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ABSTRACT. The relationship between multiresolution analysis and filtering schemes is a well-
known facet of wavelet theory. However, in the case of rational dilation factors, the wavelet
literature is somewhat lacking in its treatment of this relationship. This work seeks to establish a
means for the construction of stable filtering schemes with rational dilations through the theory of
shift-invariant spaces. In particular, principal shift-invariant spaces will be shown to offer frame
wavelet decompositions for rational dilations even when the associated scaling function is not
refinable. Moreover, it will be shown that such decompositions give rise to stable filtering schemes
with finitely supported filters, reminiscent of those studied by Kovačević and Vetterli.

1. Introduction

In the case of an integer dilation a > 1, multiresolution analysis (MRA) has played a central
role in the development of wavelet frames and associated filtering schemes. Recall that a
multiresolution analysis consists of an increasing sequence {Vj }j∈Z of closed subspaces of

L2(R) and a scaling function ϕ ∈ V0 satisfying: (1) f ∈ Vj if and only if D−j
a f ∈ V0 for

each j ∈ Z; (2) ∩j∈ZVj = {0}; (3) ∪j∈ZVj = L2(R); and (4) {T kϕ}k∈Z is an orthonormal
basis for V0. In some instances the last property is loosened, allowing for the shifts of the
scaling function to comprise a Riesz basis for V0 rather than an orthonormal basis, but this
generalization is not essential.

Many constructions of MRAs begin with a refinable scaling function ϕ, which means

D−1
a ϕ =
∑
k∈Z

ckT
kϕ ,

for some sequence of coefficients {ck}k∈Z. Given such a refinable scaling function, one
defines Vj to be the closed linear span of {DjaT kϕ : k ∈ Z}. The refinability of ϕ implies
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D−1
a ϕ ∈ V0 and, moreover, the shift invariance of V0 then guarantees that T akD−1

a ϕ =
D−1
a T kϕ ∈ V0. In other words, refinability of ϕ implies Vj ⊆ Vj+1, j ∈ Z, provided

that a > 1 is an integer. This innocent consequence of refinability does not hold, in
general, for noninteger dilation factors and presents perhaps the most challenging obstacle
in generalizing MRA constructions to include rational dilation factors. This can be seen in
the work of Auscher [1] as well as the exposition of MRAs for the dilation a = 3

2 offered
by Daubechies in [6]. Furthermore, in [1], Auscher proved:

If ϕ is a scaling function for an MRA with dilation a = p
q

(p, q >

1 relatively prime integers), then ϕ has neither compact support nor
exponential decay at ∞.

One reason compactly supported scaling functions are desirable is that they give rise to
filtering schemes with finitely supported filters. Thus, Auscher’s result suggests that one
must look beyond the usual MRA structure to achieve compatibility of rational dilation
factors with compactly supported functions and finitely supported filters. This idea was
hinted at in Daubechies’ treatment of the a = 3

2 case, where it was pointed out that the
rational filtering schemes studied by Kovačević and Vetterli in [9] could not arise from
standard MRA constructions. More recently, refinability with rational dilations has been
studied by Dai, Feng, and Wang with particular attention paid to the regularity of the
refinable functions and distributions [5].

The goal of this work is to describe frame decompositions of principal shift-invariant
(PSI) spaces using rational dilations that give rise to stable filtering schemes with rational
sampling factors. Moreover, these decompositions will not require the associated scaling
functions to be refinable and will achieve compatibility between rational dilations and
compactly supported functions. Towards this end, the remaining sections are organized
as follows. Preliminary notation, definitions, and results will be introduced in Section 2.
Section 3 provides a brief account of the necessary theory of shift-invariant spaces, while
Section 4 investigates certain frame decompositions of PSI spaces for arbitrary rational
dilations. In Section 5, the decompositions of Section 4 are shown to give rise to stable
filtering schemes. Finally, Section 6 is dedicated to a pair of relatively simple examples
that illustrate the theory of Sections 4 and 5.

2. Preliminaries

Throughout this work,Da : L2(R) → L2(R), a > 1, and T : L2(R) → L2(R)will denote
the unitary dilation and translation operators, respectively, given by

Daf (x) = √
af (ax) and Tf (x) = f (x − 1) .

For f ∈ L1 ∩ L2(R) the Fourier transform of f is given by

f̂ (ξ) =
∫

R

f (x)e−2πixξ dx .

