ϑ = ϑ(x, y) the angle between the two vectors x and y. The set
R

2 × R
2 is the disjoint union of the five sets

R1 = {
(x, y) ∈ R

2 × R
2 : 〈x, y〉 < 0

}
,

R2 = {
(x, y) ∈ R

2 × R
2 : 〈x, y〉 ≥ 0, x ∧ y ≥ 0

}
,

R3 = {
(x, y) ∈ R

2 × R
2 : 〈x, y〉 ≥ 0, x ∧ y < 0, |x − y| ≥ β|y|},

R4 = {
(x, y) ∈ R

2 × R
2 : 〈x, y〉 ≥ 0, x ∧ y < 0, |x − y| < β|y|, | sinϑ | ≥ δ

}
,

R5 = {
(x, y) ∈ R

2 × R
2 : 〈x, y〉 ≥ 0, x ∧ y < 0, |x − y| < β|y|, | sinϑ | < δ

}
.

We shall prove that (5.11) holds in each region Rj , j = 1, . . . ,5. Note that by (3.7)
and (5.4)

kτ(s)θ (x, y) = e− 1−s2
4s

[(1−cos(τ (s)θ))〈x,y〉+sin(τ (s)θ)x∧y] (5.12)

and that the function s �→ τ(s) is positive and increasing in (0,1) and τ(s) ∼ 2s as
s → 0+. To prove the estimate in R1, we observe that there exists a constant C1 such
that

kτ(s)θ (x, y) ≤ exp
{
C1|x||y|}, ∀x, y ∈ R

2, ∀s ∈ (0,1). (5.13)

Since Qs(x, y) ≥ (1 − s2)(|x|2 + |y|2), because 〈x, y〉 < 0 in R1, we have that if s0

is sufficiently small,

− 9

40s
Qs(x, y) + C1|x| |y| < 0, ∀(x, y) ∈ R1, ∀t ∈ (0, s0). (5.14)

Together (5.13) and (5.14) imply (5.11) in R1.
The proof of (5.11) in R2 is straightforward, because in this region Qs(x, y) ≥ 0

and kτ(s)θ (x, y) ≤ 1.
Next, suppose that (x, y) is in R3. Since 〈x, y〉 ≥ 0, there exists a constant C2 such

that

kτ(s)θ (x, y) ≤ exp
(
C2|x ∧ y|)

= exp
(
C2|x||y|| sinϑ |), ∀s ∈ (0,1). (5.15)

We claim that there exists s0 ∈ (0,1) such that

− 9

40s
Qs(x, y) + C2|x||y|| sinϑ | ≤ 0, ∀s ∈ (0, s0). (5.16)

To prove the claim, first consider the case where |x| ≥ |y|. Then Qs(x, y) ≥ |x −
y|2 and hence, since |x − y| ≥ | sinϑ ||x| and |x − y| ≥ β|y|,

− 9

40s
Qs(x, y) + C2|x||y|| sinϑ | ≤

(
− 9

40s
β + C2

)
|x||y|| sinϑ | ≤ 0,

provided that s <
9β

40C2
.
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Next consider the case where |x| < |y|. In this case we have that Qs(x, y) ≥ |x −
y|2 − 2s|y|2. Thus, since |x| < |y| and |x − y| ≥ β|y|,

− 9

40s
Qs(x, y) + C2|x||y|| sinϑ | ≤

(
− 9

40s
β2 + 9

20
+ C2

)
|y|2 ≤ 0,

provided that s <
9β2

40C2+18 .

Thus, (5.16) holds for all (x, y) in R3 with s0 ≤ min{ 9β
40C2

,
9β2

40C2+18 }. Together
(5.15) and (5.16) imply (5.11) in R3.

The proof of estimate (5.11) in R4 is similar. Indeed, first of all, (5.15) holds in
R4, because here also 〈x, y〉 > 0. Moreover, arguing much as before, one can show

that (5.16) also holds for all (x, y) in R4 with s0 ≤ min{ 9δ2

40C2
, 9δ2

40C2+18 }. The only
difference is that one uses the estimates

Qs(x, y) ≥ |x − y|2 ≥ (sinϑ)2|x|2 ≥ δ2|x||y|
when |x| ≥ |y| and

Qs(x, y) ≥ |x − y|2 − 2s|y|2 ≥ (sinϑ)2|y|2 − 2s|y2| ≥ (
δ2 − 2s

)|y|2

when |x| < |y|. We omit the details. Notice that, so far, we did not need to impose
any restriction on δ, which therefore could be any number in (0,1).

It remains to estimate ht (x, y) in R5. We observe that since τ(s) ∼ 2s as s → 0+
and 〈x, y〉 ≥ 0 and x ∧ y < 0 in R5, by (5.12) there exist s0 > 0 and two positive
constants c0 < 2 < c1 such that

kτ(s)θ (x, y) ≤ exp

{
−c0

θ2

4
s〈x, y〉 − c1

θ

4
x ∧ y

}
, ∀s ∈ (0, s0). (5.17)

Moreover, we can choose c0 and c1 as close to 2 as we want, provided that we choose
s0 sufficiently small; in particular, we may take

c2
1/c0 < 18/5. (5.18)

Now we are ready to prove estimate (5.11) in R5. Define

Es(x, y) = − 9

10
Qs(x, y) − c0θ

2s2〈x, y〉 − c1θsx ∧ y.

