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ABSTRACT. In this article we summarize the basic formulas of wavelet analysis with the help of
Poisson wavelets on the sphere. These wavelets have the nice property that all basic formulas of
wavelet analysis as reproducing kernels, etc. may be expressed simply with the help of higher degree
Poisson wavelets. This makes them numerically attractive for applications in geophysical modeling.

1. Definition of Poisson Wavelets

Wavelet analysis on the sphere has by now become a well known technique for the decom-
position of arbitrary functions over the sphere into elementary contributions which behave
like standard wavelets at least at small scales, see e.g., [1, 2, 6, 7, 8, 10] In this article we
want to summarize the principal formulas for continuous wavelet analysis on the sphere with
special emphasis to the so-called Poisson wavelets. These functions have found application
in the field of geomagnetic modeling as well as in gravity field modeling [4, 5, 12, 11].
In geophysical modeling it is important that the basic functions with respect to which the
observable are to be expanded satisfy the specific needs of this community. In particular,
the basic functions must have an easy physical interpretation. Moreover, simple algorithms
to evaluate the functions are mandatory. Both requirements are met for Poisson wavelets,
as we shall see in this article.

For the convenience of the reader and in view of applications in Geophysics we
formulate everything on a sphere of radius R instead of simply the unit sphere. For R > 0
we denote by �R the sphere of radius R, �R = {(x1, x2, x3) : x2

1 + x2
2 + x2

3 = R2}. We
denote by Int �R the interior and by Ext �R the exterior

Int(Ext)�R = {
(x1, x2, x3) : x2

1 + x2
2 + x2

3 < (>)R2} .

Consider two points x, y ∈ R3 x �= 0, |x| < R ≤ |y| and a real number d ≥ 0. We then
define the exterior Poisson wavelet of degree d at pole position x evaluated at y through the
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following absolutely convergent series:

W ext,d
x (y) = R

|y|
∞∑
l=0

ld
( |x|

|y|
)l

Ql

(
x̂ · ŷ

)
x ∈ Int �R, y ∈ Ext �R . (1.1)

The name “exterior” is with respect of the harmonic continuation: The exterior wavelets
correspond to harmonic functions in Ext �R (see Proposition 1 below). For z �= 0 we write
ẑ = z/|z| for the unit vector in direction z. That x actually is a pole will be shown below. We
include d = 0 in the definition, although in that case we do obtain a wavelet strictly speaking
(see Theorem 4 below). We have introduced the factor R in front to make the wavelets
dimensionless. These functions are zonal functions, that is, they are rotational symmetric
around the axis x̂. As usual, we identify a zonal function with a function f : [−1, 1] → C

through y �→ f (x̂ · ŷ). The function Ql : [−1, 1] → R, denotes the reproducing kernel
of the space harmonic functions of degree l. We have Ql = (2l + 1)Pl , where Pl is the
Legendre Polynomial of order l. The reproducing property of the Ql reads

∫
�R

Ql

(
x̂ · ŷ

)
Ql′

(
ŷ · ẑ

)
dω(y) = 4πR2δl,l′Ql

(
x̂ · ẑ

)
, (1.2)

where dω is the surface measure inherited from Euclidean space, so that
∫

�R

dω = 4πR2 .

The interior Poisson wavelet is defined analogously for |x| > R ≥ |y| as

W int,d
x (y) = R

|x|
∞∑
l=0

ld
( |y|

|x|
)l

Ql

(
x̂ · ŷ

)
x ∈ Ext �R, y ∈ Int �R .

For d = 0 we obtain the interior, resp. exterior, Poisson kernel

W ext,0(x, y) = P int(x, y) = R
|y|

∑ ( |x|
|y|

)l

Ql

(
x̂ · ŷ

)
, |x| < |y| .

W int,0(x, y) = P ext(x, y) = R
|x|

∑ ( |y|
|x|

)l

Ql

(
x̂ · ŷ

)
, |x| > |y| .

It solves the interior, resp. exterior, Dirichlet problem with boundary value s.

P ints(x) = 1

4πR2

∫
�R

P int(x, y)s(y) dω(y), x ∈ Int �R .

P ints is the unique function which is harmonic in Int �R and which takes as boundary value
the function s (see e.g., [3]). We have that sλ(x) = P ints(λx̂) converges in L2(�) as well as
pointwise almost everywhere. In an analogous way, P exts is the unique function harmonic
in Ext �R bounded at ∞ and taking s as boundary value.

