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1 Introduction

Radon transforms play an important role in different branches of mathematics and
have many applications [6, 11, 14, 19, 25]. The present article deals with Radon trans-
forms of functions of matrix argument introduced by Petrov [31] in 1967. After first
publications on this subject [4, 31, 32, 46, 47], it became clear that Radon transforms
on matrix spaces (and also on Grassmann manifolds) have a number of striking dis-
tinctive features that do not happen in the classical theory of similar transforms over
planes in R"; see [15-18, 27-30, 32, 33, 40, 52]. Some of these features are still
mysterious and require new ideas. The main focus of the present article is a matrix
generalization of the important analytic family of integral transforms introduced by
Semyanistyi [44] in his study of the hyperplane Radon transform on R”. Implemen-
tation of this family makes inversion problem for the Radon transform conceptually
transparent and provides a variety of new explicit inversion formulas.

Let us describe the essence of the matter. Let 90, ,,,, n > m, be the space of n x m
real matrices x = (x; ;). We fix aninteger k, 1 <k <n,andletV, ,_r =1{§ € M,  :
&'E = I,_i} be the Stiefel manifold of orthonormal (n — k)-frame in R". Here &’
denotes the transpose of &, and I,,_ is the identity matrix. Let ‘T be the set of matrix
planes in 901, ,,. Each such plane is defined by

t=1¢ ) ={xeMyu:§x=1}, §€Van—t, 1E€Muim. (1.1)

The Radon transform associated to planes (1.1) and the relevant dual transform are
defined by

f<r>=/ f, ¢(x>=f (1), (1.2)
XET =3

the integration being performed against the corresponding canonical measures. We
call (1.2) the rank-one Radon transforms if m = 1, and the higher-rank Radon trans-
forms if m > 1. The case m = 1, when f(t) is the usual k-plane transform in R”, is
well investigated; see [14, 19, 39] and references therein.

In 1960, Semyanistyi [44] came up with an interesting idea to regard the hyper-
plane Radon transform and its dual (the case m = 1, k = n — 1) as members of

* A
suitable analytic families of operators P* and P %, « € C, so that PO f = f and
*

P% = ¢ (we adopt our own notation). This gives a variety of inversion formulas

cnf = (—A)rte=D/2 p £ where ¢, = const and (—A)"*+e=1D/2 i a power of the
Laplace operator that can be realized in different ways. This approach was extended
in [39] to k-plane Radon transforms in R” for all 1 < k < n. Specifically, let G, x
be the manifold of nonoriented k-dimensional planes 7 in R" and let |x — 7| be the
Euclidean distance between the point x € R" and the k-plane 7 € G, ;. Then the
generalized Semyanistyi’s integrals are defined by

(P*£)(1) = eni(a0) / O -ty teGur,  (13)
Rn
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(PU0)(x) = coi(e0) / o x— T dr,  xeR',  (14)
gn,k

and coincide with those in [44] when k = n — 1. It was proved [39] that
PUf = copI®T f (15)

which implies ¢, f = (—A)("+°‘)/ 2 Ii o f where « can be chosen as we please.
All constants in these formulas are explicitly determined. The case « = 0 in (1.5)
is known as Fuglede’s formula [9]. This idea was generalized to totally geodesic
Radon transforms on arbitrary spaces of constant curvature and proved to be useful
in applications [35-38, 41].

Plan of the article and main results. Our aim is to extend Semyanistyi’s idea
to the higher-rank Radon transforms (1.2). Section 2 contains necessary prerequisites
on matrix spaces and higher-rank Radon transforms. In particular, for generic point
x € My,,» and a matrix plane T € T, we define a natural substitute of the Euclidean
distance to be a positive semi-definite matrix

d(x,v)=[(E'x —1) (&x —1)]"*. (1.6)
The quantity |x — t| in (1.3) and (1.4) is accordingly replaced by
|x — | =det(d(x, 1)) . (L.7)

In Section 3, we study special classes of Schwartz distributions on 91, ,, of the Riesz
type. Following terminology in [8] (see also [23, 29, 40]), we call them zeta distribu-
tions. Additional information about modern theory of zeta distributions can be found
in [1-3, 5, 21, 42, 45] where the main focus lies beyond the scope of our article.
Section 4 deals with Riesz potentials and Hilbert transforms of functions of matrix
argument. In the rank-one case m = 1, they are indispensable tools for Radon in-
version [19]. Our aim here is to obtain explicit representations of Riesz potentials
outside of the domain of their absolute convergence. We also define the generalized
Hilbert transform on the space of square matrices as a pseudo-differential operator
with the symbol sgndet(y) (up to a constant multiple). This agrees with the usual
Hilbert transform on the real line [26, 48] and extends as a linear bounded operator
on L2(Mym).

Section 5 is a core of the article and relies on Sections 3 and 4. Here we extend
generalized Semyanistyi’s integrals (1.3) and (1.4) to the higher-rank case. Specifi-

&
cally, for functions f on 9, », and ¢ on T, we define P f and P%¢ to be analytic
continuations of the integrals

1

pP* =
( f) © Yn—k,m ()

/ F) |x — |5y, e, (1.8)

n,m

* o 1 a+k—n
(P Ql))(x) = m () |x — Tl dr, xe€Mym, (1.9
n—Kk,m
T
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with the suitable normalizing constant y,—x (). For o = 0, we get POf = f and

*
P% = ¢ up to constant multiples. We prove the generalized Fuglede formula

P = cnpmIH S (1.10)

which mimics (1.5) and contains the relevant matrix modification of the Riesz po-
tential on the right-hand side. All constants in (1.8)—(1.10) are determined explicitly.
Section 6 contains a series of inversion formulas for the higher-rank Radon transform

which follow from (1.10) and have the general structure ¢,k f = 1 —o—k ;3 o f .In
particular, for « = —k, this yields

K g
Cn,k,mfZP -

Explicit expressions for ;; —k f are given by (6.1)—(6.3). Thus we see that the Radon
transform is actually a member of the analytic family {P“} and the inverse Radon

transform belongs to the dual family { ;;“}.

