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ABSTRACT. The Density Theorem for Gabor Frames is one of the fundamental results of time-
frequency analysis. This expository survey attempts to reconstruct the long and very involved history
of this theorem and to present its context and evolution, from the one-dimensional rectangular lattice
setting, to arbitrary lattices in higher dimensions, to irregular Gabor frames, and most recently
beyond the setting of Gabor frames to abstract localized frames. Related fundamental principles in
Gabor analysis are also surveyed, including the Wexler-Raz biorthogonality relations, the Duality
Principle, the Balian-Low Theorem, the Walnut and Janssen representations, and the Homogeneous
Approximation Property. An extended bibliography is included.

1. Introduction

1.1 Background and Motivation

Frames provide robust, basis-like (but generally nonunique) representations of vectors in a
Hilbert space H . The potential redundancy of frames often allows them to be more easily
constructible than bases, and to possess better properties than are achievable using bases.
For example, redundant frames offer more resilience to the effects of noise or to erasures
of frame elements than do bases. Frames were introduced by Duffin and Schaeffer [57] in
the context of nonharmonic Fourier series, and today they have applications in a wide range
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of areas, including, for example, sampling theory [1], operator theory [100], nonlinear
sparse approximation [84], pseudodifferential operators [94], wavelet theory [49], wire-
less communications [171], data transmission with erasures [83], signal processing [24],
and quantum computing [58]. A frame which provides unique representations is called a
Riesz basis.

Gabor frames are a particular type of frame whose elements are simply generated by
time-frequency shifts of a single window function or atom. Specifically, if g ∈ L2(Rd)

is a fixed function and � is a sequence of points in R2d , then the Gabor system or Weyl-
Heisenberg system generated by g and � is the set of time-frequency shifts of g along �
given by

G(g,�) = {MξTxg}(x,ξ)∈� = {
e2πiξ ·t g(t − x)

}
(x,ξ)∈� . (1.1)

Here Tx is the translation operator Txg(t) = g(t − x), Mξ is the modulation operator
Mξg(t) = e2πiξ ·t g(t), and the compositions TxMξ or MξTx are time-frequency shift oper-
ators (illustrated in Figure 1). Often, the index set � is required to possess extra structure,
e.g., it may be a lattice A(Z2d) where A is an invertible matrix, or a rectangular lattice
αZd × βZd . If the Gabor system is a frame then we call it a Gabor frame.

FIGURE 1 A window g and the real part of a time-frequency shift MξTxg of g.

The structure of Gabor frames makes them especially suitable for applications in-
volving time-dependent frequency content. Music is one natural example [56], but in fact
time-frequency is ubiquitous in mathematics, science, and engineering. For example, due to
multipath propagation and Doppler shifts, wireless communications channels can be mod-
eled as superpositions of time-frequency shift operators, which in mathematical terms are
pseudodifferential operators. Gabor frames are a natural tool for analyzing pseudodifferen-
tial operators; for example, see [94, 104] for applications to the theory of pseudodifferential
operators, [170] for applications to mobile communications, [135] for the use of Gabor
frames in pseudodifferential operators in engineering (where they are called time-varying
filters), and [89, Chapter 14] for a wealth of discussion on pseudodifferential operators in
mathematics, engineering, and physics (where they are called quantization rules).

As can be expected from its multitudes of uses, Gabor theory has a long history.
Gröchenig [89, Section 7.5] and Janssen [127] point out that von Neumann [153, p. 406]
claimed (without proof) that, for the Gaussian window ϕ(t) = 21/4e−πt2 and the lattice
� = Z2 (here d = 1), the Gabor system G(ϕ,Z2) is complete inL2(R), i.e., its finite linear
span is dense. Gabor conjectured that every function in L2(R) can actually be represented
in the form

f =
∑
k,n∈Z

ckn(f )MnTkϕ (1.2)
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for some scalars ckn(f ); see [80, Eq. 1.29]. This is one reason why general families G(g,�)
are named in honor of Gabor.

Von Neumann’s claim of completeness was proved in [15, 157], and [5]. However,
completeness of G(ϕ,Z2) is only a weak property: It implies that each f can be approx-
imated arbitrarily well in L2-norm by a finite linear combination of time-frequency shifts
of ϕ, but the coefficients needed in these linear combinations to achieve better and bet-
ter approximations can be entirely unrelated to each other. Completeness does not imply
expansions of the form given in (1.2).

Reading perhaps a bit extra into what von Neumann and Gabor actually wrote, pos-
sibly they expected that the expansions (1.2) would exist with convergence in the norm
of L2 and with scalars uniquely determined by f . In modern terminology, this would say
that G(ϕ,Z2) forms a Schauder basis for L2(R). However, even a Schauder basis is not
sufficient in practice—we also need to know that the expansions in (1.2) are “stable” and
“robust.” At the very least we need unconditional convergence of the basis expansions (i.e.,
independent of ordering), and we need the coefficients ckn(f ) to stably encode the norm
of f , meaning that their �2-norm should form an equivalent norm for L2(R). In modern
terminology, this would be the case if G(ϕ,Z2) forms a Riesz basis for L2(R).

Neither of these can be literally true, for the Gabor system G(ϕ,Z2) is overcomplete—
any single element may be removed and the resulting system will still be complete (though
it becomes incomplete if two elements are removed). But even with one element removed,
the system forms neither a Schauder basis nor a Riesz basis, cf. [73, p. 168]. In fact, Janssen
proved in [118] that Gabor’s conjecture that each f ∈ L2(Rd) has an expansion of the form
in (1.2) is true, but he also showed that the series converges only in the sense of tempered
distributions—not in the norm of L2—and that the coefficients ckn may grow with k and n
(see also [151]).

Today we realize that there simply are no “good” Gabor Riesz bases G(g, αZd×βZd)
for L2(Rd). Indeed, the Balian-Low Theorem, which we will discuss in Section 3.7 below,
implies that if G(g, αZd × βZd) is a Riesz basis then the window g must be very poorly
concentrated in the time-frequency plane. In particular, without good time-frequency con-
centration, such a basis cannot be used to analyze properties of functions other than the
L2-norm.

On the other hand, for some (but not all) applications we may be able to forego the
luxury of unique expansions. Daubechies, Grossmann, and Morlet revitalized interest in
frame theory when they proved in [51] that for each α, β > 0 which satisfy αβ < 1 there
do exist some functions g which are very well-localized in the time-frequency plane (e.g.,
g ∈ C∞

c (R)) such that G(g, αZ × βZ) will form a frame but not a Riesz basis for L2(R).
Consequently, for such windows we have for each f ∈ L2(R) that there exist coefficients
ckn(f ) such that

f =
∑
k,n∈Z

ckn(f )MβnTαkg , (1.3)

with unconditional convergence of the series inL2-norm, with a prescribed formula for these
coefficients ckn(f ), and with the �2-norm of the coefficients ckn(f ) forming an equivalent
norm for L2(R). The disadvantage is that the coefficients ckn(f ) need not be unique, but
often this is not an issue. Furthermore, Feichtinger and Gröchenig proved that a Gabor
frame whose window is sufficiently well-localized in the time-frequency plane actually
provides frame expansions not merely for L2(Rd) but for an entire associated family of
Banach function spaces whose norms quantify time-frequency concentration. These are
the modulation spaces that are described in Section 2.3 below.
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Thus, redundant Gabor frames provide us with useful tools for many applications.
Still, many questions are left unanswered. When will we have a Gabor frame—how can
we recognize which g and which index sets � will actually yield Gabor systems that are
frames? Can we determine necessary or sufficient conditions for a Gabor system to be
complete, a frame, a Riesz basis, or a Riesz sequence (a Riesz basis for its closed span
within L2(Rd))? Can these conditions be formulated to depend only on g or only on�? If
the window of a Gabor frame is well-localized in the time-frequency plane, will the dual
frame also have an appropriate localization? Under what conditions will the Gabor frame
expansions extend beyond the Hilbert space setting to the associated modulation spaces?
These and other types of questions will be considered in this expository survey article.

1.2 The Density Theorem

The Density Theorem for Gabor Frames is one of the fundamental results in time-frequency
analysis. It is not just one theorem, as it has evolved over time, from a result for the rigid
setting of rectangular lattice Gabor systems in one dimension, to more general lattice systems
in higher dimensions, then to arbitrary irregular Gabor systems, and most recently beyond
the Gabor setting to abstract localized frames. The purpose of this survey is to discuss the
history, context, and evolution of the Density Theorem. This history is long and intricate,
and we attempt to present it as best that we have been able to reconstruct it, and to include
all relevant original references that we are aware of. No new results appear here; rather
our goal is to bring together in one place a comprehensive survey of results on Gabor
theory related to or inspired by the theme of the Density Theorem (with a natural, and we
hope forgivable, bias towards topics which the author has been most directly involved in).
Daubechies article [48] and book [49], and most especially Gröchenig’s text [89] have been
invaluable resources in composing this article, but we have attempted wherever possible to
verify all statements with the original sources. We also give references to survey articles
on various topics where the reader can obtain further information; in particular, Janssen’s
survey [127] contains many references related to the early development of Gabor theory.
All inaccuracies or omissions in this article are solely the fault of the author.

The Density Theorem essentially states that necessary conditions for a Gabor system
G(g,�) to be complete, a frame, a Riesz basis, or a Riesz sequence can be formulated in
terms of the index set� alone—independently of the window g. In particular,� cannot be
spread “too sparsely” throughout the time-frequency plane R2d , yet conversely cannot be
“locally too dense” (in the sense that there must exist a finite maximum number of points
of � in any unit cube). Sparseness is quantified for a lattice system by the volume of the
lattice, while in the irregular setting the notions of Beurling density provide a means of
quantifying the average density of �. These concepts are defined precisely in the body of
the article.

In addition to (and mostly prior to) the Density Theorem for Gabor frames, there
is also a rich literature on closely related ideas and results in the settings of sampling
and interpolation of band-limited functions, density conditions for systems of windowed
exponentials, and sampling in the Bargmann-Fock space of entire functions. Indeed, the
precise formulation of the Nyquist density is due to H. Landau [143, 144], in the context
of sampling and interpolation of band-limited functions. We will not attempt to relate this
additional history and context here, but refer to Seip’s text [167] for additional information.
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1.3 Outline

This article is organized as follows. Section 2 presents some background and basic facts on
frames and Gabor systems. We include background on the modulation and amalgam spaces,
although these spaces enter the discussion only at certain points. In Section 3, we discuss
the Density Theorem for the case of rectangular lattice Gabor systems in one dimension.
Historically, this is the setting of the first results on the Density Theorem. In Section 4
we discuss the Density Theorem for arbitrary lattices in higher dimensions, including the
special case of symplectic lattices. Section 5 is devoted to irregular Gabor systems, and
Section 6 discusses the implications for Gabor systems of the recent results on the Density
Theorem for the setting of abstract localized frames. Finally, we make a few remarks in
Section 7 concerning density results for wavelet systems.

2. Notation and Basic Facts

For background on Gabor systems, frames, Riesz bases, and the modulation and amalgam
spaces we recommend Gröchenig’s text [89] and also [41, 189, 49, 113]. A brief review of
basic facts and terminology is provided below.

Throughout, we use a Fourier transform normalized as f̂ (ξ) = ∫
f (x) e−2πiξ ·x dx.

2.1 Frames and Riesz Bases

Definition/Facts 1. Let F = {fi}i∈N be a sequence in a Hilbert space H .

(a) F is complete (or total or fundamental) if its finite linear span is dense inH . That is, for
eachf ∈ H and eachN ∈ N there exist scalars {cN,i(f )}i∈N such that

∑N
i=1 cN,i(f )fi → f

as N → ∞.

(b) F is minimal if there exists a sequence {f̃i}i∈N in H that is biorthogonal to F , i.e.,
〈fi, f̃j 〉 = δij for i, j ∈ N. Equivalently, {fi}i∈N is minimal if fj /∈ span{fi}i �=j for each
j ∈ N. A sequence that is both minimal and complete is called exact. In this case, the
biorthogonal sequence is unique.

(c) {fi}i∈N is a Schauder basis if for each f ∈ H there exist unique scalars ci(f ) such
that f = ∑∞

i=1 ci(f ) fi . All Schauder bases are exact, but not all exact sequences are
Schauder bases.

(d) F is a Bessel sequence in H if there exists a constant B > 0, called a Bessel bound,
such that

∀ f ∈ H,
∞∑
i=1

|〈f, fi〉|2 ≤ B ‖f ‖2 . (2.1)

In this case, the analysis map or coefficient map Cf = {〈f, fi〉}i∈N is a bounded map of
H into �2, with ‖C‖2 ≤ B. Its adjoint is the synthesis map C∗ : �2 → H , and is given by
C∗({ci}i∈N) = ∑

cifi (this series converges unconditionally in the norm of H ).

(e) F is a frame for H if there exist constants A, B > 0, called frame bounds, such that

∀ f ∈ H, A ‖f ‖2 ≤
∞∑
i=1

|〈f, fi〉|2 ≤ B ‖f ‖2 . (2.2)
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The frame operator Sf = C∗Cf = ∑∞
i=1〈f, fi〉 fi is a bounded, positive, and invertible

mapping of H onto itself. The canonical dual frame is F̃ = {f̃i}i∈N = {S−1(fi)}i∈N. For
each f ∈ H we have the frame expansions

f =
∞∑
i=1

〈f, fi〉 f̃i =
∞∑
i=1

〈
f, f̃i

〉
fi , (2.3)

and these series converge unconditionally in the norm of H . Thus all frames are complete,
but not all complete sequences are frames. All frames are norm-bounded above, with
‖fi‖2 ≤ B for all i.

(f) We say that a frame F is tight if we can take A = B (in this case, S = AI ). A frame
is Parseval if we can take A = B = 1 (in this case, S = I ). A Parseval frame is self-dual,
i.e., f̃i = fi .

(g) If F is a frame, then F	 = {S−1/2(fi)}i∈N is a Parseval frame, called the canonical
Parseval frame associated with F .

(h) If F is a frame, then the following statements are equivalent:

(i) F is the image of an orthonormal basis under a continuous, invertible linear map
of H onto itself,

(ii) F is a Schauder basis,

(iii) the coefficients in (2.3) are unique for each f ∈ H ,

(iv) F and its canonical dual frame F̃ are biorthogonal.

In this case, F is called a Riesz basis.

(i) If F is a frame that is not a Riesz basis, then there exists a nonempty subset J ⊂ N such
that F = {fi}i∈N\J is a frame for H [57]. The excess of the frame is

e(F) = sup{|J | : {fi}i∈N\J is complete} .
A frame has finite excess if and only if it is the union of a Riesz basis and a finite set [116].
If e(F) = ∞, there need not exist an infinite J1 ⊂ I such that {fi}i∈N\J1 is a frame.
The frames for which this is true were characterized in [10]. In particular, the following
statements are equivalent (note that 0 ≤ 〈fi, f̃i〉 ≤ 1 for all i since 〈fi, f̃i〉 = ‖S−1/2(fi)‖2

and {S−1/2(fi)}i∈N is a Parseval frame).

(i) There exists an infinite J1 ⊂ I such that {fi}i∈N\J1 is a frame for H .

(ii) There exists an infinite subset J2 ⊂ I and a constant L > 0 such that for each
n ∈ J2 we have that {fi}i �=n is a frame for H with lower frame bound L.

(iii) There exists an infinite subset J3 ⊂ I such that supi∈J3
〈fi, f̃i〉 < 1.

(j) A sequence F = {fi}i∈I that is a frame for its closed linear span in H is called a frame
sequence. In this case, the canonical dual frame sequence is its canonical dual frame within
the closed subspace span(F). Likewise, a Riesz sequence is a sequence that forms a Riesz
basis for its closed linear span in H .

2.2 Gabor Systems

We will use the following terminology.

Definition 1. Let g ∈ L2(R) be given, and let � be a sequence of points in R2d . Let
G(g,�) be the Gabor system defined in (1.1).
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(a) If � = A(Z2d) where A is an invertible 2d × 2d matrix, then we say that
G(g,A(Z2d)) is a lattice Gabor system. (Thus, for us a lattice will always mean a
full-rank lattice.)

(b) If � = αZd × βZd where α, β > 0, then we say that G(g, αZd × βZd) is a
rectangular lattice Gabor system.

(c) If � is not a lattice, then G(g,�) is an irregular Gabor system.

(d) If G(g,�) is a frame for L2(Rd), then we call it a Gabor frame.

(e) If G(g,�) is a Riesz basis for L2(Rd), then we say that it is a Gabor Riesz basis.

(f) If G(g,�) is a Riesz sequence in L2(Rd), i.e., it is a Riesz basis for its closed
linear span in L2(Rd), then we say that it is a Gabor Riesz sequence.

We note that the order of translation and modulation in the definition of a Gabor
system given by (1.1) can be interchanged if desired, since MξTx = e2πix·ξ TxMξ , and
multiplication by scalars of unit modulus does not affect the definitions given above.

For the case of a rectangular lattice Gabor frame G(g, αZd × βZd), it is easy to see
that the frame operator S commutes with the translation operators Tαk and the modulation
operators Mβn when k, n ∈ Zd . As a consequence, the canonical dual frame is another
Gabor frame, namely, it is G(g̃, αZd×βZd)where g̃ = S−1g is the canonical dual window.
Similarly, the canonical Parseval frame is G(g	, αZd × βZd) where g	 = S−1/2g.