2. The Wavelets as Multipoles

Since y �→ Ql(x̂ · ŷ)/|y|l+1 is harmonic in R3 \ {0}, it follows from the definition that
W

ext,d
x is harmonic for |y| > |x|, where the series may be differentiated term by term. Since
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x �→ |x|lQl(x̂ · ŷ) is harmonic, it follows that x �→ W
ext,d
x (y) is harmonic too for |x| < |y|.

For d ∈ N0 the Poisson wavelets can actually be continued harmonically in x and y to all
of R3 × R3 with the diagonal {x = y} removed. On the diagonal they have a superposition
of poles of order ≤ d + 1.

Proposition 1. The exterior and the interior wavelet with d ∈ N0 may be uniquely har-
monically continued to functions over R3 ×R3\{x = y}. Here the exterior wavelet satisfies

W ext,d
x (y) =

d+1∑
l=0

(
2αd+1

l + αd
l

)Rl!|x|lPl

(
ŷ − x · x̂

)
|y − x|l+1

= (−1)d+1
d+1∑
l=0

(
2βd+1

l − βd
l

)Rl!|y|lPl

(
x̂ − y · ŷ

)
|y − x|l+1

.

The interior Poisson wavelet can be written as

W int .d
x (y) = (−1)d+1

d+1∑
l=1

(
2βd+1

l − βd
l

)Rl!|x|lPl

(
ŷ − x · x̂

)
|y − x|l+1

=
d+1∑
l=0

(
2αd+1

l + αd
l

)Rl!|y|lPl

(
x̂ − y · ŷ

)
|y − x|l+1

.

The coefficients αd
l are recursively defined through

αd
l = αd−1

l−1 + lαd−1
l , d ≥ 1

α0
k = δk,0 .

The coefficients βd
l are recursively defined through

βd
l = βd−1

l−1 + (l + 1)βd−1
l , d ≥ 1

β0
k = δk,0 .

Remark 1. This proposition gives us a way for computing these wavelets numerically
without summing series of spherical harmonics. Only d + 1 zonal spherical harmonics
around the new point have to be summed.

Proof. Using the relation

t∂t t
l = lt l ,

we may write for d ≥ 1 by adding 0 = t∂t1

W ext,d
x (y) = (

2(|x|∂|x|)d+1 + (|x|∂|x|)d
) R

|y|
∞∑
l=0

( |x|
|y|

)l

Pl

(
x̂ · ŷ

)
.

Here ∂|x|F(x) stands for the derivation in the radial direction: (d/dλ)|λ=0 F(x+λx̂). Since

∞∑
l=0

( |x|
|y|

)l

Pl

(
x̂ · ŷ

) = |y|
|x − y|
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for |x| < |y| we have the following formula

W ext,d
x (y) = (

2(|x|∂|x|)d+1 + (|x|∂|x|)d
) R

|x − y| . (2.1)

Now introduce numbers αd
k through

∞∑
k=0

αd
k tk∂k

t = (t∂t )
d .

Note that the sum is in fact finite. The nonzero numbers can be computed through the
recursion as stated in the proposition. Now using

∂l|x|
1

|x − y| = l!Pl

(
ŷ − x · x̂

)
|x − y|l+1

,

the first formula of the proposition follows.
For the interior wavelets, we can write in a similar way

W int,d
x (y) = (−1)d+1 R

|x|
(
2(|x|∂|x|)d+1 − (|x|∂|x|)d

) |x|
|x − y| , |x| > |y| . (2.2)

We introduce the coefficients βd
l through

∞∑
l=0

βd
l td∂d

t = t−1(t∂t )
d(t ·) .

They satisfy the recursion relation as in the proposition. As before the first formula for the
interior wavelet follows. Concerning the exchange of x and y, we have the following sym-
metry:

W int,d
y (x) = W ext,d

x (y), x �= y . (2.3)

This certainly holds for |x| < |y| as can be seen from the defining series. By the uniqueness
of the harmonic extension, it holds for x �= y and hence the last two formulas of the
proposition hold true.

From now on, we consider the functions as given in the above proposition. The
representation of the proposition may be used to give an expansion of the exterior wavelets
around the origin and of the interior wavelets around ∞.