Some comments are in order. (1) First results for the Radon transforms (1.2) were
obtained by Petrov [31, 32] for k = n — m and extended by Shibasov [47] to all
1 < k <n — m. Basic inversion formulas in these articles contain divergent inte-
grals having been understood in the sense of regularization. Many important calcu-
lations in [47] are unfortunately skipped. We note that our presentation is almost
self-contained and all integrals in inversion formulas (6.1)—(6.3) are exhibited in ex-
plicit and readable form. Our philosophy, eventually based on explicit representation
of analytic continuation of zeta integrals, is also different. Moreover, for k odd, when
inversion formulas are essentially nonlocal, we reveal the following intriguing dif-
ference between the cases k =n — m and k < n — m: In the second case our for-
mula (6.2) does not contain the Hilbert transform. One should add that the method
of the paper conceptually agrees with the classical Radon-Helgason scheme [19] and
has the same nature as decomposition of the delta function in plane waves; cf. [13].
(2) Integrals (1.8) and (1.9) are absolutely convergent for sufficiently good f and ¢
if and only if Rea > m — 1. Otherwise, they have a complicated structure of sin-
gularities and must be understood in the sense of analytic continuation. The crux
is to obtain explicit and readable formulas for these analytic continuations. (3) For

o = 0, when ;30 is actually the dual Radon transform, formula (1.10) was obtained
in [27]; see also [40]. Letting o vary, we achieve more flexibility which enables us to
choose the most effective Radon inversion formula for every specific triple {k, m, n}.
Another advantage of the method is that, playing with o, we provide analytic con-
tinuation of complicated integrals with fairly elementary explicit expressions. (4) An
alternative approach to inversion of higher-rank Radon transforms on 90, ,, was sug-
gested in [28]. It relies on Garding-Gindikin fractional integrals over the cone of
positive definite matrices and agrees with the previous work by Grinberg, Rubin, and
Zhang [18, 53] for Radon transforms on Grassmannians. Another Radon inversion al-
gorithm involving wavelet-like transforms on 901, ,, was developed in [30]. The range
of the Radon transform f — f in (1.2) on Schwartz functions was characterized by
Gonzalez and Kakehi [16] in group-theoretic terms. The method of the present paper
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essentially differs from those in cited publications and increases our knowledge of
the object.

2 Preliminaries
2.1 Matrix Spaces. Notation

In the following, 9, ,, ~ R"™" is the space of real matrices x = (x; ;) having n rows
and m columns, n > m, M, = My, 1, dx =[]7_, ]_[;'7:1 dx;, j is the volume element
on M, n, x" denotes the transpose of x, and 1, is the identity m x m matrix. Given
a square matrix a, we denote by det(a) the determinant of a, and by |a| the absolute
value of det(a); tr(a) stands for the trace of a. For x € 9, ,,,, we denote

172 2.1)

|x|m = det(x'x)
If m = 1, then this is the usual Euclidean norm on R”. For m > 1, |x|,, is the vol-
ume of the parallelepiped spanned by the column-vectors of x [10, p. 251]. We use
standard notations O (n) and SO (n) for the orthogonal group and the special orthog-
onal group of R” with the normalized invariant measure of total mass 1; M (n, m) is
the group of motions of M, , acting by the rule x — yxB + b, where y € O(n),
peO(m),and b eM, .

Let S,, ~ R™"+D/2 pe the space of m x m real symmetric matrices s = (s;, ;)
with the volume element ds = [;_; dsi ;. We denote by P,, the cone of positive
definite matrices in S,,; P,, is the closure of P,,, that is the set of all positive semi-
definite m x m matrices. For r € P, (r € P,), we write r > 0 (r > 0). Given a and
b in S, the inequality a > b means a — b € P,, and the symbol fah f(s)ds denotes
the integral over the set (a + Py,) N (b — Ppy).

The group G = G L(m, R) of real nonsingular m x m matrices g acts transitively
on P, by the rule r — grg’. The corresponding G-invariant measure on Py, is

der = |r|™%dr, |r| = det(r), d=m+1)/2 2.2)

[49, p. 18]. Let T;, be the subgroup of G L(m, R) consisting of upper triangular ma-
trices (#;, ;) with positive diagonal entries. Each r € P, has a unique representation
r=t't, t € T,,, so that

o0 o o0
[ rwrar= [ [ a5 ans [t ) i
Pon 0 0 0
2.3)
Fltin, . tmm) =2" / f(t't) dt,, dt*zl_[dti,j,

Rm(m—l)/Z i<j

[49, p. 22], [24, p. 592]. In t~he last integration, the diagonal entries of the matrix ¢ are
given by the arguments of f, and the strictly upper triangular entries of ¢ are variables
of integration.
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For Rea > d — 1, the Siegel gamma function of P, is defined by

m—1
Ty () = / exp(—tr(r)|r|“dur = 7" " VAT D — j/2) (2.4)
P Jj=0

[8, 15, 49]. It extends meromorphically to all « € C and obeys

n(l=a/2) _ Dt m)

R S R

=2""(a, m) (2.5)

where (o, m) =a(o +1)--- (¢ +m — 1) is the Pochhammer symbol.
The relevant beta function has the form

I, m

_ - Lo ()T (B)

_ a—dyy _ o B—d g, _ _

Bm(a,ﬂ)_/|r| I, —r|P~%dr = @t B) d=m+1)/2. (2.6)
0

This integral converges absolutely if and only if Reor, Re 8 > d — 1.

In the following, all functions spaces on 90, ,, are identified with the corre-
sponding spaces on R™™. For instance, S(9,, ,») denotes the Schwartz space of infi-
nitely differentiable rapidly decreasing functions. The Fourier transform of a function
f e LY(OM,, ) is defined by

(FH) = f exp (r(iy'x)) f(x)dx,  y€Myp. 2.7
S):nn,m
This extends to distributions f € S'(9M,, ) by the Parseval formula
(Ff, Fo) = Qm)"™ (f, ¢), 9 eSMym) , (2.8
where for f € Llloc(i)ﬁn,m),
(fip)= / S epx)dx .
iInn,m

For n > m, let V;;,, = {v € M, : V'v = I} be the Stiefel manifold of ortho-
normal m-frames in R". The group O (n) acts transitively on V,, ,, by the left matrix
multiplication. This is also true for SO (n) if n > m. We fix an invariant measure dv
on V, ,, normalized by

/ J zmnnm/Z (2 9)
Onm= V= ——, .
o T (1/2)

Vn,m

[24, p. 70], and denote d,v = U,Z,L dv.
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Lemma 1 (polar decomposition) Let x € M, ,,, n > m. If rank(x) = m, then
x=v'2 veVyu, r=xxePu, (2.10)
and dx = 27" r|"=m=D/2 g qy.
This statement can be found, e.g., in [8, 20, 24].