By (5.17),

exp

{
− 9

40s
Qs(x, y)

}
kτ(s)θ (x, y) ≤ exp

{
1

4s
Es(x, y)

}
.

Thus, to prove (5.11) in R5 it is enough to show that

Es(x, y) ≤ 0, ∀s ∈ (0, s0), ∀(x, y) ∈ R5, (5.19)

provided that s0, β , and δ are sufficiently small.
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Observe that

Es(x, y) = λ(x, y)s2 + μ(x, y)s + ν(x, y),

where

λ(x, y) = − 9

10
|x + y|2 − c0θ

2〈x, y〉,

μ(x, y) = 18

10

(|y|2 − |x|2) − c1θx ∧ y,

ν(x, y) = − 9

10
|x − y|2.

It turns out that, instead of Es(x, y), it is more convenient to consider the function
|x|−1|y|−1Es(x, y), because the latter function depends only on the variables s, X =
|x|/|y|, and ϑ = x̂y. Indeed, if we denote by Ψ the function defined by Ψ (s, x, y) =
(s,X,ϑ), then

|x|−1|y|−1Es(x, y) = F
(
Ψ (s, x, y)

)
, (5.20)

where

F(s,X,ϑ) = λ̃(X,ϑ)s2 + μ̃(X,ϑ)s + ν̃(X,ϑ) (5.21)

and

λ̃(x, y) = − 9

10

(
X + X−1 + 2 cosϑ

) − c0θ
2 cosϑ,

μ̃(x, y) = 18

10

(
X−1 − X

) − c1θ sinϑ,

ν̃(x, y) = − 9

10

(
X + X−1 − 2 cosϑ

)
.

It is easy to see that (0,1,0) is a critical point of F and that the Hessian ∇2F(0,1,0)

is definite negative, since c2
1 − 18

5 c0 < 0 by (5.18). Thus, (0,1,0) is a local maximum
of F and, since F(0,1,0) = 0, there exists a neighborhood U of (0,1,0) in which F

is ≤ 0. Now, since

Ψ
(
(0, s0) × R5

) ⊂ {
(s,X,ϑ) : s ∈ (0, s0), |X − 1| < β, −δ < sin(ϑ) ≤ 0

}
,

we can choose s0, β , and δ so small that Ψ ((0, s0) × R5) ⊂ U . Hence, F ◦ Ψ ≤ 0 in
(0, s0) × R5. Thus, (5.19) is satisfied, and the proof of the lemma is complete. �

To prove the boundedness of the nontruncated maximal operator we need to as-
sume that the one-parameter group (etR)t∈R generated by the skew-adjoint matrix R

is periodic. We recall that if I is an interval contained in R+ and P > 0, we denote
by I

�
P the set

⋃
n∈N

(I + nP ).
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Lemma 5.6 Suppose that the skew-adjoint matrix R generates a one-parameter
group (etR)t∈R which is periodic of period P . Then there exist an interval I and
a constant C such that, for all s in τ−1(I

�
P ) and all (x, y) in R

d × R
d ,

hτ(s)(x, y) ≤ Cs− d
2 e|x|2− 1

40s
Qs (x,y).

Proof As in the proof of Lemma 5.5, it is enough to prove the inequality for the
kernel hΘ

t (x, y) with Θ = (θ1, . . . , θd) ∈ R
d , θj ≥ 0. Let {θ1, . . . , θm} be the nonzero

components of Θ , i.e., the absolute values of the nonzero eigenvalues of R. Denote
by θmax the maximum of {θ1, . . . , θm}.

Fix δ = min{θ−1
max,1/10}, and let ε be a small positive constant (ε ≤ 1/10 will

do). Define I = [δ, (1 + ε)δ]. For all θ ∈ {θ1, . . . , θm}, the functions t �→ cos(θt) and
t �→ sin(θt) are periodic of period P , and by considering their Taylor expansions at
zero it is easy to see that, for all θ ∈ {θ1, . . . , θm},

c0 ≤ 1 − cos(θt) ≤ c2, sin(θt) ≤ c1, ∀t ∈ I
�
P , (5.22)

where

c0 = 5

12
θ2δ2, c1 = (1 + ε)δθ, and c2 = (1 + ε)2δ2θ2

2
. (5.23)

Arguing as in the proof of Lemma 5.5, we can reduce matters to showing that if
θ ∈ {θ1, . . . , θm}, then there exists a constant C such that

e− 9
40s

Qs (x,y)kτ(s)θ (x, y) ≤ C, ∀s ∈ τ−1(I �
P

)
, ∀(x, y) ∈ R

2 × R
2. (5.24)