The discrete Fourier transform on �2(Z) will also be useful and for f = {fk}k∈Z is given by

f̂(ξ) =
∑
k∈Z

fke−2πikξ , ξ ∈ T .
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A boldface letter will be used to distinguish an element of �2(Z) from a function in L2(R),
while the choice of Fourier transform will be made clear from context. Downsampling
and upsampling operators on �2(Z) are fundamental to the description of subband filtering
schemes. Let ↓p represent downsampling by p ∈ N, given by (↓p f)k = fpk . Observe that

↓̂p f(ξ) = 1

p

p−1∑
j=0

f̂(ξ/p + j/p) . (2.1)

Similarly, let ↑p f denote upsampling by p ∈ N, defined by

(↑p f)k =
{

fk/p, k ∈ pZ,

0, otherwise ,

from which it follows that
↑̂p f(ξ) = f̂(pξ) . (2.2)

Translation in �2(Z) is described by the operator T : �2(Z) → �2(Z), given by (T f)k =
fk−1, k ∈ Z. As with the Fourier transform the choice of translation will be clear from con-
text.

A collection E = {ej }j∈J in a separable Hilbert space H is a frame for H if there
exist constants 0 < A ≤ B < ∞ such that for all f ∈ H,

A‖f ‖2 ≤
∑
j∈J

∣∣〈f, ej 〉∣∣2 ≤ B‖f ‖2 . (2.3)

The constants A,B are called the lower and upper frame bounds, respectively. If it is
possible to choose A = B the frame is said to be tight. A collection is a Bessel system
when only the right-hand inequality holds. When E is a frame for H it follows that the
frame operator, SE : H → H described by f �→∑j∈J〈f, ej 〉ej , is bounded and satisfies
A ≤ 〈SEf, f 〉 ≤ B for all f ∈ H with ‖f ‖ = 1. The following theorem, equivalent
to the frame algorithm presented in [6] and [10], describes an iterative inversion property
of frames.

Theorem 1 (Frame Algorithm). Let S be a self-adjoint operator acting on a Hilbert
space H and satisfying AI ≤ S ≤ BI , where 0 < A ≤ B < ∞. Fix 0 < γ ≤ 2/(A+ B).
Given x ∈ H, let x0 = 0 and define xn, n ∈ N by

xn = xn−1 + γ S(x − xn−1) .

Then, xn → x in H and ‖x − xn‖ ≤ δn‖x‖, n ∈ N, where δ = max {|γA− 1|, |γB − 1|}.
In order that the frame algorithm provide an efficient means for inverting the frame

operator, it is apparent that the frame should be nearly tight. Moreover, in order to achieve
the optimal convergence rate a precise knowledge of the frame bounds is required. The
conjugate-gradient method, described for frames by Gröchenig in [7], is an improved algo-
rithm for inverting a frame operator that does not require estimates of the frame bounds.

3. Shift-Invariant Spaces

The theory of shift-invariant spaces has been extensively described in the literature, e.g.,
[2, 3, 4, 11], yet it will be convenient to establish a minimal amount of machinery in order
to naturally develop the results of subsequent sections.
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Definition 1. Given� = {φ1, . . . , φn} ∈ L2(R) and p ∈ N the pZ shift-invariant space
generated by � is

V (�;p) = span
{
T pkφ� : 1 ≤ � ≤ n, k ∈ Z

}
.

The collection {T pkφ� : 1 ≤ � ≤ n, k ∈ Z} will be denoted by X(�;p) and the functions
φ1, . . . , φn will be referred to as the generators of V (�;p).

When � consists of just one generating function, the space V (�;p) is termed a
principal shift-invariant (PSI) space. An essential tool in the analysis of shift-invariant
spaces is the bracket product.

Definition 2. Fix p ∈ N. Define the p-bracket product of f, g ∈ L2(R) by[
f̂ , ĝ
]
p
(ξ) =
∑
k∈Z

f̂ (ξ + k/p)ĝ(ξ + k/p) . (3.1)

When p = 1 the subscript p will often be omitted.

The p-bracket product of f, g ∈ L2(R) belongs to L1(Tp), where Tp is identified
with [0, 1

p
). Thus, the Fourier coefficients of [f̂ , ĝ]p are well-defined and〈[

f̂ , ĝ
]
p
,
√
pe2πipkξ

〉
L2(Tp)

= √
p
〈
f, T −pkg

〉
L2(R)

.

If g additionally satisfies [ĝ, ĝ]p ∈ L∞(Tp), then [f̂ , ĝ]p ∈ L2(Tp) and∥∥[f̂ , ĝ]
p

∥∥
2 ≤ ∥∥[ĝ, ĝ]

p

∥∥∞‖f ‖2 .