Lemma 2 Let x € My, 1y, n > m. If rank(x) = m, then

X =vt, veVim, tel,,
so that
mn .
- n=j . — -
dx =[]t/ dijjdtedv,  de=]]du;.
j=l1 i<j

This statement is also well known and has different proofs. For instance, it can be
easily derived from Lemma 1 and (2.3); see Lemma 2.7 in [40].

2.2 Differential Operators

The Cayley-Laplace operator A on M, , is defined by
A:det(a/a), 9 =(9/0x; ), (2.11)

and yields the Bernstein type equality [40]:

AR |x |G = Br(a)|x )% (2.12)
where
m—1 k—1
Buay=[] [Jle—i+2j)@—n+2+2j+i)=Bin—a—2k). (2.13)
i=0 j=0

In terms of the Fourier transform, the action of A represents a multiplication by the
homogeneous polynomial (—1)™| y|,2n of degree 2m of nm variables y; ;. Form > 1,
the operator A is neither elliptic nor hyperbolic, although, for some n,m and ¢, its
power A’ enjoys the strengthened Huygens’ principle; see [23] for details.

When dealing with square matrices, we will also need the Cayley differential op-
erator

DZdCt(a/axi’j), x:(x,-,j) eM, , (2.14)
which interacts with the Fourier transform as follows:

(FIDfD(y) = (=) det(y) (F /H(¥) (2.15)
DF ) =i" (FLf (x) det(x)D(y) - (2.16)
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2.3 Matrix Planes and Radon Transforms

We recall basic facts from [27, 28] about Radon transforms on 901, ,,. For§ € V,, ,_«
and t € M, _g.m, 0 <k < n, amatrix k-plane in M,, ,,, is defined by

t=t¢E D ={x:x €My Ex=1}. 2.17)

The set T of all matrix k-planes is a homogeneous space of the group M (n,m) of
matrix motions in the framework of the classical double fibration scheme; see [16],
Section 3. For m =1, ¥ is the Grassmann manifold of all nonoriented k-dimensional
planes in R”. Every matrix plane (2.17) is actually a usual km-dimensional plane
in R (but not vice versa). One can regard ¥ as a quotient space (V,, ,—r X
M, —k.m)/ O — k). Functions ¢(t) on ¥ are identified with functions ¢(&,¢) on
Vin—k X My satisfying o(£6',01) = (&, 1) for all & € O (n — k), and the corre-
sponding measure dt on ¥ is chosen so that

/(p(‘[)d‘L'Z / (&, t)d.Edt . (2.18)
< Vo XM
A matrix distance between points x and y in 9, ,, is defined by
dx, y) =[x -y @ -»]". 2.19)
A matrix distance between x € MM, ,, and T = 7(£,¢) € T is defined accordingly as
dix, ) =[(&x —1) (E'x —1)]'*. (2.20)
We denote
|x — v =det(d(x, y)), |x — 7|n =detd(x, 7)) = |'x—1| . (221)
Lemma 3 (i) The group M (n, m) of matrix motions,
x — yxB+0b, y € O(n), B € 0O@m), beMym,

acts on My, m and T transitively. (i1) The determinants |x — y|, and |x — Tl are
invariant under the action of M (n, m). Namely,

lgx — gylm =1x — Ylm, lgx — gTlm =|x — T|m, gEM(n,m).

(iii) The distances d(x, y) and d(x, T) are invariant under the subgroup M'(n, m) of
M (n,m), acting by the rule x — yx +b,y € O(n), b € My .

Proof Both statements follow from the observation, that if gx = yx8 + b, then, for
T =1(§,1), we have gt =T(y&, 1B +£&'y'b). O
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Note that the matrix plane v = 7(§,1), £ € V., t € My—k,m, consists of

“points”
w
X =8¢ ¢ s

where w € My, and g € SO(n) is a rotation satisfying

0
gsbo=§, §o= |:I } € Vin—k - (2.22)
n—k
This observation leads to the following.

Definition 1 The Radon transform of a function f on 90, ,, is defined by

fo=fE, )= / f <g$ |:C;)i|> do, &, 1) eV X E):nn—k,m . (2.23)

k,m

The dual Radon transform of a function ¢(7) = ¢(&, ¢) on ¥ is defined by

Fx) = f o6 EX)dE,  xeMy, (2.24)

Vn,nfk

In the rank-one case m = 1, the operators f (t) and @(x) are classical k-plane
Radon transform and its dual.

It is known [28] that for f € L? (9, ), the Radon transform f (&,1) is fi-
nite for almost all (§,¢) € Vyp—k X My m ifandonlyif 1 <p<m+m—1)/
(k + m — 1). Moreover, it is injective on S(IM,, ) if and only if 1 <k <n —m.
The dual Radon transform ¢(x) is finite almost everywhere on 90, ,, for any locally
integrable function ¢.

The Radon transform and its dual commute with matrix motions g € M (n, m).
Specifically, if x € 9, ,,, and gx = yxB + b, where y € O(n), B € O(m), and b €
M,..m, then

(fo) &, D= (fog)&,n=f(y& tB+EY'D), (2.25)
and

(pog) (x)=(pog)(x)=¢(yxB+b). (2.26)

Furthermore, if f,(y) = f(x + y), then
fr 0 =F(&8x+1). 2.27)
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3 Zeta Distributions
3.1 Analytic Continuation and Functional Equations

In the classical theory of Radon transforms in R", one of the basic inversion methods
is based on decomposition of the distribution |x|*~"/I"(«/2) in plane waves, [13].
Diverse higher-rank generalizations of |x|*~"/I"(«/2) fall into the scope of the so-
called zeta distributions or zeta integrals; see [3, 5, 8, 21, 29, 42, 45] and references
therein. In this section, we study basic properties of zeta distributions (or integrals)
which constitute the background of the method of plane waves in integral geometry
in the space of rectangular matrices.
Leta € C, x € My, n>m, |x|, =det(x'x)!/%. We denote

"
Ca(x) = —Fm(a/2) . 3.1
If n =m and x € M,,, we also set
;;u):M ()= |det(x)|*~™ sgn det(x) ' 3.2)

T (e/2) (@ +1)/2)

These functions can be regarded as Schwartz distributions according to the formulas

(o f) = f @) f@dx, (5. f)= [ o f@dx.  (33)

Following traditional terminology (see, e.g., [8]), we call (3.3) zeta integrals and the
corresponding distributions will be called zeta distributions. For (¢, , f) we also use
the name the conjugate zeta integral (or distribution) by analogy with the case « =0,
m = 1, when the convolution of f with the distribution ¢, = p.v.% is associated with
the Hilbert transform [26, 48] which is also called a conjugate function.