In general, the dual frame of an irregular Gabor frame need not itself be a Gabor
frame, see Section 6.3 below.

2.3 The STFT and the Modulation Spaces

Time-frequency concentration is quantified by the norms of the modulation spaces. The
modulation spaces were invented and extensively investigated by Feichtinger, with some
of the main references being [61, 64, 65, 67], [89, Chapters 11-13]. They are now recog-
nized as the appropriate function spaces for time-frequency analysis, and occur naturally in
mathematical problems involving time-frequency shifts MξTx . For an interesting personal
historical account of the development of the modulation spaces, including the Feichtinger
algebra in particular, see Feichtinger’s recent article [63].

Definition/Facts 2 (STFT). The short-time Fourier transform (STFT) of a function or
tempered distribution f with respect to a window g is

Vgf (x, ξ) = 〈
f,MξTxg

〉 =
∫

Rd
f (t) e−2πiξ ·t g(t − x) dt, (x, ξ) ∈ R2d . (2.4)

The STFT is a time-frequency or phase-space representation of f . If g is restricted to lie
in the Schwartz class S(Rd) then Vgf is a uniformly continuous function on R2d for any
tempered distribution f ∈ S ′(Rd). If g ∈ L2(Rd) then f 
→ Vgf is a multiple of an
isometry of L2(Rd) into L2(R2d). In particular, if ‖g‖2 = 1 then

‖f ‖2 = ‖Vgf ‖2 =
( ∫

Rd

∫
Rd

|Vgf (x, ξ)|2 dx dξ
)1/2

.

Definition/Facts 3 (Modulation Spaces). Given a weight w : Rd → (0,∞), the modu-
lation space Mp,q

w (Rd) consists of all tempered distributions f for which the norm

‖f ‖Mp,q
w

= ‖Vgf ‖Lp,qw =
( ∫

Rd

( ∫
Rd

|Vgf (x, ξ)|p w(x, ξ)p dx
)q/p

dξ

)1/q



120 Christopher Heil

is finite, with the usual adjustments if p or q is infinite. We writeMp,q ifw = 1, andMp if
p = q andw = 1. With some appropriate conditions on the weight, eachMp,q

w is a Banach
space, and its definition is independent of the choice of window g. That is, any nonzero
function g in the Schwartz class S, or indeed any nonzero function in the modulation space
M1, may be used to defineMp,q

w , with each choice of g determining the same space and an
equivalent norm for the space.

The modulation space that will mostly appear in this article is the Feichtinger algebra
M1 (which is also often denoted by S0). Roughly, membership in M1 corresponds to the
requirement that g, ĝ ∈ L1(Rd). Precisely, it simply means that the STFT of g is integrable
over the time-frequency plane:

‖f ‖M1 = ‖Vgf ‖1 =
∫

Rd

∫
Rd

|Vgf (x, ξ)| dx dξ .
A fundamental fact proved by Feichtinger and Gröchenig is that Gabor frames with

windows in M1 (or its weighted counterparts) yield frame expansions valid beyond the
Hilbert space setting. Specifically, for the unweighted case (w = 1)we have the following,
see [89, Chapters 11-13] for details.

Theorem 1. Assume that G(g, αZd × βZd) is a frame for L2(Rd), with window g ∈
M1(Rd). Then the following statements hold.

(a) The dual window g̃ belongs to M1(Rd).

(b) For every 1 ≤ p, q ≤ ∞ we have for all f ∈ Mp,q(Rd) that

f =
∑
k,n∈Zd

〈
f,MβnTαkg̃

〉
MβnTαkg =

∑
k,n∈Zd

〈f,MβnTαkg〉MβnTαkg̃ ,

where these series converge unconditionally in the norm of Mp,q(Rd) (weak∗
convergence if p = ∞ or q = ∞).

(c) For every 1 ≤ p, q ≤ ∞ the Gabor frame coefficients provide an equivalent norm
for the modulation space Mp,q(Rd), i.e.,

|||f |||Mp,q =
( ∑
n∈Zd

( ∑
k∈Zd

|〈f,MβnTαkg〉|p
)q/p)1/q

(2.5)

is an equivalent norm for Mp,q(Rd).

Thus, G(g, αZd × βZd) is a Banach frame for Mp,q in the sense of [86, 36]—but
even more importantly, the frame expansions are simultaneously convergent in the entire
range of modulation spaces Mp,q .

The fact that if g ∈ M1 then g̃ ∈ M1 as well was proved for the case that αβ is
rational by Feichtinger and Gröchenig in [67]. Gröchenig and Leinert [97] proved this
result for arbitrary αβ, using deep results on symmetric Banach algebras (see [74] for an
exposition of this proof). A different proof based on the concept of localized frames was
given in [13]. That proof also extends to irregular Gabor frames, whose index set is not a
lattice, and whose dual frame will not itself be a Gabor frame.

2.4 Wiener Amalgam Spaces

An amalgam space combines a local criterion for membership with a global criterion.
The first amalgam spaces were introduced by Wiener in his study of generalized harmonic
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analysis [186, 187]. A comprehensive general theory of amalgam spaces on locally compact
groups was introduced and extensively studied by Feichtinger, e.g., [60, 64, 65]. For
an expository introduction to Wiener amalgams on R with extensive references to the
original literature, we refer to [105]. For our purposes, we will need the following particular
amalgam spaces.

Definition 2. Let Q = [0, 1]d . Given 1 ≤ p, q ≤ ∞, the Wiener amalgam space
W(Lp, �q) = W(Lp, �q)(Rd) consists of all functions F : Rd → C for which

‖F‖W(Lp,�q ) =
( ∑
k∈Zd

‖F · χQ+k‖qp
)1/q

< ∞ ,

with the usual adjustment if q = ∞.

W(Lp, �q) is a Banach space, and the space

W
(C, �q) = {

F ∈ W (
L∞, �q

) : F is continuous
}

is a closed subspace of W(L∞, �q). We have the inclusions

Lp
(
Rd

) = W
(
Lp, �p

) ⊂ W
(
L1, �p

)
.

We also have the following useful inclusions relating the Feichtinger algebra and the amal-
gam spaces:

M1(Rd
) ⊂ W

(C, �1) ⊂ C0
(
Rd

) ∩ L1(Rd
)
.

One importance use of the Wiener amalgam spaces in Gabor theory is the following
result that a Gabor system using any window in W(L∞, �1) will automatically be a Bessel
sequence, see [89, Proposition 6.2.2] (and compare Proposition 12 below for an analogous
result for irregular Gabor systems). This fact is related to the Walnut representation that is
discussed further in Section 3.9.

Proposition 1. If g ∈ W(L∞, �1) and α, β > 0, then G(g, αZd × βZd) is a Bessel
sequence in L2(Rd).

To point out one interesting but easy consequence, we obtain the following perturba-
tion theorem [35, Theorem 3.2].

Corollary 1. Assume G(g, αZd × βZd) is a Gabor frame for L2(Rd) with frame bounds
A, B. If h ∈ L2(Rd) and ‖g − h‖W(L∞,�1) is small enough, then G(h, αZd × βZd) is a
frame for L2(Rd).

Proof. The Bessel bound for G(g−h, αZd×βZd) is directly related to ‖g−h‖W(L∞,�1),
see [35]. Therefore, if ‖g − h‖W(L∞,�1) is small enough then G(g − h, αZd × βZd) will
have a Bessel bound R < A. Hence, for f ∈ L2(Rd) we have

( ∑
k,n∈Zd

|〈f,MβnTαkh〉|2
)1/2

≥
( ∑
k,n∈Zd

|〈f,MβnTαkg〉|2
)1/2

−
( ∑
k,n∈Zd

|〈f,MβnTαk(g − h)〉|2
)1/2

≥ A1/2 ‖f ‖2 − R1/2 ‖f ‖2 .
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Thus G(h, αZd × βZd) has a lower frame bound of (A1/2 − R1/2)2 > 0, and the upper
frame bound is similar.

Another important fact is that the STFT defined in (2.4) with respect to a window
from M1 belongs to an amalgam space on R2d , as follows [89, Theorem 12.2.1].

Theorem 2. If g ∈ M1(Rd) and 1 ≤ p ≤ ∞, then Vgf ∈ W(C, �p)(R2d) for all
f ∈ Mp(Rd). Further, there exists a C > 0 such that

∀ f ∈ Mp
(
Rd

)
, ‖Vgf ‖W(C,�p) ≤ C ‖f ‖Mp .

In particular, for any f ∈ L2(Rd) = M2(Rd) we have Vgf ∈ W(C, �2)(R2d).

3. Rectangular Lattice Gabor Systems

Now we turn to the Density Theorem itself. We begin with rectangular lattices in dimension
d = 1. In this case, the Density Theorem is as follows.

Theorem 3 (Density Theorem for Rectangular Lattices). Let g ∈ L2(R) and let � =
αZ × βZ where α, β > 0. Then the following statements hold.

(a) If αβ > 1, then G(g, αZ × βZ) is incomplete in L2(R).
(b) If G(g, αZ × βZ) is a frame for L2(R), then 0 < αβ ≤ 1.

(c) G(g, αZ × βZ) is a Riesz basis for L2(R) if and only if it is a frame for L2(R)
and αβ = 1.

(d) If G(g, αZ × βZ) is a Riesz sequence in L2(R), then αβ ≥ 1.

Note that the necessary conditions in Theorem 3 depend only on the lattice αZ × βZ
and not on g. Further, only the value of the product αβ is relevant because by applying the
unitary dilation operator Drg(t) = r1/2g(rt), we see that G(g, αZ × βZ) is complete, a
frame, a Riesz basis, or a Riesz sequence if and only if the same is true of G(Drg, αr Z×rβZ).
The dilation operator is one example of a metaplectic transform, discussed in more detail
in Section 4.1 below.

For a textbook account of the Density Theorem, see [89, Section 7.5]. As we will
see in Section 5, the upper and lower Beurling densities of the lattice � = αZ × βZ are
D+(�) = D−(�) = 1

αβ
. Thus 1

αβ
is the density of the lattice. The density 1

αβ
= 1 is

sometimes called the critical density or the Nyquist density.
We will discuss each part of the Density Theorem in turn in the following sections.

3.1 Incompleteness

Part (a) of Theorem 3 was proved for arbitrary values of αβ by Baggett [6], and for the
case that the product αβ is rational by Daubechies [48], with both results appearing in
1990. The operators MβnTαk corresponding to the rectangular lattice αZ × βZ generate
a von Neumann algebra, and Baggett’s proof made use of this; specifically, he used the
representation theory of the discrete Heisenberg group. Daubechies’ proof relied on the
Zak transform, which is another “algebraic” tool in the sense that it is dependent on the
fact that the index set is a rectangular lattice. The Zak transform is defined precisely in
Section 3.7. For an exposition of Baggett’s operator-theoretic proof, see [74].
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Daubechies also noted in [48] that a proof for general αβ can be inferred from results
of Rieffel [159] on coupling constants of C∗-algebras.1 Another proof of part (a) based on
von Neumann algebras was given by Daubechies, H. Landau, and Z. Landau in [54].

A different proof of part (a) was given by Ramanathan and Steger in [158]. Their proof
did not use operator theory or the machinery of von Neumann algebras but instead was based
on their proof that Gabor frames satisfy a certain Homogeneous Approximation Property
(HAP). While both regular and irregular Gabor frames satisfy this HAP, the extra algebraic
structure in the lattice case allowed Ramanathan and Steger to prove that a rectangular
lattice Gabor system is incomplete when αβ > 1, whereas for irregular frames they proved
only that the Gabor system is not a frame when the density of � is too small. The HAP is
discussed in more detail in Section 5.3 below.

Gabardo and Han [78] used their operator-theoretic approach to derive a proof of
part (a) that also extends to certain more general non-Gabor settings, namely, what they call
group-like unitary systems. Bownik and Rzeszotnik gave a proof of part (c) in [27] based
on the use of the spectral function rather than the machinery of von Neumann algebras.

3.2 Frames

Since every frame is complete, part (b) of the Density Theorem is of course a consequence
of part (a), but we state it separately to emphasize the contrast with the case of irregular
Gabor systems (see Theorem 13 below).

For the rectangular lattice case, a “simple” proof of part (b) was given by Janssen [121].
This proof relies on the algebraic structure of the rectangular lattice αZ × βZ and the
remarkable Wexler-Raz biorthogonality relations for Gabor frames G(g, αZ × βZ). A
special case of the Wexler-Raz relations is the following.

Theorem 4 (Wexler-Raz Biorthogonality Relations). Let g ∈ L2(R) and α, β > 0 be
such that G(g, αZ × βZ) is a frame for L2(R). Let G(g̃, αZ × βZ) be the canonical dual
frame. Then G(g, 1

β
Z × 1

α
Z) and G(g̃, 1

β
Z × 1

α
Z) are biorthogonal, specifically,

1

αβ

〈
Mn

α
T k
β
g,Mn′

α

T k′
β

g̃
〉 = δkk′ δnn′ . (3.1)

The Wexler-Raz relations can actually be formulated much more generally, e.g., for
duals other than the canonical dual, and even the frame hypothesis can be relaxed. In
fact, the Wexler-Raz relations can be used to characterize all the dual windows, see [72],
[89, Theorem 7.3.1]. The Wexler-Raz relations were introduced in [185]; for more details
see [121, 125, 127], the exposition in [89, Section 7.5], and the rigorous proofs in [122, 54].

In spirit, the Wexler-Raz relations are an infinite-dimensional version of the familiar
finite-dimensional fact that if the columns of anm× n complex matrix A are linearly inde-
pendent, then the rows of A must span Cn, and conversely. An additional interesting point
is the appearance in the Wexler-Raz relations of the adjoint lattice 1

β
Z × 1

α
Z. The adjoint

of an arbitrary lattice will play an important role in the discussion in Section 4.4 below.
If we accept the Wexler-Raz relations, then we can easily derive parts of the Density

Theorem, as follows. Suppose that G(g, αZ × βZ) is a frame for L2(R), and let S be the

1For this reason, part (a) is sometimes credited to Rieffel. However, no part of the Density Theorem is
explicitly stated in [159].
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corresponding frame operator. Then the dual window g̃ is given by g̃ = S−1g, and so
Equation (3.1) implies that

αβ = 〈
g, g̃

〉 = 〈
g, S−1g

〉 = 〈
S−1/2g, S−1/2g

〉 = ∥∥S−1/2g
∥∥2

2 .

However, G(S−1/2g, αZ × βZ) is the canonical Parseval frame associated with
G(g, αZ×βZ), and therefore it has frame boundsA = B = 1. SinceB1/2 is an upper bound
to the norms of a frame’s elements and since g �= 0, we must have 0 < ‖S−1/2g‖2 ≤ 1.
Therefore 0 < αβ ≤ 1. This proves part (b) of Theorem 3.

On the other hand, if G(g, αZ × βZ) is a Riesz basis for L2(R) then
G(S−1/2g, αZ × βZ) is both a Parseval frame and a basis, and hence is an orthonormal
basis for L2(R). Therefore αβ = ‖S−1/2g‖2 = 1, which proves part (c) of Theorem 3.

Part (d) of Theorem 3, dealing with Riesz sequences, is also related to the Wexler-
Raz relations, and more specifically to a result known as the Duality Principle. We will
discuss the Duality Principle in Section 3.4 below, and show there how to derive part (d) of
Theorem 3 from it.

In addition to these remarks, we note that Balan gave a direct proof of part (b)
of the Density Theorem in [8] and furthermore extended the Density Theorem to Gabor
superframes for L2(R) × · · · × L2(R) (superframes are quite distinct from Gabor frames
for L2(R) with multiple generators, i.e., frames of the form G(g1,�1) ∪ · · · ∪ G(gr ,�r)).
In 1999, Janssen gave a “simple” (one page) proof of parts (b) and (d) that does not use
the Wexler-Raz relations. This proof is available electronically in [130] (note that what
we call a Gabor Riesz sequence is there referred to as a Riesz-Gabor basis); see also [122]
and [125]. Another straightforward proof of part (b) was given by Han and Wang in [101];
furthermore, their proof extends to certain non-rectangular lattices in higher dimensions.

3.3 Riesz Bases

In part (c) of the Density Theorem, the fact that if G(g, αZ × βZ) is a frame and αβ = 1
then G(g, αZ ×βZ)must be a Riesz basis is easy to prove using the Zak transform (see the
details in Section 3.7 below). In the 1989 research-tutorial article [113], it was stated as a
fact that if G(g, αZ × βZ) is a Riesz basis then αβ = 1. However, while that was folklore
at the time, no proof actually existed then. The first proof was given by Ramanathan and
Steger in [158], along with a much more general result for irregular Gabor frames (see
Theorem 13 below). As pointed out above, there are today “straightforward” proofs of
part (c).

Unfortunately, there do not exist any “good” Gabor Riesz bases G(g, αZ ×βZ). The
Balian-Low Theorem, which we discuss in Section 3.7 below, implies that the window g of
a Gabor Riesz basis G(g, αZ × βZ) must be poorly localized in the time-frequency plane.
Consequently, redundant Gabor frames (αβ < 1) are most often used in practice.