A short calculation reveals the following relationship between the p-bracket product of two
functions and the ordinary bracket product of their p-dilates,[

D̂pf , D̂pg
]
(ξ) = 1

p

[
f̂ , ĝ
]
p
(ξ/p), ξ ∈ T . (3.2)

The identity (3.2) will be useful in reducing questions about pZ-invariant spaces to equiv-
alent questions about corresponding Z-invariant spaces.

Let � = {φ1, . . . , φn} ⊂ L2(R). The p-spectrum of φ�, 1 ≤ � ≤ n, is defined by

σφ�;p =
{
ξ ∈ [0, 1/p] : [φ̂�, φ̂�]p(ξ) �= 0

}
,

while the p-spectrum of � is defined as

σ�;p =
N⋃
n=1

σφn;p .

Finally, the p-Gramian matrix of � is defined by

G�;p(ξ) = 1

p


[
φ̂1, φ̂1
]
p
(ξ) · · · [φ̂N , φ̂1

]
p
(ξ)

...
. . .

...[
φ̂1, φ̂N
]
p
(ξ) · · · [φ̂N , φ̂N ]p(ξ)

 .
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Notice that the entries of G�;p(ξ) belong to L1(Tp). Let λ(ξ) be the smallest eigenvalue
ofG�;p(ξ),�(ξ) be the largest eigenvalue ofG�;p(ξ), and λ+(ξ) be the smallest nonzero
eigenvalue of G�;p(ξ). The following theorem provides a characterization of frames for
finitely generated p-invariant spaces, which, for p = 1, is due to Ron and Shen [11]. The
generalization to p ∈ N is straightforward, but will be presented for completeness.

Theorem 2 ([11]). Fix p ∈ N and let � = {φ1, . . . , φn} ∈ L2(R). Then X(�;p) is a
frame for V (�;p) if and only if 1/λ+ and � are essentially bounded on σ�;p. If either
condition holds, then

A = ess inf
ξ∈σ�;p

λ+(ξ) and B = ess sup
ξ∈σ�;p

�(ξ) ,

respectively, are the lower and upper frame bounds of X(�;p).
Proof. The p = 1 case is a subset of Theorem 2.3.6 in [11]. If p �= 1, define
� = {ψ1, . . . , ψn} by ψ� = Dpφ�. Notice that f ∈ V (�;p) if and only if Dpf ∈ V (�).
Moreover, X(�) is a frame for V (�) if and only if X(�;p) is a frame for V (�;p) and in
either case the frame bounds are identical. The frame bounds ofV (�) are determined by the
eigenvalues of G�(ξ) over σ� , which, by (3.2), are seen to be identical to the eigenvalues
of G�;p(ξ) over σ�;p.

The following lemma describes conditions under which a principal qZ shift-invariant
space may be recovered as a finitely generated pZ shift-invariant space.

Lemma 1. Let ϕ ∈ L2(R), fix n, p, q ∈ N such that p = nq, and let� = {φ1, . . . φk} ⊆
V (ϕ; q). Suppose that σϕ;q = Tq , then V (�;p) = V (ϕ; q) if and only if the rank of

M(ξ) =
 m1(ξ) · · · mk(ξ)

...
. . .

...

m1
(
ξ + n−1

p

) · · · mk
(
ξ + n−1

p

)


is n for almost every ξ ∈ Tp. Here, mj is the 1/q-periodic function such that φ̂j (ξ) =
mj(ξ)ϕ̂(ξ), 1 ≤ j ≤ k.

Proof. Becausep = nq and eachφk ∈ V (ϕ; q) it is immediate thatV (�;p) ⊆ V (ϕ; q).
To establish the reverse containment let f ∈ V (ϕ; q). Then f̂ (ξ) = mf (ξ)ϕ̂(ξ) for some
1/q-periodic function mf . If f ∈ V (�;p) then, similarly, there must exist 1/p-periodic
functions ηj , 1 ≤ j ≤ k, such that

f̂ (ξ) =
k∑
j=1

ηj (ξ)φ̂j (ξ) =
n∑
j=1

ηj (ξ)mj (ξ)ϕ̂(ξ) .

