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ABSTRACT. Given p ∈ [1,∞) and λ ∈ (0, n), we study Morrey space Lp,λ(Rn) of all locally
integrable complex-valued functions f on R

n such that for every open Euclidean ball B ⊂ R
n

with radius rB there are numbers C = C(f ) (depending on f ) and c = c(f, B) (relying upon f
and B) satisfying

r−λ
B

∫
B

|f (x)− c|p dx ≤ C

and derive old and new, two essentially different cases arising from either choosing c = fB =
|B|−1 ∫

B f (y) dy or replacing c by PtB (x) = ∫
tB
ptB (x, y)f (y) dy—where tB is scaled to rB

and pt (·, ·) is the kernel of the infinitesimal generator L of an analytic semigroup {e−tL}t≥0 on
L2(Rn). Consequently, we are led to simultaneously characterize the old and new Morrey spaces,
but also to show that for a suitable operator L, the new Morrey space is equivalent to the old one.

1. Introduction

As well-known, a priori estimates mixing Lp and Lipλ are frequently used in the study of
partial differential equations—naturally, the so-called Morrey spaces are brought into play
(cf. [24]). A locally integrable complex-valued function f on R

n is said to be in the Morrey
space Lp,λ(Rn), 1 ≤ p < ∞ and λ ∈ (0, n+ p), if for every Euclidean open ball B ⊂ R

n

with radius rB there are numbers C = C(f ) (depending on f ) and c = c(f, B) (relying
upon f and B) satisfying

r−λB
∫
B

|f (x)− c|p dx ≤ C .

The space of Lp,λ(Rn)-functions was introduced by Morrey [18]. Since then, the space has
been studied extensively—see, for example, [4, 13, 12, 20, 21, 22, 28].
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We would like to note that as in [20], for 1 ≤ p < ∞ and λ = n, the spaces
Lp,n(Rn) are variants of the classical BMO (bounded mean oscillation) function space of
John-Nirenberg. For 1 ≤ p < ∞ and λ ∈ (n, n+ p), the spaces Lp,λ(Rn) are variants of
the homogeneous Lipschitz spaces Lip(λ−n)/p(Rn).

Clearly, the remaining cases: 1 ≤ p < ∞ and λ ∈ (0, n) are of independent interest,
and hence motivate our investigation. The purpose of this article is twofold. First, we
explore some new characterizations of Lp,λ(Rn) through the fact that Lp,λ(Rn) consists of
all locally integrable complex-valued functions f on R

n satisfying

‖f ‖Lp,λ = sup
B⊂Rn

[
r−λB

∫
B

|f (x)− fB |p dx
]1/p

< ∞ , (1.1)

where the supremum is taken over all Euclidean open balls B = B(x0, rB) with center x0
and radius rB , and fB stands for the mean value of f over B, i.e.,

fB = |B|−1
∫
B

f (x) dx .

The second aim is to use those new characterizations as motives of a continuous study
of [1, 7, 5, 9] and so to introduce new Morrey spaces Lp,λL (Rn) associated with operators.
Roughly speaking, if L is the infinitesimal generator of an analytic semigroup {e−tL}t≥0
on L2(Rn)with kernel pt (x, y)which decays fast enough, then we can view Ptf = e−tLf
as an average version of f at the scale t and use the quantity

PtBf (x) =
∫

Rn

ptB (x, y)f (y) dy

to replace the mean value fB in the equivalent semi-norm (1.1) of the original Morrey
space, where tB is scaled to the radius of the ball B. Hence, we say that a function f (with
appropriate bound on its size |f |) belongs to the space Lp,λL (Rn) (where 1 ≤ p < ∞ and
λ ∈ (0, n)), provided

‖f ‖
Lp,λL

= sup
B⊂Rn

[
r−λB

∫
B

|f (x)− PtBf (x)|p dx
]1/p

< ∞ (1.2)

where tB = rmB for a fixed constant m > 0—see the forthcoming Sections 2.2 and 3.1.
We pursue a better understanding of (1.1) and (1.2) through the following aspects:
In Section 2, we collect most useful materials on the bounded holomorphic func-

tional calculus.
In Section 3, we study some characterizations of Lp,λ(Rn) and Lp,λL (Rn) and give

a criterion for Lp,λ(Rn)⊆ Lp,λL (Rn). The later fact illustrates that Lp,λ(Rn) exists as the
minimal Morrey space, and consequently induces a concept of the maximal Morrey space.

In Section 4, we establish an identity formula associated with the operator L. This
formula is a key to handle the quadratic features of the old and new Morrey spaces.

As an immediate continuation of Section 4, Section 5 is devoted to Littlewood-Paley
type characterizations of Lp,λ(Rn) and Lp,λL (Rn) via the predual of Lp,λ(Rn) (cf. [28]) and

a number of important estimates for functions in Lp,λ(Rn) and Lp,λL (Rn). Moreover, we

show that for a suitable semigroup {e−tL}t>0, Lp,λL (Rn) equals Lp,λ(Rn) with equivalent
seminorms—in particular, if L is either −� or

√−� on R
n, then Lp,λ(Rn) coincides with
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Lp,λ√−�(R
n) and Lp,λ−�(Rn), where� = �x = ∑n

k=1 ∂
2/∂x2

k is the classical Laplace operator

in the spatial variable x = (x1, . . . , xn) ∈ R
n.

