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ABSTRACT. This article presents a new tool for fitting a divergence-free vector field tangent to
a two-dimensional orientable surface P ∈ R

3 to samples of such a field taken at scattered sites on
P . This method, which involves a kernel constructed from radial basis functions, has applications
to problems in geophysics, and has the advantage of avoiding problems with poles. Numerical
examples testing the method on the sphere are included.

1. Introduction

In this article, we develop a new tool, based on radial basis functions (RBFs), for fitting
a divergence-free vector field tangent to a two-dimensional orientable surface P ∈ R

3 to
samples of such a field taken at scattered sites on P . In the case where P is a sphere, there
are important physical applications.

The shallow water wave equations on the surface of a rotating sphere describe the
nonlinear flow of an incompressible fluid in a single hydrostatic atmospheric layer [31]. The
incompressibility assumption gives rise to the constraint that the velocity field has vanishing
surface divergence. Similar constraints on the velocity also arise in the barotropic vorticity
equation on the surface of the sphere, which provides a good model for 500-mb short-
term weather forecasts in mid-latitudes [14, pp. 108–110]. Fitting divergence-free tangent
vector fields to data taken in these cases would help in modeling the incompressible velocity
fields involved.

There are similar problems that arise in R
3. For example, both the velocity field of

an incompressible fluid and the magnetic field from a system of currents and charges are
divergence free. One would like to fit such data with a divergence-free vector field. Also,
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if a set of velocity data is generated by an irrotational fluid, then fitting it with a curl-free
vector field is appropriate. Several years ago, divergence-free RBFs and curl-free RBFs
were introduced [23] to help in handling such problems. Unfortunately, when restricted to
a sphere or to a surface P , these RBFs, which are constructed to be divergence-free or curl
free in R

3, lose those properties.

Our goal is to use RBFs to construct a positive definite kernel that can be used to obtain
a divergence-free field of tangent vectors on a sphere or a surface P . As we mentioned
above, these are not merely matrix-valued RBFs restricted to a surface. Moreover, one may
use extrinsic coordinates in conjunction with these kernels. For the case of the sphere, this
means that polar regions can be treated in the same way as any other region of the sphere.
We will call these kernels divergence-free RBFs on P , where it will be tacitly understood
that the term divergence refers to that for the surface P as imbedded in R

3. In Section 2,
we will carry out the construction of the kernels, and, in Section 3, we will show how to
implement them to create divergence-free vector-field interpolants. In particular, we show
that the interpolation matrices involved are positive definite and therefore invertible.

Section 4 contains the results of numerical experiments conducted when the surface
is a sphere. In Section 4.1, we list three vector fields that we will sample, including a field
similar to the one used in Test Case 4 of [31]. This field in particular is meant to exhibit
some of the properties of flow in the middle level troposphere. The other fields are used
to test various aspects of the method. We then employ our method to reproduce these test
fields under various conditions, with various RBFs, and we then compare the results for
our method with those from more traditional methods. The numerical results we get are
listed in the tables in Section 4.5, and demonstrate the superiority of our method over more
traditional RBF methods.

The numerical evidence suggests that these divergence-free RBF interpolants on S
2

converge nicely. This is not a surprise. Very recently Fuselier [7, 8, 9] and Lowitzsch [19, 20]
have studied both stability and convergence properties for interpolants generated by the
matrix-valued RBFs introduced in [23]. In particular, Fuselier [8] obtained good, Sobolev-
type error estimates for the matrix-valued interpolants to smooth divergence-free or curl-
free vector fields in R

2 and R
3. Currently, we are working on error estimates and stability

properties for these new interpolants.

2. Divergence-Free RBFs on P
We now turn to constructing divergence-free RBFs on a surface P , assuming that the surface,
which is imbedded in R

3, is smooth and orientable. The easiest way to get things straight
is to use differential forms. The books by Bishop and Goldberg [1] and by Flanders [4] are
good references here. One can also use old-fashioned vector calculus, but the arguments
need to be “tweaked” to be made rigorous. In the next few paragraphs, we will review some
standard results from differential geometry. This also serves to establish notation.

The general setup is this. A vector field v on P (i.e., one that is tangent to P at every
point) can be expressed in a local patch as v = v1e1 +v2e2, where {e1, e2} form a smoothly
varying orthonormal frame of tangent vectors at each x in the local patch. The normal to
P at x is n = e1 × e2, which makes {e1, e2, n} a right-handed orthonormal frame. (All
vectors vary with x, but for the moment we will suppress this.)
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We can identify v with a differential form ν via duality,

ν = v · dx = v1 e1 · dx︸ ︷︷ ︸
σ1

+v2 e2 · dx︸ ︷︷ ︸
σ2

= v1σ1 + v2σ2 .