The period ofmf as well as eachmj is 1/q, while the period of each ηj is 1/p. Hence, by
considering shifts of the form ξ + r/p, 0 ≤ r ≤ n−1, one obtains n independent relations,

mf (ξ + r/p)ϕ̂(ξ + r/p) =
k∑
j=1

ηj (ξ)mj (ξ + r/p)ϕ̂(ξ + r/p), 0 ≤ r ≤ n− 1 ,

each of which must hold for a.e. ξ ∈ R. Since σϕ;q = Tq for each ξ ∈ R there exists
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ξ̃ ∈ ξ + 1
q
Z such that ϕ̂(ξ̃ ) �= 0. Therefore, the above system of equations is equivalent to

mf (ξ + r/p) =
k∑
j=1

ηj (ξ)mj (ξ + r/p), 0 ≤ r ≤ n− 1, ξ ∈ Tp .

This, in turn, is equivalent to the matrix equation mf (ξ)
...

mf
(
ξ + n−1

p

)
 =
 m1(ξ) · · · mk(ξ)

...
. . .

...

m1
(
ξ + n−1

p

) · · · mk
(
ξ + n−1

p

)

η1(ξ)

...

ηk(ξ)

 . (3.3)

The sufficiency of the claimed rank condition follows immediately, since (3.3) will admit
a solution for any f ∈ V (ϕ; q) provided that M(ξ) has rank n almost everywhere on Tp.
To establish the necessity of the condition, consider the n distinct elements of V (ϕ; q), fj ,
defined by

f̂j (ξ) = χ[ j−1
p
,
j
p
)
(ξ) ϕ̂(ξ), 1 ≤ j ≤ n .

The n vector-valued functions corresponding to the left-hand side of (3.3) for these n
functions are linearly independent on Tp and, therefore, if V (�;p) = V (ϕ; q) it follows
from (3.3) that M(ξ) must have rank n almost everywhere on Tp.

4. Wavelet Decomposition of PSI Spaces

Fix a = p/q > 1, where p, q ∈ N are relatively prime and let ϕ ∈ L2(R) such that

0 < A ≤ [ϕ̂, ϕ̂](ξ) ≤ B, a.e. ξ ∈ T , (4.1)

i.e., X(ϕ) is a Riesz basis for V (ϕ). Let S denote the frame operator of X(ϕ), given by

Sf =
∑
k∈Z

〈
f, T kϕ
〉
T kϕ

which under the Fourier transform is equivalent to Ŝf = [f̂ , ϕ̂] ϕ̂.
Following the refinable case, one would attempt to decompose V (ϕ) in terms of the

collection {D−1
a T kϕ : k ∈ Z}. Unfortunately, there is no guarantee that any of the functions

in this collection even belong to V (ϕ), but this obstacle can be overcome by mapping each
function into V (ϕ) via the frame operator S. One could also use the orthogonal projection
onto V (ϕ), but this operation could destroy desirable properties of the generating functions,
e.g., compact support.

Notice that D−1
a T qk = T pkD−1

a , k ∈ Z, and

{
D−1
a T kϕ : k ∈ Z

} = q−1⋃
�=0

{
D−1
a T �+qkϕ : k ∈ Z

} = q−1⋃
�=0

X
(
D−1
a T �ϕ;p) .

Because S commutes with T it follows that the image of X(D−1
a T �ϕ;p) in V (ϕ) under S

is X(SD−1
a T �ϕ;p). In order to simplify notation, let φ� be given by

φ� = D−1
a T �ϕ, 0 ≤ � ≤ q − 1 . (4.2)
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Further, let �0 = {φ0, . . . , φq−1} and consider V (S�0;p) ⊆ V (ϕ). The space V (ϕ) can
be naturally interpreted as thepZ shift-invariant space generated by {T rϕ : 0 ≤ r ≤ p−1}.
This fact provides heuristic evidence that V (S�0;p) is p− q generators short of what will
be required to span V (ϕ), the idea being that these p − q generators will play the role of
wavelets. Let �1 = {D−1

a ψ1, . . . , D
−1
a ψp−q} be a given collection of potential wavelet

generators. The goal is to characterize when these generators fill out�0 to provide a set of
spanning generators for V (ϕ). Towards this end, adopt the notational convention that

φ� = D−1
a ψ�−q+1, q ≤ � ≤ p − 1 , (4.3)

and define � = {φ0, . . . , φp−1}, i.e., � = �0 ∪ �1. The following theorem describes
conditions under which X(S�;p) is a frame for V (ϕ).

Theorem 3. Let ϕ ∈ L2(R) such that (4.1) holds and let � = {φ0, . . . , φp−1} be given
by (4.2) for 0 ≤ � ≤ q − 1 and (4.3) for q ≤ � ≤ p− 1. Moreover, for 0 ≤ � ≤ p− 1, let
m� be the 1-periodic function [φ̂�, ϕ̂] so that Ŝφ� = m�ϕ̂. Define M(ξ) by

M(ξ) = 1√
p

 m0(ξ) · · · mp−1(ξ)
...