Throughout, the letters c, c1, c2, . . . will denote (possibly different) constants that
are independent of the essential variables.

2. Preliminaries

2.1 Holomorphic Functional Calculi of Operators

We start with a review of some definitions of holomorphic functional calculi introduced by
McIntosh [17]. Let 0 ≤ ω < ν < π . We define the closed sector in the complex plane C

Sω = {z ∈ C : |argz| ≤ ω} ∪ {0}
and denote the interior of Sω by S0

ω.
We employ the following subspaces of the spaceH(S0

ν ) of all holomorphic functions
on S0

ν :
H∞

(
S0
ν

) = {
b ∈ H (S0

ν

) : ||b||∞ < ∞}
,

where
||b||∞ = sup

{|b(z)| : z ∈ S0
ν

}
and

�
(
S0
ν

) = {
ψ ∈ H (S0

ν

) : ∃s > 0, |ψ(z)| ≤ c|z|s(1 + |z|2s)−1}
.

Given 0 ≤ ω < π and I – the identity operator on L2(Rn), a closed operator L in
L2(Rn) is said to be of type ω if its spectrum σ(L) ⊂ Sω, and for each ν > ω, there exists
a constant cν such that∥∥(L− λI)−1

∥∥
2,2 = ∥∥(L− λI)−1

∥∥
L2→L2 ≤ cν |λ|−1, λ �∈ Sν .

If L is of type ω and ψ ∈ �(S0
ν ), we define ψ(L) ∈ L(L2,L2) by

ψ(L) = 1

2πi

∫



(L− λI)−1ψ(λ) dλ , (2.1)

where 
 is the contour {ξ = re±iθ : r ≥ 0} parametrised clockwise around Sω, and
ω < θ < ν. Clearly, this integral is absolutely convergent in L(L2,L2) (which is the class
of all bounded linear operators on L2), and it is straightforward to show, using Cauchy’s
theorem, that the definition is independent of the choice of θ ∈ (ω, ν). If, in addition, L is
one-one and has dense range and if b ∈ H∞(S0

ν ), then b(L) can be defined by

b(L) = [ψ(L)]−1(bψ)(L) where ψ(z) = z(1 + z)−2 .

It can be shown that b(L) is a well-defined linear operator in L2(Rn).
We say that L has a bounded H∞ calculus in L2(Rn) provided there exists cν,2 > 0

such that b(L) ∈ L(L2,L2) and

‖b(L)‖2,2 = ‖b(L)‖L2→L2 ≤ cν,2||b||∞ ∀b ∈ H∞
(
S0
ν

)
.

For the conditions and properties of operators which have holomorphic functional calculi,
see [17] and [2] which also contain a proof of the following convergence lemma.



90 Xuan Thinh Duong, Jie Xiao, and Lixin Yan

Lemma 1. LetX be a complex Banach space. Given 0 ≤ ω < ν ≤ π , letL be an operator
of type ω which is one-to-one with dense domain and range. Suppose {fα} is a uniformly
bounded net in H∞(S0

ν ), which converges to f ∈ H∞(S0
ν ) uniformly on compact subsets

of S0
ν , such that {fα(L)} is a uniformly bounded net in the space L(X,X) of continuous

linear operators on X. Then f (L) ∈ L(X,X), fα(L)u → f (L)u for all u ∈ X and

‖f (L)‖ = ‖f (L)‖X→X ≤ sup
α

‖fα(L)‖ = sup
α

‖fα(L)‖X→X .

2.2 Two More Assumptions

Let L be a linear operator of type ω on L2(Rn) with ω < π/2, hence, L generates a holo-
morphic semigroup e−zL, 0 ≤ |Arg(z)| < π/2 −ω. Assume the following two conditions.

Assumption (a): The holomorphic semigroup{
e−zL

}
0≤|Arg(z)|<π/2−ω

is represented by kernel pz(x, y) which satisfies an upper bound

|pz(x, y)| ≤ cθh|z|(x, y) ∀x, y ∈ R
n

and
|Arg(z)| < π/2 − θ for θ > ω ,

where ht (·, ·) is determined by

ht (x, y) = t−n/mg
( |x − y|
t1/m

)
, (2.2)

in whichm is a positive constant and g is a positive, bounded, decreasing function satisfying

lim
r→∞ r

n+εg(r) = 0 for some ε > 0 . (2.3)

Assumption (b): The operator L has a bounded H∞-calculus in L2(Rn).
Now, we give some consequences of the Assumptions (a) and (b) which will be

used later.
First, if {e−tL}t>0 is a bounded analytic semigroup on L2(Rn) whose kernel pt (x, y)

satisfies the estimates (2.2) and (2.3), then for any k ∈ N, the time derivatives of pt satisfy

∣∣∣tk ∂kpt (x, y)
∂tk

∣∣∣ ≤ c

tn/m
g
( |x − y|
t1/m

)
for all t > 0 and almost all x, y ∈ R

n . (2.4)

For each k ∈ N, the function g might depend on k but it always satisfies (2.3). See
Theorem 6.17 of [19].