The divergence of v is just d ∗ ν, where ∗ is the (two-dimensional) Hodge star operator.
For a right-handed orthonormal basis for the tangent space, the ∗ operator has the following
effect on σ1 and σ2: ∗σ1 = σ2 and ∗σ2 = −σ1.

It would be easy to compute the divergence of v, now. However, this isn’t the object
here. Instead, we want to produce a divergence-free vector field. On P , every 1-form looks
like ω = a1σ1 + a2σ2. Since ∗ω = a1σ2 − a2σ1 = b1σ1 + b2σ2, it is still an arbitrary
1-form. Take ν = ∗ω, and note that d ∗ ν = d ∗ ∗ω = −dω. By the converse of the
Poincaré lemma, if d ∗ ν = dω = 0, then one has f : P → R such that ω = df , locally.

We can put this in terms of vector fields. First, df = ∇f · dx, so ω = df ↔ ∇f .
Second, ν = ∗ω ↔ n × ∇f . Finally, d ∗ ν = 0 ↔ divP (n × ∇f ) = 0. We have
thus shown that a vector field v on P is divergence free if and only if locally there exists
f : P → R such that v = n × ∇f .

The function f can be defined on R
3 and then restricted to P , because the cross

product n × ∇f eliminates any component along n. This means that we may use extrinsic
coordinates to deal with P .

At this point, we will use Cartesian coordinates in R
3 and regard vectors there as

columns. Let

�(x) =
∫

R3

[
eiξ ·x − 1 − iξ · x

]
�̂(ξ)

d3ξ

(2π)3
, (2.1)

where �̂(ξ) > 0 and
∫

R3 |ξ |2�̂(ξ)dξ < ∞. The function � is conditionally positive
definite of order 1 [10, 21, 28] on R

3. Moreover, � is in C2(R3) [28, Theorem 4.1], so we
can form its Hessian,

∇∇T � = −
∫

R3
�̂(ξ)ξξT eixT ξ d3ξ

(2π)3
.

Note that
nx × ∇x

(
eixT ξ

)
= ieixT ξ nx × ξ = i Xnx ξeixT ξ ,

where na is the normal to P at a, ∇a is the gradient with respect to a, and

Xa =
 0 −a3 a2

a3 0 −a1
−a2 a1 0

 , and Xa b = a × b, a, b ∈ R
3 .

In the same way, we get{
ny × ∇y

(
e−iyT ξ

)}T = −iξT XT
ny

e−iyT ξ .

From these two equations we easily see that when x and y belong to P the kernel

�(x, y) := Xnx

{∫
R3

�̂(ξ)ξξT ei(x−y)T ξ d3ξ

(2π)3

}
XT

ny

= − Xnx

(∇∇T �(x − y)
)

XT
ny

(2.2)
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is divergence free and nonnegative — i.e., the corresponding quadratic form is positive
semi-definite. We summarize these observations below.

Theorem 1. Let P be a smooth, orientable manifold in R
3, possibly with boundary, and

let nx denote the unit normal to P at x ∈ P . Then, the kernel given in (2.2) is nonnegative
and divergence free when x and y belong to P .

We now turn to calculating � when the function � is radial; that is, when �(x) =
�(|x|). We will start by finding the Hessian matrix ∇∇T �(x) in Cartesian coordinates.
Let r = |x|. The j, k component of the matrix is then easily shown to be

∂2�

∂xj∂xk

= δj,k

1

r
�′(r)︸ ︷︷ ︸
F(r)

+xjxk

1

r

(
1

r
�′(r)

)′

︸ ︷︷ ︸
G(r)

.

From this we have that

∇∇T �(x − y) = F(r)I + G(r)(x − y)(x − y)T ,

where r = |x − y| and I is the identity matrix. Carrying out the multiplications implicit
in (2.2), we arrive at

�(x, y)

= F(r)
(
nynT

x − nT
y nxI

) − G(r) (nx × (x − y))
(
ny × (x − y)

)T
.

(2.3)

When P = S
2, the unit sphere in R

3, the normals are just nx = x and ny = y. Using this
in the previous formula gives us

�(x, y) = F(r)
(
yxT − yT xI

) − G(r)(x × y)(x × y)T . (2.4)

Of course, here we have r = |x − y| = 2 sin(θ/2), where θ is the angle between x and y.