Proposition 2. For d ∈ N, the harmonically extended exterior Poisson wavelet admits
the following expansion around 0:

W ext,d
x (y) = (−1)d+1 R

|x|
∞∑
l=0

(l + 1)d
( |y|

|x|
)l

Ql

(
x̂ · ŷ

)
, |y| < |x| .

The harmonically extended interior Poisson wavelet admits the following expansion
around ∞:

W int,d
x (y) = (−1)d+1 R

|y|
∞∑
l=0

(l + 1)d
( |x|

|y|
)l

Ql

(
x̂ · ŷ

)
, |x| < |y| .
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Proof. We may expand expression (2.1) for |y| < |x|, to obtain

W ext,d
x (y) = (

2(|x|∂|x|)d+1 + (|x|∂|x|)d
) R

|x|
∞∑
l=0

( |y|
|x|

)l

Pl

(
x̂ · ŷ

)
.

Now t∂t t
−l−1 = −(l + 1)t−l−1, and the first expression follows by exchanging the sum-

mation with the differentiation.
The second expression follows from the symmetry (2.3).

This implies, in particular, the following pair of relations linking interior and exterior
wavelets of different degrees d ∈ N0 for x �= y, as can be verified from the defining
series expansion:

W ext,d
x (y) = (−1)d

d∑
k=0

(
d

k

)
W int,k

x (y), W int,d
x (y) = (−1)d

d∑
k=0

(
d

k

)
W ext,k

x (y) .

Consider for U > 0 the transformation

IU (y) = U2y

|y|2 , y �= 0 .

We introduce the Kelvin transform as the mapping (y∗ = IU (y))

KU : s(y) �→ U2s(IU (y))/|y| = U2s
(
U2y/|y|2)/|y| = ∣∣y∗∣∣s(y∗) .

It maps harmonic functions inside the sphere to harmonic functions outside the sphere
and vice versa. We have the following relation between interior and exterior wavelets
(x∗ = IR(x), y∗ = IR(y))

W ext,d
x (y) = ∣∣x∗∣∣∣∣y∗∣∣W int,d

x∗
(
y∗), KxW

ext,d (x, y) = KyW
int,d (x, y) ,

where Kx denotes the Kelvin transform acting on x for fixed y and Ky is acting on y for
fixed x. This formula can be verified for |x| < U < |y| from the series expansion, and
again, by the uniqueness of the harmonic continuation it is true for x �= y.

3. Wavelets on the Sphere

The restriction of these functions to the sphere of radius R can actually be interpreted as
wavelets on the sphere. The definition given above are simply the upward and downward
harmonic continuations of these functions to the exterior, resp. interior, of the sphere. More
precisely, for a > 0 and b ∈ �R , we define

gd
b,a(y) =

∑
(al)d e−al Ql

(
b̂ · ŷ

)
.

Observe the similitude with the Cauchy wavelet over the real line as introduced by Paul [13]

gβ,α(t) =
∫ ∞

0
(aω)de−αωeiβω, β ∈, α > 0 .
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In addition, if we consider the construction of wavelets over the circle through periodization
as introduced in [9], the analogy is perfect, since now the periodized wavelet on the circle
would look as

∑
(al)de−aleilb ,

and t �→ eilt is the reproducing kernel of the one-dimensional rotational invariant space
spanned by the pure oscillations of frequency l.

We identify points in Int �R , resp. in Ext �R , with points in �R × R+ via

x = e±ab, a = | log(|x|/R)|, b = Rx̂ . (3.1)

The exterior wavelet W ext,d
x , b ∈ �R , is the unique function for which the exterior Dirichlet

problem holds with boundary value W
ext,d
x (y) = a−dgb.a(y) The interior wavelet W

int,d
x ,

solves the interior Dirichlet problem with boundary value W
int,d
x (y) = a−dgb.a(y). Note

that the scale of the wavelet on the sphere �R can essentially be seen as the relative distance
from the pole position to the surface of the sphere, whereas the position of the wavelet is
the projection of the pole onto the sphere

a 
 ||x| − R|
R

for a � 1 .

4. The Euclidean Limit

At small scales the wavelets on the sphere actually “look like” wavelets in the following
precise way. Denote by N = Rê the North Pole of the sphere �R . Then consider the
following mapping

	(z) = 4|N |2 z + 2N

|z + 2N |2 − N = I2N(z + 2N) − N .