Secondly, L has a bounded H∞-calculus in L2(Rn) if and only if for any nonzero
function ψ ∈ �(S0

ν ), L satisfies the square function estimate and its reverse

c1‖f ‖L2 ≤
(∫ ∞

0
‖ψt(L)f ‖2

L2

dt

t

)1/2

≤ c2‖f ‖L2 (2.5)

for some 0 < c1 ≤ c2 < ∞, where ψt(ξ) = ψ(tξ). Note that different choices of ν > ω

and ψ ∈ �(S0
ν ) lead to equivalent quadratic norms of f .
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As noted in [17], positive self-adjoint operators satisfy the quadratic estimate (2.5).
So do normal operators with spectra in a sector, and maximal accretive operators. For the
definitions of these classes of operators, we refer readers to [27].

The following result, existing as a special case of [6, Theorem 6], tells us the L2-
boundedness of a bounded H∞-calculus can be extended to Lp-boundedness, p > 1.

Lemma 2. Under the Assumptions (a) and (b), the operatorL has a boundedH∞-calculus
in Lp(Rn), p ∈ (1,∞), that is, b(L) ∈ L(Lp,Lp) with

‖b(L)‖p,p = ‖b(L)‖Lp→Lp ≤ cν,p‖b‖∞ ∀b ∈ H∞
(
S0
ν

)
.

Moreover, if p = 1 then b(L) is of weak type (1, 1).

Thirdly, the Littlewood-Paley function GL(f ) associated with an operator L is de-
fined by

GL(f )(x) =
(∫ ∞

0
|ψt(L)f |2 dt

t

)1/2

, (2.6)

where again ψ ∈ �(S0
ν ), and ψt(ξ) = ψ(tξ). It follows from Theorem 6 of [3] that the

function GL(f ) is bounded on Lp for 1 < p < ∞. More specifically, there exist constants
c3, c4 such that 0 < c3 ≤ c4 < ∞ and

c3‖f ‖Lp ≤ ‖GL(f )‖Lp ≤ c4‖f ‖Lp (2.7)

for all f ∈ Lp, 1 < p < ∞.
By duality, the operator GL∗(f ) also satisfies the estimate (2.7), where L∗ is the

adjoint operator of L.

2.3 Acting Class of Semigroup {e−tL}t>0

We now define the class of functions that the operators e−tL act upon. Fix 1 ≤ p < ∞.
For any β > 0, a complex-valued function f ∈ Lploc(R

n) is said to be a function of type
(p;β) if f satisfies (∫

Rn

|f (x)|p
(1 + |x|)n+β dx

)1/p

≤ c < ∞ . (2.8)

We denote by M(p;β) the collection of all functions of type (p;β). If f ∈ M(p;β), the
norm of f ∈ M(p;β) is defined by

‖f ‖M(p;β) = inf
{
c ≥ 0 : (2.8) holds

}
.

It is not hard to see that M(p;β) is a complex Banach space under ‖f ‖M(p;β) < ∞. For
any given operator L, let

�(L) = sup
{
ε > 0 : (2.3) holds

}
(2.9)

and write

Mp =




M(p;�(L)) if �(L) < ∞ ;⋃
β: 0<β<∞

M(p;β) if �(L) = ∞ .
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Note that if L = −� or L = √−� on R
n, then �(−�) = ∞ or �(

√−�) = 1.
For any (x, t) ∈ R

n × (0,+∞) = R
n+1+ and f ∈ Mp, define

Ptf (x) = e−tLf (x) =
∫

Rn

pt (x, y)f (y) dy (2.10)

and

Qtf (x) = tLe−tLf (x) =
∫

Rn

−t
(dpt (x, y)

dt

)
f (y) dy . (2.11)

It follows from the estimate (2.4) that the operatorsPtf andQtf are well defined. Moreover,
the operator Qt has the following two properties:

(i) For any t1, t2 > 0 and almost all x ∈ R
n,

Qt1Qt2f (x) = t1t2

(d2Pt

dt2

∣∣∣
t=t1+t2

f
)
(x) ;

(ii) the kernel qtm(x, y) of Qtm satisfies

∣∣qtm(x, y)∣∣ ≤ ct−ng
( |x − y|

t

)
(2.12)

where the function g satisfies the condition (2.3).

3. Basic Properties

3.1 A Comparison of Definitions

Assume that L is an operator which generates a semigroup e−tL with the heat kernel
bounds (2.2) and (2.3). In what follows, B(x, t) denotes the ball centered at x and of the
radius t . Given B = B(x, t) and λ > 0, we will write λB for the λ-dilate ball, which is the
ball with the same center x and with radius λt .

Definition 1. Let 1 ≤ p < ∞ and λ ∈ (0, n). We say that

(i) f ∈ Lploc(R
n) belongs to Lp,λ(Rn) provided (1.1) holds;

(ii) f ∈ Mp associated with an operator L, is in Lp,λL (Rn) provided (1.2) holds.