We return to the general case of a surface patch P . When x and y are fixed points on
P , the kernel �(x, y) is a linear map that takes a tangent vector s at y to a tangent vector at
x. Set s̃ = ny × s. From (2.3), we see that

�(x, y)s = nx ×
{
F(r)s̃ + G(r)(x − y)(x − y)T s̃

}
. (2.5)

If t is tangent to P at x, and if t̃ = nx × t, then we also have

tT �(x, y)s = −F(r)t̃T s̃ − G(r)(x − y)T t̃(x − y)T s̃ . (2.6)
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3. Divergence-Free RBF Interpolants on P
Let the vectors t1, . . . , tN be tangent to P at points x1, . . . , xN , respectively. We want to
interpolate the tj ’s with a divergence-free vector field of the form

t(x) =
N∑

k=1

�(x, xk)sk , (3.1)

where sk and t(x) are tangent to P at xk and x, respectively. Doing this requires that we
solve the linear system below for the sk’s:

tj =
N∑

k=1

�(xj , xk)sk, j = 1, . . . , N .

At each xk , choose ek to be a unit vector tangent to P at xk and let fk = nk × ek . The
triple {ek, fk, nk} is a right-handed, orthonormal 3-frame at xk , and {ek, fk} is an orthonormal
basis for the tangent space there. Express the tj ’s and sk’s in terms of the appropriate basis:

sk = αkek + βkfk and tj = γj ej + δj fj .

Using these in conjunction with the linear system above, we obtain the following system
of equations,(

γj

δj

)
=

N∑
k=1

(
eT
j

fT
j

)
�(xj , xk)

(
ek fk

)
︸ ︷︷ ︸

A
(2)
jk

(
αk

βk

)
, j = 1, . . . , N . (3.2)

Next, we will use (2.6) to find the 2 × 2 matrix A
(2)
jk in the sum above. In doing so, keep in

mind that ẽ = f and f̃ = −e.

A
(2)
jk =

(
eT
j

fT
j

)
�(xj , xk)

(
ek fk

)
= −

(
fT
j

−eT
j

){
F(rjk)I + G(rjk)(xj − xk)(xj − xk)

T

} (
fk −ek

)
,

(3.3)

where rjk = |xj − xk|. Note that we have (A
(2)
jk )T = A

(2)
kj .

In the case of the sphere, this formula simplifies somewhat. The normal nj is just xj .
Consequently, the terms xT

j ej and xT
j fj vanish. Switching to “dot” product notation, this

gives us

A
(2)
jk

= F(rjk)

( −fj · fk fj · ek

ej · fk −ej · ek

)
+ G(rjk)

(
fj · xk

−ej · xk

) (
xj · fk −xj · ek

)
.

(3.4)

The object now is to solve the system (3.2). Let A be the 2N×2N matrix composed of
the blocks A

(2)
jk in (3.3), let c = (α1 β1 · · · αN βN)T , and finally let d = (γ1 δ1 · · · γN δN)T .
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The 2N × 1 column vector c contains the coefficients we want to find, and d contains the
data we know. The system (3.2) then becomes Ac = d, and it has a unique solution if and
only if we can invert A. The lemma and the theorem that follow establish that A is not only
invertible, but also that it is positive definite.

Lemma 1. Let A be as above, and let � be given by (2.2), then

cT Ac =
∫

R3
�̂(ξ)

∣∣ξTv(ξ)
∣∣2 d3ξ

(2π)3
(3.5)

where v(ξ) = ∑N
k=1 s̃ke

−ixT
k ξ and s̃k = nk × sk .

Proof. From (3.2), we have that

cT Ac =
N∑

j=1

N∑
k=1

(
αj βj

) ( eT
j

fT
j

)
�(xj , xk)

(
ek fk

) ( αk

βk

)

=
N∑

j=1

N∑
k=1

sT
j �(xj , xk)sk . (3.6)

Next, from (2.2) we have that

sT
j �(xj , xk)sk = sT

j Xnj

{∫
R3

�̂(ξ)ξξT ei(xj −xk)
T ξ d3ξ

(2π)3

}
XT

nk
sk .

Since we have XT
nk

sk = − Xnk
sk = −nk × sk = −s̃k and, similarly, sT

j Xnj
= −s̃T

j , we
see that

sT
j �(xj , xk)sk =

∫
R3

�̂(ξ)

(
s̃T
j ξe

ixT
j ξ

)(
ξT s̃ke

−ixT
k ξ

)
d3ξ

(2π)3
.

Using the expression above in (3.6) and simplifying, we obtain (3.5).

Theorem 2. A is positive definite and therefore invertible.

Proof. By the lemma above, A is positive semi-definite. To show that it is positive
definite, we need only show that cT Ac = 0 forces c = 0. From (3.5), cT Ac = 0 implies that
the integrand, �̂(ξ)|ξTv(ξ)|2, which is continuous and nonnegative, is 0. Since �̂(ξ) > 0,
we may cancel it to get ξTv(ξ) ≡ 0, or, equivalently,

N∑
k=1

ξT s̃ke
−ixT

k ξ ≡ 0 .

The expression on the left is a tempered distribution in ξ . Take the inverse Fourier transform
of both sides and cancel constant factors to obtain

N∑
k=1

s̃k · ∇δ(x − xk) ≡ 0 .