. . .
...

m0
(
ξ + p−1

p

) · · · mp−1
(
ξ + p−1

p

)
 (4.4)

and let λM and �M be the smallest and largest eigenvalue functions of M∗M over Tp.
Then X(S�;p) is a frame for V (ϕ) if and only if 1/λM and �M are essentially bounded
on Tp. If either condition holds, let

λA = ess inf
ξ∈Tp

λM(ξ) and λB = ess sup
ξ∈T

�M(ξ) ,

thenX(S�;p) is a frame forV (ϕ)with lower and upper boundsλAAandλBB, respectively.

Proof. Lemma 1 implies that V (S�;p) = V (ϕ) if and only if M(ξ) is nonsingular
for a.e. ξ ∈ Tp, while Theorem 2 describes when X(S�;p) is a frame for V (S�;p). Of
particular interest is the Gramian matrix GS�;p over Tp. Notice that[

Ŝφ�, Ŝφk
]
p
(ξ) = [m�ϕ̂,mkϕ̂]p(ξ)

=
∑
k∈Z

m�(ξ + k/p)mk(ξ + k/p)
∣∣ϕ̂(ξ + k/p)

∣∣2
=
p−1∑
r=0

m�(ξ + r/p)mk(ξ + r/p)
[
ϕ̂, ϕ̂
]
(ξ + r/p) .

Now, let G(ξ), ξ ∈ Tp, be the p × p diagonal matrix such that Gjj (ξ) = [ϕ̂, ϕ̂](ξ + j
p
),

0 ≤ j ≤ p − 1, and observe that

GS�;p(ξ) = M(ξ)∗G(ξ)M(ξ) . (4.5)

Given v ∈ Cp, the above relationship implies

〈GS�;p(ξ)v, v〉 = 〈G(ξ)M(ξ)v,M(ξ)v〉 ,
so it follows that

λM(ξ)A‖v‖2 ≤A‖M(ξ)v‖2 ≤〈GS�;p(ξ)v, v〉≤B‖M(ξ)v‖2 ≤�M(ξ)B‖v‖2 . (4.6)
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Thus, if 1/λM and �M are essentially bounded on Tp, then M(ξ) is necessarily
nonsingular on Tp, implying that V (S�;p) = V (ϕ), and the claimed frame bounds follow
from (4.6).

On the other hand, if X(S�;p) is a frame for V (ϕ) then, by Lemma 1, M(ξ) must
be nonsingular on Tp so (4.5) can be reformulated as

G(ξ) = [M(ξ)∗
]−1

GS�;p(ξ)[M(ξ)]−1 .

Similarly to (4.6), it follows that

Ã
∥∥M(ξ)−1v

∥∥2 ≤ 〈G(ξ)v, v〉 ≤ B̃
∥∥M(ξ)−1v

∥∥2 , (4.7)

where Ã and B̃ are the frame bounds of X(S�;p). Suppose that �M is not essentially
bounded, then there exists a set of positive measure σ ⊆ Tp and v : σ → Cp such that
for ξ ∈ σ , ∥∥M(ξ)−1v(ξ)

∥∥2 < A

B̃
‖v(ξ)‖2 ,

which, by (4.7) implies that

〈G(ξ)v(ξ), v(ξ)〉 ≤ B̃
∥∥M(ξ)−1v(ξ)

∥∥2 < A‖v(ξ)‖2 .

Notice, however, that the hypothesis on [ϕ̂, ϕ̂], given by (4.1), implies for a.e. ξ ∈ σ that

A‖v(ξ)‖2 ≤ 〈G(ξ)v(ξ), v(ξ)〉 ≤ B‖v(ξ)‖2 , (4.8)

which leads to a contradiction. Therefore, �M must be essentially bounded. A similar
argument can be used to prove the essential boundedness of λ−1

M and, given the boundedness
of the eigenvalue functions, the claimed formulas for the frame bounds ofX(S�;p) follow.

5. Stable Filtering Schemes for PSI Spaces

Let�,�0, and�1 be defined as in Section 4 and assume that the hypotheses of Theorem 3
hold. This means that X(S�;p) is a frame for V (ϕ). Given f ∈ V (ϕ) there is a unique
sequence f = {fk}k∈Z such that

f =
∑
k∈Z

fkT kϕ .