Remark 1.
(i) Note first that (Lp,λ(Rn), ‖ · ‖Lp,λ ) and (Lp,λL (Rn), ‖ · ‖

Lp,λL
) are vector spaces with the

seminorms vanishing on constants and

KL,p =
{
f ∈ Mp : Ptf (x) = f (x) for almost all x ∈ R

n and all t > 0
}
,

respectively. Of course, the spaces Lp,λ(Rn) and Lp,λL (Rn) are understood to be modulo
constants and KL,p, respectively. See Section 6 of [8] for a discussion of the dimensions of
KL,2 whenL is a second order elliptic operator of divergence form or a Schrödinger operator.

(ii) We now give a list of examples of Lp,λL (Rn) in different settings.
(α) Define Pt by putting pt (x, y) to be the heat kernel or the Poisson kernel:

(4πt)−n/2e−|x−y|2/4t or
cnt(

t2 + |x − y|2)(n+1)/2
where cn = 


(
n+1

2

)
π
n+1

2

.
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Then we will show that the corresponding space Lp,λL (Rn)(modulo KL,p) coincides with
the classical Lp,λ(Rn)(modulo constants).

(β) Consider the Schrödinger operator with a nonnegative potential V (x):

L = −�+ V (x) .

To study singular integral operators associated toL such as functional calculi f (L) or Riesz
transform ∇L−1/2, it is useful to choose Pt with kernel pt (x, y) to be the heat kernel of L.
By domination, its kernel pt (x, y) has a Gaussian upper bound.

The following proposition shows that Lp,λ(Rn) is a subspace of Lp,λL (Rn) in
many cases.

Proposition 1. Let 1 ≤ p < ∞ and λ ∈ (0, n). Given an operator L which generates
a semigroup e−tL with the heat kernel bounds (2.2) and (2.3). A necessary and sufficient
condition for the classical space Lp,λ(Rn) ⊆ Lp,λL (Rn) with

‖f ‖
Lp,λL

≤ c‖f ‖Lp,λ (3.1)

is that for every t > 0, e−tL(1) = 1 almost everywhere, that is,
∫

Rn
pt (x, y) dy = 1 for

almost all x ∈ R
n.

Proof. Clearly, the condition e−tL(1) = 1, a.e. is necessary for Lp,λ(Rn) ⊆ Lp,λL (Rn).
Indeed, let us take f = 1. Then, (3.1) implies ‖1‖

Lp,λL
= 0 and thus for every t > 0,

e−tL(1) = 1 almost everywhere.
For the sufficiency, we borrow the idea of [16, Proposition 3.1]. To be more specific,

suppose f ∈ Lp,λ(Rn) . Then for any Euclidean open ball B with radius rB , we compute

‖f − PtBf ‖Lp(B) ≤ ‖f − fB‖Lp(B) + ‖fB − PtBf ‖Lp(B)

≤ ‖f ‖Lp,λr
λ/p
B +

(∫
B

(∫
Rn

|fB − f (y)|PtB (x, y) dy
)p
dx

)1/p

= ‖f ‖Lp,λr
λ/p
B +

(∫
B

(
I (B)+ J (B)

)p
dx

)1/p

,

where

I (B) =
∫

2B
|fB − f (y)|PtB (x, y) dy

and

J (B) =
∞∑
k=1

∫
2k+1B\2kB

|fB − f (y)|PtB (x, y) dy .

Next we make further estimates on I (B) and J (B). Thanks to (2.2) and (2.3), we have

‖I (B)‖Lp(B) ≤ cr−nB g(0)‖fB − f ‖L1(B) ≤ cr
λ/p
B ‖f ‖Lp,λ .

Again, using (2.2) and (2.3), we derive that for x ∈ B and y ∈ 2k+1B \ 2kB,

PtB (x, y) ≤ cr−nB g(2k) ≤ cr−nB 2−k(n+ε), k = 1, 2, . . . ,
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where ε > 0 is a constant. Consequently,

‖J (B)‖Lp(B) ≤ cr−nB

(∫
B

( ∞∑
k=1

g
(
2k
) ∫

2k+1B\2kB
|fB − f (y)| dy

)p
dx

)1/p

≤ cr
n/p−n
B

∞∑
k=1

g
(
2k
) (∫

2k+1B

|f2k+1B−f (y)| dy+(2krB)n|f2k+1B−fB |
)

≤ cr
λ/p
B ‖f ‖Lp,λ

( ∞∑
k=1

2−k(ε+ n−λ
p
) +

∞∑
k=1

k2−kε
)
.

Putting these inequalities together, we find f ∈ Lp,λL (Rn).

3.2 Fundamental Characterizations

In the argument for Proposition 1, we have used the following crucial fact that for any
f ∈Lp,λ(Rn) and a constant K > 1,

|fB − fKB | ≤ cr
λ−n
p

B ‖f ‖Lp,λ .