Integrate this distribution against a smooth “bump” function supported in a small ball, which
is centered at a given xk and excludes all other xk’s. In addition, take the function’s gradient
at xk equal to s̃k . The result will be s̃k · s̃k = sk · sk = α2

k + β2
k = 0, and so αk = βk = 0

for all k. Hence, c = 0.
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3.1 Implementation

We summarize the steps in finding the interpolant t(x), given points x1, . . . , xN on P and
data vectors t1, . . . , tN tangent at each of these points.

(1) At each xk , find the (unit) normal nk , then choose a unit tangent vector ek , and
finally find fk = nk × ek . On the unit sphere, these can be chosen so that nk = xk ,
ek is the north-pointing unit vector along the longitude, and fk is the east-pointing
unit vector along the latitude. If the north or south poles are among the data points,
simply choose vectors there.

(2) Find the coordinates γk and δk for tk relative to {ek, fk}. Form the data vector d =
(γ1 δ1 · · · γN δN)T .

(3) Find the 2 × 2 matrices A
(2)
jk from (3.3), or from (3.4) in the case of the sphere.

Use these to form the matrix A.

(4) Solve Ac = d for c = (α1 β1 · · · αN βN)T .

(5) Find s̃k = −βkek + αkfk . From (2.5), we have

�(x, xk)sk = nx ×
{
F(|x − xk|)s̃k + G(|x − xk|)(x − xk)(x − xk)

T s̃k

}
,

which we then sum to obtain t(x) via (3.1).

In the last step, the output will be in Cartesian coordinates. If instead one would like
the output to be given in terms of a basis of tangent vectors {e(x), f(x)} (e.g., the latitude
and longitude vectors on the sphere), then we can use (2.6) to calculate the appropriate
components. Specifically, in the case of the unit sphere, where x = n, we have e · t = ∑N

k=1

{ − F(|x − xk|)f · s̃k + G(|x − xk|)(f · xk)
(
x · s̃k

)}
f · t = ∑N

k=1

{
F(|x − xk|)e · s̃k − G(|x − xk|)(e · xk)

(
x · s̃k

)}
.

(3.7)

We now turn to a discussion of numerical results for the case in which P is the sphere,
which is one of the most important applications of the method.

4. Numerical Examples

In this section we apply the theory from the previous sections to specific examples. We
focus on the case of divergence-free vector fields on the surface of the sphere. As we men-
tioned in Section 1, this case has many relevant physical applications. For several different
divergence-free fields, we compare the accuracy of the divergence-free RBF interpolation
method presented above to the standard RBF interpolation method where each component
of the vector field is interpolated separately (see, Section 4.2).

Following the notation from the previous section applied to the sphere, we let xk =
(xk, yk, zk)

T , k = 1, . . . , N , be distinct data locations on the unit sphere and (θk, λk),
k = 1, . . . , N , the corresponding spherical latitude-longitude coordinates such that

xk = cos λk cos θk ,

yk = sin λk cos θk , (4.1)

zk = sin θk .
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(Note that we measure latitude from the equator rather than the north pole). Let uk =
(γk, δk, 0)T = (γ (θk, λk), δ(θk, λk), 0)T , k = 1, . . . , N , be samples of some divergence-
free vector field in spherical coordinates at the data locations, where γ , δ, and 0 correspond
to the θ , λ, and radial directions, respectively. Then uk can be converted to Cartesian
coordinates using the transformation

tk =
− sin θk cos λk − sin λk cos θk cos λk

− sin θk sin λk cos λk cos θk sin λk

cos θk 0 sin θk


︸ ︷︷ ︸

Qk

uk . (4.2)

The first two columns of Qk form an orthonormal basis for the tangent space of the unit
sphere and we thus assign these vectors to ek and fk , respectively:

tk = γk

− sin θk cos λk

− sin θk sin λk

cos θk


︸ ︷︷ ︸

ek

+δk

− sin λk

cos λk

0


︸ ︷︷ ︸

fk

. (4.3)

Note that since Qk is orthogonal, the vector field in Cartesian coordinates can be translated
back to spherical coordinates by uk = QT

k tk .

4.1 Test Vector Fields

The divergence of a vector field u = (γ, δ, 0)T on the surface of the unit sphere is given by

∇ · u = 1

cos θ

(
∂(γ cos θ)

∂θ
+ ∂δ

∂λ

)
. (4.4)

To generate vector fields such that ∇ · u = 0, we use a scalar “stream function” �. The
latitude and longitude components of u are then given by

γ = 1

cos θ

∂�

∂λ
, (4.5)

δ = −∂�

∂θ
. (4.6)

For the numerical experiments, we use three vector fields of varying character and smooth-
ness as described below.