3.4 The Duality Principle

The Wexler-Raz relations and parts (b), (c), and (d) of the Density Theorem are closely
related to another fundamental principle for Gabor systems known as the Duality Principle.
A restricted form of the Duality Principle is as follows.

Theorem 5 (Duality Principle). Let g ∈ L2(R) and let � = αZ × βZ where α, β > 0.
Then the following statements are equivalent.
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(a) G(g, αZ × βZ) is a frame for L2(R), with frame bounds A, B.

(b) G(g, 1
β

Z × 1
α

Z) is a Riesz sequence in L2(R), with frame bounds αβA, αβB (as
a frame for its closed span).

The Duality Principle leads immediately to a proof of part (d) of Theorem 3. For, if
we interchange the roles of α, β and 1

β
, 1
α

in Theorem 5, we see that if G(g, αZ × βZ) is

a Riesz sequence in L2(R), then G(g, 1
β

Z × 1
α

Z) must be a frame for L2(R). But then by

Theorem 3(b), we must have 1
β

1
α

≤ 1, which implies αβ ≥ 1.
Independent and essentially simultaneous proofs of Theorem 5 were published by

Daubechies, H. Landau, and Z. Landau [54], Janssen [122], and Ron and Shen [162],2 and
we also point out the related article [179] which contains the special case of the Theorem 5
corresponding to the assumption that G(g, αZ × βZ) is a tight frame. Interestingly, the
techniques used in these three articles to prove the Duality Principle are completely different.

Theorem 5 is sometimes referred to as the Ron-Shen Duality Principle. Ron and
Shen obtained some other equivalences in addition to those given in Theorem 5, e.g., for
the cases where G(g, αZ × βZ) is assumed to be a Bessel sequence or a frame sequence.
Their formulation of the Duality Principle is also valid for lattice Gabor frames G(g,�) in
higher dimensions where � is separable, i.e., � has the form � = A(Zd)× B(Zd) where
A, B are d× d invertible matrices. Lattices in higher dimensions will be discussed in more
detail in Section 4.4.

For more on the Duality Principle see [125] and [89, Section 7.4]. Recent extensions
of the Duality Principle beyond the Gabor setting appear in [38].

3.5 Existence

The Density Theorem only provides necessary conditions for existence, and these are clearly
not sufficient in general. For example, G(χ [0,1/2],Z2) is an orthogonal sequence in L2(R)
but it is not complete, yet we do have αβ = 1 for this system.

Daubechies [48, p. 979] proved that if g ∈ L2(R) and α, β > 0 are given, then in
addition to the requirement αβ ≤ 1, another basic necessary condition for G(g, αZ × βZ)
to be a frame is that there exist constants C, D such that

0 < C ≤
∑
k∈Z

|g(t − αk)|2 ≤ D < ∞ a.e. ; (3.2)

see also [113, Proposition 4.1.4]. If g is compactly supported with its support contained
in an interval of length 1/β, then (3.2) is also sufficient for G(g, αZ × βZ) to be a frame,
cf. [51] or [113, Theorem 4.1.2]. In general, however, (3.2) is not a sufficient condition.

In the one-dimensional, rectangular lattice setting, the “Painless Nonorthogonal Ex-
pansions” of Daubechies, Grossmann, and Meyer [51] show that whenever 0 < αβ ≤ 1,
we can construct a g ∈ L2(R) supported in [0, 1/β] such that (3.2) holds, and hence
G(g, αZ × βZ) forms a frame for L2(R). When αβ < 1, we can even do this with
g ∈ C∞

c (R). For αβ = 1, if we let g be the characteristic function of the interval [0, α],

2Note that the notation in [162] differs from the notation of this article. In particular, what we call a “frame
sequence” is called a “frame” in [162], and what we call a “frame” is there called a “fundamental frame.”
Additionally, what [162] terms a “Riesz basis” is what we call a “Riesz sequence,” and an “orthonormal
basis” in [162] is for us an “orthonormal sequence.”
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then G(g, αZ × 1
α

Z) is an orthonormal basis for L2(R). The fact that the construction al-
lows much “nicer” functions when αβ < 1 is again a reflection of the Balian-Low Theorem,
which is discussed in more detail later.

Thus, the question of whether for each α, β > 0 there exists a g ∈ L2(R) such that
G(g, αZ × βZ) is a frame for L2(R) is easily answered—at least in the rectangular lattice
setting that we are considering here. The analogous question for general lattices in higher
dimensions is much more difficult, see Section 4.2 below.

On the other hand, the existence question becomes extremely difficult if we instead
ask: Given g ∈ L2(R), for which α, β will G(g, αZ×βZ) be a frame? Currently, there are
only a few functions for which a complete answer is known. Of course, if G(g, αZ × βZ)
is a frame, then we can easily obtain infinitely many other related frames:

• G(MωTxg, αZ × βZ) is a frame for all x, ω ∈ R;

• G(Drg, αr Z × rβZ) is a frame for all r > 0;

• G(ĝ, βZ × αZ) is a frame, where ĝ is the Fourier transform of g.

Aside from modifications such as these, the following windows are the only ones for which
a complete characterization of frame properties is currently known, as far as we are aware
at the time of writing (the functions are normalized so that their L2-norm is 1).

(a) For the Gaussian function ϕ(t) = 21/4e−πt2 , Daubechies and Grossmann conjec-
tured3 [48, p. 981] that G(ϕ, αZ × βZ) is a frame if and only if 0 < αβ < 1 [50].
Evidence supporting this conjecture was given in [48], and the full conjecture was
proved by Lyubarskii [150] and by Seip and Wallstén [164, 168] (see also the
simple proof and additional references in [121]). The proof relies on the fact that
the Bargmann transform of f ∈ L2(R) is an analytic function, and in fact the
results of Lyubarskii and Seip-Wallstén are formulated in terms of the density of
sets of sampling and interpolation in the Bargmann-Fock space (see Appendix A
for a discussion of the relationship between Gabor systems and the Bargmann-
Fock space). The Bargmann transform is closely related to the short-time Fourier
transform Vϕf using a Gaussian window, e.g., see [89, Section 3.4]. This char-
acterization also extends to irregular Gabor frames generated by the Gaussian
window, see Section 5.6 below.

At the critical density, G(ϕ, αZ × 1
α

Z) is not a frame, and is overcomplete
by exactly one element. If any single element is removed, the resulting system
is exact, but is not a Schauder basis. This is proved in [73, p. 168], and is also
related to results of Kazarian that if g ∈ L2[0, 1] and F ⊂ Z is finite, then
{g(x) e2πinx}n∈Z\F can never be a Schauder basis for Lp[0, 1], see [133, 134].
Convergence and summability of Gabor expansions based on modifications of
G(ϕ, αZ × 1

α
Z) are extensively studied in [151] (see also [118]).

(b) Janssen and Strohmer [131] proved that for the hyperbolic secant window g(t) =
(π/2)1/2 (cosh πt)−1, G(g, αZ × βZ) is a frame if and only if 0 < αβ < 1. The
proof for this and the next two examples relies on the use of the Zak transform,
which is defined in Section 3.7.

3Daubechies further conjectured in [48] that if g ∈ L2(R) is such that both g and ĝ are everywhere
positive, then G(ϕ, αZ × βZ) will be a frame if and only if 0 < αβ < 1. However, this was shown to
be false in [124].
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(c) The two-sided exponential g(t) = e−|t | generates a frame if and only if 0 <

αβ < 1 [129]. Taking the Fourier transform, we see that the same is true for the
window g(t) = 2/(1 + 4π2t2).

(d) The one-sided exponential g(t) = 21/2e−t χ [0,∞)(t) generates a frame if and
only if 0 < αβ ≤ 1. In particular, if αβ = 1 then this system is a Riesz basis
for L2(R). Taking the Fourier transform, we see that the same is true for the
window g(t) = 21/2/(1 + 2πit).

The characterization problem is very difficult even for the seemingly “simple” case
of a characteristic function. The precise set of (α, β) for which G(χ [0,1], αZ × βZ) is a
frame for L2(R) is not known, and, surprisingly, it appears to be an extremely complicated
set, called “Janssen’s tie” [128]. Also, it has been shown that a solution to the problem of
characterizing those sets E ⊂ R such that G(χE,Z2) is a frame would imply a solution to
a longstanding open problem of Littlewood [37].

On the other hand, if g is reasonably “nice” (specifically, g belongs to the Wiener
amalgam space W(L∞, �1) defined in Section 2.4), and if g fulfills the necessary condi-
tion (3.2) for some α, then for all sufficiently small β it will be the case that G(g, αZ×βZ)
will be a frame. This was proved by Walnut [181] (with a proof also appearing in [113]),
extending a weaker result proved by Daubechies in [48]; see also [89, Theorem 6.5.1].

It is not true in general that for an arbitrary nonzero g ∈ L2(R), the Gabor system
G(g, αZ × βZ) will be a frame if α, β are chosen small enough [69]. However, if we
impose further restrictions (namely that g lie in the modulation space M1, which is a
subspace of W(L∞, �1)), then this is indeed the case. This follows from the abstract
coorbit theory of Feichtinger and Gröchenig, see [64, Theorem 6.1], [86, Theorem 5.2],
[66]. This result was also proved by Bittner and Chui [25] assuming the weaker hypotheses
that g, ĝ ∈ W(L∞, �1); see also [89, p. 126].

Feichtinger and Kaiblinger proved in [70] that if g ∈ M1, then the set of (α, β)
such that G(g, αZ × βZ) is a frame is an open (but not necessarily connected!) subset of
R2, compare also [72, Theorem 3.6.9]. This fact is especially interesting because as we
vary (α, β) from (α1, β1) to (α2, β2), the corresponding indices in the sets α1Z × β1Z and
α2Z × β2Z become arbitrarily far apart; thus this result is not just a “local perturbation”
theorem, as is considered in such articles as [180, 59, 44, 40, 173].

3.6 Excess

If G(g, αZ × βZ) is a Gabor frame and αβ < 1, then we know by the Density Theorem
that this frame is not a Riesz basis. Duffin and Schaeffer [57] showed in their original
frame article that any frame that is not a Riesz basis is overcomplete in the sense that at
least finitely many elements may be removed yet still be a frame. A crude measure of this
overcompleteness or redundancy is the excess of the frame, which is the supremum of the
cardinality of those subsets which can be removed yet still leave a complete set. It was
shown in [10] that every Gabor frame G(g, αZ × βZ) with αβ < 1 has infinite excess.
Further, it was shown there that there exists an infinite subset J of αZ × βZ such that
G(g, (αZ × βZ)\J ) is still a frame (this is not a consequence of infinite excess). However,
the subset constructed in [10] is extremely sparse (specifically, it has Beurling density zero).
In [13] it is shown that if g has some concentration in the time-frequency plane (specifically,
g lies in the modulation space M1), then a subset of positive density may be removed yet
still leave a frame (see Section 6.2).
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3.7 The Balian-Low Theorem

The Density Theorem implies that a Gabor system G(g, αZ × βZ) can form a Riesz basis
for L2(R) only at the critical density (i.e., αβ = 1). However, the Balian-Low Theorem
(BLT), which we will discuss in this section, implies that the window g of any Gabor
Riesz basis G(g, αZ × βZ) must either not be smooth or must decay poorly at infinity,
or, put in another terminology, g must have poor joint time-frequency localization in the
time-frequency plane.

We will prove one variant of the BLT in this section and discuss the Zak transform,
which is a fundamental tool for analyzing Gabor frames, especially at the critical density.
For historical comments and additional discussion of the BLT we refer to [23].

Gröchenig [89, p. 148] states that the Zak transform was first introduced by
Gelfand [81]. As with many useful notions, it has been rediscovered many times and
goes by a variety of names. Weil [184] defined a Zak transform for locally compact abelian
groups, and this transform is often called the Weil-Brezin map in representation theory and
abstract harmonic analysis, e.g., [163, 4]. Zak rediscovered this transform, which he called
the k-q transform, in his work on quantum mechanics, e.g., [190, 5]. The terminology “Zak
transform” has become customary in applied mathematics and signal processing. For more
information, we refer to Janssen’s influential article [119] and survey [120], or Gröchenig’s
text [89, Chapter 8].

One definition of the Zak transform on L2(R) is as follows. For simplicity, we will
consider only the case α = β = 1 (which we can always reduce to whenever αβ = 1
by making a change of variables). Let χ = χ [0,1) be the characteristic function of the
interval [0, 1). Then the Gabor system G(χ,Z2) = {MnTkχ}k,n∈Z is an orthonormal basis
for L2(R). Now consider

E = {enk}k,n∈Z, where enk(t, ω) = e2πint e−2πikω ,

which forms an orthonormal basis for L2([0, 1)2). The Zak transform is the unitary map
Z : L2(R) → L2([0, 1)2) defined by the condition that Z map the orthonormal basis
G(χ,Z2) to the orthonormal basis E . That is, Z is the unique extension toL2(R) of the rule

Z(MnTkχ) = enk, k, n ∈ Z .

Explicitly, it can be shown that for f ∈ L2(R),

Zf (t, ω) =
∑
k∈Z

f (t − k) e2πikω, (t, ω) ∈ [0, 1)2 , (3.3)

where this series converges in the norm of L2([0, 1)2). The important fact for us is that for
a general Gabor system G(g,Z2) with α = β = 1, we have

Z(MkTng)(t, ω) = (enk · Zg)(t, ω) = enk(t, ω)Zg(t, ω) .

Thus, the Zak transform diagonalizes time-frequency shifts. Since Z is unitary, G(g,Z2)

is therefore complete, a frame, a Riesz basis, or a Riesz sequence in L2(R) if and only if
the same is true of {enk · Zg}k,n∈Z in L2([0, 1)2). But since this latter system has the form
of an orthonormal basis with each element multiplied by the single function Zg, it is easy
to prove the following (e.g., see [113, Theorem 4.3.3]).

Proposition 2. Let g ∈ L2(R) be given, and set α = β = 1. Then the following
statements hold.



History and Evolution of the Density Theorem for Gabor Frames 129

(a) G(g,Z2) is complete in L2(R) if and only if Zg �= 0 a.e.

(b) G(g,Z2) is minimal if and only if 1/Zg ∈ L2([0, 1)2). In this case, G(g,Z2)

is exact.

(c) The following statements are equivalent.

(i) G(g,Z2) is a frame for L2(R).

(ii) There exist A, B > 0 such that A ≤ |Zg|2 ≤ B a.e.

(iii) G(g,Z2) is a Riesz basis for L2(R).

In case these hold, the dual window g̃ satisfies Zg̃ = 1/Zg.

We can derive some further interesting results from this. OnceZf (t, ω) is defined on
the domain [0, 1)2, Equation (3.3) implies that the domain of Zf (t, ω) naturally extends to
all of R2 and that Zf satisfies the quasiperiodicity relations

Zf (t, ω + n) = Zf (t, ω) ,

Zf (t + n, ω) = e2πinω Zf (t, ω) ,

for n ∈ Z. Consequently, |Zf (t, ω)| is 1-periodic in each variable. Yet Zf (t, ω) is not
itself 1-periodic, and the behavior of a quasiperiodic function is quite different than that of
a periodic function. In particular, we have the following fact.

Proposition 3. If f ∈ L2(R) and Zf is continuous on R2, then Zf has a zero in [0, 1)2.

While seemingly mysterious at first glance, Janssen gives an elegant demonstration
in [130] of how Proposition 3 follows naturally from the definition of quasiperiodicity. See
also the extension of Proposition 3 to locally compact abelian groups in [132].

Comparing Proposition 3 to Proposition 2(c), we see that if Zg is continuous, then
G(g,Z2) cannot be a frame or Riesz basis for L2(R). Yet Zg is continuous for most “nice”
functions. In particular, this is the case for all functions contained in the Wiener amalgam
space W(C, �1) defined in Section 2.4.

Theorem 6 (Amalgam Balian-Low Theorem). Choose g ∈ L2(R) and set α = β = 1.
If G(g,Z2) is a Riesz basis for L2(R), then g, ĝ /∈ W(C, �1).

Proof. If g ∈ W(C, L1), then the series defining Zg in (3.3) converges not only in
L2-norm, but uniformly on compact subsets of R2. As each term in the series is continuous
on R2, we conclude that Zg is continuous on R2, and hence G(g,Z2) cannot be a Riesz
basis. The same argument applies to ĝ since the Fourier transform is a unitary transform
that maps G(g,Z2) onto G(ĝ,Z2).

The Amalgam Balian-Low Theorem was first proved in [103, Corollary 7.5.3] and
published in [23]. It is so-named because it is qualitatively similar to the original Balian-
Low Theorem, which we will call the Classical Balian-Low Theorem. The Classical BLT
is much more difficult to prove than the Amalgam BLT. It was formulated independently
by Balian [14] and by Low [149] for the case of orthonormal bases. A complete proof was
given by Coifman, Daubechies, and Semmes [48], who also extended the Classical BLT
to the case of Riesz bases. Battle [17] provided an elegant and entirely new proof based
on the canonical commutation relations of quantum mechanics and thus demonstrated the
intimate connection of the Classical BLT to the classical uncertainty principle. Battle’s
proof was adapted by Daubechies and Janssen [53] to provide another proof of the Classical
BLT for Riesz bases (as well as obtaining further results for exact Gabor systems at the
critical density).
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Theorem 7 (Classical Balian-Low Theorem). Choose g ∈ L2(R) and set α = β = 1. If
G(g,Z2) is a Riesz basis for L2(R), then

( ∫
R

|tg(t)|2 dt
) ( ∫

R

∣∣ξ ĝ(ξ)∣∣2
dξ

)
= ∞ .