Now, this property can be used to give a characterization of Lp,λ(Rn) spaces in terms
of the Poisson integral. To this end, we observe that if

f ∈ M√−�,p =
{
f ∈ Lploc

(
R
n
) : |f (·)|p(1 + | · |n+1)−1 ∈ L1(

R
n
)}
,

then we can define the operator e−t
√−� by the Poisson integral as follows:

e−t
√−�f (x) =

∫
Rn

pt (x − y)f (y) dy, t > 0 ,

where
pt (x − y) = cnt(

t2 + |x − y|2)(n+1)/2
.

Proposition 2. Let 1 ≤ p < ∞, λ ∈ (0, n) and f ∈ M√−�,p. Then f ∈ Lp,λ(Rn) if
and only if

|||f |||Lp,λ(Rn) =
(

sup
(x,t)∈R

n+1+
tn−λe−t

√−�(∣∣f − e−t
√−�f (x)

∣∣p)(x))1/p

< ∞ . (3.2)

Proof. On the one hand, assume (3.2). Note that |y − x| < t implies

cnt(
t2 + |y − x|2) n+1

2

≥ ct−n .

For a fixed ball B = B(x, rB) centered at x, we let tB = rB . We then have

r−λB ‖f − fB‖pLp(B) ≤ cr−λB
∥∥f − e−tB

√−�f (x)
∥∥p

Lp(B)

≤ crn−λB

∫
B

∣∣f (y)− e−tB
√−�f (x)

∣∣p cntB(
t2B + |y − x|2) n+1

2

dy

≤ c|||f |||p
Lp,λ

,
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whence producing f ∈ Lp,λ(Rn).
On the other hand, suppose f ∈ Lp,λ(Rn). In a similar manner to proving the

sufficiency part of Proposition 1, we obtain that if (x, t) ∈ R
n+1+ then

e−t
√−�(∣∣f−e−t

√−�f (x)
∣∣p)(x)≤ctλ−n‖f ‖p

Lp,λ
+c

∞∑
k=1

∫
2k+1B\2kB

|f (y)−fB |pt(
t2+|y−x|2) n+1

2

dy

≤ctλ−n‖f ‖p
Lp,λ

,

and hence (3.2) holds.

Remark 2. Since a simple computation gives

e−t
√−�(∣∣f − e−t

√−�f (x)
∣∣2)(x)

=
∫

Rn

(
f (y)− e−t

√−�f (x)
)(
f (y)− e−t

√−�f (x)
)
pt (x − y) dy

=
∫

Rn

|f (y)|2pt (x − y) dy − e−t
√−�f (x)

(∫
Rn

f (y)pt (x − y) dy

)

− e−t
√−�f (x)

(∫
Rn

f (y)pt (x − y) dy

)
+ ∣∣e−t√−�f (x)

∣∣2
= e−t

√−�|f |2(x)− ∣∣e−t√−�f (x)
∣∣2 ,

we have that if f ∈ M√−�,2 then f ∈ L2,λ(Rn) when and only when

sup
(x,t)∈R

n+1+
tn−λ

(
e−t

√−�|f |2(x)− ∣∣e−t√−�f (x)
∣∣2) < ∞

which is equivalent to (see also [15] for the BMO-setting, i.e., λ = n)

sup
(x,t)∈R

n+1+
tn−λ

∫
R
n+1+
G

R
n+1+
(
(x, t), (y, s)

)∣∣∇y,se−s√−�f (y)
∣∣2 dy ds < ∞ ,

whereG
R
n+1+
((x, t), (y, s)) is the Green function of R

n+1+ and ∇y,s is the gradient operator

in the space-time variable (y, s).

To find out an Lp,λL (Rn) analog of Proposition 2, we take Proposition 2.6 of [7] into
account, and establish the following property of the class of operators Pt .

Lemma 3. Let 1 ≤ p < ∞ and λ ∈ (0, n). Suppose f ∈ Lp,λL (Rn). Then:

(i) For any t > 0 andK > 1, there exists a constant c > 0 independent of t andK such that

|Ptf (x)− PKtf (x)| ≤ ct
λ−n
pm ‖f ‖

Lp,λL
(3.3)

for almost all x ∈ R
n.

(ii) For any δ > 0, there exists c(δ) > 0 such that

∫
Rn

tδ/m(
t1/m + |x − y

)n+δ |(I − Pt)f (y)| dy ≤ c(δ)t
λ−n
pm ‖f ‖

Lp,λL
(3.4)
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for any x ∈ R
n.

Proof.
(i) For any t > 0, we choose s such that t/4 ≤ s ≤ t . Assume that f ∈ Lp,λL (Rn),
where 1 ≤ p < ∞ and λ ∈ (0, n), we estimate the term |Ptf (x)− Pt+sf (x)|. Using the
commutative property of the semigroup {Pt }t>0, we can write

Ptf (x)− Pt+sf (x) = Pt(f − Psf )(x) .

Since f ∈ Lp,λL (Rn), one has

|Ptf (x)− Pt+sf (x)| ≤
∫

Rn

|pt (x, y)||f (y)− Psf (y)| dy

≤ c∣∣B(x, t1/m)∣∣
∫

Rn

(
1 + |x − y|

t1/m

)−(n+ε)|f (y)− Psf (y)| dy

≤ c

(
1∣∣B(x, s1/m

)∣∣
∫
B(x,s1/m)

|f (y)− Psf (y)|p dy
)1/p

+ c∣∣B(x, s1/m
)∣∣
∫
B(x,s1/m)c

(
1+ |x−y|

s1/m

)−(n+ε)|f (y)−Psf (y)| dy
≤ cs

λ−n
pm ‖f ‖

Lp,λL
+ I .