(1) This field is similar to the one used in Test Case 4 of [31] and is meant to exhibit
some of the properties of flow in the middle level troposphere. We will use it to test
the accuracy of the divergence-free RBF technique for infinitely smooth fields. Let

�(θ, λ; σ, θc, λc) = e−(σρ)2
, (4.7)

where
ρ = arccos(sin θc sin θ + cos θc cos θ cos(λ − λc)) (4.8)

is the geodesic (or great circle) distance from (θc, λc) to (θ, λ). Then the vector
field is generated from the stream function

�1(θ, λ) = 2

3
cos15 θ − �(θ, λ; 8, π/4, 0) + �(θ, λ; 8, −π/4, 0) . (4.9)
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In terms of a wind field, this flow models two low pressure systems in a jet stream
that is symmetrical about the equator [31]. Figure 1(a) displays this field on the
surface of the unit sphere.

Test Vector Field 1 Test Vector Field 2

Test Vector Field 3

FIGURE 1 Vector fields used in the numerical examples generated from the stream functions (a) �1 in (4.9),
(b) �2 in (4.10) and (c) �3 in (4.11). (a) and (b) are orthographic projections of the field viewed from (0, 0)

degrees latitude-longitude, while (c) is viewed from the north pole.

(2) This field is somewhat similar to the first, however, the flow is compactly supported.
It is designed to test the accuracy of the new RBF technique on divergence-free
fields with finite smoothness. Let

�̃(θ, λ; σ, θc, λc) = σ 3

12

4∑
j=0

(−1)j
(

4

j

) ∣∣∣∣ρ − (j − 2)

σ

∣∣∣∣3 ,

where ρ is again the geodesic distance (4.8). �̃ is a cubic B-spline in ρ with
two continuous derivatives and is positive for |ρ| < 2/σ and zero elsewhere. We
generate the vector field for this second test from the stream function

�2(θ, λ) = 2

3
cos15 θ − �̃(θ, λ; 4, −2π/9, −π/7) . (4.10)

Since �̃ is only C2, the resulting vector field generated from �2 will only be
C1, which is a more realistic model of physical data. The field is displayed in
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Figure 1(b).
(3) While the first two test fields have zero flow over both poles, the third test has flow

directly over the poles with very strong flow over the north pole. A nonzero flow
over either pole is known to cause difficulties with many interpolation/approxi-
mation methods on the sphere since, in spherical coordinates, the latitudinal and
longitudinal components of the vector field will be discontinuous there [29]. This
test is designed to show that the divergence-free RBF technique has no difficulties
with nonzero flow over the poles since it operates on vector fields in Cartesian form,
where the components are smooth over the whole sphere. The field is generated
from the stream function

�3(θ, λ) = −5(sin(θ) cos(π/2 − 0.05) − cos λ cos θ sin(π/2 − 0.05))

+ �(θ, λ; 9, π/2 − 0.05, π/2 − 0.1) − �(θ, λ; 8, −π/2 − 0.1, −π/2 + 0.1) , (4.11)

where � is given in (4.7). The first term in this equation correspond to a stream
function for zonal flow (or solid body rotation) at angle nearly coincident with the
north pole. The second two terms generate a rotating flow near the north pole.
See, Figure 1(c) for a plot of this field as viewed from the north pole.

4.2 Standard RBF Interpolation

We briefly discuss the standard RBF interpolation method used for comparison with the
divergence-free method. We refer the reader to any of the books [2, 16, 30] for a more in
depth discussion of the standard method.

Similar to the beginning of this section, let xk = (xk, yk, zk)
T , k = 1, . . . , N , be

distinct data locations on the unit sphere and uk = (γk, δk, 0)T , k = 1, . . . , N , be the cor-
responding samples of some divergence-free vector field in spherical coordinates at these
locations. For the standard RBF interpolation method, we first translate uk to Cartesian co-
ordinates tk using (4.3), and then interpolate the samples from each component in Cartesian
coordinates separately.

Let (txk , t
y
k , tzk ) correspond to the components of tk in the x, y, and z directions,

respectively. We define the standard RBF interpolant p(x) to the vector field as

p(x) =
px(x)

py(x)

pz(x)

 =


∑N

k=1 bx
k�(|x − xk|)∑N

k=1 b
y
k�(|x − xk|)∑N

k=1 bz
k�(|x − xk|)

 , (4.12)

where the expansion coefficients bx
k , b

y
k , and bz

k , k = 1, . . . , N , are determined from the
interpolation conditions p(xk) = tk , k = 1, . . . , N . This leads to the following N -by-N
symmetric matrix problem with three right-hand sides:
�(|x1 − x1|) �(|x1 − x2|) · · · �(|x1 − xN |)
�(|x1 − x1|) �(|x2 − x2|) · · · �(|x2 − xN |)

...
...