It is shown in [23] that the Classical and Amalgam BLTs are independent, i.e., neither
result implies the other. Further, Example 3.4 in [23] shows that the assumption that(∫ |tg(t)|2 dt) (∫ |ξ ĝ(ξ)|2 dξ) < ∞ does not imply that Zg is continuous.

Qualitatively, both versions of the BLT imply that if G(g,Z2) is a Riesz basis for
L2(R), then either g is not smooth or g decays very slowly. By a change of variables, these
theorems apply to all Gabor systems at the critical density (αβ = 1). Consequently, by the
Density Theorem, “useful” Gabor frames are necessarily redundant (αβ < 1). For more
details on Gabor systems at the critical density, see [129].

A BLT for Gabor frames on locally compact abelian groups was considered in [88].
An “approximate BLT” for αβ close to 1 was obtained in [72, Theorem 3.6.13]. Balian-
Low Theorems with respect to other uncertainty principles are the subject of [20, 22, 21].
Gabardo and Han consider the BLT for frame and Riesz sequences and show its relation to
the existence of a unique dual frame in [79]. Results for the BLT with respect to general
lattices in higher dimensions appear in [67, 93, 19].

The Zak transform can also be used to study Gabor systems that are not at the crit-
ical density. The Zak transform is easiest to employ when αβ = 1/N , but Zibulski and
Zeevi [193] have shown how the Zak transform can employed whenever αβ is rational,
cf. [26, 123].

3.8 Wilson Bases

Despite the fact that the Balian-Low Theorems imply that no “good” Gabor Riesz bases
G(g, αZ × βZ) exist, there does exist a remarkable construction known as Wilson bases
which provide non-Gabor but still time-frequency-related Riesz or orthonormal bases for
L2(R) that are generated by smooth windows. Wilson bases were first suggested by Wilson
in [188]. The fact that they provide orthonormal bases for L2(R) was rigorously proved
by Daubechies, Jaffard, and Journé [52], with further results by Auscher [2]. Feichtinger,
Gröchenig, and Walnut proved that Wilson bases are unconditional bases for all of the
modulation spaces [68] (see also [182]). We also mention that the local sine and cosine
bases of Coifman and Meyer [45, 3] include many examples of Wilson and wavelet bases,
and that the lapped transforms of Malvar [152] are closely related.

The construction of a Wilson basis starts with a “twice redundant” Gabor frame
G(g, 1

2 Z × Z) whose window satisfies the symmetry condition g(t) = g(−t), then forms
linear combinations of elements, namely, MnTk

2
g ± M−nT k

2
g, and finally “magically”

extracts a subset which forms a Riesz basis for L2(R). Moreover, if the original Gabor
frame was Parseval, then the resulting Wilson basis is orthonormal. Further, if the window
g has sufficient joint concentration in the time-frequency plane, namely g ∈ M1(R), then a
Wilson basis will be an unconditional basis not only for L2(R), but simultaneously for all
the modulation spacesMp,q (and there are corresponding analogues of these statements for
the weighted modulation spaces), similar to Theorem 1 for the case of Gabor frames. We
refer to the original literature, the exposition in [23, Section 4], and Sections 8.5 and 12.3
of [89] for more details. In higher dimensions, Wilson bases were constructed for Gabor
systems on lattices of volume 1

2 in [141].
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3.9 The Walnut Representation

We have already seen several fundamental principles in Gabor analysis, including the
Wexler-Raz biorthogonality relations, the Duality Principle, and the Balian-Low Theorem.
We briefly mention in this and the following section two additional fundamental princi-
ples. These are the Janssen Representation [122] and the Walnut Representation [181]. In
particular, the Janssen Representation can be used to prove the Duality Principle and the
Wexler-Raz relations.

If G(g, αZ × βZ) is a Gabor frame for L2(R), recall that the Gabor frame operator
is the positive, invertible operator S on L2(R) defined by

Sf =
∑
k,n∈Z

〈f,MβnTαkg〉MβnTαkg , f ∈ L2(R) . (3.4)

The Walnut representation reformulates the frame operator solely in terms of trans-
lations of g and f [181]. In fact, we have the following more general result [89, Theo-
rem 6.3.2].

Theorem 8 (Walnut Representation). If g, γ ∈ W(L∞, �1) and α, β > 0, then the
following statements hold.

(a) The operator

Sg,γ f =
∑
k,n∈Z

〈f,MβnTαkg〉MβnTαkγ, f ∈ L2(R) , (3.5)

is a bounded map of L2(R) into itself.

(b) The autocorrelation functions

Gn =
∑
k∈Z

Tαk+ n
β
ḡ · Tαkγ

are bounded α-periodic functions, and furthermore
∑
n∈Z‖Gn‖∞ < ∞.

(c) Sg,γ can be written

Sg,γ f = 1

β

∑
n∈Z

Gn · T n
β
f . (3.6)

A weak version of the Walnut representation is implicit in the proof of Theorems 2.6
and 2.7 of [48]. Specifically, assuming some complicated-looking hypotheses, Daubechies
shows that (in our notation)

∑
k,n |〈f,MβnTαkg〉|2 = 1

β

∑
n

∫
Gn(t) f (t− n

β
) f (t) dt ; note

that this is exactly 〈Sg,gf, f 〉.
Walnut’s improvements and extensive analysis appears in [181]. Some of those results

are also included in the survey [113]. A detailed examination of the Walnut representation
is made in [34].

In Theorem 1 we saw that if g ∈ M1(R) then Gabor frame expansions converge
unconditionally in every modulation space Mp,q(R). Walnut proved in [181] a different
extension of Gabor frame expansions. If particular, he proved that if g ∈ W(L∞, �1) then
the frame operator S = Sg,g extends to a bounded mapping of Lp(R) into itself for each
1 ≤ p ≤ ∞, and also to a bounded mapping ofW(L∞, �1) into itself (along with weighted
versions of these results). This is interesting because of the fact that Walnut’s proof for the
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case p = 2 relies on the fact that the exponentials {β1/2e2πiβnt }n∈Z form an orthonormal
basis for L2[0, 1/β]. For 1 < p < ∞, p �= 2, this family is still a Schauder basis for
Lp[0, 1/β], but it is a conditional basis, i.e., order of summation is important. Further, it is
not a basis whenp = 1 orp = ∞. Extensions of Walnut’s results were obtained in [95, 96],
namely, it is shown there that if g ∈ W(L∞, �1), then Gabor frame expansions converge
conditionally in every amalgam space W(Lp, �q) and that the Walnut representation (3.6)
converges in the norm of W(Lp, �q) (along with weighted versions).

3.10 The Janssen Representation

Janssen’s representation, which is also known as the Dual Lattice Representation, realizes
the frame operator as a superposition of time-frequency shift operators along the adjoint
lattice 1

β
Z × 1

α
Z. A weak form was proved by Tolimieri and Orr [179], and the stronger

forms were independently introduced in [122] and in [54] (where it is called the Wexler-
Raz identity). We refer to [67] or [89, Section 7.2] for additional details on the Janssen
representation, and to [127] for a survey on Gabor frame operator representations.

Theorem 9 (Janssen Representation). Let α, β > 0 be given, and assume that g,
γ ∈ L2(R) satisfy Condition A’, i.e.,

∑
k,n∈Z

|〈γ,Mn
β
T k
α
g〉| < ∞ .

Then the operator Sg,γ defined in (3.5) can be written

Sg,γ = 1

αβ

∑
k,n∈Z

〈γ,Mn
α
T k
β
g〉Mn

α
T k
β
,

with convergence of this series in operator norm.

In particular, if G(g, αZd × βZd) is a frame and G(g̃, αZd × βZd) is its canonical
dual frame, then Sg,g̃ = I , the identity operator. As a consequence,

1

αβ

〈
g̃,M n

α
T k
β
g
〉 = δn0 δk0 .

This (correctly) suggests that the Janssen representation is a fundamental idea underlying
the Wexler-Raz biorthogonality relations and the Duality Principle, see [122, p. 408].

Condition A’ (which for the case g = γ is called Condition A) was introduced by
Tolimieri and Orr in [179]. It is a technical condition whose validity is difficult to verify
in general. On the other hand, it is satisfied for all α, β if g, γ ∈ M1. Condition A’ and
membership inW(L∞, �1) are distinct requirements, but both are satisfied for all functions
g, γ ∈ M1. As Gröchenig remarks [89, p. 256], Condition A’ and the amalgam space
W(L∞, �1) each provide suitable window classes for L2-theory, but for wider applicability
and robustness the appropriate window class is M1 (and its weighted counterparts).

To give one brief intuition for the Janssen representation, recall that the frame opera-
tor S defined in (3.4) commutes with the lattice shifts Tα andMβ . Hence, S commutes with
all operators in the von Neumann algebra Mα,β generated by Tα andMβ , i.e., S belongs to
the commutant M′

α,β of Mα,β (we refer to [178] for a general reference on von Neumann
algebras). However, T 1

β
and M 1

α
also commute with Tα and Mβ , i.e., T 1

β
, M 1

α
∈ M′

α,β , so
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we have the inclusion M 1
β
, 1
α

⊂ M′
α,β . In fact, equality holds. According to Folland [74],

this fact is a special case of a theorem of Takesaki, see [177, Theorem 4]. One proof of this
equality appears in [54, App. 6.1]. In any case, it follows that S ∈ M 1

β
, 1
α

= M′
α,β , and

hence should be representable in terms of the operators T k
β

and Mn
α

. The specific form of

this representation is Theorem 9.

4. Lattice Gabor Systems

All of the results mentioned so far for rectangular lattice Gabor systems in dimension
d = 1 can be generalized to rectangular lattice Gabor systems G(g, αZd×βZd) in arbitrary
dimensions.

However, as we shall see in the following sections, care must be taken when consid-
ering other lattices, even for the seemingly simple case of more general rectangular lattices
such as

� =
d∏
i=1

αiZ ×
d∏
i=1

βiZ . (4.1)

For example, let ϕ(t) = 21/4e−πt2 be the one-dimensional Gaussian, and let


(t) = 2d/4e−πt ·t =
d∏
i=1

ϕ(ti)

be the d-dimensional Gaussian. Consider 
 with respect to a lattice � of the form given
in (4.1). Since 
 is a tensor product of one-dimensional Gaussians, a first expectation
may be that the existence result for the one-dimensional Gaussian generalizes to say that
G(
,�) is a frame whenever the volume vol(�) = α1 · · ·αd ·β1 · · ·βd of the lattice satisfies
0 < vol(�) ≤ 1. However, this is false.

In fact, because 
 and � are separable (tensor products), G(
,�) is complete in
L2(Rd) if and only if G(ϕ, αiZ × βiZ) is complete in L2(R) for i = 1, . . . , d. However,
we know that this requires αiβi ≤ 1 for each i. Hence, if 0 < vol(�) < 1 but αiβi > 1
for some i, then G(
,�) will be incomplete. Thus we can create lattices with arbitrarily
small volumes such that G(
,�) is incomplete.

Despite these facts for the Gaussian window, the extension of the Density Theorem
to general windows and arbitrary lattices in higher dimensions is formulated in terms of
the volume of the lattice. In particular, even for a lattice � of the form given in (4.1),
we will see that there exists some g ∈ L2(Rd) such that G(g,�) is a frame if and only
if 0 < vol(�) ≤ 1.

For a general lattice A(Z2d) in higher dimensions, its volume is defined to be

vol
(
A

(
Z2d)) = | det(A)| .

Thus, the volume of a lattice is the area of a fundamental domain for the lattice. It is this
quantity that will distinguish between the various cases in the Density Theorem.

Before discussing the extension of the Density Theorem to general lattice Gabor
systems in higher dimensions, we begin with the special case of symplectic lattices.
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4.1 Symplectic Lattices

The natural first setting to look for an extension of the Density Theorem to higher dimensions
would seem to be the special case of Gabor systems G(g,�)where� is a symplectic lattice.
Symplectic lattices are closely related to metaplectic transforms and the representation
theory of the Heisenberg group, and we refer to [89, Section 9.4] for a detailed exposition;
see also the short discussion in [102].

A symplectic lattice is a lattice of the form

� = αA
(
Z2d) ,

where A is a symplectic matrix and α > 0. Every symplectic matrix satisfies det(A) = 1
and hence a symplectic lattice � = αA(Z2d) has volume α2d . For d = 1, every lattice is
symplectic, but this is not the case when d > 1.

The precise definition of a symplectic lattice is given below, but more important
for us than the actual definition is the following fact, cf. [89, Proposition 9.4.4]. Here
T = {z ∈ C : |z| = 1} is the unit circle in the complex plane.

Proposition 4. Let � = αA(Z2d) be a symplectic lattice. Then there exists a unitary
operator µA : L2(Rd) → L2(Rd) and a function cA : αZ2d → T such that

G(g,�) = {
cA(αk, αn)µA

(
MαnTαkh

)}
k,n∈Zd , (4.2)

where h = µ−1
A (g).

The operator µA is called a metaplectic transform.
If the scalars cA(αk, αn)were to be removed, then the rightmost set in (4.2) would be

µA
(G(h, αZ2d)

)
, which is the image of a rectangular lattice Gabor system under a unitary

map. Yet although the right-hand set in (4.2) is not precisely a Gabor system, since the
property of being complete, a frame, a Riesz basis, or a Riesz sequence is preserved both
by unitary mappings and by multiplication of the elements by scalars of unit modulus, we
obtain the following.

Proposition 5. Let � = αA(Z2d) be a symplectic lattice, and let g ∈ L2(Rd). Then
G(g,�) is complete, a frame, a Riesz basis, or a Riesz sequence in L2(Rd) if and only if
the same is true of G(

h, αZ2d
)
, where h = µ−1

A (g).

Since det(A) = 1, the volume of the rectangular latticeαZ2d and the symplectic lattice
αA(Z2d) are equal. Hence, the Density Theorem immediately extends from rectangular
lattices to all symplectic lattices, with the volume of the symplectic lattice being the quantity
that distinguishes between the various cases in the Density Theorem. Additionally, we also
immediately conclude that for each symplectic lattice� with 0 < vol(�) ≤ 1, there exists
a g ∈ L2(Rd) such that G(g,�) is a frame for L2(Rd).

Example 1. Consider d = 1 and let A be the shear matrix A =
[

1 0
r 1

]
. Set

� = αA
(
Z2) = {(αk, αn+ rαk)}k,n∈Z .

Let µA : L2(R) → L2(R) be multiplication by the “chirp” eπirt
2
, i.e.,

µAf (t) = eπirt
2
f (t) .
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Then µA is a unitary mapping of L2(R) onto itself. Given g ∈ L2(R), define h(t) =
µ−1
A g(t) = e−πirt2 g(t). A direct calculation shows that

Mαn+αrkTαkg = e2πir(αk)2 µA(MαnTαkh) .

Hence, if we define cA(x, ξ) = eπirx
2
, then

G(
g, αA

(
Z2)) = {Mαn+rαkTαkg}k,n∈Z = {cA(αk, βn)µA(MαnTαkh)}k,n∈Z .

Therefore, we can see directly for this case that G(g, αA(Z2)) is complete, a frame, a Riesz
basis, or a Riesz sequence if and only if the same is true of G(h, αZ2).

Remark 1. If we were to define a Gabor system using time-frequency shifts better
matched to the structure of the Heisenberg group, specifically,

G(g,�) = {ρ(x, ξ)g}(x,ξ)∈�, where ρ(x, ξ) = eπix·ξ TxMξ ,

then the constants cA(αk, αn) in (4.2) all become identically 1. Hence, with this definition,
if � = αA(Z2d) is a symplectic lattice then

G(g,�) = G
(
g, αA

(
Z2d)) = µA

(
G

(
h, αZ2d))

is the image of a rectangular lattice Gabor system under the metaplectic transform µA.

The precise definition of a symplectic lattice is as follows.

Definition 3 (Symplectic Lattices).

(a) The symplectic form on R2d is
[
z, z′

] = x′ · ξ − x · ξ ′, z = (x, ξ), z′ = (
x′, ξ ′) ∈ R2d .

(b) A 2d × 2d invertible matrix A is a symplectic matrix if it preserves the sym-
plectic form on R2d , i.e., if [Az,Az′] = [z, z′] for z, z′ ∈ R2d . The symplectic
group Sp(d) is the group of all 2d × 2d symplectic matrices.

(c) We say that a lattice � is a symplectic lattice if � = αA(Z2d) where A is a
symplectic matrix and α > 0.

If we write a 2d × 2d matrix in block form asM =
[
A B

C D

]
, thenM is symplectic

if and only if AC∗ = A∗C, BD∗ = B∗D, and A∗D − C∗B = I [89, Lemma 9.4.1].

In particular, if M =
[
A 0
0 D

]
is block diagonal, then M is symplectic if and only

if A∗D = I . Thus, a lattice with the rectangular form given in (4.1) is symplectic if
and only if the matrix diag(α1, . . . , αd, β1, . . . , βd) is a multiple of a symplectic matrix,
which requires that all the products αiβi be equal. Consequently, all rectangular lattices
αZd × βZd are symplectic, which is one reason they are so convenient for Gabor analysis
in higher dimensions.