We then decompose R
n into a geometrically increasing sequence of concentric balls, and ob-

tain

I = c

∞∑
k=0

1∣∣B(x, s1/m
)∣∣
∫
B(x,2k+1s1/m)\B(x,2ks1/m)

(
1+ |x − y|

s1/m

)−(n+ε)|f (y)−Psf (y)| dy

≤ c

∞∑
k=0

2−k(n+ε) 1∣∣B(x, s1/m
)∣∣
∫
B(x,2k+1s1/m)

|f (y)− Psf (y)| dy ,

since (
1 + s−1/m|x − y|)−n−ε ≤ c2−k(n+ε) ∀ y ∈ B(x, 2k+1s1/m)\B(x, 2ks1/m) .
For a fixed positive integer k, we consider the ballB(x, 2ks1/m). This ball is contained

in the cube Q[x, 2k+1s1/m] centered at x and of the side length 2k+1s1/m. We then divide
this cube Q[x, 2k+1s1/m] into [2k+1([√n ] + 1)]n small cubes {Qxki

}Nki=1 centered at xki
and of equal side length ([√n ] + 1)−1s1/m, where Nk = [2k+1([√n ] + 1)]n. For any
i = 1, 2, · · · , Nk , each of these small cubes Qxki

is then contained in the corresponding

ballBki with the same center xki and radius r = s1/m, Consequently, for any ballB(x, 2kt),
k = 1, 2, · · · , there exists a corresponding collection of balls Bk1 , Bk2 , · · · , BkNk such that

(i) each ball Bki is of the radius t;

(ii) B(x, 2ks1/m) ⊂
Nk⋃
i=1

Bki ;

(iii) there exists a constant c > 0 independent of k such that Nk ≤ c2kn;

(iv) each point of B(x, 2ks1/m) is contained in at most a finite number M of the balls Bki ,
where M is independent of k.
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Applying the properties (i), (ii), (iii), and (iv) above, we obtain

I ≤ c

∞∑
k=0

2−k(n+ε) 1∣∣B(x, s1/m
)∣∣
∫
Nk+1⋃
i=1

Bki

|f (y)− Ptf (y)| dy

≤ c

∞∑
k=0

2−k(n+ε)
Nk+1∑
i=1

1

|Bki |
∫
Bki

|f (y)− Psf (y)| dy

≤ c

∞∑
k=0

2−k(n+ε)Nk+1 sup
i:1≤i≤Nk+1

(
1

|Bki |
∫
Bki

|f (y)− Psf (y)|p dy
)1/p

≤ c

∞∑
k=0

2−k(n+ε)2kns
λ−n
pm ‖f ‖

Lp,λL

≤ cs
λ−n
pm ‖f ‖

Lp,λL
,

which gives (3.3) for the case t/4 ≤ s ≤ t .
For the case 0 < s < t/4, we write

Ptf (x)− Pt+sf (x) = (Ptf (x)− P2t f (x))− (Pt+s(f − Pt−sf )(x) .

Noting that (t + s)/4 ≤ (t − s) < t + s, we obtain (3.3) by using the same argument as
above. In general, for any K > 1, let l be the integer satisfying 2l ≤ K < 2l+1, hence
l ≤ log2K . This, together with the fact that λ ∈ (0, n), imply that there exists a constant
c > 0 independent of t and K such that

|Ptf (x)− PKtf (x)| ≤
l−1∑
k=0

|P2k t f (x)− P2k+1t f (x)| + |P2l t f (x)− PKtf (x)|

≤ c

l−1∑
k=0

(2kt)
λ−n
pm ‖f ‖

Lp,λL
+ c(Kt)

λ−n
pm ‖f ‖

Lp,λL

≤ ct
λ−n
pm ‖f ‖

Lp,λL

for almost all x ∈ R
n.

(ii) Choosing a ball B centered at x and of the radius rB = t1/m, and using (3.3), we have

(
1∣∣2kB∣∣

∫
2kB

|f (y)− Ptf (y)|p dy
)1/p

≤
(

1∣∣2kB∣∣
∫

2kB
|f (y)− Pt2kB f (y)|p dy

)1/p

+ sup
y∈2kB

|Pt2kB f (y)− Ptf (y)|

≤ ct
λ−n
pm ‖f ‖

Lp,λL
(3.5)

for all k. Putting 2−1B = ∅, we read off
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∫
Rn

tδ/m(
t1/m + |x − y

)n+δ |(I − Pt)f (y)| dy

≤
∞∑
k=0

∫
2kB\2k−1B

tδ/m(
t1/m + |x − y

)n+δ |(I − Pt)f (y)| dy

≤ c

∞∑
k=0

2kn2−k(n+δ) 1∣∣2kB∣∣
∫

2kB
|f (y)− Ptf (y)| dy

≤ c

∞∑
k=0

2−kδ
(

1∣∣2kB∣∣
∫

2kB
|f (y)− Ptf (y)|p dy

)1/p

≤ c

∞∑
k=0

2−kδt
λ−n
pm ‖f ‖

Lp,λL

≤ ct
λ−n
pm ‖f ‖

Lp,λL
.