It is a conformal map. It maps bijectively the upper half-space onto the interior of the
sphere. Moreover, it maps bijectively the plane H = {y|y · N = 0} onto �R − {−N}, the
sphere with the South Pole removed. This restriction to the plane and sphere is the inverse
of the well-known stereographic projection. Although we do not have a dilation operator
on the sphere, we may, with the help of 	, pull back functions on the sphere to functions on
H , where a natural dilation exists. The existence of the Euclidean limit can now be stated
precisely as follows.

Theorem 1. The following limit exists pointwise for d ∈ N and y ∈ H .

V d(y) := lim
a→0

ad+2W
ext,d
e−aN

(	(ay)) (4.1)

= lim
a→0

ad+2W
int,d
eaN (	(ay)) (4.2)

= lim
a→0

a2gd
a,N (	(ay)) (4.3)

= 2(d + 1)! R−d−1 Pd+1
(
1/

√
1 + |y/R|2)(

1 + |y/R|2)(d+2)/2
. (4.4)
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Since the Legendre Polynomials are of the form

P2l (t) = Al

(
t2), P2l+1(t) = t Bl

(
t2)

with some polynomials Al and Bl of degree l and with nonvanishing lowest order coefficient,
it follows that V d has the following structure

V 2d(Ry) = Dd

(|y|2)(
1 + |y|2)2d+3/2

, V 2d−1(Ry) = Ed

(|y|2)(
1 + |y|2)2d+1/2

with some polynomials Dd and Ed of degree d. As a corollary we note the following result
for the decay of the limit function at ∞.

Corollary 1. We have

∣∣V d(y)
∣∣ ≤ O

(|y|−κ
)
, y → ∞ .

with κ = 2�d/2
 + 3.

Therefore it is numerically better to use even degree Poisson wavelets since the degree
2d and 2d + 1 wavelet have the same asymptotic localization in space. However, the 2d

wavelet is cheaper to compute numerically.

Proof. We use the expansion of Theorem 1 of Section 2 term by term. First note that
for x = e−aN and y ∈ H we have

T 2 := |	(ay) − x|2

=
∣∣∣∣4|N |2(ay + 2N)

|ay + 2N |2 − N − e−aN

∣∣∣∣
2

=
∣∣∣∣ 8|N |2
|ay + 2N |2 − 1 − e−a

∣∣∣∣
2

|N |2 + a2|y|2 16|N |4
|ay + 2N |4

=
∣∣∣∣ 8|N |2
a2|y|2 + 4|N |2 − 1 − e−a

∣∣∣∣
2

|N |2 + a2|y|2 16|N |4(
a2|y|2 + 4|N |2)2

= a2(R2 + |y|2) + O
(
a4) ,

as follows from the fact that N · y = 0 and |N | = R. Now for the same reason we have

(
̂	(ay) − x

) · x̂ = 1

T

(
8|N |3

|ay + 2N |2 − |N | − e−a|N |
)

= R√
R2 + |y|2 + O(a) .

Altogether we find

Pl

((
̂	(ay) − e−aN

) · x̂
)

∣∣e−aN − 	(ay)
∣∣l+1

= a−l−1 Pl

(
1/

√
1 + |y|2/R2

))
(
R2 + |y|2)(l+1)/2

+ O
(
a−l

)
.

Therefore from the expansion of Theorem 1 and the fact that αd+1
d+1 = 1 and that αd

d+1 = 0
the proof follows.
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5. Quadratic Forms

The basic quadratic form is given by the scalar products of our wavelets over spheres of
arbitrary radius. That is, we consider integrals of the following type

< W(ext,int),d
x , W

(ext,int),f
z >U= 1

4πU2

∫
�U

W(ext,int),d
x (y)W

(ext,int),f
z (y) dω(y) .

From these expressions more general quadratic forms as those used in geophysical modeling
can be derived. Consider a quadratic form of the type

B(s) = 1

4πU2

∫
�U

s̄�s dω ,

with � a rotational invariant pseudodifferential operator acting on functions on �R de-
fined through

� : Yl,m

(
x̂
) �→ lqYl,m

(
x̂
)
.