4.2 General Lattices

As we have seen, the extension of the Density Theorem to symplectic lattices is immediate.
Many other results in Gabor analysis also extend easily to symplectic lattices, but often it is
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unknown if extensions to general lattices exist. For example, it is known that the Classical
Balian-Low Theorem for the special case of orthonormal bases extends to all lattices. Yet
for general Riesz bases, the Classical BLT is only known to hold in full generality for
symplectic lattices [93, 19]. A weak version of the Classical BLT is known to hold for
nonsymplectic lattices, but currently it is not known if any version of the Amalgam BLT
extends to non-rectangular lattices, symplectic or otherwise.

Therefore, it is quite interesting that the Density Theorem does extend to completely
arbitrary lattices, and furthermore that for each lattice with volume at most 1, there exists
a Gabor frame corresponding to that lattice.

Theorem 10 (Density Theorem for Lattices). Let g ∈ L2(Rd) and let � = A(Z2d)

where A is an invertible 2d × 2d matrix. Then the following statements hold.

(a) If vol(A) > 1, then G(g,A(Z2d)) is incomplete in L2(Rd).

(b) If G(g,A(Z2d)) is a frame for L2(Rd), then 0 < vol(A) ≤ 1.

(c) G(g,A(Z2d)) is a Riesz basis for L2(Rd) if and only if it is a frame for L2(Rd)

and vol(A) = 1.

(d) If G(g,A(Z2d)) is a Riesz sequence in L2(Rd), then vol(A) ≥ 1.

Parts (b) and (c) of the Density Theorem are immediate consequences of Ramanathan
and Steger’s results on the Density Theorem for irregular Gabor frames in [158] (see Sec-
tion 5 below). More precisely, [158] applies to d = 1; the extension to higher dimensions
was made in [42]. For the case of separable lattices, part (b) was also obtained in [162].

Parts (b), (c), and (d) are consequences of the extension by Feichtinger and Kozek
of the Wexler-Raz relations and the Duality Principle to arbitrary lattices [71], which we
discuss in more detail below.

For the case of separable lattices, part (a) was proved by Han and Wang in [101], and
a different proof was given by Gabardo and Han in [78]. However, it appears that part (a)
of the Density Theorem was only established in its full generality recently, by Bekka [18].
Moreover, Bekka provided a positive answer to the existence question for arbitrary lattices.
We discuss this in more detail next.

4.3 Existence for General Lattices

As noted at the beginning of Section 4, there exist lattices � with arbitrarily small volume
such that the Gabor system G(
,�) generated by the Gaussian function
 is incomplete. If
� is symplectic, say � = αA(Z2d), then, as described above, we can take any rectangular
lattice Gabor frame G(g, αZ2d) (which is easy to construct via the “Painless Nonorthogonal
Expansions” approach), and use a metaplectic transform to obtain an h such that G(h,�)
will be a frame. However, if� is not symplectic, then it is not at all obvious whether there
will exist some g such that G(g,�) is a frame.

Thus, it is quite interesting that Bekka proved in [18] that for any lattice � with
0 < vol(�) ≤ 1 there will exist some window g such that G(g,�) will be a frame.
Specifically, Bekka proved the following, cf. [18, Theorem 4]; note that this is only a
special case of the more general results that are derived in that article.4

4Bekka himself attributes this result to Feichtinger and Kozek [71], but while that article does contain
many results for Gabor systems on arbitrary lattices, it does not contain Theorem 11.
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Theorem 11 (Existence of Lattice Gabor Frames). Let � = A(Z2d) be a lattice in R2d .
Then the following statements are equivalent.

(a) vol(�) ≤ 1.

(b) There exists a g ∈ L2(Rd) such that G(g,�) is complete in L2(Rd).

(c) There exists a g ∈ L2(Rd) such that G(g,�) is a frame for L2(Rd).

The following statements are also equivalent.

(a’) vol(�) = 1.

(b’) There exists a g ∈ L2(Rd) such that G(g,�) is a Riesz basis for L2(Rd).

(c’) There exists a g ∈ L2(Rd) such that G(g,�) is an orthonormal basis for L2(Rd).

For the case of separable lattices, i.e., � = A(Zd) × B(Zd), the equivalences in
Theorem 11 were earlier proved in [101, 78] (see also [102]).

Unfortunately, Bekka’s proof of Theorem 11 is not constructive. On the other hand,
the proof in [101] of Theorem 11 for the special case of separable lattices � = A(Zd) ×
B(Zd) is constructive. The window constructed in [101] is the characteristic function of a
set. In some cases this set will be compact; in particular, this is the case if A, B have all
rational entries. However, in general, even for separable lattices it is not currently known
if there exists a compactly supported g ∈ L2(Rd) such that G(g,�) is a frame.

4.4 More on Arbitrary Lattices

As we have mentioned, many results for rectangular lattice Gabor systems generalize natu-
rally to the setting of symplectic lattices. Surprisingly, Feichtinger and Kozek proved in [71]
that a number of fundamental results for rectangular lattice Gabor systems actually extend
to arbitrary lattice Gabor systems in higher dimensions (see also [67] for the case d = 1).
These include the Janssen representation, the Wexler-Raz biorthogonality relations, and the
Duality Principle. On the other hand, the question of whether other basic results, such as
the Balian-Low Theorems, extend to arbitrary lattices remains open.

A fundamental notion introduced in [71] is the concept of the adjoint lattice. Fe-
ichtinger and Kozek’s setting was more general than considered in this article; instead of
the domain Rd , they considered Gabor systems whose domain was an elementary locally
compact abelian group (see [71] for the full definition). For lattices in R2d , the adjoint is
defined as follows.

Definition 4 (Adjoint Lattice). Let � = A(Z2d) be a lattice. For µ = (x, ξ) ∈ R2d ,
define π(µ) = MξTx . Then the adjoint lattice of � is

�◦ = {
µ ∈ R2d : π(λ)π(µ) = π(µ)π(λ) for all λ ∈ �}

.

Remark 2.
(a) The adjoint lattice should not be confused with the dual lattice

�⊥ = {
µ ∈ R2d : e2πiλ·µ = 1 for all λ ∈ �} = (

AT )−1(Z2d) ,
which plays a role in many formulas in Fourier analysis, such as the Poisson Summation
Formula. The dual lattice is the annihilator of � with respect to the Fourier transform.
Feichtinger and Kozek prove in [71] that the adjoint lattice is the annihilator of � with
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respect to the symplectic Fourier transform. Additional discussion of the adjoint lattice and
the Wexler-Raz relations can be found in [72]. For example, it is noted there that

�◦ =
(

0 I

−I 0

) (
AT )−1(Z2d) .

(b) For the case of a rectangular lattice � = αZd × βZd , the adjoint and dual lattices are

�◦ = 1
β

Zd × 1
α

Zd , �⊥ = 1
α

Zd × 1
β

Zd .

(c) If � is a symplectic lattice, then the adjoint lattice is simply �◦ = vol(�)−1/d �.

(d) Ron and Shen’s formulation of the Duality Principle in [162] was actually for lattice
Gabor systems G(g,�) where � is separable, i.e., � = A(Zd) × B(Zd) with d × d

invertible matrices A, B. Moreover, they introduced the notion of an adjoint system of
G(g,�), which in our notation is the Gabor system G(g, �) with � = B(Zd)⊥ ×A(Zd)⊥.
Since for a separable lattice we have

(
A

(
Zd

) × B
(
Zd

))◦ = B
(
Zd

)⊥ × A
(
Zd

)⊥
,

we see that Ron and Shen had the notion of the adjoint lattice for the case of separable
lattices. However, the idea of defining the adjoint of an arbitrary lattice by commutation
conditions is due to Feichtinger and Kozek.

We close this section by quoting Gröchenig [89, p. 201]:

At this time the difference between symplectic lattices and general time-
frequency lattices is not yet fully understood. While the structure results
for Gabor frames hold for arbitrary lattices, many other results, such as
a symbolic calculus for frame operators, seem to break down for non-
symplectic lattices.

5. Irregular Gabor Systems

Gabor systems G(g,�) where � has no or very limited structure arise very naturally. For
example, it follows from the coorbit theory of Feichtinger and Gröchenig [64, 65, 86] that
if g lies in the modulation space M1, then G(g,�) will be a frame for every “sufficiently
dense” set of indices �. Liu and Wang [148] have shown that there exist Gabor systems
G(g,�) with aperiodic � that are even orthonormal bases for L2(Rd); this is related to
tilings in Rd by cubes. Lyubarskii [150] and Seip/Wallstén [164, 168] have, for the case of
the one-dimensional Gaussian window ϕ(t) = 21/4e−πt2 , completely characterized all �
such that G(ϕ,�) is a frame for L2(R).

Irregular Gabor systems also arise naturally from perturbations of lattice Gabor sys-
tems, e.g., due to jitter or noise. Suppose that G(g,A(Z2d)) is a lattice Gabor frame and
that the elements of this lattice are slightly perturbed. Under appropriate hypotheses on g
and�, local perturbation theorems, such as those in [180, 59, 44, 40, 173], may be applied
to derive conditions under which the resulting system G(g,�) will still be a frame.

However, such local perturbation results do not allow us to prove general theorems
on the properties of Gabor systems with irregular index sets. Further, all of the tools and
techniques that have be discussed so far in this article are inadequate for the study of irregular
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Gabor systems. For example, if we take a lattice A(Z2d) and perturb even one single point
of the lattice, then the resulting set � is no longer a lattice. Every “algebraic” tool that
has so far been discussed, including the Walnut representation, the Janssen representation,
the Duality Principle, the Wexler-Raz biorthogonality relations, the Zak transform, and von
Neumann algebra techniques, is rendered inapplicable to the study of G(g,�).

For the irregular setting new tools are needed, and these were first supplied by H. Lan-
dau [145], Ramanathan and Steger [158], and Janssen [126], who provided the first exten-
sions of the Density Theorem to irregular Gabor frames (and, in the case of [126], to more
general systems).

Yet there are surprises. In particular, unlike the lattice case, for irregular Gabor
systems there is a distinction in the Density Theorem between the cases of complete Gabor
systems and Gabor systems that are frames. The Density Theorem does apply to frames;
specifically, it says that if G(g,�) is a frame then� cannot be “too sparse,” in the sense that
the lower Beurling density of � must satisfy D−(�) ≥ 1. However, the Density Theorem
does not apply to general complete sequences: There exist g and � with arbitrarily small
or even zero Beurling density such that G(g,�) is complete (but not a frame) in L2(Rd).

In general, irregular Gabor systems are considerably more intractable than lattice
Gabor systems, and few results have been available until quite recently. One fundamental
problem is that, unlike the lattice case, the canonical dual frame of an irregular Gabor
frame G(g,�) need not itself be a Gabor frame. In the rectangular lattice case, it is easy
to see that the time-frequency shifts MβnTαk commute with the frame operator, but in the
irregular setting the time-frequency shifts MξTx with (x, ξ) ∈ � need no longer commute
with the frame operator. Consequently, while G(g,�) = {MξTxg}(x,ξ)∈� is a set of time-
frequency shifts of g, we cannot say that the dual frame is a set of time-frequency shifts of
some single window g̃. Instead, we can only say that the canonical dual is some sequence
G̃ = {g̃x,ξ }(x,ξ)∈� of functions in L2(Rd). We will address this problem in more detail in
Section 6.3 below.

In addition to those articles mentioned above, some articles dealing with irregular
Gabor frames include [86, 87, 42, 55, 43, 101, 174, 11, 148, 175, 138]. The concept of
localized frames, discussed in Section 6 below, has provided a new viewpoint for under-
standing irregular Gabor systems.

5.1 Beurling Density

In Theorems 3 and 10, the value that distinguishes between the various cases is the volume
of the lattice, which is the area of a fundamental domain for the lattice. In the irregular
setting there is no analogue of a fundamental domain, and instead it is the Beurling density
of � that distinguishes between the various cases. Beurling density measures in some
sense the average number of points inside unit cubes. However, because the points are not
uniformly distributed, there is not a single definition, but rather we obtain lower and upper
limits to the average density. More precisely, we count the average number of points inside
cubes of larger and larger radii and take the limit. The precise definition and some basic
facts about Beurling density are as follows, cf. [42].

Definition/Facts 4. Let Qr(z) denote the cube in R2d centered at z ∈ R2d with side
lengths r , and let |E| denote the cardinality of a setE. Let� be a sequence of points in R2d .
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(a) The lower and upper Beurling densities of � are, respectively,

D−(�)= lim inf
r→∞ inf

z∈R2d

|� ∩Qr(z)|
r2d

and D+(�)= lim sup
r→∞

sup
z∈R2d

|� ∩Qr(z)|
r2d

.

(b) The definition of Beurling density is unchanged if instead of dilating cubes we
dilate any compact set with unit measure whose boundary has measure zero [144];
see also the new characterizations of Beurling density in [138].

(c) The Beurling density of a rectangular lattice is

D−(
αZd × βZd

) = D+(
αZd × βZd

) = 1

(αβ)d
,

and the density of a general lattice A(Z2d) is

D−(
A

(
Z2d)) = D+(

A
(
Z2d)) = 1

| det(A)| = 1

vol(A)
.

(d) We say that � is uniformly separated if inf{|λ − µ| : λ �= µ ∈ �} > 0. If � is
uniformly separated, then D+(�) < ∞, but the converse is false; for example,
D+(Z2 ∪ √

2Z2) < ∞.

(e) D+(�) < ∞ if and only if� is relatively uniformly separated, which means that
we can write � as the union of finitely many subsequences �1, . . . , �N , each of
which is uniformly separated.

(f) D−(�) > 0 if and only if there exists an R > 0 such that every cube QR(z) with
z ∈ R2d contains at least one element of �.

It was shown in [42, Theorem 3.1] that if g ∈ L2(Rd) and � is a sequence in R2d

such that G(g,�) is a Bessel sequence, then necessarily D+(�) < ∞.
Conversely, we have the following important fact, that if a window g lies in the

Feichtinger algebra M1(Rd) then G(g,�) is Bessel for every finite density sequence �.
This is a consequence of Theorem 2, which states that if g ∈ M1(Rd) and f is any function
inL2(Rd), then the STFT Vgf is well-behaved, namely, Vgf belongs to the amalgam space
W(C, �2).

Theorem 12. If g ∈ M1(Rd) and� is any sequence in R2d such thatD+(�) < ∞, then
G(g,�) is a Bessel sequence.

Proof. Let Q = [0, 1]2d . Since D+(�) < ∞, there is a finite number K such that any
translate Q + j of Q can contain at most K points of �. If f ∈ L2(Rd), then we have
Vgf ∈ W(C, �2)(R2d) by Proposition 2, and hence

∑
(x,ξ)∈�

|〈f,MξTxg〉|2 =
∑

(x,ξ)∈�
|Vgf (x, ξ)|2

=
∑
j∈Z2d

∑
(x,ξ)∈�∩Q+j

|Vgf (x, ξ)|2

≤
∑
j∈Z2d

K sup
(x,ξ)∈Q+j

|Vgf (x, ξ)|2

= K ‖Vgf ‖W(C,�2) ≤ CK ‖f ‖2 ,
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where C is the constant appearing in Proposition 2.

From now on, even though � is assumed to be a sequence of points in R2d and
not merely a subset (so repetitions of elements are allowed), for simplicity we will simply
write � ⊂ R2d .

5.2 The Statement of the Density Theorem

The Density Theorem for irregular Gabor systems can be stated as follows.

Theorem 13 (Density Theorem for Irregular Gabor Systems). Let g ∈ L2(Rd) and let
� ⊂ R2d be given. Then the Gabor system G(g,�) has the following properties.

(a) If G(g,�) is complete in L2(Rd), then 0 ≤ D−(�) ≤ D+(�) ≤ ∞.

(b) If G(g,�) is a frame for L2(Rd), then 1 ≤ D−(�) ≤ D+(�) < ∞.

(c) If G(g,�) is a Riesz basis for L2(Rd), thenD−(�) = D+(�) = 1. Moreover,�
is uniformly separated.

(d) If G(g,�) is a Riesz sequence in L2(Rd), then 0 ≤ D−(�) ≤ D+(�) ≤ 1.
Moreover, � is uniformly separated.

The “critical density”D−(�) = D+(�) = 1 is sometimes called the Nyquist density.
Extensions of the Density Theorem to the case of multiple generators, i.e., Gabor systems
of the form ∪rk=1G(gk,�k), are known, e.g., [42]. For simplicity of presentation we will
discuss only the single generator case.

We consider each part of the Density Theorem in turn in the sections below. Of
course, part (a) provides no information at all, but we state it in order to contrast it with
part (a) of Theorems 3 and 10.

5.3 Frames, Riesz Bases, and the Homogeneous Approximation Property

For the one-dimensional case of L2(R), part (b) of the Density Theorem was first proved,
but with extra hypotheses on g, by H. Landau [145]. Landau’s technique is related to the
energy concentration result for rectangular lattice Gabor frames proved by Daubechies [49,
Theorem 3.5.2].