Consider the frame operator of X(�0;p) applied to f ,

g0 := SX(�0;p)f =
q−1∑
�=0

∑
k∈Z

〈
f, T pkφ�

〉
T pkφ� =

q−1∑
�=0

∑
k∈Z

[∑
m∈Z

fm
〈
ϕ, T pk−mφ�

〉]
T pkφ� .

Recall that, for 0 ≤ � ≤ q − 1, φ� = D−1T �ϕ, so

g0 =
∑
k∈Z

q−1∑
�=0

[∑
m∈Z

fm
〈
ϕ, T pk−mφ�

〉]
D−1T kq+�ϕ .
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Let {g0,k}k∈Z be defined so that g0 = ∑k∈Z g0,kD
−1T kϕ, then the subsequence

{g0,qk+�}k∈Z is obtained through convolution,

g0,qk+� =
∑
m∈Z

fm
〈
ϕ, T pk−mφ�

〉 = ({fm} ∗ {〈ϕ, T mφ�〉}) (pk) . (5.1)

This can be rephrased using operator notation for �2(Z) as

{g0,k}k∈Z =
q−1∑
�=0

T � ↑q↓p
({fm} ∗ {〈ϕ, T mφ�〉}) .

Similarly, applying the frame operator ofX(D−1ψ�;p) to f leads to functions g�, 1 ≤ � ≤
p − q,

g� := Sψ�;pf =
∑
k∈Z

[∑
m∈Z

fm
〈
ϕ, T pk−mD−1ψ�

〉]
D−1T qkψ�

and letting g� =∑k∈Z g�,kT qkD−1ψ it follows that

g�,k =
(
{fm} ∗ {〈ϕ, T mD−1ψ

〉})
(pk), 1 ≤ � ≤ p − q . (5.2)

This can be restated as

{g�,k}k∈Z =↓p
({fm} ∗ {〈ϕ, T mφ�+q 〉}), 1 ≤ � ≤ p − q ,

under the notational equivalence, D−1ψ� = φ�+q−1, 1 ≤ � ≤ p − q. Thus, the action
of the frame operators for X(�0;p) and X(D−1ψ�;p), 1 ≤ � ≤ p − q, on f ∈ V (ϕ) is
described by a certain subband filtering scheme. There are a number of filters behind this
filtering scheme. The low-pass portion of the filtering scheme, described by (5.1), uses the
q filters m0, . . . , mq−1 which are given by

m�(ξ) =
∑
k∈Z

〈
ϕ, T kφ�, ϕ

〉
e−2πikξ = [φ̂�, ϕ̂](ξ) .

Similarly, the high-pass portion of the filtering scheme, described by (5.2), uses the p − q

filtersmq, . . . , mp−1 wherem� is given bym� = [φ̂�, ϕ̂], q ≤ � ≤ p−1. Thus the filtersm�
used here correspond exactly with those in Theorem 3. Figure 1 depicts the block-diagram
corresponding to this filtering scheme, in which the rectangles represent convolution with
the filter whose Fourier transform is given.

Define the filterbank analysis operator by

F : �2(Z) →
p−q⊕
�=0

�2(Z)

{fk}k∈Z �→ ⊕p−q
�=0 {g�,k}k∈Z ,

which follows the notation used above as well as in Figure 1. The filtering scheme of Figure 1
will be referred to as stable if there exist constants A,B such that for any {fk}k∈Z ∈ �2(Z),

0 < A ‖{fk}k‖2 ≤ ‖F {fk}k‖2 ≤ B ‖{fk}k‖2 ≤ ∞ . (5.3)
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FIGURE 1 Analysis filtering scheme for V (ϕ).

It should be noted that the above inequality can be reformulated as a frame identity for a
specific system of translates in �2(Z); however, it is more natural in this context to describe
the stability of the filtering scheme through (5.3).

Theorem 4. Let �, M, λM, and �M be as in Theorem 3. Then the induced filtering
scheme of Figure 1 is stable if and only if 1/λM and �M are essentially bounded on Tp.
If either condition holds, let

λA = ess inf
ξ∈Tp

λM(ξ) and λB = ess sup
ξ∈Tp

�M(ξ) ,

then the filterbank analysis operator satisfies

λA ‖{fk}k‖2 ≤ ‖F {fk}k‖2 ≤ λB ‖{fk}k‖2 , ∀ {fk}k ∈ �2(Z) .