It is known that the integrals (3.3) are absolutely convergent for Rea > m — 1,
and extend as entire functions of @ € C; see, e.g., [23, 33, 46]. Below we suggest
a relatively simple procedure of analytic continuation of these integrals and give a
series of explicit formulas for these continuations.

To perform analytic continuation, it is natural to utilize the corresponding differ-
ential operators. In particular, for ({j, f), we make use of the Cayley differential
operator D = det(d/0x;, ).

Lemma 4 Let x € M,,, rank(x) =m. For any A € C,
D [|det(x)|*] = (r, m) |det(x)[* ! sgndet(x) (3.4)
D [|det(x)|* sgndet(x)] = (», m) |det(x)[*~" . (3.5)

Proof Note that (3.4) and (3.5) follow one from another. Different proofs of these
formulas can be found in [34] and [32]; see also [51, p. 114]. All these proofs are
very involved. Below we give an alternative proof which is elementary.
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We start with the formula
Dyl f(ax)] =det(a) (Df)(ax), acGL(m,R), (3.6)

which can be easily checked by applying the Fourier transform to both sides. Indeed,
if f is good enough at infinity (otherwise we can multiply f by a smooth cut-off
function) then by (2.15), the Fourier transform of the left-hand side of (3.6) has the
form

(=)™ det(y)

(=07 det) FL @n)l) = =320

F(a')y)

which coincides with the Fourier transform of the right-hand side. If f(x) = |det(x)|*
then (3.6) yields

|det(a)|* D |det(x)|* = det(a) [D |det(-)|*](ax) .
By setting @ = x ! (recall that rank(x) = m so that x is nonsingular), we obtain
D |det(x)* = Aldet(x)|* ' sgndet(x), A =[DI|det(x)|*](In) ,
and therefore
D [|det(x)|* sgndet(x)] = Aldet(x)[* " . (3.7)
In order to evaluate A, we make use of the Gaussian functions

e(x) =exp ( — tr(x/x)) and e(x) =e(x)det(x) = (=2)""(De)(x) .

Applying Lemma 1 and then using an analytic continuation, we obtain

nm/2
(Gr,e) = W . (3.8)
Hence,
m?/2
_ T
(G e)= (5 0)= Tom2)
On the other hand, by (3.7) and (3.8),
(;{, 6‘1) = (—2)_"’(5_, De) =27" (e(x), D [|det(x)|)‘ sgndet(x)])
=2""A(G &) =2 AT (L — 1+m)/2) .
Hence, owing to (2.5), we obtain
2T (A + 1 2 ra—a
m((A—1+m)/2) r'dd—ir—m)
Corollary 1 For f € Sy m),
(G f)=ca (@i D) (6 f) =da (60315 DS) (3.9)
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where

MFNa+1—m) _F(a—i—l—m)l"(m—ot)
’ T a4+ DI (—a)

(3.10)

The Fourier transforms of zeta distributions are traditionally realized through the
relevant functional equations in accordance with the Parseval equality (2.8). In our
case, these equations have the following form.

Theorem 1 Let f € SNy m), n > m. Then

Car ) =22 (5o Ff), (3.11)
(Ca- f) = (=iy" a2 (oo FF) . (3.12)

In particular,
(&r, f) = 2 omemm (o FF). (3.13)

Proof First we note that both sides of each equality are understood in the sense of
analytic continuation and represent entire functions of «. Moreover, (3.13) is a par-
ticular case of (3.11). The equality (3.11) was obtained in [7, 8, 12, 32, 34] in the
framework of more general considerations. A self-contained proof of them and de-
tailed discussion can be found in [22, 40]. The equality (3.12) was implicitly pre-
sented in [32, p. 289]. In fact, it follows from (3.13) owing to the formulas (3.9)
and (2.15). Indeed,

(6 ) =ca (1. DF) =g 2ametom (o F FID )

(F (), det(y) |det(y)|~*71)
Cu(m —a—1)/2)

— (_l-)m Can,—mz/Z 2m(o¢+l—m) (

=c (gr;—a’}—f) )
where [use (3.10) and (2.5)]

/2 g t-my) L (On =@+ D/2) o w2 ymiam)
Cp(m —a—1)/2)

c=(=)"cqm
O

3.2 Decomposition in Plane Waves

The following lemma contains decomposition of the distribution ¢, in matrix plane
waves.

Lemmas5 Let f e SOy ), 1 <k <n—m, @ € C. Then

_Tu((1=K)/2) v
G )= —"F (Gt (&) dut (3.14)

n,n—k
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with the zeta distribution {y— acting in M,k m.

Proof In view of analyticity, it suffices to prove (3.14) for Rea > k +m — 1, when
it can be written in terms of absolutely convergent integrals as

/ FQ@) lxlp " dx = c(e) / di§ / f& 0l (3.15)
EInn,m V”v”*k mn—k,m
ey = L@ =/ T/ G16)
Lin(n/2) T (0 — k)/2)
By Fubini’s theorem, (3.15) is a direct consequence of the equality
/ &'x 77" dyg = ()" x )% (3.17)

Vin—k

The validity of (3.17) with some constant ¢ on the right-hand side follows immedi-
ately from the polar decomposition (2.10). Indeed, if x = vrl/2 y e Vam, T =x'x €

I

P, then, by invariance, for v =y vy, y € SO(n), vg = [ 0

] € Vu.m, we have

/ |&'x 27" dug = cr @R =cx|8" (3.18)

Vnﬁ—k

where ¢ = f\/n o |€"vo|% ™" d&. It remains to show that ¢ = c(o)™!. To this end,

we multiply both sides of (3.18) by exp(—tr(x'x)) and integrate in x € 9, ,,. By
Lemma 1, the r.h. side becomes

c / Ix[o" exp (— tr(x"x)) dx = copm 27" T (a/2) . (3.19)
mn,m

a

For the Lh. side, by changing the order of integration and setting x = g¢ [ b

], where

g is arotation in (2.22), we obtain

/ exp (—tr(x'x)) dx / &'x [0 " d,g

Sﬁn.m ‘/)1.)sz

= / exp(—tr(a'a))da / exp (—tr(b'b)) 6|5 " db

mk,m mn—k,m
= 2—2m Ok.m On—k,m | (k/2) Ly (o — k)/2) .