. . .
...

�(|xN − x1|) �(|xN − x2|) · · · �(|xN − xN |)




bx
1 b

y

1 bz
1

bx
2 b

y

2 bz
2

...
...

...

bx
N b

y
N bz

N

=


tx1 t

y

1 tz1
tx2 t

y

2 tz2
...

...
...

txN t
y
N tzN

.

This matrix is positive definite for all positive definite radial functions �(r) and condition-
ally negative definite with N −1 negative eigenvalues and 1 positive eigenvalue for all order
1 positive definite radial functions (cf. [2, 16, 30]). Note that for the standard method a
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linear system of size N -by-N needs to be solved, whereas for the divergence-free method
the solution of a 2N -by-2N system is required. However, the standard method completely
decouples the components of the vector fields and does not exploit any information about
its divergence-free nature.

If desired, the standard RBF interpolant p(x) can be translated back to spherical
coordinates using QT p(x), where Q is given by in (4.2) with (θ, λ) the corresponding
spherical coordinates of x.

4.3 Node Distributions

Both standard and divergence-free RBF interpolation are well-posed for any distinct set
of nodes on the surface of the sphere. For interpolation in R

d with the standard method,
studies have shown that best results are achieved with roughly evenly distributed nodes [16,
pp. 59–61]. Since only a maximum of 20 nodes can be evenly distributed on a sphere, there
are a multitude of algorithms to define “even” distribution for larger numbers of nodes,
such as equal partitioned area, convex hull approaches, electrostatic repulsion, etc. [12].
Although any of these will suffice, we have decided to use the electrostatic repulsion nodes
(which are also known as the minimum energy (ME) nodes) for our tests since these nodes
do not line up along any vertices or lines, emphasizing the arbitrary node layout of the RBF
technique. Many different of these node sets are also readily available for download [32].

Let xk = (xk, yk, zk)
T , k = 1, . . . , N be a set of N nodes on the unit sphere S

2 and
consider the following measure of the density of the points:

h = max
x∈S2

min
1≤k≤N

dist(x, xk) , (4.13)

where dist is the geodesic distance from x to xk [see, (4.8)]. This quantity is referred to as
the mesh-norm [32, 17] and, geometrically, it represents the radius of the largest spherical
cap that can be placed on the sphere without covering any nodes xk . The ME node sets
have the property that h decays approximately uniformly like the inverse of the square root
of the number of nodes N , i.e.,

h ∼ 1√
N

.

Thus, they are similar to a uniform discretization of the unit square. Figure 2 displays the
N = 1024 ME node distribution, which is also the same node distribution used to display
the vector fields in Figure 1.

The mesh norm is also of practical importance since it appears in many proofs of error
bounds for standard RBF interpolation on the sphere (e.g., [17, 15]). Indeed, in the context
of infinitely smooth radial kernels, it is shown in [17] that, provided the underlying function
being interpolated is sufficiently smooth, the standard RBF interpolation method converges
(in the max. norm) like h−1/2e−c/4h, i.e., at a geometric rate, for some constant c > 0 that
depends on the radial kernel. For the ME node sets, convergence will thus proceed like
N1/4e−c

√
N/4. In the experiments that follow, we test this convergence rate also for the

divergence-free RBF method.

4.4 Radial Kernels

As proved in Theorem 2, any positive definite or order 1 positive definite radial kernel �(r)

leads to a well-posed divergence-free RBF interpolation problem. As noted above, this
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FIGURE 2 Orthographic projection of the N = 1024 minimum energy (ME) node distribution on the sphere
used in the examples. Solid black circles mark the node locations.

result also holds for the standard RBF method. While this allows for a very large choice of
available kernels, we have selected three for the numerical tests. These are listed in Table 1
together with the corresponding kernels F(r) and G(r) used in the divergence-free RBF
method. We briefly describe them below:

• The Gaussian (GA) kernel is undoubtedly the most well-known of all positive
definite radial kernels and it dates back to Schoenberg’s pioneering work [27] in
the field. As indicated in the table, it is an infinitely smooth kernel.

• The multiquadric (MQ) kernel is used extensively in applications and originated
from Hardy’s pioneering work [13] in RBFs. It is an order 1 positive definite
kernel and is similarly infinitely smooth.