Since obviously

�W ext,d
x = W

ext,d+q
x , �W int,d

x = W
int,d+q
x ,

we may compute any such quadratic forms for the Poisson wavelets with the help of the
proposition below.

Another bilinear expression is given by the convolution of two zonal functions. Any
function s : [−1, 1] → C can be identified with a zonal function on �R by considering for
any x ∈ �R the function y �→ s(x̂ · ŷ). We write τxs for this function. The convolution of
s with an arbitrary function u on �R is given by

s ∗R u(x) = 1

4πR2

∫
�R

s
(
x̂ · ŷ

)
u(y) dω(y) =< τxs, u >R .

In view of applications, we give the formulas for scalar products over arbitrary radii U .
It shows that all these scalar products may be computed by point-evaluation of suitably
chosen Poisson wavelets.

Proposition 3. Suppose x, z are the poles of two wavelets of degree d > 0 and f > 0
defined with respect to radius R. For U > 0 we consider the inverted points x∗ = IU (x)

and z∗ = IU (z). Then their scalar products < W
ext,d
x , W

ext,f
z >U over a sphere of radius

U may be computed as follows:


R
|x|W

ext,d+f
z

(
x∗) = R

|z|
∣∣W ext,d+f

x

(
z∗), |x|, |z| < U, d, f > 0

(−1)f +1 R
U

∑f

k=0

(
f
k

)
W

ext ,d+k
x (z), |x| < U < |z|, d > 0, f ∈N

(−1)d+f R
|x|W

ext,d+f
z

(
x∗) = (−1)d+f R

|z|W
ext,d+f
x

(
z∗), U < |x|, |z|, d, f ∈ N .

For two interior wavelets, we have for < W
int,d
x , W

int,f
z >U



R
|z|W

int,d+f
x

(
z∗) = R

|x|W
int,d+f
z

(
x∗), U < |x|, |z|, d, f > 0

(−1)d+1 R
U

∑d
k=0

(
d
k

)
W

int,f +k
z (x), |x| < U < |z|, d ∈ N, f >0

(−1)d+f R
|z|W

int,d+f
x

(
z∗) = (−1)d+f R

|x|W
int,d+f
z

(
x∗), U < |x|, |z|, d, f ∈ N .



Poisson Wavelets on the Sphere 413

For one interior and one exterior wavelet, we have for < W
ext,d
x , W

int,f
z >U



(−1)d+1 R
|z|

∑d
k=0

(
d
k

)
W

int,k+f
x (z∗), U < |x|, |z|, d ∈ N, f > 0

R
U

W
ext,d+f
x (z), |x| < U < |z|, d, f > 0

(−1)d+f R
U

W
ext,d+f
x (z), |z| < U < |x|, d, f ∈ N

(−1)f +1 R
|z|

∑f

k=0

(
f
k

)
W

ext,d+k
x

(
z∗), |x|, |z| < U, d > 0, f ∈ N .

Proof. All formulas may be verified by using the absolutely convergent series expansions
of Proposition 2 and of the definitions together with the reproducing formula (1.2).

In particular, we have the following formula for the L2-norm of our wavelets:

∥∥W(ext,int),d
x

∥∥2
L2(�R)

= R

|x|W
(ext,int),2d
x

(
x∗) .

6. Continuous Wavelet Transform

For any function s ∈ L2(�R) we define its exterior, resp. interior, wavelet transform with
respect to a Poisson wavelet of degree d > 0 as map from functions on �R to functions in
Ext �R , resp. Int �R ,

W int,d s(x) =< W ext,d
x , s >R= 1

4πR2

∫
�R

W ext,d
x (y)s(y) dω(y), x ∈ Int �R ,

and

Wext,d s(x) =< W int,d
x , s >R= 1

4πR2

∫
�R

W int,d
x s(y) dω(y), x ∈ Ext �R .

From the properties of the wavelets we have that the interior and the exterior transforms are
Kelvin transforms of each other

W int,d s(x) = KRWext,d s(x) = ∣∣x∗∣∣Wext,d s
(
x∗) .