Using (2.9) and comparing calculations, we obtain the result. U
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Remark I As we can see from the proof, if Rea > k+m — 1 then (3.15) holds for any
locally integrable function f provided that either side exists in the Lebesgue sense.

3.3 Explicit Representations

We have already mentioned that zeta integrals (3.3) are absolutely convergent for
Rea > m — 1. For other «’s they must be treated in the framework of the the-
ory of distribution as analytic continuations of integrals (3.3). It turns out that for
oa=1,2,...,m — 1, analytic continuation of (¢, f) still have an integral represen-
tation and ¢, can be regarded as a locally tempered measure on 90, ,, supported on
matrices of rank less than m. This striking phenomenon reveals an essential differ-
ence between the rank-one case m = 1 and the higher-rank case m > 1. Moreover,
afore-mentioned representations are also applicable to « =m,m + 1,...,n. These
explicit representations will serve as important components of Radon inversion for-
mulas in Section 6.

Theorem 2 Let f € SNy ). Fora =k, k=1,2,...,n

n.(n kym/2
s )= To/2) / / ( [ de. (3.20)

om My
Furthermore, for « = 0 we have
am/2
(%0, f) = T2 f Q). (3.21)

For 1 <k <min(m — 1,n — m), formula (3.20) was obtained in [27, Lemma 3.2]
in a slightly different notation. Here we give an alternative proof which covers all
1 <k < n and might be instructive. The proof consists of a few steps. We first con-
sider the distribution G, of Riesz type defined by

Gu(f) =

I )/f(r)|r|°‘ 4 ar, d=m+1)/2, (3.22)

where f is a Schwartz function on the space S, of m x m symmetric matrices. In-
tegral (3.22) converges absolutely for Rea > d — 1 and admits analytic continuation
as an entire function of « so that

Go(f) = £(0), (3.23)
see [8, pp. 132-133].

Lemma 6 For f € S(Sy) andk=1,2,...,m—1,

Grpa(f) =7 m/? / f(oo)do. (3.24)
S)jtk,m
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Proof For the sake of convenience, we temporarily replace f by f. Then by (2.3),

Gu(F F()/fttnt%"l_[dt,-,j Rea>d—1.

i<j

We write t = a + b, where a = (a;,j) and b = (b; ;) are upper triangular matrices
so that the lower n — k rows of a and the upper k rows of b consist of zeros. We
denote by A and B the sets of all matrices of the form a and b, respectively. Since
t't =d’a + b'b, then

2" k(e — k)2
got(f) k(Ol /)/ga 20{ zl_[dat]’ (325)

Ly () <
i<j

where

2(a—k/2)—i
ga(da) = m f f(da+b'b ]‘[ begindi T1dbrvinss -

i<j

Note that g, (a’a) = Gy_i o) ( f ([: f])) represents the distribution of the same type

as G, but acting in the (e) matrix variable belonging to S,,,—¢. By (3.25), G, is a di-
rect product of two distributions which are analytic in «. Hence, owing to (3.23),
gk/2(a’a) = f(a’a), and therefore,

k
Gpa(f)=c / f(d'a) ]‘[aﬁ;i ]_[ da ; . (3.26)
4 i=1 i<j
Here, by (2.4),

c=2% lim Zka,k (@ —k/2) = 2Eghttzmpz
a—k/2 (@) I (k/2)

This representation was actually established in [8, p. 134] and our previous argument
follows that work. It remains to show that (3.26) coincides with (3.24) if the latter
is written for f replaced by f We write @ in (3.24) as [n, ¢], where n € My «,
¢ € My m—k. Then

—km)2 —km)2 nn 't
T [f(a)a))da) b4 /dn / <|:§/77 §,§i|>d§

k,m k m—k

(setn=yq, y € O(k), q € Ty and use Lemma 2)

/ /
. /nq Tlaws [ r([%8 02 ])a

i=1 i<
T =/ Mk m—r
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k_k(k—m)/2 k
9 2'x /
= saa)[Tai [Tda
T2 e
where a = [0 0] This proves the statement. (]
Proof of Theorem 2

Step 1. Let first k > m — 1. In polar coordinates we have

_ 1 TN k—n
(%f)—m f Tl dx

On,m k/2—d r1/2i|)
m<k/2)/" d’/f< [0 -

P O(n)

Now we replace y by y[g I 0 k]’ B € O(k), then integrate in B € O(k), and re-
n—

place the integration over O (k) by that over Vj ,,. We get

Unm k/2—d vrl/2
G f) = Tr o [ ay [ dr/f(y[ 1) a

0O(n) Pm Vi ,m

(set w=vr! eimkm

= tim | [ ( [ D 7

M O(n)

This coincides with (3.20).

Step 2. Our next task is to prove that analytic continuation of (¢, f) at the point
o =k (<m — 1) has the form (3.20). To this end, we express ¢, through the
distribution (3.22). For Re « > m — 1, by passing to polar coordinates, we have
(Cas f) = zimodn,mgaﬂ(F)v where

1 _
ga/z(F)=W/F(r)w/?—ddr, F(r)= / flor'?)d,v.
7)Wl

Vim

To continue the proof, we need the following.

Lemma7 LetS (P.n) be the space of restrictions onto P, of the Schwartz functions
on Sy, D P, with the induced topology. The map

S(Pw)>F — f(x)=F(xx)

is an isomorphism of S(P,,) onto the space S OM,.m)' of O(n) left-invariant func-
tions on My, .
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This important statement, which is well known for m =1 (see, e.g., Lemma 5.4
in [50, p. 56]), was presented in a slightly different form by J. Faraut [7, Prop. 3] and
derived from the more general result of G. W. Schwarz [43, Theorem 1]. According
to (3.24), analytic continuation of Gy 2 (F) ata =k, k=1,2,...,m — 1, is evaluated
as follows:

Grj2(F) ="/ / F(o'w)dw

me [ [ ([ o

O(n)

k,m

By making use of the polar coordinates, one can write @’ € M, i as
o = Bug(we)'?, BeOm), ug= [ﬂ € Vink -
Hence, v = (a)w’)l/zu’oﬂ’, and

(a)/a))l/2 = (ﬂuoww/u6ﬁ')l/2 = ,BM()( ) 172 'ﬂ Buow .