Parts (b) and (c) were proved for arbitrary g ∈ L2(R), but with extra hypotheses on�,
by Ramanathan and Steger [158]. Specifically, Ramanathan and Steger only considered
the case where � is uniformly separated (and they also implicitly assume D−(�) > 0).
However, not all irregular Gabor frames are uniformly separated. For example, the union
of a frame and a Bessel sequence is again a frame, so if we let g = χ [0,1]d , then G(g,Z2d ∪√

2Z2d) is a frame, but this index set is not uniformly separated.
On the other hand, the fact that a Gabor Riesz sequence must be uniformly separated

is well-known, although the only published proof we are aware of appears in [55].
Janssen [126] proved part (b) of Theorem 13 for “half irregular” � ⊂ R2, i.e., of

the form � = αZ × � with � irregular. Furthermore, Janssen’s result actually applies to
certain systems of Gabor molecules which need not be exact time-frequency shifts of a
single generator, similar to Definition 8 below.

An important tool introduced by Ramanathan and Steger is the Homogeneous Approx-
imation Property (HAP) for Gabor frames. The HAP is a fundamental result of independent
interest, and essentially states that for any irregular Gabor frame G(g,�) in L2(Rd), the
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rate of approximation of a Gabor frame expansion of a function f is invariant under time-
frequency shifts of f . This is surprising, since � is not assumed to have any structure
whatsoever, so there is no relationship between the specific frame elements used in the
approximation of one time-frequency shift MηTuf and those used in an approximation of
another time-frequency shift of f .

Gröchenig and Razafinjatovo [98] adapted and refined the idea of the Homogeneous
Approximation Property to obtain Nyquist density results for systems of translates in
the space of bandlimited functions (but still with some extra hypotheses required, com-
pare [109]).

Inspired by [98], Christensen, Deng, and Heil proved the HAP and parts (b) and (c)
of Theorem 13 in [42], without any extra hypotheses (furthermore, the result was extended
to higher dimensions and to multiple generators, and some other applications were made).
The HAP was also applied to study the excess of Gabor frames in [11].

The form of the HAP used in [42] is the Weak HAP of the following definition. The
distinction between and Weak and Strong HAPs was introduced in [12, 13]. The Strong
HAP implies the Weak HAP, and if G(g,�) is a Riesz basis then it follows as in [13,
Theorem 10] that the Weak HAP implies the Strong HAP, cf. also [109].

Definition 5. Assume that G(g,�) = {MξTxg}(x,ξ)∈� is a frame for L2(Rd), and let
G̃ = {g̃x,ξ }(x,ξ)∈� denote its canonical dual frame. For each r > 0 and (u, η) ∈ R2d , set

W(r, u, η) = span
{
g̃x,ξ : (x, ξ) ∈ � ∩Qr(u, η)

}
.

(a) We say that G possesses the Weak Homogeneous Approximation Property (Weak
HAP) if

∀ f ∈ L2(Rd
)
, ∀ ε > 0, ∃R > 0 such that ∀ (u, η) ∈ R2d ,

dist
(
MηTuf, W(R, u, η)

)
< ε .

(5.1)

(b) We say that G possesses the Strong Homogeneous Approximation Property (Strong
HAP) if

∀ f ∈ L2(Rd
)
, ∀ ε > 0, ∃R > 0 such that ∀ (u, η) ∈ R2d ,∥∥∥∥MηTuf −

∑
(x,ξ)∈�∩QR(u,η)

〈MηTuf,MξTxg〉 g̃x,ξ
∥∥∥∥

2
< ε .

(5.2)

The HAP introduced by Ramanathan and Steger in [158] is the Weak HAP given
above for the case d = 1 but with the roles of the frame and dual frame interchanged. It
is proved there that if � is uniformly separated and if G(g,�) is a frame then G(g,�)
satisfies their version of the HAP. The argument of [158] does not show that a Strong
HAP is satisfied. Ramanathan and Steger showed that the HAP implies a Comparison
Theorem, which establishes an inequality between the density of any given Gabor frame
satisfying the HAP and any given Riesz basis. The Density Theorem for frames and Riesz
bases follows from this. A detailed exposition of the arguments of [158] appears in [107].
Gröchenig and Razafinjatovo’s modified version of the HAP is essentially the Weak HAP
given above, except defined for the setting of systems of translates in the space of bandlimited
functions [98], and allowing finitely many generators.

It is proved in [42] that every Gabor frame G(g,�), without restrictions on g or �
or the dimension, satisfies the Weak HAP given above, and in fact the argument actually
shows that the Strong HAP is satisfied. The localized frame approach of [13] shows that
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even more is true: Gabor frames are �2-localized with respect to any other lattice Gabor
frame whose generator lies in M1; this implies the Strong HAP as a corollary.

5.4 Frames versus Complete Sequences

Since the Beurling density of a rectangular lattice isD−(αZ×βZ) = D+(αZ×βZ) = 1
αβ

,
Theorem 13 almost, but not quite, recovers Theorem 3. One trivial difference is in part (c)
of the two theorems: The implications proceed in both directions in Theorem 3(c) but
only in one direction in Theorem 13(c). For a counterexample to the converse direction
in Theorem 13(c), take a Gabor frame G(g,�) that happens to be a Riesz basis and add
a single point, say λ, to �. Then G(g,� ∪ {λ}) is a redundant frame, but the Beurling
densities are the same, D−(� ∪ {λ}) = D+(� ∪ {λ}) = 1. An open question is whether
this is typical: If G(g,�) is a frame and D±(�) = 1, must there exist a subset �′ ⊂ �

such that G(g,�′) is a Riesz basis and D±(�\�′) = 0?
On the other hand, the difference between Theorem 3(a) and Theorem 13(a) is much

more striking. Ramanathan and Steger conjectured in [158] that Theorem 13(a) should be
improvable to say that if D+(�) < 1, then G(g,�) is incomplete in L2(R). This was
shown in [23] to be false: For any ε > 0 there exists a function g ∈ L2(R) and a sequence
� ⊂ R2 with 0 < D+(�) < ε such that G(g,�) is complete. The counterexample built
in a fundamental way on the work of H. Landau on the completeness of exponentials in
L2(S) where S is a finite union of intervals [142]. Another counterexample, in which � is
a subset of a lattice, was given by Wang [183].

Zalik showed in [191, 192] that there exist g ∈ L2(R) and countable subsets � ⊂ R
such that the set of translates {Txg}x∈� is complete in L2(R). Such a set of translates is
an irregular Gabor system of the form G(g,�) where � = � × {0}. The lower Beurling
density of � = � × {0} is zero, but in Zalik’s construction, the upper Beurling density of
� as a subset of R2 is infinite. In contrast, Olevskii and Ulanovskii showed in [154, 155]
that there exists a countable set � which is a bounded perturbation of the integers Z and a
function g ∈ L2(R) such that {Txg}x∈� is complete in L2(R). Thus � = � × {0} satisfies
D−(�) = D+(�) = 0 for this example.

By the Density Theorem, no sequence of pure translations {Txg}x∈� of anL2 function
can ever form a frame or Riesz basis for L2(Rd), because the lower density of� = �×{0}
is D−(�) = 0, cf. [42]. The fact that no sequence of translates can form a Riesz basis
for L2(Rd) was earlier proved by Olson and Zalik [156]. Moreover, it was conjectured
there that no sequence {Txg}x∈� can form a Schauder basis for L2(Rd), but this conjecture
remains open. Partial results on this conjecture and for irregular Gabor Schauder bases were
obtained in [55]. Lattice Gabor Schauder bases for L2(Rd) were characterized in [111].

An example of G(g,�) that is complete and satisfies D±(�) = 0 but which is not a
system of pure translations was constructed in [160].

5.5 Riesz Sequences

In the lattice setting, we saw that part (d) of both Theorems 3 and 10 was a consequence
of part (b) and the Duality Principle. For irregular Gabor frames, there is no known direct
analogue of the Duality Principle. Indeed, not only is there no obvious replacement for the
notion of the adjoint lattice, but the canonical dual frame need no longer be itself a Gabor
frame. Very little was known about the structure of the dual of an irregular Gabor frame
until the advent of localized frames, which are discussed in Section 6 below. Thus, part (d)
of Theorem 13 is perhaps especially interesting in light of the lack of a Duality Principle.
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While it is possible to prove part (d) using the types of techniques that appear in [158, 42],
it does not appear explicitly in those articles. The first proof of part (d) appears in [13], as
a consequence of the abstract results for localized frames proved in [12].

5.6 Existence

It follows from the coorbit theory of Feichtinger and Gröchenig [64, 65, 86] that if g lies in
the modulation space M1, then G(g,�) will be a frame for every sufficiently dense set of
indices �.

For the case d = 1, the results of Lyubarskii [150] and Seip and Wallstén [164, 168]
on the density of sets of sampling and interpolation in the Bargmann-Fock space imply
the following.

Theorem 14. Let ϕ(t) = 21/4e−πt2 be the Gaussian window and � be any sequence in
R2. Then the following two statements are equivalent.

(a) G(ϕ,�) is a frame for L2(R).
(b) There exists a uniformly separated subset �′ of � such that

1 < D−(
�′) ≤ D+(�) < ∞ .

The following two statements are also equivalent.

(a’) G(ϕ,�) is a Riesz sequence in L2(R).
(b’) � is uniformly separated and D+(�) < 1.

The proof relies on the fact that the Bargmann transform of any f ∈ L2(Rd) is an
analytic function. The Bargmann transform is closely related to the short-time Fourier
transform Vϕf using a Gaussian window, e.g., see [89, Section 3.4]. We provide in Ap-
pendix A a discussion of the relationship between properties of Gabor systems generated
by the Gaussian and sets of sampling and interpolation in the Bargmann-Fock space.

We refer to Seip’s text [167] for a recent discussion of results on sampling and inter-
polation, and to [146] for recent results in higher dimensions.

Remark 3. If we allow the possibility that inf‖fn‖ = 0, then it is easy to construct a
frame F = {fn}n∈N such that no subset of F is a Riesz basis. The first example of a frame
which is norm-bounded below (inf‖fn‖ > 0) but which contains no Riesz bases was given
by Seip [166]. In that article, Seip obtained a variety of deep results related to the question
of when a system of nonharmonic complex exponentials {e2πiλnt }n∈N that forms a frame
for L2[0, 1] will contain a Riesz basis, or when a Riesz sequence of exponentials can be
extended to form a frame for L2[0, 1].

Casazza and Christensen also constructed a frame which is norm-bounded below and
which does not contain a Riesz basis in [31]. They furthermore showed in [32] that this
frame contains no subsets which form a Schauder basis. In [10] it is shown that this frame
has infinite excess and hence an infinite subset may be removed yet leave a complete set.
However, whenever infinitely many elements are removed from this frame, the resulting
subset is not a frame.

It is interesting to note that Gabor frames with Gaussian windows provide additional
examples of frames which do not contain Riesz bases as subsets. For, suppose that G(ϕ,�)
is a frame for L2(R) and there exists some subset� ⊂ � such that G(ϕ,�) is a Riesz basis
for L2(R). Then G(ϕ,�) would also be a Riesz sequence and hence by Theorem 14 must
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satisfy D+(�) < 1. But, by the Density Theorem, a Riesz basis requires D±(�) = 1,
which is a contradiction.

6. Localized Frames and their Implications for Gabor
Systems

Recently, Gröchenig [91] and Balan, Casazza, Heil, and Z. Landau [12, 13] independently
realized that many aspects of Gabor frame theory are not dependent on the rigid time-
frequency shift structure of Gabor frame elements, but hold in a much broader context.
The concept of localized frames was independently introduced in these two sets of articles.
Among other results, Gröchenig showed in his elegant article that localized frames are
frames not merely for the underlying Hilbert space H but also for an entire family of
associated Banach spaces. Thus localized frames are robust in the sense that they are not
limited merely to the Hilbert space setting, and the frame coefficients encode a much broader
range of information than just the Hilbert space norm. For the case of Gabor frames, these
associated spaces are precisely the modulation spaces discussed in Section 2.3. Gröchenig
also obtained results on the structure of the canonical dual of a localized frame. Some
additional articles on localized frames include [90, 46, 28, 85, 75].

The focus in the articles [12, 13] is on the excess and overcompleteness of localized
frames, the connection between density and redundancy, the relationship between frame
bounds and density, and the structure of the canonical dual frame of a localized frame.
Among other results, it is shown that the Density Theorem and the Homogeneous Approx-
imation Properties are not merely results about Gabor frames and time-frequency shifts
but extend to the much more general situation of localized frames. Moreover, new con-
sequences follow even for Gabor frames. For example, part (d) of Theorem 13 is first
proved in [13]. We discuss some other consequences of these articles for Gabor frames in
this section. All of the results discussed in this section are special cases of more general
results proved in [12, 13] for abstract localized frames, but in keeping with the setting of
this article we will formulate the definitions and results for the specific concrete setting of
Gabor systems in L2(Rd), and refer to the original articles for the abstract formulations.

6.1 Density Reinterpreted: Measure and Relative Measure

The lower and upper Beurling densities of a sequence� are only the extremes of the possible
densities that we could naturally assign to�. In particular, instead of taking the infimum or
supremum over all possible centers in Definition 4, we could choose one specific sequence
of centers, and instead of computing the liminf or limsup we could consider the limit with
respect to some ultrafilter (for a brief review of ultrafilters, see Appendix B). The different
possible choices of ultrafilters and sequences of centers provides us with the following
natural collection of definitions of density [12].

Definition 6 (Density). Let� ⊂ R2d withD+(�) < ∞ be given. Given a free ultrafilter
p and a sequence c = (cN)N∈N of points in R2d , the Beurling density of � with respect to
p and c is

D(�;p, c) = p-lim
N∈N

|� ∩QN(cN)|
N2d

.

We have 0 ≤ D−(�) ≤ D(�;p, c) ≤ D+(�) ≤ ∞. Furthermore, there exists a
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free ultrafilter p and sequence of centers c such that D(�;p, c) = D−(�), and similarly
for the upper Beurling density.

The notion of the measure of an abstract localized frame was introduced in [12]. For
the case of Gabor systems, it can be defined as follows. For simplicity of notation, we
will use the following shorthand for a Gabor frame G(g,�), its canonical dual G̃, and their
respective elements:

G = G(g,�) = {gλ}λ∈� and G̃ = {
g̃λ

}
λ∈� .

Note that while gλ denotes a time-frequency shift of g, in general the functions g̃λ need not
be time-frequency shifts of a single function (compare Section 6.3 below).

Definition 7 (Measure). Let g ∈ L2(Rd) and � ⊂ R2d with 0 < D−(�) ≤ D+(�) <
∞ be such that G(g,�) is a frame for L2(Rd).

(a) The upper measure of G is

M+(G) = lim sup
N→∞

sup
z∈R2d

1

|� ∩QN(z)|
∑

λ∈�∩QN(z)

〈
gλ, g̃λ

〉
.

(b) The lower measure of G is

M−(G) = lim inf
N→∞ inf

z∈R2d

1

|� ∩QN(z)|
∑

λ∈�∩QN(z)

〈
gλ, g̃λ

〉
.

(c) Let p be a free ultrafilter and let c = (cN)N∈N be any sequence of points in R2d . Then
the measure of G with respect to p and c is

M(G;p, c) = p-lim
N∈N

1

|� ∩QN(cN)|
∑

λ∈�∩QN(cN )

〈
gλ, g̃λ

〉
.

Thus, the measure is in some sense an average trace of the “cross-Grammian matrix”
[〈gλ, g̃µ〉]λ,µ∈�. The notion of localization of a frame corresponds to decay conditions on
this or other appropriate matrices; each choice of decay condition gives a different notion
of localization. However, to make this precise, instead of indexing by � (which has no
structure), the matrix is indexed by an additive subgroup of R2d (namely, αZd ×βZd ), and
indices in � are associated with indices in this subgroup by rounding off to a near element
of αZd × βZd . In particular, the fact that there exist discrete additive subgroups of R2d

is a hidden, but essential, element of many of the results relating to localization for Gabor
frames proved in [12, 13].

Remark 4.
(a) There exists a free ultrafilter p and sequence of centers c such that M(G;p, c) =
M−(G), and similarly for the upper measure.

(b) Since 〈gλ, g̃λ〉 = ‖S−1/2gλ‖2 and since S−1/2(G(g,�)) is a Parseval frame, we have
0 ≤ 〈gλ, g̃λ〉 ≤ 1 for every λ ∈ �. Hence, for any free ultrafilter p and any sequence of
centers c, we have

0 ≤ M−(G) ≤ M(G;p, c) ≤ M+(G) ≤ 1 .

Localization and the measure of a frame with respect to frames other than the canon-
ical dual frame are equally important notions. In particular, intrinsic or self-localization
compares a frame to itself [75].
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The notion of measure can also be defined for frame sequences, but in this case, the
fact that the frame sequences can have distinct closed spans must be taken into account.
Therefore for frame sequences we speak of the relative measure of the frame sequence with
respect to the reference sequence (see [12] for details).

We will give a precise formulation of localization for Gabor frames in Section 6.4.
First, however, we will discuss the consequences and implications of localization for Gabor
frames. In particular, we have the following new interpretation of the density of a Gabor
frame [13, Theorem 3].

Theorem 15 (Density-Measure). Let g ∈ L2(Rd) and � ⊂ R2d be such that G(g,�) is
a Gabor frame for L2(Rd). Then D+(�) < ∞, and the following statements hold.