In terms of the Fourier coefficients for x ∈ �R ,

s(x) =
∞∑
l=0

l∑
m=−l

ŝl,mYl,m

(
x̂
)
, ŝl,m = 1

4πR2

∫
�R

s(x)Ȳl,m

(
x̂
)
dω(x) ,

we have the following formula for the wavelet transform

W int,d s(x) =
∞∑
l=0

l∑
m=−l

ŝl,mld(|x|/R)lYl,m

(
x̂
)
,

Wext,d s(x) =
∞∑
l=0

l∑
m=−l

ŝl,mld(R/|x|)l+1Yl,m

(
x̂
)
,

as can be verified for harmonic polynomials. Since on �R the harmonic polynomials are
dense in L2(�R) we may conclude by taking limits that the above formula holds for all s.
Note that the sum is absolutely convergent since here |x| < R, resp. |x| > R.
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The image of the wavelet transform can be understood in terms of the Hardy space of
the ball. The Hardy space of the ball is the Hilbert space H int(�R) of Harmonic functions
in Int �R for which

‖s‖H int = lim sup
r→R−

‖s|�r ‖L2(�r )
< ∞ .

In terms of the Fourier coefficients

s(x) =
∑

l

l∑
m=−l

ŝl,mYl,m

(
x̂ · ê

)|x/R|l , x ∈ Int �R ,

the norm of a function in H int(�R) reads more easily

‖s‖2
H int =

∞∑
l=0

l∑
m=−l

∣∣ŝl,m∣∣2
.

The functions in H int(�R) have a well defined boundary behavior. Let sr (y) = s(rŷ), then
in the limit sr converges in quadratic mean to some function f . From this, the boundary
function s may be recovered by means of the Poisson integral, s(x) = P intf (x). The
exterior Hardy space H ext(�R) is defined as the Kelvin transform of the interior one.

Proposition 4. Let U = P ints be the harmonic extension of s to Int �R . Then, for
d ∈ N0, we have

W int,d s(x) = (|x|∂|x|)dU(x) = ∂d
λ U(λx)|λ=1, x ∈ Int �R .

Let S = P exts be the harmonic extension of s ∈ L2(�R) to Ext �R . We then have

Wext,d s(x) = |x|−1(−|x|∂|x|)d(|x|S(x)), x ∈ Ext �R .

Proof. We may write for |x| < |y|
W ext,d

x (y)(|x|∂|x|)dP int(x, y) .

Differentiating under the integral the proposition follows. For the interior wavelet we
have instead

W int,d
x (y)|x|−1(−|x|∂|x|)d

(|x|P ext(x, y)
)

and the proof follows.

Accordingly, the function s is in the image of the interior wavelet transform of degree
d ∈ N of L2(�R) if and only if for some function f ∈ H int(�R), we have s = (|x|∂|x|)df .
This function is uniquely defined up to some constant. Conversely, a harmonic function
s is the wavelet transform of integral degree d of some function in L2(�R) if and only if
the integrals

f
(
rŷ

) =
∫ r

0

dtd

td

∫ td

0

dtd−1

td−1
. . .

∫ t1

0

dt1

t1
s
(
t1ŷ

) = 1


(d)

∫ r

0
(log(r/λ))d−1s

(
λŷ

)dλ

λ

converge in L2(�R) as r → R−.
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We now prove two inversion formulas for the wavelet transform. The following
one-dimensional inversion formula holds for the wavelet transform. We consider the ap-
proximant for r < R and W int

sr (y) = 1


(d)

∫ r

0
W int,d s

(
λŷ

)
(log(r/λ))d−1 dλ

λ
,

resp. for r > R and Wext,

sr (y) = 1


(d)

∫ ∞

r

Wext,d s
(
λŷ

)
(log(λ/r))d−1 dλ

r
.

Theorem 2. Let s ∈ L2(�R) be of zero mean,
∫

s = 0. Then for d > 0 the approximant
converges in quadratic mean

lim
r→R

‖sr − s‖L2(�R) = 0 .

Moreover, the convergence is pointwise almost everywhere: For almost all y ∈ �R we have

lim
r→R

sr(y) = s(y) .

Proof. Using the formula

∫ 1

0
dt logk−1(1/t)tp−1 = k−p
(k) ,

we see that for s(y) = Yl,m(ŷ), l �= 0 we have sr (y) = (r/R)lYl,m(ŷ). It follows that
sr (y) = P int(rŷ) for any s ∈ L2(�R) with

∫
s = 0. The theorem now follows from the

approximating properties of the Poisson integral (see e.g., [3]). The proof is the same for
the exterior wavelet transform.