/!
By changing variable y — y [’3 ], we obtain
0 In—m
—km/2 Buow
Gipp(F)=m do | f\v|" dy

2)j,tk.m om)

—en [ [ [3])ar
Smk,,,, O(n)

and (3.20) follows. For « = 0, owing to (3.23), we have

nnm/Z

(%0, /) =2""0nmF(0) = T 1/2) FO). 0

Remark 2 So far we considered zeta distributions of the form (¢, f). Clearly, for
n = m distributions (;,j' , f) fall into the scope of this consideration. Unfortunately,
we cannot obtain a simple explicit representation of the conjugate zeta distributions
(& ), k=0,1,...,m — 1. At the first glance, it would be natural to use the for-
mula

MNoa+1—m)

— _ + _(_1\m
(o f)=ca(tgr1:Df),  ca=(=1) TexD

BIRKHAUSER



J Fourier Anal Appl (2008) 14: 60-88 77

see (3.9), in which (C‘:’ Ry D f) can be evaluated for @ = k by Theorem 2. We cannot
do this because ¢, = oo for such « . On the other hand, (;‘k_ , f) is well defined, and

by Lemma 2 we have
(& f)=2""a "D (o, @), (3.27)
where

|t:.:1% " sgn (1)
T(a—i)/2+1)

)

m
a)k(tl,lv ceey tm,m) = 1_[
i=1

a=

D111,y ) = f dt*/f(”t)sgndet(v)dv'
Rm(/n—])/z O(m)

In particular, for k =0,

o il sgn (ti,0)
oot 1, tmm) = [ [ | (3.28)
Pl rx/2+1) .
where the generalized functions
Is/* sgn (5) e
T2+ D, y2,.,m,

are defined as follows. For i odd:

151 sgn (s) o By
<m/z+ D e ’¢> =Ta=ip Y

=/s‘f {go(s) —¢(—s)

0

2 /(0) S3 " 0) si_z (i—2) (0) d
— |:S(p +§(P( +...+m(ﬂ ]} s .

For i even:

|s|* sgn (s)
(r(,\/2+ 1

_ DO /21!
i ) -1 ’

see [13, Chapter 1, Section 3.5] . Note that the Fourier transform of the distribution
¢y has the form

(_i)m nmz/Z
(F& ) = TR sgndet(y) . (3.29)

This follows immediately from (3.12) and the Parseval formula (2.8).
In the following, the expression (¢, , f) will be understood in the sense of regu-
larization according to (3.27), (3.28).
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4 Riesz Potentials and the Generalized Hilbert Transform

Riesz potentials on matrix spaces arise in different contexts in integral geometry and
representation theory; see [12, 27, 40, 52], and references therein. We recall basic
definitions. The Riesz distribution hy € S’ (M, ;) is defined as meromorphic contin-
uation of the integral

1 .
(ha ) = / ST @ dx, f € SOMm) @.1)
Vn,m(a)
oam nnm/Z T (Ol/2)
Ynm (@) = a#tn—m+1l,n—m+2,.... 4.2)

Cn((n—a)/2)

This is just the renormalized version of the zeta distribution so that

Tl =)/
T gam gpnm/2

e 4.3)

cf. (3.1). The normalizing constant y;, ,, (o) is chosen according to the Fourier trans-
form formula (4.6) below. For Rea > m — 1, the distribution A, is regular and
agrees with the function Ay (x) = [x|5," /Yn.m(@). The Riesz potential of a function
f e SN, ) is defined as a convolution

oam nnm/Z

(1 f)<x>:<f*ha)<x>=(ha,fx)=m(ga,fx), “4)
where f,()=f(x—),a€eC,a#n—m+1,n—m+2,.... ForRea >m — 1,
(4.4) has the classical form

1

(N =— [ Fa—yiiay. @s)

n,m

where the integral on the right-hand side is absolutely convergent.
The following properties of Riesz distributions are inherited from those for the
zeta integrals in Section 3.

Lemma 8 Let f e SO, ), n>m, ae€C, a#n—m+1,n—m+2,....
(i) The Fourier transform of the Riesz distribution hy is evaluated by the formula
(Fha)(y) = |y1,,%, the precise meaning of which is

(ha, £) = Q)" (Iy1,," (FHD)) - (4.6)
W) If k=0,1,...,and A is the Cayley-Laplace operator, then
ho = (=)™ A*hgiok, e, (ha, f) = (=1 (hasor, A*F). (4.7)

Gi)Ifn=m,k=1,2,..., and D is the Cayley operator, then

he=cD* e 0 1o e (ha, ) =c(=D" ({1 P*7'f).  (48)
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(=& DT, (14 (m — a — 2k)/2)
2(a+2k—l)m nm2/2 :

Proof (i) Follows immediately from (4.3) and (3.11). To prove (4.7), according
to (2.12), we have

By ()

1
a2k (¥) = ——————A"|x[, (@ +26)

a—n — h ,
)/n’m(a—’—zk) |x|m C Ot(x)

where by (2.13) and (2.5),

oo B Yam@)  Bi(@) Lm(@/2)Tn((n —)/2 = k)

_(_1\mk
" Yam(@+2k) 4K D, (/2 + k) Tp((n —a)/2) B

Let us prove (iii). Owing to (4.7), hq = (—1)"* D*~1Dhy 9. Since by (4.3)
and (3.9),

_ Tp(m —a—2k)/2) | + Ta+2k)
haor = 2(a+2k)ym pm?/2 Cavorr and DEy o = Tl + 2k —m) cot2k=1>
then (4.8) follows after simple calculation using (2.5). [l

We will need explicit representation of Riesz potentials /* f for integral values of
o. The case @« = k < m — 1, when representation (4.5) is inapplicable, is especially
important. We start with the case when k is a nonnegative integer.