The above analysis suggests us to introduce the maximal Morrey space as follows.

Definition 2. Let 1 ≤ p < ∞ and λ ∈ (0, n). We say that f ∈ Mp is in Lp,λL,max(R
n)

associated with an operator L, if there exists some constant c (depending on f ) such that

∣∣Pt(|f − Ptf |p)(x)∣∣1/p ≤ ct
λ−n
pm for almost all x ∈ R

n and t > 0 . (3.6)

The smallest bound c for which (3.6) holds then taken to be the norm of f in this space,
and is denoted by ‖f ‖

Lp,λL,max
.

Using Lemma 3, we can derive a characterization in terms of the maximal Morrey
space under an extra hypothesis.

Proposition 3. Let 1 ≤ p < ∞ and λ ∈ (0, n). Given an operator L which generates a
semigroup e−tL with the heat kernel bounds (2.2) and (2.3). Then Lp,λL (Rn)⊆ Lp,λL,max(R

n).
Furthermore, if the kernels pt (x, y) of operators Pt are nonnegative functions when t > 0,
and satisfy the following lower bounds

pt (x, y) ≥ c

tn/m
(3.7)

for some positive constant c independent of t , x and y, then, Lp,λL,max(R
n) = Lp,λL (Rn) .

Proof. Let us first prove Lp,λL (Rn) ⊆ Lp,λL,max(R
n). For any fixed t > 0 and x ∈ R

n,

we choose a ball B centered at x and of the radius rB = t1/m. Let f ∈ Lp,λL (Rn). To
estimate (3.6), we use the decay of function g in (2.3) to get

∣∣Pt(|f − Ptf |p)(x)∣∣ ≤
∫

Rn

|pt (x, y)||f (y)− Ptf (y)|p dy

≤ c

∞∑
k=0

1

|B|
∫

2kB\2k−1B

g

( |x − y|
t1/m

)
|f (y)− Ptf (y)|p dy
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≤ c

∞∑
k=0

2kng
(
2(k−1)) 1∣∣2kB∣∣

∫
2kB

|f (y)− Ptf (y)|p dy

≤ c

∞∑
k=0

2kng
(
2(k−1))t λ−nm ‖f ‖p

Lp,λL

≤ ct
λ−n
m ‖f ‖p

Lp,λL
.

This proves ‖f ‖
Lp,λL,max

≤ c‖f ‖
Lp,λL

.

We now prove Lp,λL,max(R
n) ⊆ Lp,λL (Rn) under (3.7). For a fixed ball B = B(x, rB)

centered at x, we let tB = rmB . For any f ∈ Lp,λL,max(R
n), it follows from (3.7) that one has

1

|B|
∫
B

|f (y)− PtBf (y)|p dy ≤ c

∫
B(x,t

1/m
B )

ptB (x, y)|f (y)− PtBf (y)|p dy

≤ c

∫
Rn

ptB (x, y)|f (y)− PtBf (y)|p dy

≤ ct
λ−n
m

B ‖f ‖p
Lp,λL,max

,

which proves ‖f ‖
Lp,λL

≤ c‖f ‖
Lp,λL,max

. Hence, the proof of Proposition 3 is complete.

4. An Identity for the Dual Pairing

4.1 A Dual Inequality and a Reproducing Formula

From now on, we need the following notation. SupposeB is an open ball centered at xB with
radius rB and f ∈ Mp. Given an Lq function g supported on a ball B, where 1

q
+ 1

p
= 1.

For any (x, t) ∈ R
n+1+ , let

F(x, t) = Qtm(I − Ptm)f (x) and G(x, t) = Q∗
tm

(I − P ∗
rmB

)
g(x) , (4.1)

where P ∗
t and Q∗

t are the adjoint operators of Pt and Qt , respectively.

Lemma 4. Assume that L satisfies the Assumptions (a) and (b) of Section 2.2. Suppose
f, g, F,G, p, q are as in (4.1).

(i) If f also satisfies

|||f |||
Lp,λL

= sup
B⊂Rn

r
− λ
p

B

∥∥∥∥
{ ∫ rB

0
|Qtm(I − Ptm)f (x)|2 dt

t

}1/2∥∥∥∥
Lp(B)

< ∞ ,

where the supremum is taken over all open ball B ⊂ R
n with radius rB , then there exists a

constant c > 0 independent of any open ball B with radius rB such that∫
R
n+1+

|F(x, t)G(x, t)|dx dt
t

≤ cr
λ/p
B |||f |||

Lp,λL
‖g‖Lq . (4.2)
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(ii) If

h ∈ Lq
(
R
n
)
, bm = 36m

5
and 1 = bm

∫ ∞

0
t2me−2tm(1 − e−tm

)dt
t
,

then

h(x) = bm

∫ ∞

0

(
Q∗
tm

)2(I − P ∗
tm

)
h(x)

dt

t
,

where the integral converges strongly in Lq(Rn).