We consider now the approximant

sr (y) = 1

4π
(d + f )

∫
Int �r

dx

|x|3 logd+f −1 (
r2/|x|2)W int,d (x)W

int,f
x (y) ,

respectively,

sr (y) = 1

4π
(d + f )

∫
Ext �r

dx

R3
logd+f −1 (|x|2/r2)Wext,d (x)W

ext,f
x (y) .

Here we approximate a function as superposition of wavelets.

Theorem 3. Let s ∈ L2(�R) be of zero mean,
∫

s = 0. Then for d, f ≥ 0, d + f > 0
the approximant sr converges in quadratic mean

lim
r→R− ‖sr − s‖L2(�R) = 0 .

Moreover, the convergence is pointwise almost everywhere. For almost all y ∈ �R we have

lim
r→R− sr (y) = s(y) .
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Proof. Again we may verify using Proposition 3 that for s(x) = Yl,m(x̂), we have
sr (x) = P ints(

√
r/RRx̂). By density, this holds for arbitrary s ∈ L2(�, dω)�{1}. Again,

the convergence properties of the Poisson integral allow us to conclude. The proof for the
exterior transform is analogous.

We now want to characterize the image of the wavelet transform not in terms of deriva-
tives of Hardy space functions, but in terms of weighted Bergman spaces. Let Hint,d (�R)

and Hext,d (�R) denote the homogeneous weighted Bergman space of harmonic functions
in Int �R , resp. Ext �R , which are square integrable with respect to some weight, so that
they satisfy

‖s‖2
Hint,d = 1

4π
(2d)

∫
Int �R

|s(x)|2 log2d−1 (
R2/|x|2) dx

|x|3 < ∞ .

and

‖s‖2
Hext,d = 1

4π
(2d)

∫
Ext �R

|s(x)|2 log2d−1 (|x|2/R2)dx

R3
< ∞ .

Clearly one space is simply the Kelvin transform of the other. In terms of the Fourier
coefficients the norm of Hint,d (�R) can be expressed as follows

‖s‖2
Hint,d =

∑
l>0

l−2d
l∑

m=−l

∣∣ŝl,m∣∣2
,

as can be shown by integration term by term of the Fourier series. This shows that these
spaces are actually Hilbert spaces. Note that the classical Bergman space B(�R), which
consists of all harmonic functions which are square summable over the ball, has norm

‖s‖2
B(�R) = 1

4πR3

∫
Int �R

dω(x)|s(x)|2 =
∞∑
l=0

1

2l + 3

l∑
m=−l

∣∣ŝl,m∣∣2
.

Therefore, for functions of zero mean, s(0) = 0, the Bergman norm and the norm in Hint,1/2

are equivalent:

s(0) = 0 ⇒ 1

5
‖s‖2

Hint,1/2(�R)
≤ ‖s‖2

B(�R) ≤ 1

2
‖s‖2

Hint,1/2(�R)
.

Theorem 4. For d > 0, the interior wavelet transform is a one to one isometry from
L2(�R) � {1} to Hint,d (�R) and we have

1

4π
(2d)

∫
Int �R

∣∣W int,d s(x)
∣∣2 log2d−1 (

R2/|x|2) dx

|x|3 = 1

4πR2

∫
�R

|s(y)|2 dω(y) .

For d > 0, the interior wavelet transform is a one to one isometry from L2(�R) � {1} to
Hext,d (�R) and we have

1

4π
(2d)

∫
Ext �R

∣∣W int,d s(x)
∣∣2 log2d−1 (|x|2/R2)dx

R3
= 1

4πR2

∫
�R

|s(y)|2 dω(y) .

Proof. The formula holds for any harmonic polynomial s with s(0) �= 0. For arbitrary
f ∈ L2(�R) � {1}, we take a polynomial approximation sn → f as we may by density.
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Then Wsn is a Cauchy sequence in Hint,d (�R) and has a limit F and we have ‖F‖ = ‖s‖.
By Egorov’s theorem, there is a subsequence that converges pointwise almost everywhere.
Since Wsn(x) → Wf (x) for all x, we have F(x) = Wf (x) for almost all x. Since both
functions are continuous we have F = W and the theorem follows.