• The Matérn (MAν) class of kernels was introduced in [22] and is arguably the
most important and most popular family of kernels for statistical applications of
RBFs [11]. These kernels are positive definite, but have finite smoothness that
depends on the parameter ν as indicated in Table 1. When ν is a positive half-
integer, they reduce to the product of an exponential with a polynomial. For
example, for ν = 13

2 , we get the following Matérn kernel:

MA 13
2

: �(r) = e−εr

(
1 + (εr) + 5

11
(εr)2 + 4

33
(εr)3 + 2

99
(εr)4

+ 1

495
(εr)5 + 1

10395
(εr)6

)
,

which, according to Table 1, is C6 (recall r = |x|). For the numerical examples, we
use Matérn kernels of differing smoothness that correspond to the smoothness of
the test vector field. However, we note that, since the divergence-free RBF method
depends on the second derivative of the radial kernels (the G(r) function in the third
column of Table 1), these interpolants will have two less orders of smoothness. In
the case of the Matérn family, this means that we must use the kernel MAν+2 in
the divergence-free RBF method to be consistent with the standard RBF method
when using the kernel MAν . The kernels used for each test are summarized in
Table 2.



Divergence-Free RBFs on Surfaces 655

T
A
B
L
E
1

T
he

ra
di

al
ke

rn
el

s
us

ed
in

th
e

nu
m

er
ic

al
ex

am
pl

es
.

In
al

l
ca

se
s,

ε
is

th
e

sh
ap

e
pa

ra
m

et
er

an
d

is
al

w
ay

s
po

si
tiv

e.
Fo

r
th

e
M

at
ér

n
cl

as
s,

K
ν

co
rr

es
po

nd
s

to
th

e
K

-B
es

se
lf

un
ct

io
n

of
or

de
r
ν

,ν
is

a
po

si
tiv

e
re

al
nu

m
be

r,
an

d
m

is
a

no
nn

eg
at

iv
e

in
te

ge
r.

R
ad

ia
lK

er
ne

l
�

(r
)

F
(r

)
=

1 r
�

′ (r
)

G
(r

)
=

1 r
F

′ (r
)

G
au

ss
ia

n
(G

A
)

e
−(

ε
r
)2

−2
ε

2
e
−(

ε
r
)2

4ε
4
e
−(

ε
r
)2

Sm
oo

th
ne

ss
C

∞
C

∞
C

∞

M
ul

tiq
ua

dr
ic

(M
Q

)
√ 1

+
(ε

r
)2

ε
2

√ 1
+

(ε
r
)2

−
ε

4

(1
+

(ε
r
)2

)3
/
2

Sm
oo

th
ne

ss
C

∞
C

∞
C

∞

M
at

ér
n

(M
A

ν
)

21−
ν

�
(ν

)
(ε

r
)ν

K
ν
(ε

r
),

−21−
ν

�
(ν

)
ε

2
(ε

r
)ν

−1
K

ν
−1

(ε
r
),

21−
ν

�
(ν

)
ε

4
(ε

r
)ν

−2
K

ν
−2

(ε
r
),

Sm
oo

th
ne

ss
C

m
,

ν
>

m
≥

0
C

m
−1

,
ν

>
m

≥
1

C
m

−2
,

ν
>

m
≥

2



656 Francis J. Narcowich, Joseph D. Ward, and Grady B. Wright

We can see from Table 1 that each of the kernels for the numerical examples features
a free shape parameter ε > 0. In all cases, as ε decreases to zero the kernels become
increasingly flat. It has generally been reported in the literature that, for the standard
RBF method, there is typically an optimal value of ε that produces the best accuracy and
this value tends to decrease with increasing smoothness of the underlying function being
approximated (e.g., [24]). However, as ε decreases, the shifted radial kernels �(|x − xk|)
in the RBF interpolant become less and less distinguishable from one another, leading to
ill-conditioning in the resulting interpolation matrices. This is the so-called “uncertainty
principle” for RBF interpolation [26]. While it has been shown that RBF interpolants are
overall well-conditioned even in the limit of ε → 0 (cf. [3, 18]), special algorithms like
Contour-Padé [6] and RBF-QR [5] are needed for these smaller values.

In the numerical results that follow, we do not employ any of these special algorithms
or try to determine the “optimal ε.” Instead, we select ε so that the condition numbers of
the standard and divergence-free RBF interpolation matrices is roughly equal and remains
roughly constant as the number of nodes increases. As shown next, we are able to get good
results with this strategy. We leave the exploration of the dependence of the divergence-free
RBF method on the shape parameter ε to a separate study.

TABLE 2

The Matérn (MAν) kernels used in the standard and
divergence-free methods (and their smoothness) for each of the
test vector fields.