Theorem 3 Let f € SO, m), n>m. If k>0and k#n—m+1,n—m+

2,...,then
tnw=n [ ao [ s(x=r[5])ar. 49)
mtkm Om)
=y f dv / fx —vw)dow, 4.10)
Vn,k Qﬁk,m
where
_ n—km _—km/2 n—k n
y =2k Fm( . )/rm<2), @.11)
Yy = 2kmD) p—k(mm)/2 (" - m) . 412)
2
If k=0, then
(1°f) ) = fx). 4.13)
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Proof Equality (4.9) follows from Theorem 2, owing to connection (4.3); (4.10) is
a consequence of (4.9), (2.9), and a simple formula

O (75) _ T (%)
LG Tw(3)

Equality (4.13) follows from (3.21). O

(4.14)

In order to obtain explicit representation of /% f when « is a negative integer, we
introduce the generalized Hilbert transform

(H@) = (¢ s fx) = (o * f)@) . (4.15)
By (3.29), this is a pseudo-differential operator with the symbol
_am —m?/2
(Fe) o) = == 7 ondet(y) 4.16)

L ((m +1)/2)

Clearly, 'H extends as a linear bounded operator on L? (O m). Form = 1, it coincides
(up to a constant multiple) with the usual Hilbert transform on the real line [26, 48].
Lemma 8 implies the following.

Theorem 4 Let f € SNy m),n>m. (1) Ifk=0,1,2,..., then
(I £)x) = (=D (AF f) () (4.17)
) Ifk=1,2,...,and n > m, then

_ , (=)™ T ((n—m)/2)
(1" f)x)=ci /dv/(Akf)(x—vy)dy, = T i 2
sn-r R™

n

(4.18)
(i) Ifk=1,2,...,and n = m, then

(=D DT, ((m+1)/2)
= 2 '

(1" @) =2 (HD* ' f)x), (4.19)
‘H being the generalized Hilbert transform (4.15).
Proof The equality (4.17) is a consequence of (4.4), (4.13), and (4.7):

(17 F) ) = (h_ak, f)=(=D" (ho, A" f)
=(=D" (A" f) O =(=D)" (A  F)(x) .

Similarly, since (11_2kf) (x) = (h1-2k, fx), then for n > m we have
(hi—ak, fo) = (=)™ (h1, AF ) = (=)™ (1, (AFF)) = (D™ (1" A* )
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and it remains to apply (4.10) (with k = 1). If n = m, then we apply (4.8) with o =
1 — 2k and get

(h1-2. f) = (—D"e2 (¢ . D* ) =2 (g5 . (D))
=2 (HD*7! ) (x). O

Remark 3 Formula (4.17) has a local structure, unlike (4.18) and (4.19), which are
nonlocal. We would like to draw reader’s attention to the fact (4.18) relies on the
important Theorem 3 giving representation of the Riesz potential /! as a convolution
with positive measure.

5 Generalized Semyanistyi Integrals

Let x € My ;m, T = 1(&, 1) is the matrix plane (2.17), and |x — T|, = |E'x — t|m
denotes the determinant of the matrix distance between x and t; see (2.21). This sec-
tion is the core of the paper. We introduce intertwining operators (with respect to the
group M (n, m) of matrix motions) which generalize Semyanistyi’s integrals (1.3),
(1.4) to the higher-rank case. The main building blocks are Radon transforms, dual
Radon transforms, and Riesz potentials on matrix spaces. To avoid possible confu-
sion, we shall discriminate between operators actlng on M, , and the similar op-
erators on M, _r . In the following, / [« , A, D, and H stand for the Riesz poten-
tial, the Cayley-Laplace operator, the Cayley operator, and the generalized Hilbert
transform on 9, ,,,. These will be applied to functions f (&,1) and ¢(&,t) in the
t-variable. We assume 1 < k <n — m, and denote by S(%) the space of functions
(&, t) which are infinitely differentiable in the &-variable and belong to the Schwartz
space M,k in the ¢-variable uniformly in & € V), .

Definition 2 Let f € SN, 1), ¢ € S(¥). The generalized Semyanistyi integrals are
defined by

Pef=i"f,  pp=(i%)" . (5.1)
where
aeC, a#n—k-m+1l,n—k—m+2,.... 5.2)

Expressions in (5.1) are, in general, understood in the sense of analytic continua-
tion. By (4.13),

(POr)E D =FE D, (PY9)(x)=¢(x) . (5.3)

Our aim is to obtain explicit representation of this analytic continuation for some
important values of «, including those that will be needed in the next section.
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Lemma 9 Let f €e SMy;m), € S(X), 1 <k <n—m.IfRea >m — 1 then P*

*
and P are represented by absolutely convergent integrals

|Dt+k n

(P1) 6= [ feolex =il ar. 54

n,m

a+k— n

(P <P)(X)_m fd* f‘ﬂ(f 1) |<§X—f| dt, (5.5

n,n—k n—k,m

where yYn_k.m(t) is the normalized constant for the Riesz potential on M, _i m;

of. (4.2).

Proof Formula (5.5) follows from (5.1), (2.24), and (4.5). By taking into ac-
count (2.23), we also have

o a+k—n
(PE1)E.0 = ynkmm/'y' dy/f<g§[ de

n—k,m k m

__ / f(x)|g’x—r|“+"*”dx
ynfk,m(a) "

n,m

O

Lemma 10 Let f € SOMy;m), ¢ € S(X), 1 <k <n —m. If L is a positive integer,
L <n—k—m,then

(P'f)E D =cy / dz / f(ér—gg[ﬁ‘ ﬂm)dy, (5.6)

rem  O(—K)
(Plo)@) =ci / dy& /dz f ( s’x—y[f)Ddy, (5.7)
» 06
where
cp =2t g —tm/2 rm<" _];_e)/r,n(”;k) . (5.8)

Proof We first note that the condition £ < n — k — m is motivated by (5.2) and

analytic continuations P¢ f = It f, ;Eq) = I%)Y of P*f and ;“go reduce to that
of the Riesz potential on 91, . One can readily see that f (&,1), defined by (2.23),
is a Schwartz function in the ¢-variable. Hence, (5.7) follows from (4.9). Furthermore,
by (4.9) and (2.23),

(PLf)E ) =co / dz / f(s,r+ym>dy

O(n—k)

£,m
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w
=y / dz / dy / e H_y[z] dow .
mi.m 0(7!7/() SDIk.m 0
Since
w w
Iy O
8¢ z| | =8t+g: [ ] z |,
t+vy [0] 0 vy 0
then (5.6) follows if we change the notation [2)] — Z. O

%
The next two lemmas provide representation of P* f, f € S, ), and P%gp,
¢ € S(%), when « is a negative integer. We emphasize an essential difference between
“—a even” and “—« odd,” and, in the second case, betweenk <n—m and k =n—m.