(a) For any free ultrafilter p and any sequence of centers c = (cN)N∈N in Rd , we
have

M(G;p, c) = 1

D(�;p, c) , (6.1)

and consequently p-limN∈N
1
N2d

∑
λ∈�∩QN(cN )〈gλ, g̃λ〉 = 1.

(b) M−(G) = 1

D+(�)
and M+(G) = 1

D−(�)
.

This result is perhaps surprising in the sense that the density is determined entirely
by the index set� alone, while the measure is determined by averages of inner products of
frame elements with their corresponding dual frame elements.

As immediate consequences we obtain the Density Theorem for irregular Gabor
frames (Theorem 13), as well as new implications on the relationship between density,
measure, and frame bounds. To see how Theorem 15 implies the Density Theorem, assume
that G(g,�) is a frame for L2(Rd). Then Theorem 15 gives D+(�) < ∞, and since
we already know that 0 ≤ M−(G) ≤ M+(G) ≤ 1, part (b) of Theorem 15 implies as
an immediate consequence that 1 ≤ D−(G) ≤ D+(G) < ∞. This proves part (b) of
Theorem 13.

If G(g,�) is a Riesz basis then 〈gλ, g̃λ〉 = 1 for every λ ∈ �, and so M±(G) = 1.
Hence, Theorem 15 implies that D±(�) = 1. This proves part (c) of Theorem 13.

The final portion of Theorem 13, concerning the density of Riesz sequences, follows
from refinements of the results that we have discussed for the case of frame sequences,
cf. [13, Theorem 4].

Moreover, we do not simply recover the Density Theorem, but we obtain further
immediate new consequences. One very easy consequence is the following result relating
the frame bounds, the density of the index set, and the norm of the window, cf. also [138].

Corollary 2 (Density-Frame Bounds). Let g ∈ L2(Rd) and � ⊂ R2d be such that
G(g,�) is a Gabor frame for L2(Rd) with frame bounds A, B. Then the following state-
ments hold.

(a) A ≤ D−(�) ‖g‖2
2 ≤ D+(�) ‖g‖2

2 ≤ B.

(b) If G(g,�) is a tight frame, then � has uniform Beurling density, i.e., D−(�) =
D+(�), and furthermore A = D±(�) ‖g‖2

2.

Proof.
(a) Let S be the frame operator for G. Then AI ≤ S ≤ BI , so

〈
gλ, g̃λ

〉 = 〈
gλ, S

−1gλ
〉 ≤ 1

A
〈gλ, gλ〉 = 1

A
‖gλ‖2 = 1

A
‖g‖2

2 .
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Hence, taking averages we see that

M(G;p, c) = p-lim
N∈N

1

|� ∩QN(cN)|
∑

λ∈�∩QN(cN )

〈
gλ, g̃λ

〉

≤ 1

A
p-lim
N∈N

1

|� ∩QN(cN)|
∑

λ∈�∩QN(cN )
‖g‖2

2 = 1

A
‖g‖2

2 .

Since this is true for every free ultrafilter p and choice of centers c, we conclude that

1

D−(�)
= M+(G) ≤ 1

A
‖g‖2

2 .

The other inequality is similar.

(b) This is an immediate consequence of part (a), since if the frame is tight, then by definition
we can take A = B.

Remark 5. It is interesting to see what these results say for the case of lattice Gabor
frames, and for rectangular lattices in particular. Consider � = αZ × βZ. If G(g,�) is a
frame, then its dual frame is also a Gabor frame with respect to the same lattice, i.e., it has
the form G̃ = G(g̃,�) with g̃ = S−1g. In this case, we have

〈
gλ, g̃λ

〉 = 〈
g, g̃

〉
, λ ∈ � .

In fact, the cross-Grammian matrix [〈gλ, g̃µ〉]λ,µ∈� is actually a Toeplitz matrix. Further-
more, the measure of the frame is simply

M(G;p, c) = p-lim
N∈N

1

|� ∩QN(cN)|
∑

λ∈�∩QN(cN )

〈
gλ, g̃λ

〉

= p-lim
N∈N

1

|� ∩QN(cN)|
∑

λ∈�∩QN(cN )

〈
g, g̃

〉 = 〈
g, g̃

〉
.

Therefore, by Theorem 15, we conclude that

〈
g, g̃

〉 = M(G;p, c) = 1

D(�;p, c) = αβ ,

the final equality following from the fact that� = αZ×βZ. In other words, we recover the
special case of the Wexler-Raz biorthogonality relations in Equation (3.1) corresponding to
k = k′, n = n′. In this sense, Theorem 15 might be considered a type of limited Wexler-Raz
theorem for irregular Gabor frames.

Furthermore, for the case of a rectangular lattice � = αZ × βZ, the frame bound
relationships in Corollary 2(c) become

A ≤ ‖g‖2
2

αβ
≤ B ,

which was obtained by Daubechies in [48]. It is interesting that Theorem 15 generalizes
this result without relying on operator theory or von Neumann algebras.
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6.2 Redundancy

There is a folklore that the density of a Gabor frame is directly related to the redundancy
of the frame. We will show in this section that only very weak results related to the
quantification of this folklore exist. These results are again the implications for Gabor
frames of results that hold for abstract localized frames.

For certain g and certain values of αβ, we can easily see that there is a natural relation
between the redundancy of a rectangular lattice Gabor frame G(g, αZ × βZ) and Beurling
density 1

αβ
of the lattice αZ × βZ. For example, if g = χ [0,1], α = 1

2 , β = 1, then we
can write

G(
χ [0,1], 1

2 Z × Z
) = G(

χ [0,1], Z × Z
) ∪ G(

χ [0,1],
(
Z + 1

2

) × Z
)
.

Thus, the frame G(χ [0,1], 1
2 Z × Z) can be divided into two disjoint subsets that are each

orthonormal bases for L2(R). Perhaps stemming from examples such as these, the quan-
tity 1

αβ
is sometimes called the redundancy of a frame G(g, αZ × βZ), or it is said that

G(g, αZ × βZ) is 1
αβ

-times overcomplete. However, this is merely terminology, and we
may ask if there is a quantification of the meaning of “redundancy” and its connection to
the density 1

αβ
of the lattice αZ × βZ.

Intuitively, we might hope that redundancy means that we could divide a rectangular
lattice Gabor frame G(g, αZ × βZ) into “ 1

αβ
” Riesz bases. Setting aside for the moment

the obvious problem that 1
αβ

need not be integer, we can see that this cannot be literally

true. For example, consider the frame G(ϕ, 1
2 Z × Z) generated by the Gaussian function

ϕ(t) = 21/4e−πt2 . By the Density Theorem for irregular Gabor frames, if there exists
a subset � ⊂ 1

2 Z × Z such that G(ϕ,�) is a Riesz basis for L2(R), then necessarily
D±(�) = 1. However, by Lyubarskii and Seip-Wallstén, we know that G(ϕ,�) can be
a frame only when D−(�) > 1. Hence, G(ϕ, 1

2 Z × Z), and indeed any Gabor frame
generated by the Gaussian function, contains no subsets that are Riesz bases for L2(R). On
the other hand, we can certainly write

G(
ϕ, 1

2 Z × Z
) = G(ϕ,Z × Z) ∪ G(

ϕ,
(
Z + 1

2

) × Z
)
.

However, the two subsets G(ϕ,Z × Z), G(ϕ, (Z + 1
2 ) × Z) are neither frames nor Riesz

bases for L2(R). Instead, each of them is overcomplete by a single element (meaning that
one but not two elements may be removed and still leave a complete set). If a single element
is removed, the resulting set is exact, but it is neither a frame nor even a Schauder basis,
cf. [73, p. 168], [129].

Rather than trying to split intoN Riesz bases, we might hope that the valueR = 1
D±(�)

for a general Gabor frame G(g,�) is quantifying the redundancy in the sense that the frame
is “almost R-times overcomplete,” meaning that we should be able to remove a subset J
of � with density D±(J ) = R − 1 − ε and still leave a frame. In other words, we might
expect to be able to find a subset I ⊂ � with 1 ≤ D±(I ) ≤ 1 + ε such that G(g, I ) is
still a frame. The best partial result in this direction seems to be the following [12, 13].
Some concentration of the generator g in the time-frequency plane is required in this result,
specifically that g lies in the modulation space M1 defined in Section 2.3.

Theorem 16. Assume that G(g,�) is a Gabor frame for L2(Rd). If D−(�) > 1 and
g ∈ M1(Rd), then there exists J ⊂ � with D+(J ) = D−(J ) > 0 such that G(g,�\J ) is
a Gabor frame for L2(Rd).



150 Christopher Heil

Thus, not only does the frame G(g,�) have infinite excess, but a subset with some
positive (but possibly very small) density can be removed yet still leave a frame.

In general, questions about dividing a frame into nonredundant subparts are extremely
difficult. Consider the following conjecture.

Conjecture 1 (Feichtinger Conjecture). If F = {fi}i∈I is a frame and inf i‖fi‖ > 0,
then F can be written as a union of finitely many Riesz sequences.

Recently, it has been shown by Casazza and Tremain that the Feichtinger Conjecture is
equivalent to the Kadison-Singer Conjecture, which is the deepest open problem in operator
theory today [39].

For the case of Gabor frames G(g,�), it is known that the Feichtinger Conjecture is
true if either: (a) g ∈ M1(Rd) and� is arbitrary [13], or (b) g ∈ L2(R) and� = αZ ×βZ
with αβ rational [33]; see also [28]. It was earlier proved by Gröchenig that the Feichtinger
Conjecture is true if g ∈ M∞

vs
(Rd) where vs(x, ω) = (1 +|x|+ |ω|)s and s > 2d [90]; this

hypothesis implies that g ∈ M1(Rd). The Feichtinger Conjecture for arbitrary irregular
Gabor frames G(g,�) remains open today.

The redundancy of Gabor frames is still far from being understood.

6.3 Structure of the Canonical Dual Frame

As noted before, the canonical dual of an irregular Gabor frame need not itself be a Gabor
frame. In this section we discuss the impact of results on abstract localized frames on the
structure of the canonical dual frame of an irregular Gabor frame.

It follows from abstract frame theory that if G(g,�) is a frame for L2(Rd) then
the canonical dual frame is some sequence G̃ = {g̃x,ξ }(x,ξ)∈� of functions in L2(Rd).
However, until [91, 12, 13], essentially nothing was known about the properties of the
elements of G. Thus, it was a major advance when Gröchenig proved in [91] that if the
short-time Fourier transform (STFT) of g has a polynomial or exponential rate of decay, then
the STFT of the elements of the dual frame will also possess a polynomial or exponential
decay, and furthermore the element g̃x,ξ will be localized in the time-frequency plane
around the point (x, ξ). A similar result was obtained in [13], but instead �p and other
types of localization were the focus there. Fornasier and Gröchenig [75] showed that the
essential feature of these results is the existence of an inverse-closed Banach ∗-algebra of
matrices—each such Banach algebra yields a structure result for the dual frame.

To state the result from [13] precisely, we need the following definition of Gabor
molecules. For simplicity, our definition uses STFTs with respect to the Gaussian window
ϕ(t) = 2d/4e−πt ·t , but any nonzero M1 window can be used, see [13, Lemma 3]. The
terminology “molecule” arises from the convention that the generator g of a Gabor system
G(g,�) is often referred to as an “atom.”

Definition 8. Let � ⊂ R2d and fλ ∈ L2(Rd) for λ ∈ � be given. Then F = {fλ}λ∈�
is a set of Gabor molecules if there exists an envelope function � ∈ W(C, �2) such that

∀ λ ∈ �, ∀ z ∈ R2d , |Vϕfλ(z)| ≤ �(z− λ) . (6.2)

Remark 6. The short-time Fourier transform of a time-frequency shift of a function
f ∈ L2(Rd) satisfies the equality

∀ (x, ξ) ∈ R2d , ∀ (u, η) ∈ R2d , |Vϕ(MξTxf )(u, η)| = |Vϕf (u− x, η − ξ)| ,
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and furthermore Vϕf ∈ W(C, �2) [89, Theorem 12.2.1]. In light of this, we see that
Equation (6.2) essentially says that the STFT of a Gabor molecule elementfλ is concentrated
around the point λ in the time-frequency plane. Thus, while the functions fλ are not exact
time-frequency shifts of a single function, they are “almost” time-frequency shifts in the
sense that they are concentrated at the appropriate point λ in the time-frequency plane, with
a common envelope of concentration (determined by �). Thus, a set of Gabor molecules is
essentially a perturbation of a Gabor system (with control on the amount of perturbation).

The following result is [13, Theorem 7]; compare also the results in [91, Theorem 20]
and [75]. Note that this result applies to frame sequences as well as frames.

Theorem 17 (Structure Theorem). Let g ∈ M1(Rd) and � ⊂ R2d be such that G(g,�)
is a Gabor frame sequence in L2(Rd), with canonical dual frame sequence G̃ = {g̃λ}λ∈�.
Then the following statements hold:

(a) g̃λ ∈ M1(Rd) for all λ ∈ �,

(b) supλ‖g̃λ‖M1 < ∞, and

(c) G̃ is a set of Gabor molecules with respect to an envelope function � ∈ W(C, �1).

Furthermore, the same conclusions hold when G̃ is replaced by the canonical Parseval
frame S−1/2(G(g,�)).

The proof of the Structure Theorem relies on the following type of noncommuta-
tive Wiener’s lemma that was independently proved by Gohberg, Kaashoek, and Woerde-
man [82], Baskakov [16], and Sjöstrand [169]. Compare Gröchenig’s use of Jaffard’s
Lemma [117] to establish the related polynomial version of the Structure Theorem, as
well as the use of noncommutative Wiener’s lemmas for lattice Gabor frames in [89, Sec-
tion 13.3], [97]. We also refer to the new results in [92, 99, 172] for a deeper understanding
of the role of Wiener’s lemmas in time-frequency analysis.

Theorem 18. Let G = αZd × βZd . If an infinite matrix A = [aij ]i,j∈G satisfies:

(a) There exists r ∈ �1(G) such that |aij | ≤ r(i − j) for all i, j ∈ G, and

(b) A is a continuous invertible map of �2(G) onto itself,

then there exists s ∈ �1(G) such that A−1 = [bij ]i,j∈G satisfies |bij | ≤ s(i − j) for
all i, j ∈ G.

Most of the results described so far for irregular Gabor systems actually extend to
systems of Gabor molecules, see [13, Theorem 9].

6.4 The Definition of Localization for Gabor Systems

In this section we give a precise definition of localization as introduced in [12, 13], but
interpreted here for the particular setting of Gabor systems. Compare also the related
notions introduced in [91].

Notation. The following shorthand notations will be used in this section.

(a) Given g ∈ L2(Rd) and � ⊂ R2d , we will write

G = G(g,�) = {gλ}λ∈� .
(b) Given φ ∈ L2(Rd) and α, β > 0, we will write

� = αZd × βZd and 
 = G(φ,�) = {φµ}µ∈� .
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(c) We define a : � → � to be the map such that a(λ) is the point in � closest to λ (or
any map that sends a point of� to a point of� that is within a fixed distance of the closest
point). Thus the map a “rounds off” to a near point of�. Note that a need not be injective.

(d) The cross-Grammian matrix of G and 
 is the �×� matrix

[〈gλ, φµ〉]λ∈�,µ∈� .

The words “column” and “row” in the following definition refer to the cross-
Grammian matrix. We think of the elements in locations (λ, a(λ)) as corresponding to
the main diagonal of this matrix.

Definition 9 (Localization). Let G, 
, a be as above.

(a) We say that G is �p-localized with respect to 
 and a, or simply that (G, a,
) is
�p-localized, if ∑

µ∈�
sup
λ∈�

|〈gλ, φµ+a(λ)〉|p < ∞ .

Equivalently, there must exist an r ∈ �p(�) such that

∀ λ ∈ �, ∀µ ∈ �, |〈gλ, φµ〉| ≤ ra(λ)−µ .

(b) We say that (G, a,
) has �p-column decay if

∀ ε > 0, ∃Nε > 0 such that ∀µ ∈ �,
∑

λ∈�\QNε (µ)
|〈gλ, φµ〉|p < ε .

(c) We say that (G, a,
) has �p-row decay if

∀ ε > 0, ∃Nε > 0 such that ∀ λ ∈ �,
∑

µ∈�\QNε (a(λ))
|〈gλ, φµ〉|p < ε .

(d) We say that (G, a) is �p-self-localized if there exists an r ∈ �p(�) such that

∀ λ,µ ∈ �, |〈gλ, gµ〉| ≤ ra(λ)−a(µ) .

Thus, localization corresponds to quantifications of decay off the diagonal of the
cross-Grammian matrix (or of the Grammian matrix, for the case of self-localization).
Obviously, many other quantifications of decay could be used, e.g., the localizations intro-
duced by Gröchenig [91] correspond to polynomial or exponential decay off the diagonal.
Also compare self-localization to the definition of intrinsic localization in [75], and the
“symmetric” localization definitions in [76, 77].

Remark 7.
(a) The fact that � is an additive subgroup of R2d and that the distance in R2d is invariant
under shifts is essential for certain proofs in [12, 13].

(b) The map a given above is natural for the setting of Gabor frames, but other embeddings
of � into � could be considered.