Proof. Let f = {fk}k and g� = {g�,k}k , where the sequences correspond to those in
Figure 1. For any f ∈ �2(Z), one has

‖F {fk}k‖2 =
p−q∑
�=0

‖g�‖2 =
p−q∑
�=0

∥∥ĝ�∥∥2 .
For 1 ≤ � ≤ p − q, the norm of g� is given by

∥∥ĝ�∥∥2 = 1

p2

∫
Tp

∣∣∣∣∣∣
p−1∑
r=0

m�+q−1(ξ/p + r/p)f̂(ξ/p + r/p)

∣∣∣∣∣∣
2

dξ ,

by (2.1). Similarly, the norm of g0 is given by

∥∥ĝ0
∥∥2 =

q−1∑
�=0

1

p2

∫
Tp

∣∣∣∣∣∣
p−1∑
r=0

m�(ξ/p + r/p)f̂(ξ/p + r/p)

∣∣∣∣∣∣
2

dξ .



Stable Filtering Schemes with Rational Dilations 617

Let vf (ξ) = (f̂(ξ/p + 0/p) · · · f̂(ξ/p + (p − 1)/p)
)T , then

‖F {fk}k‖2 =
p−1∑
�=0

1

p2

∫
Tp

∣∣∣∣∣∣
p−1∑
r=0

m�(ξ/p + r/p)f̂(ξ/p + r/p)

∣∣∣∣∣∣ dξ
= 1

p

∫
Tp

‖M(ξ/p)vf (ξ)‖2 dξ

= 1

p

∫
Tp

〈M∗(ξ/p)M(ξ/p)vf (ξ), vf (ξ)
〉
dξ .

It follows that

λM
p

∫
Tp

‖vf (ξ)‖2 dξ ≤ ‖F {fk}k‖2 ≤ �M
p

∫
Tp

‖vf (ξ)‖2 dξ ,

which, under the change of variables ξ �→ pξ , is equivalent to

λM
∫

T

∣∣f̂(ξ)∣∣2 dξ ≤ ‖F {fk}k‖2 ≤ �M
∫

T

∣∣f̂(ξ)∣∣2 dξ ,
finishing the proof.

Reconstruction after analysis with a stable filterbank is equivalent to reconstruction
from frame coefficients. Consider the synthesis filtering scheme of Figure 2, which de-
scribes the action of the filterbank synthesis operator,

F ∗ :
p−q⊕
�=0

�2(Z) → �2(Z)

⊕p−q
�=0 {g�,k}k∈Z �→ {f̃k}k∈Z

.

FIGURE 2 Synthesis filtering scheme for V (ϕ).
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The image of ⊕p−q
�=0 {g�,k}k∈Z under F ∗ is given by

{
f̃k
}
k
=
q−1∑
�=0

(↑p↓q T −�{g0,k}k
) ∗ {〈φ�, T −kϕ

〉}
k
+
p−1∑
�=q

(↑p {g�−q+1,k}k
) ∗ {〈φ�, T −kϕ

〉}
k
.

Notice that the filters in the synthesis scheme are conjugate to those of the analysis stage. A
routine calculation shows that, when bounded, the operators F and F ∗ are indeed adjoint.
Assume that F and F ∗ are associated with a stable filtering scheme and consider the
composition S = F ∗F : �2(Z) → �2(Z). In this case S satisfies

A‖f‖2 ≤ 〈Sf, f〉 ≤ B‖f‖2, ∀ f ∈ �2(Z) ,

and where A and B are the bounds for F as in (5.3). Therefore, Theorem 1 provides an
iterative inversion of F via the frame algorithm.

6. Examples

The notational conventions of Section 4 shall be observed throughout this section.

6.1 Haar Example

Let a = 3
2 and let ϕ = χ[0,1), the scaling function of the familiar Haar wavelet. Observe that

D−1
a ϕ =
√

2

3
χ[0, 3

2 )
and D−1

a T ϕ =
√

2

3
χ[ 3

2 ,3)
.

Let φ0 = D−1
a ϕ and φ1 = D−1

a T ϕ, which leads to the filters

m0(ξ) = [φ̂0, ϕ̂
]
(ξ) =
√

2

3
+
√

1

6
e−2πiξ ,

m1(ξ) = [φ̂1, ϕ̂
]
(ξ) =
√

1

6
e−2πiξ +

√
2

3
e−2πi2ξ .

Choose φ̂2(ξ) = D̂−1ψ(ξ) = m2(ξ)ϕ̂(ξ), where

m2(ξ) = −
√

1

6
+
√

2

3
e−2πiξ −

√
1

6
e−2πi2ξ .