Test Vector Standard Divergence-free Interpolant
Field RBF Method RBF Method Smoothness
�1 MA 13

2
10pt MA 17

2
C6

�2 MA 3
2

MA 7
2

C1

�3 MA 13
2

MA 17
2

C6

4.5 Numerical Results

For each of the three example vector fields (4.9)–(4.11), we compute the (vector-valued)
divergence-free and standard RBF interpolants based on the three radial kernels mentioned
above for ME node distributions of increasing size. We then evaluate these interpolants
on a set of 21,952 nodes which densely cover the surface of the sphere and are generated
by the “spiral points” algorithm in [25]. Finally, we compute the difference between these
values and the true vector fields at the evaluation points, and compute the relative �∞ (i.e.,
max. norm) error in each component, (γ, δ), of the vector field. The results are presented
numerically in Tables 3–5 and graphically in Figures 3–5 for the respective fields (4.9)–
(4.11).
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FIGURE 3 Plot of the results from Table 3 for the vector field u = (γ, δ, 0)T generated from the stream function
�1 in (4.9). Note the log vs. linear scale on the plots.

Comparing the results for the divergence-free and standard interpolants for the first
vector field (4.9) (cf. Table 3 and Figure 3), we see that the error in the former is smaller
than the latter for all three of the kernels and values of N (except the GA kernel and
N = 529). This difference becomes more pronounced as N increases, with the error in
the divergence-free method about an order of magnitude smaller. From the plot of the
errors in the two components of the vector field in Figure 3 (displayed on a log vs. linear
scale), we see that both the divergence-free and standard methods are exhibiting geometric
convergence [recall that

√
N is approximately inversely proportional to the spacing of the

nodes as measured by (4.13)]. This is expected for the latter method, as discussed in
Section 4.3, since both components of the vector field are C∞ functions. As mentioned in
the introduction, a theoretical understanding of the accuracy of the divergence-free method
is not yet available, but will be pursued in a separate study. The GA seems to be the most
accurate of the three kernels in both the divergence-free and standard methods, while the
MQ is second. This is expected since these are both C∞ kernels, while the MAν is only
C6. By increasing the smoothness of the MAν kernel, we expect to get results closer to
those of the GA and MQ.

The second vector field (4.10) is only C1 and, as expected, we see from Table 4 and
Figure 4 that the convergence rate of both the divergence-free and standard interpolants has
been diminished to low-order algebraic (note the log vs. log scale on both plots in the figure)
and is much less steady than for the first field. For the MQ and MAν kernels, we see that the
divergence-free method is again out performing the corresponding standard methods, with
the MQ producing the best results. This is a bit surprising since the MQ kernel is C∞ while
the MAν kernel used here is C1, matching that of the vector field. Interestingly, for the GA
kernel, the error in both components of the vector field for the standard method is smaller
than for the divergence-free method. However, as we can see in the last pair of columns of
Table 4, the latter method results in an exactly divergent-free field while the divergence of
the former is relatively large.

The results for the last vector field (4.11) in Table 5 and Figure 5 are similar to those of
the first, with the divergence-free method far out performing the standard method for all the
radial kernels. While the components of this field in spherical coordinates are discontinuous
at the poles, we see that this has no effect on the high accuracy that is achieved with either
the divergence-free or standard method. Indeed, Figure 4 (plotted on a log vs. linear scale)
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FIGURE 4 Plot of the results from Table 4 for the vector field u = (γ, δ, 0)T generated from the stream function
�2 in (4.10). Note the log vs. log scale on the plots.

again shows both of the these interpolation methods exhibiting geometric convergence.
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FIGURE 5 Plot of the results from Table 5 for the vector field u = (γ, δ, 0)T generated from the stream function
�3 in (4.11). Note the log vs. linear scale on the plots.

As mentioned in Section 4.2, the divergence-free method requires solving a 2N -by-
2N linear system of equations whereas the standard method requires solving an N -by-N
system. So, if comparing the two methods in terms of computational cost, one should
compare the accuracy of the divergence-free method with N nodes and the standard method
with 2N nodes. When this is done for the results from Tables 3–5, we see that the error in
the standard method is generally smaller. However, regardless of the number of nodes, the
standard method fails to preserve the divergence-free nature of the field. Furthermore, for
experimental data, it is not always possible to increase the number of observations in order
to increase the accuracy of the approximation. As the results indicate, in case of a fixed
number of nodes N , the divergence-free method generally produces much better results
than the standard method.
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5. Concluding Remarks

We have presented a new RBF method for fitting divergence-free vector fields defined on
some surface imbedded in R

3. The method allows for scattered data locations (i.e., no grids
or meshes), does not suffer from any coordinate singularities (e.g., pole singularities in the
case of the sphere), results in a positive definite interpolation matrix (i.e., it is well-posed),
and preserves the divergence-free nature of the field. For the case of the sphere, numerical
results indicate that the method far out performs more traditional RBF methods.

We conclude by noting that, while we have focused primarily on interpolation, it
is sometimes more desirable when fitting “real-world” data to use approximation, such
as least-squares fitting. In this case, an approximant is constructed from fewer linear
combinations of radial kernels than available data (cf. [16, pp. 61–65]). The divergence-free
RBF method carries over to this more general situation and still results in an approximant
that is divergence-free.
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