(c) �p-localization implies both �p-column and �p-row decay, but not conversely.

(d) If G is a frame, then �2-column decay implies an abstraction of the Homogeneous
Approximation Property (HAP) discussed in Section 5.3. In fact, it is shown in [13] that
�2-column decay is equivalent to the following:

∀ ε > 0, ∃Nε > 0, ∀µ ∈ �,
∥∥∥∥φµ −

∑
λ∈�∩QNε (µ)

〈φµ, gλ〉 g̃λ
∥∥∥∥

2

< ε .
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Of course, since G is a frame we know that φµ = ∑
λ∈�〈φµ, gλ〉 g̃λ. The interest of the

HAP is that the rate of convergence of this series does not depend on µ. If 
 is also a
frame, then we can deduce from this that for any f ∈ L2(Rd), the rate of convergence of
the seriesMbTaf = ∑

λ∈�〈MbTaf, gλ〉 g̃λ does not depend on the choice of (a, b) ∈ R2d .
This is precisely the Strong HAP discussed in Section 5.3.

(e) �2-row decay can likewise be reinterpreted as a dual HAP where the roles of G and 

are interchanged. �2-localization implies both �2-column decay and �2-row decay.

(f) It is clear that the specific form of time-frequency shifts is entering only in a very indirect
way into the definition of localization. The essential features are that we have a sequence
G which can be “compared” in some natural way to a reference sequence whose elements
are indexed by an additive discrete subgroup. This suggests that we can define localization
much more abstractly, and indeed, this is exactly what is done in [91, 12, 13]. The recent
articles [76, 77] introduce a modified version of the definition of localization in which the
roles of G and 
 are more symmetric.

The localization properties of Gabor systems with respect to “nice” reference systems
can be summarized as follows.

Theorem 19.

(a) If g ∈ Mp(Rd) with 1 ≤ p ≤ 2 and φ ∈ M1(Rd), then (G, a,
) is �p-localized.

(b) If φ ∈ M1(Rd) and 
 is a frame for L2(Rd), then we have for each 1 ≤ p ≤
2 that

(G, a,
) is �p-localized ⇐⇒ g ∈ Mp
(
Rd

)
.

(c) If g ∈ M1(Rd) then (G, a) is �1-self-localized.

Remark 8.
(a) Since M2 = L2, this result implies that if φ ∈ M1, then the Gabor system (G, a,
) is
�2-localized for any g ∈ L2(R2). In particular, (G, a,
) has both �2-column and �2-row
decay, and hence has both the Strong HAP and the Strong dual HAP. This is a stronger
result than the Homogeneous Approximation Properties derived in [158, 98, 42], and is far
more than is needed to prove the Density Theorem. And in fact, the consequences of �2-
localization are more than just the Density Theorem but also include the Density-Measure
Theorem and the Density-Frame Bounds Theorem as well as additional results if more
localization is imposed on g.

(b) The key fact needed to prove Theorem 19 is that if φ ∈ M1 and g ∈ Mp, then the
STFT Vφg lies in the Wiener amalgam space W(C, �p) defined in Section 2.4, see [89,
Theorem 12.2.1].

(c) If we use a reference system that is not “nice” then we get weaker results. For example,
if φ = χ [0,1]d and α = β = 1 then 
 is an orthonormal basis for L2(Rd) but φ /∈ M1.
While �p-localization of (G, a,
) no longer follows, it is at least still true that (G, a,
)
will have �2-row decay for every g ∈ L2(Rd); see [13, Proposition 1].

It is the fact that Gabor systems possess localization properties that yields the Density
Theorem and the other results for Gabor systems discussed in previous sections. In par-
ticular, the essential properties needed to prove the Density-Measure Theorem for Gabor
frames (Theorem 15) are the following.

(i) Whenever αβ < 1, we can find a “nice” reference system. That is, there exists
φ ∈ M1 such that 
 is a frame for L2(Rd). (Note that this does not depend
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on the Density Theorem or any other deep results—the Painless Nonorthogonal
Expansions constructions are suitable examples.)

(ii) If g ∈ L2(Rd) and φ ∈ M1, then (G, a,
) has both �2-column and �2-row decay
(in fact, it is �2-localized, which is a stronger condition).

In the abstract setting, if the cross-Grammian matrix has sufficient decay then we
will obtain an analogous Density-Measure Theorem, without reference to time-frequency
shifts or other specific requirements related to representation theory or operator theory.
Likewise, all the other results discussed in this section for the setting of Gabor frames
have more general formulations that hold for any abstract frame which has appropriate
localization. Localization, at least in the formulation of [12, 13], does require the existence
of an appropriate reference system that is indexed by a discrete abelian group (but compare
the formulations in [91, 76, 77]).

6.5 Linear Independence of Time-Frequency Shifts

Although not at all related to the Density Theorem (at least, not in any way that we can see),
we cannot resist closing our discussion of Gabor systems by recalling our favorite open
problem in Gabor theory. This is the following conjecture, which variously goes by the
names of the Linear Independence Conjecture for Time-Frequency Shifts, the Zero Divisor
Conjecture for the Heisenberg Group, or the HRT Conjecture.

Conjecture 2. If g ∈ L2(R) is nonzero and {(αk, βk)}Nk=1 is any set of finitely many
distinct points in R2, then {MβkTαkg}Nk=1 is a linearly independent set of functions inL2(R).

Despite the striking simplicity of the statement of this conjecture, it remains open
today in the generality stated. The conjecture was originally stated in [112]. Many partial
or related results are known, see [112, 147, 136, 9]. For example, the conjecture is known to
be true if g is compactly supported, if N ≤ 3, or if {(αk, βk)}Nk=1 is a subset of a (full-rank)
lattice in R2. However, even the following subconjecture is currently open.

Conjecture 3. If g ∈ S(R) is nonzero and {(αk, βk)}4
k=1 is any set of four distinct points

in R2, then {MβkTαkg}4
k=1 is a linearly independent set of functions in L2(R).

For a detailed exposition of the HRT Conjecture, its context, the known partial results
as of the time of writing, and related results and conjectures, see the survey [106].

7. Wavelets

We end this article by noting that wavelet frames behave very differently than Gabor frames
with respect to density. For wavelets there is no exact analogue of the Nyquist density,
even given constraints on the norm or on the admissibility constant of the wavelet (see the
example of Daubechies [48, Theorem 2.10] and the more extensive results of Balan [7]
and Kutyniok [140]). Thus we should not expect a full analogy of the results for localized
frames in the setting of wavelets.

Even so, density conditions play a nontrivial but not-well-understood role in wavelet
theory. Seip [165] introduced a notion of density for Bergman-type spaces on the unit disk,
and density results for certain wavelet frames

W(ψ,�) = {
a−1/2ψ

(
x
a

− b
)}
(a,b)∈� ,
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generated by some wavelets ψ follow from those results.

Additionally, a notion of affine Beurling density for irregular wavelet systems was
introduced independently in [108] and [175], and various results relating frame properties
of W(ψ,�) to the density of � were obtained in those articles. These definitions are
not equivalent, in part because of the various choices of left versus right representation
combined with left versus right translation. A comparison of these various definitions is
made is [137]. In [139] it is shown that the local integrability condition of [114] is equivalent
to finite affine Beurling density (assuming some mild regularity on the waveletψ). The role
of density conditions in wave packet systems (which combine translations, modulations,
and dilations together) is explored in [47].

Perhaps surprisingly, it is shown in [110] that irregular wavelet frames possess an
exact analogue of the Homogeneous Approximation Property satisfied by Gabor frames
(see Section 5.3). Yet, whereas in the Gabor case the HAP implies the existence of a
Nyquist density, in the wavelet case the implications of the HAP are quite different. In
particular, while there is a relationship between the density of any given wavelet frame
compared to the density of any given wavelet Riesz basis, this relationship depends on the
rate of approximation in the HAP rather than being absolute, as it is in the Gabor case.

The localized frames approach of [12, 13] cannot be directly applied to wavelet frames
because the affine group is nonabelian and does not contain discrete subgroups. Even so,
the notion of localized frames has been applied to wavelet frame expansions, see [28, 76].
We expect that the ideas of localized frames will be an important concept for future results
on wavelet frames.

A. Gaussians and the Bargmann-Fock Space

In this Appendix we provide a brief summary of the relationships between properties of
Gabor systems generated by the Gaussian function and properties of sets of sampling and
interpolation in the Bargmann-Fock space.

First we require the following abstract terminology in addition to that given in Defi-
nition/Facts 1, cf. [189].

Definition/Facts A.1. Let F = {fn}n∈N be a sequence in a Hilbert space H .

(a) The analysis map or coefficient map associated to F isCf = {〈f, fn〉}n∈N, f ∈ H .

(b) The moment space of F is the range of C, which is a subspace of the space of all
complex-valued sequences on N.

(c) By the Closed Graph Theorem, F is a Bessel sequence if and only if range(C) ⊂ �2.

(d) We say that F is a Riesz-Fischer sequence if range(C) ⊃ �2. That is, given any
c = (cn)n∈N, there exists f ∈ H such that 〈f, fn〉 = cn for all n ∈ N.

(e) F is a Riesz sequence if and only if F is both a Bessel sequence and a Riesz-
Fischer sequence.

Now we turn to the Bargmann transform and the Bargmann-Fock space. We will only
consider the case d = 1 and p = 2. We refer to [73, Section 1.6] and [89, Section 3.4]
for details. Throughout, ϕ(t) = 21/4e−πt2 will denote the one-dimensional normalized
Gaussian window function.
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Definition/Facts A.2.

(a) The (Bargmann-)Fock space F2(C) consists of all entire functions F on C
for which

‖F‖2
F =

∫
C

|F(z)|2 e−π |z|2 dz < ∞ .

F2(C) is a Hilbert space under the inner product

〈F,G〉F =
∫

C
F(z)G(z) e−π |z|2 dz .

(b) The Bargmann transform of a function f on R is the function Bf on C given by

Bf (z) = 21/4
∫

R
f (t) e2πitz−πt2− π

2 z
2
dt ,

whenever this is defined.

(c) The Bargmann transform B is a unitary map of L2(R) onto F2(C).
(d) If we write z = x + iξ , then

Vϕf (x,−ξ) = eπixξ Bf (z) e−
π
2 |z|2 .

(e) If F ∈ F2(C), then for z = x + iξ ∈ C we have

〈
F,B(TxM−ξ ϕ)

〉
F = e−πixξ e−

π
2 |z|2 F(z) .

Next we define sets of sampling and interpolation, cf. [164, 168].

Definition A.1. Let � = {zn}n∈N be a sequence of points in C.

(a) � is a set of sampling for F2(C) if there exist A, B > 0 such that

∀F ∈ F2(C), A ‖F‖2
F ≤

∞∑
n=1

e−π |zn|2 |F(zn)|2 ≤ B ‖F‖2
F .

(b) � is a set of interpolation for F2(C) if for every c = (cn)n∈N ∈ �2 there exists
F ∈ F2(C) such that

e−
π
2 |zn|2 F(zn) = cn, n ∈ N .

Now we can derive the equivalences between sets of sampling and interpolation and
frame properties of Gabor systems generated by the Gaussian window. The Beurling density
of a sequence of complex numbers is defined via the natural identification of C with R2.

Theorem A.1. Let � = {zn}n∈N be a sequence of points in C such that D+(�) < ∞
(equivalently, � is a union of finitely many uniformly separated subsequences). Define

� = {(xn,−ξn) : zn = xn + iξn, n ∈ N} . (A.1)

Then the following statements hold.

(a) � is a set of sampling for F2(C) if and only if G(g,�) is a frame for L2(R).
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(b) � is a set of interpolation for F2(C) if and only if G(g,�) is a Riesz sequence
in L2(R).

Proof.
(a) Suppose that� is a set of sampling. If f ∈ L2(R) andF = Bf , then ‖f ‖2 = ‖F‖F and

∞∑
n=1

e−π |zn|2 |F(zn)|2 =
∞∑
n=1

|〈F,B(TxnM−ξnϕ)〉F |2 =
∞∑
n=1

|〈f, TxnM−ξnϕ〉|2 .

Therefore G(ϕ,�) is a frame for L2(R), and the converse is symmetric.

(b) Suppose that � is a set of interpolation and let c = (cn)n∈N ∈ �2 be given. Then
(eπixnξncn)n∈N ∈ �2, so there exists F ∈ F2(C) such that

e−
π
2 |zn|2 F(zn) = eπixnξncn, n ∈ N .

Setting f = B−1F ∈ L2(R), we therefore have that

〈
f, TxnM−ξnϕ

〉 = 〈
F,B(TxnM−ξnϕ)

〉
F = e−πixnξn e−

π
2 |zn|2 F(zn) = cn .

Thus G(ϕ,�) is a Riesz-Fischer sequence in L2(R). However, since ϕ ∈ M1(R) and
we have assumed that D+(�) = D+(�) < ∞, we have by Theorem 12 that G(ϕ,�) is
a Bessel sequence, and hence by Definition/Facts A.1(e), it must be a Riesz sequence in
L2(R). The converse is symmetric.

Actually, with � and � related as in (A.1), any of the hypotheses that � is a set
of sampling, G(g,�) is a frame, or G(g,�) is a Riesz sequence imply that D+(�) < ∞.
However, the hypothesis that� is a set of interpolation does not by itself imply finite density.

Combining the Density Theorem (Theorem 13) and Theorem A.1, we see that if �
is a set of sampling then we must have 1 ≤ D+(�) < ∞, and if � is a set of interpolation
with finite density then 0 ≤ D+(�) ≤ 1. Lyubarskii and Seip/Wallstén proved more. The
following result summarizes Theorems 2.1, 2.2 in [164] and Theorems 1.1, 1.2 in [168].

Theorem A.2. Let � be a sequence of points in C.

(a) � is a set of sampling for F2(C) if and only if � is a union of finitely many
uniformly separated sets �1, . . . , �N , and � contains a uniformly separated set
�′ such that D−(�) > 1.

(b) � is a set of interpolation for F2(C)withD+(�) < ∞ if and only if� is uniformly
separated and D+(�) < 1.

Using the equivalences obtained above, we can translate Theorem A.1 into necessary
and sufficient conditions for G(ϕ,�) to be a frame or a Riesz sequence. When we do this,
we obtain Theorem 14.

B. Ultrafilters

In this Appendix we provide a brief review of ultrafilters and their basic properties. For
additional information, we refer to [115, Chapter 3]. Filters were introduced by H. Car-
tan [29, 30] in order to characterize continuous functions on general topological spaces.
Soon after, it was realized that the set of ultrafilters endowed with the proper topology is
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the Stone-Čech compactification of a discrete (or more generally, a completely regular)
topological space. In the following we will restrict our attention to ultrafilters over the
natural numbers N.

Definition B.1. A collection p of subsets of N is a filter if:

(a) ∅ /∈ p,

(b) if A, B ∈ p then A ∩ B ∈ p,

(c) if A ∈ p and A ⊂ B ⊂ N, then B ∈ p.

A filter p is an ultrafilter if it is maximal in the sense that:

(d) If p′ is a filter on N such that p ⊂ p′, then p′ = p,

or, equivalently, if

(d’) for anyA ⊂ N, eitherA ∈ p or N \A ∈ p [but not both, because of properties (a)
and (b)].

The set of ultrafilters is denoted by βN.

Definition B.2. Given any n ∈ N, en = {A ⊂ N : n ∈ A} is an ultrafilter, called a
principal ultrafilter. It is straightforward to show that any ultrafilter p that contains a finite
set must be one of these principal ultrafilters. An ultrafilter which contains no finite sets is
called free. The set of free ultrafilters is denoted by N∗.

Our main use for ultrafilters is that they provide a notion of convergence for arbi-
trary sequences.

Definition B.3. Let p ∈ βN be an ultrafilter. Then we say that a sequence {ck}k∈N of
complex numbers converges to c ∈ C with respect to p if for every ε > 0 there exists a set
A ∈ p such that |ck − c| < ε for all k ∈ A. In this case, we write c = p-limk∈N ck or
simply c = p-lim ck .

The following proposition summarizes the basic properties of convergence with re-
spect to an ultrafilter.

Proposition B.1. Let p ∈ βN be an ultrafilter. Then the following statements hold.

(a) Every bounded sequence of complex scalars {ck}k∈N converges with respect to p
to some c ∈ C.

(b) p-limits are unique.

(c) If p = en is a principal ultrafilter, then p-lim ck = cn.

(d) If {ck}k∈N is a convergent sequence in the usual sense, p is a free ultrafilter, and
limk→∞ ck = c, then p-lim ck = c.

(e) If {ck}k∈N is a bounded sequence and p is a free ultrafilter, then p-limk∈N ck is an
accumulation point of {ck}k∈N.

(f) If c is an accumulation point of a bounded sequence {ck}k∈N, then there exists a free
ultrafilter p such that p-lim ck = c. In particular, there exists an ultrafilter p such
that p-lim ck = lim sup ck , and there exists an ultrafilter q such that q-lim ck =
lim inf ck .

(g) p-limits are linear, i.e., p-lim(ack + bdk) = a p-lim ck + b p-lim dk .

(h) p-limits respect products, i.e., p-lim(ckdk) = (
p-lim ck

) (
p-lim dk

)
.
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