For any function r : Int �R → C, resp. r : Ext �R → C, we define the synthesis
with exterior, resp. interior, wavelets as

Mext,d r(y) = 1

4π
(2d)

∫
Int �R

dx

|x|3 log2d−1 (
R2/|x|2)r(x)W ext,d

x (y) ,

or for any r : Ext �R → C

Mint,d r(y) = 1

4π
(2d)

∫
Ext �R

dx

R3
log2d−1 (|x|2/R2)r(x)W int,d

x (y) ,

whenever this integral makes sense. A simple exchange of integrations shows that this
operator coincides with the adjoint operator of the wavelet analysis at least on the set
of nonconstant polynomials. Therefore we have a unique extension of Mint,d to all of
Hint,d (�R) which we call again Mint,d . It satisfies

Mext,d = (W int,d)∗
, Mint,d = (Wext,d)∗

.

The image of the wavelet transform may now be characterized through the reproducing
kernel property.

Theorem 5. The image of the interior wavelet analysis Ran W int,d is Hint,d (�R). It is a
reproducing kernel Hilbert space with reproducing kernel

K int,d (x, z) = R

|z|
∣∣W int,2d

(
x, z∗), z∗ = R2|z|−1ẑ ,

and we have explicitly with an absolutely convergent integral for each x ∈ Int �R

r(x) = 1

4π
(2d)

∫
Int �R

dz

|z|3 log2d−1 (
R2/|z|2)K int,d (x, z)r(z) .

The image of the exterior wavelet analysis Ran Wext,d is Hext,d (�R). It is the reproducing
kernel Hilbert space with reproducing kernel

Kext,d (x, z) = R

|z|W
ext,2d

(
x, z∗), z∗ = R2|z|−1ẑ ,

and we have explicitly, with an absolutely convergent integral, for each x ∈ Int �R

r(x) = 1

4π
(2d)

∫
Ext �R

dz

R3
log2d−1 (|z|2/R2)Kext,d (x, z)r(z) .

Proof. For any polynomial s with s(0) �= 0, we have for r = W int,d s the identity
r = W int,dMext,d r which after an exchange of integrations is the equation of the theorem.
For arbitrary r = W int,d s we take an approximating sequence sn → s of polynomials.
Since for fixed x the function z �→ K int,d (x, z) is in Hint,d (�R), and since rn = W int,d sn
goes to r in Hint,d (�R), we may conclude.



418 M. Holschneider and I. Iglewska-Nowak

In applications, it is sometimes useful to use the b, a variables instead. We then write

Ws(b, a) =< gd
b,a, s >R= 1

4πR2

∫
�R

gd
b,a(y)s(y) dω(y) .

The wavelet transform maps functions over �R to functions over the position-scale wavelet
phase space on the sphere. We may identify the wavelet phase (=position-scale) space
H = �R × R+ with the interior or exterior of the sphere using the mapping (3.1). We have

Ws(b, a) = a−dW int,d s
(
e−ab

) = a−dWext,d s
(
eab

)
, b ∈ �R, a > 0 ,

and all formulas may be converted accordingly. We therefore have that the wavelet transform
is an isometry from L2(�R) � R to L2(�R × R+, dω(x) da/a) and we have

1

4πR2

∫
�R

|s(x)|2 dω(x) = 1

4πR2
(2d)

∫
�R

dω(b)

∫ ∞

0

da

a
|Ws(b, a)|2 .

The image is the closed subspace of functions that are reproduced by the kernel

�
(
b, a; b′, a′) =

(
aa′)d

(
a + a′)2d

g2d
b,aa′

(
b′) =

(
aa′)d

(
a + a′)2d

g2d
b′,aa′(b) .

The reproducing kernel equation reads explicitly, for r = Ws,

r(b, a) = 1

4πR2

∫ ∞

0

da′

a′

∫
�R

dω
(
b′)�(

b, a; b′, a′)r(b′, a′) .

The approximant for the first inversion formula reads

sε(x) = 1


(d)

∫ ∞

ε

Ws(x, a)
(

1 − ε

a

)d−1 da

a
,

whereas the one for the second inversion formula reads

sε(x) = 1

4π
(d + f )

∫ ∞

ε

da

a

∫
�R

dω(b)
(

1 − ε

a

)d+f −1 Wds(b, a) g
f
b,a(x) .

Both approximants converge in L2(�R) and pointwise almost everywhere. They have in
fact the same convergence properties as the Poisson integral.
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