Lemmall Lett¢=1,2,...,1<k<n—m.Then
(P72f)E D = (-D™A fE ),
(P~2g)(0) = (— 1) / (Ao) (. &'x) dyk .
Vn,nfk

Proof The statement follows from (5.1) and (4.17).

Lemmal2 Let¢=1,2,....0) If1 <k <n—m then

(Pl_zlf)(é:,t)ZCI / dv/(&ef)(é,t—vy’)dy,
Rm

sn—k—1

([*,l—ﬂiw)(x)zq /d*g / dv/ (A&p)(%',é’x—vy')dy,
Van—k St—k=1  TR™
where

(=DM ((n—k —m)/2)
= 21 7 (mAn—k)/2

(i) If k =n — m, then
(Pl—zﬁf)(s’ N =co (ﬂﬁzz—lf(s, ))(@),
([*) 1—2€¢) (X) =0 / (ﬂ'ﬁze—l(p(g’:, ))(E’x) d*‘i: s

Vn,nfk
where

(=D, (4 1)/2)
- m2/2

Cc2

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)
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and H denotes the generalized Hilbert transform (4.15).

Proof (i) follows from (5.1) and (4.18); (ii) is a consequence of (5.1) and (4.19). O

Formulas (5.4)—(5.7) can serve as definitions of P% f and 1§°‘<p if f and ¢ are
arbitrary locally integrable functions provided the corresponding integrals converge.
The following statement, which extends the generalized Fuglede formula (1.5) to
the matrix case, is the main result of this section and a core of our Radon inversion
method. For the sake of completeness, we present the result both for smooth functions
and for arbitrary locally integrable functions under appropriate conditions. As above,
we assume 1 <k <n —m.

Theorem 5 (i) Leta € Cia#An—k—m+1,n—k—m+2,....If f € S(Sp) then

o o pkm g km/21 (n/2)
(PO =capm(I*TF)@),  capm= R

(ii) Let Lo = min{m — 1,n — k — m},
A=1{0,1,2,..., L} U{a:Rea>m—1; a#n—k—m+1,n —k—m+2,...}.

If fe L,‘Oc(smn,m) and o € A then (5.15) holds provided that the Riesz potential

(I*T* £)(x) is finite a.e. for f replaced by |f|. In particular, this is true for f €
LP (0, ) if

n

I<p<——mmm— .
Rea+k+m—1

(5.16)

Proof (i) Let f € S(S5;,). We make use of the equality (3.15) with o replaced by
o +k, Rea > m — 1. This gives

[ ae [ Fenmgtora
V"»”*k mn—k,m
(5.17)
_ Lao/DTa@?
T (@ +0/2) Tl —0/2)

/ FOylErdy.

n,m

Replacing f(y) by the shifted function f,(y) = f(x + y) and taking into ac-
count (2.27), we get

/d*é / fE &x+1) 1% ar
m

V”vnfk n—k,m
(5.18)
U (n/2) Uy (e/2)

T Th(@+k)/2) Tu((n —

at+k—n
0/2) / fE+y) Iyl dy,

n,m
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cf. (5.5) and (4.5). Hence, (5.15) follows with the constant

T (1/2) Ty (0 /2) Yoo (@ + k) @) 2kmakml2r, (n/2)
Ci((@+k)/2) Ty ((n — k) /2) Yn—t,m () B Lw((n —k)/2) ’

By analytic continuation, the result holds for all « € C, « #n —k —m + 1,
n—k—m+2,....(i) Suppose f € L} (M ). For Rea > m — 1, (5.15) fol-
lows from (5.18) by taking into account that (5.18) was derived from (3.15), and the
latter is also true for locally integrable functions, see Remark 1 with « replaced by

a+k.Fora=¢,0=1,2,...4p, we have

(;Ef)(x)=a::fk /dé /dz /dy /f X — gt y[(ﬂ dw

Vn,nfk m’tg,m 0(1171() mk,m

Cn,k,m =

:cz/dﬂ [ dz / dy f flx-28 y|:(z):| do,

om) m@.m O(n—k) S):ftk.m

where ¢y is the constant (5.8). We write

(P )@ =ce / dz f da)/f x—p ; dp
M, M, 0

O(n)
=cy / dy / f (x - B [(y)]) df = cagm (I ) (0)
Metkm om)
where
cr 2(l+k)m n(€+k)m/2 Fm (n/z) 2kmnkm/2 Fm (n/z)
Cnkom = = . (5.19)
e T ((n—£—k)/2) T ((n —K)/2)
The last statement for L”-functions follows from [40, Theorems 5.10, 5.13]. O

6 Inversion of the Radon Transform

The generalized Fuglede formula (5.15) implies the following inversion result for the
Radon transform.
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Theorem 6 Let 1 <k <n —m, f € S(Sy). The Radon transform ¢(&,1) = f(é, 1)
can be inverted by the following formulas. (i) For k even,

fe) == / Ak/zw(é,t)‘tzg/x di (6.1)

Vn,n—k

where ¢, i,.m has the form (5.19). (i1) For k odd and k <n —m,

rw=a [ e [ av [ (BE0)E - y)ay. 62)

Vn,nfk S"_k_l Rm

1= (_l)m(k+l)/227kmfm71n(kfn)/2fm(k/2+])Fm+1 <” - k) /T (ﬁ)

2 2

(iii) Fork odd andk =n —m,

f@)=c f (HD o€, ) (E'x) dut (6.3)
Vn,nfk
_ o \mk+3)/2n—km _—m(k+m)/2 m m+ 1 n
e =(—1) p—km rm(z)rm<—2 )/rm<2).

Proof We write (5.15) with o = —k so that
*
f@=c (P o)), (6.4)

where ;’ —k is the operator (5.1). Now it remains to apply formulas (5.10), (5.12),
and (5.14). O

Acknowledgements We are grateful to Prof. E.E. Petrov and Dr. S.P. Khekalo for useful discussions
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