For the sake of the reader, we recall that

kτ(s)(x, y) = {
e
− e−t

1−e−2t
[(1−cos(tθ))〈x,y〉+sin(tθ)x∧y]}

t=τ(s)
(5.25)

= e− 1−s2
4s

[(1−cos(τ (s)θ))〈x,y〉+sin(τ (s)θ)x∧y]. (5.26)

The set R
2 × R

2 is the disjoint union of the three sets

R1 = {
(x, y) ∈ R

2 × R
2 : 〈x, y〉 ≥ 0, x ∧ y ≥ 0

}
,

R2 = {
(x, y) ∈ R

2 × R
2 : 〈x, y〉 ≥ 0, x ∧ y < 0

}
,

R3 = {
(x, y) ∈ R

2 × R
2 : 〈x, y〉 < 0

}
.

We shall prove that (5.24) holds in each region Rj , j = 1,2,3.
To prove (5.24) in R1 it is enough to observe that here ktθ (x, y) ≤ 1 for all t in

R+.
Now suppose that (x, y) is in R2. Then, by (5.22) and (5.25) we have that

kτ(s)θ (x, y) ≤ e− 1−s2
4s

(c0〈x,y〉+c1x∧y), ∀s ∈ τ−1(I �
P

)
. (5.27)
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Thus,

exp

{
− 9

40s
Qs(x, y)

}
kτ(s)θ (x, y) ≤ exp

{
1

4s
Fs(x, y)

}
,

where

Fs(x, y) = p(x, y) s2 + q(x, y) s + r(x, y),

p(x, y) = − 9

10
|x + y|2 + c0〈x, y〉 + c1 x ∧ y,

q(x, y) = 18

10

(|y|2 − |x|2),

r(x, y) = − 9

10
|x − y|2 − c0〈x, y〉 − c1 x ∧ y.

Thus, to prove (5.24) in R2, we only need to show that Fs(x, y) ≤ 0 for all (x, y) ∈
R2.

It is an easy matter to see that, with c0 and c1 as in (5.23), the leading coefficient
p(x, y) and the constant term r(x, y) are negative for all (x, y) in R2. Thus, it suffices
to show that the discriminant q2 − 4pr is nonpositive in R2. If |y| = |x|, this is
obvious, since then q(x, y) = 0. If |y| �= |x|, after some simple algebra, using the
identity

|x + y|2|x − y|2 = (|y|2 − |x|2)2 + 4 sin2(ϑ)|x|2|y|2,
we see that (q2 − 4pr)|x|−2|y|−2 is only a function of the angle ϑ between x and y.
Thus, its sign does not change if we rescale in x. In particular, we may reduce matters
to the case |y| = |x|, where q = 0. This proves that Fs(x, y) ≤ 0 for all (x, y) in R2
and s in R. By (5.27) this implies that (5.24) holds in R2.

Finally, suppose that (x, y) is in R3. We have that

exp

{
− 9

40s
Qs(x, y)

}
kτ(s)θ (x, y) ≤ exp

{
1

4s
Gs(x, y)

}
,

where

Gs(x, y) = p̃(x, y)s2 + q(x, y)s + r̃(x, y),

p̃(x, y) = − 9

10
|x + y|2 − c2

∣∣〈x, y〉∣∣ + c1|x ∧ y|,

q(x, y) = 18

10

(|y|2 − |x|2),

r̃(x, y) = − 9

10
|x − y|2 + c2

∣∣〈x, y〉∣∣ − c1|x ∧ y|,

and c1, c2 are as in (5.23). Thus, to prove the desired inequality (5.24), we only need
to show that Gs(x, y) ≤ 0 in R3. Since it is easy to see that both p̃ and r̃ are negative
in R3, as before, we only need to prove that q2 − 4p̃r̃ ≤ 0 in R3. This can be proved
by an argument similar to that used in R2. We omit the details.
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Hence, (5.24) holds for all (x, y) in R
2 × R

2. This concludes the proof of the
lemma. �

We recall two lemmas from [4].

Lemma 5.7 Let ϑ = ϑ(x, y) denote the angle between the nonzero vectors x and y.
There exists a constant C such that, for all (x, y) in the global region G,

sup
0<s≤1

s−d/2e− 1
40s

Qs (x,y) ≤ C min
{(

1 + |x|)d
,
(|x| sinϑ

)−d}
.

Lemma 5.8 The operator

T f (x) = e|x|2
∫

min
{(

1 + |x|)d
,
(|x| sinϑ

)−d}
f (y)dγ∞(y)

is of weak type 1.

We are now ready to conclude the proof of Theorem 5.1

Proof Let A denote either the set [0, t0] or I
�
P . By Proposition 5.4 the local part of the

operator H∗,A is of weak type 1. Thus, it remains only to prove that the global part
is of weak type 1. By (5.1), Lemmas 5.5, 5.6, and 5.7 the global part of the operator
H∗,A is controlled by the operator T , which is of weak type 1 by Lemma 5.8. The
conclusion follows by Lemma 5.2. �
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