It is easy to see that m2(ξ) = [φ̂2, ϕ̂]. Moreover, φ2 satisfies φ̂2(0) = 0 and V (φ2; 3) is
perpendicular to V (φ0, φ1; 3). Following Theorem 3, let � = {φ0, φ1, φ2} and consider
the collectionX(S�; 3) as well as the space V (S�; 3) it generates in V (ϕ), where S is the
frame operator ofX(ϕ). (Notice that S is the orthogonal projection onto V (ϕ) in this case.)
Because of the relative simplicity of this example it can be verified directly that X(S�; 3)
is a frame for V (ϕ). Indeed, let f =∑k∈Z fkT kϕ be an arbitrary element of V (ϕ), then a
simple calculation shows that

2∑
�=0

∑
k∈Z

∣∣〈f, T 3kSφ�
〉∣∣2 =
∑
k∈3Z

5

6
f2
k + f2

k+1 + 5

6
f2
k+2 + 1

3
fkfk+2 .
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It follows that
2

3
‖f ‖2 ≤

2∑
�=0

∑
k∈Z

∣∣〈f, T 3kSφ�
〉∣∣2 ≤ ‖f ‖2 ,

i.e., X(S�; 3) is a frame for V (ϕ) with lower bound 2
3 and upper bound 1. It follows from

Theorems 3 and 4 that m0, m1, and m2 induce a stable filtering scheme for the dilation
a = 3

2 . This filtering scheme will satisfy (5.3) with A = 2
3 and B = 1.

6.2 Numerical Example

Again let a = 3
2 and for this example, let ϕ be given by

ϕ(x) =


1
2

(
x + 3

2

)+ 11
10π cos (πx), − 3

2 ≤ x < − 1
2 ,

1
2 + 11

5π cos (πx), − 1
2 ≤ x < 1

2 ,

1
2

( 3
2 − x
)+ 11

10π cos (πx), 1
2 ≤ x ≤ 3

2 ,

0, otherwise ,

which is depicted in Figure 3(a). The bracket product [ϕ̂, ϕ̂] is shown in Figure 3(b) and
indicates that X(ϕ) is a near-tight frame for V (ϕ).

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

(b)

FIGURE 3 (a) The scaling function, ϕ; (b) The bracket product, [ϕ̂, ϕ̂].

As in the first example, set φ0 = D−1
a ϕ and φ1 = D−1

a T ϕ. Define φ2 = D−1ψ by

φ2(x) =



−
√

1
3 , − 3

4 ≤ x < 1
4 ,

2
√

1
3 ,

1
4 ≤ x < 5

4 ,

−
√

1
3 ,

5
4 ≤ x ≤ 9/4 ,

0, otherwise .

Let M(ξ) be defined as in (4.4), wheremk(ξ) = [φ̂k, ϕ̂], 0 ≤ k ≤ 2. In light of Theorem 3,
one need only examine the eigenvalues of M(ξ)∗M(ξ) over T3 to determine whether or
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TABLE 1

The Approximate Fourier Coefficients of mk , 0 ≤ k ≤ 2.
n m0 m1 m2

-5 0.0004694751361

-4 -0.01422253308

-3 0.005361711649 -0.06569968109 0.02865833229

-2 -0.08156253964 0.6918251749 -0.5378201552

-1 0.2199870039 0.6918251749 0.8543343266

0 0.9371725199 -0.06569968109 -0.2000156407

1 0.2199870039 -0.01422253308 -0.1549827389

2 -0.08156253964 0.0004694751361 0.009825875967

3 0.005361711649

notX(S�; 3) is a frame forV (ϕ). The approximate Fourier coefficients of the filtersmk are
given in Table 1, while Figure 4 depicts the function φ2 as well as the eigenvalue functions
λM and �M over T3. This information leads to approximate values λA ≈ 0.59 and
λB ≈ 1.34, suggesting that X(S�; 3) is a frame for V (ϕ). Note that the frame bounds for
X(S�; 3)will differ slightly from λA and λB , due to the fact thatX(ϕ) is not an orthonormal
basis for V (ϕ). This example illustrates how Theorem 3 can be used to generate examples
of stable filtering schemes with rational dilations which do not depend on the refinability
of the scaling function.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
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−0.4
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0.2

0.4
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1

1.2

(a)
0 0.05 0.1 0.15 0.2 0.25 0.3

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

(b)

FIGURE 4 (a) The function, φ2; (b) The eigenvalue functions of M(ξ)∗M(ξ), λM, �M.
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