Proof.
(i) For any ball B ⊂ R

n with radius rB , we still put

T (B) = {
(x, t) ∈ R

n+1+ : x ∈ B, 0 < t < rB
}
.

We then write∫
R
n+1+

|F(x, t)G(x, t)|dx dt
t

=
∫
T (2B)

∣∣F(x, t)G(x, t)∣∣dx dt
t

+
∞∑
k=1

∫
T (2k+1B)\T (2kB)

∣∣F(x, t)G(x, t)∣∣dx dt
t

= A1 +
∞∑
k=2

Ak .

Recall that q > 1 and 1
q

+ 1
p

= 1. Using the Hölder inequality, together with (2.7) (here

ψ(z) = ze−z), we obtain

A1 ≤
∥∥∥∥
{ ∫ r2B

0

∣∣Qtm(I − Ptm)f (x)
∣∣2 dt
t

}1/2∥∥∥∥
Lp(2B)

×
∥∥∥∥
{ ∫ r2B

0

∣∣Q∗
tm

(I − P ∗
rmB

)
g(x)

∣∣2 dt
t

}1/2∥∥∥∥
Lq (2B)

≤
∥∥∥∥
{ ∫ r2B

0

∣∣Qtm(I − Ptm)f (x)
∣∣2 dt
t

}1/2∥∥∥∥
Lp(2B)

∥∥GL∗
((I − P ∗

rmB

)
g
)∥∥

Lq

≤ cr
λ
p

B |||f |||
Lp,λL

‖g‖Lq .

Let us estimate Ak for k = 2, 3, · · · . Note that for x ∈ 2k+1B\2kB and y ∈ B, we have
that |x − y| ≥ 2k−1rB . Using (2.4) and the commutative property of {Pt }t>0, we get∣∣Q∗

tm

(I − P ∗
rmB

)
g(x)

∣∣ ≤ ∣∣Q∗
tmg(x)

∣∣+ c
( t

t + rB

)m∣∣Qtm+rmB g(x)
∣∣

≤ c

∫
B

tε |g(y)|
(t + |x − y|)n+ε dy

+ c
( t
rB

)m ∫
B

rεB |g(y)|
(rB + |x − y|)n+ε dy

≤ ctε0(
2krB

)n+ε0

∫
B

|g(y)| dy

≤
(

ctε0(
2krB

)n+ε0

)
r
n
p

B ‖g‖Lq ,
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where ε0 = 2−1min(m, ε) and q = p/(p − 1). Consequently,∥∥∥∥
{ ∫ 2krB

0

∣∣Q∗
tm

(I − P ∗
rmB

)
g(x)χT (2k+1B)\T (2kB)

∣∣2 dt
t

}1/2∥∥∥∥
Lq (2kB)

≤ c2kn(
1
q
−1)‖g‖Lq .

Therefore,

Ak ≤
∥∥∥∥
{ ∫ 2krB

0

∣∣Qtm
(I − Ptm

)
f (x)

∣∣2 dt
t

}1/2∥∥∥∥
Lp(2kB)

×
∥∥∥∥
{ ∫ 2krB

0

∣∣Q∗
tm

(I − P ∗
rmB

)
g(x)χT (2k+1B)\T (2kB)

∣∣2 dt
t

}1/2∥∥∥∥
Lq (2kB)

≤ c
(
2krB

) λ
p 2kn(

1
q
−1)|||f |||

Lp,λL
‖g‖Lq

≤ c2
k(λ−n)
p r

λ
p

B |||f |||
Lp,λL

‖g‖Lq .

Since λ ∈ (0, n), we have∫
R
n+1+

|F(x, t)G(x, t)|dx dt
t

≤ cr
λ
p

B |||f |||
Lp,λL

‖g‖Lq + c

∞∑
k=1

2
k(λ−n)

2 r
λ
p

B |||f |||
Lp,λL

‖g‖Lq

≤ cr
λ
p

B |||f |||
Lp,λL

‖g‖Lq ,

as desired.

(ii) From Lemma 2 we know that L has a bounded H∞-calculus in Lq for all q > 1. This,
together with elementary integration, shows that {gαβ(L∗)} is a uniformly bounded net in
L(Lq,Lq), where

gαβ(L
∗) = bm

∫ β

α

(
Q∗
tm

)2(I − P ∗
tm

)dt
t

for all 0 < α < β < ∞.
As a consequence of Lemma 1, we have that for any h ∈ Lq(Rn),

h(x) = bm

∫ ∞

0

(
Q∗
tm

)2(I − P ∗
tm

)
h(x)

dt

t

where bm = 36m
5 and the integral is strongly convergent in Lq(Rn).

4.2 The Desired Dual Identity

Next, we establish the following dual identity associated with the operator L.

Proposition 4. Assume that L satisfies the Assumptions (a) and (b) of Section 2.2.
Suppose B, f, g, F,G, p, q are defined as in (4.1). If |||f |||

Lp,λL
< ∞ and bm = 36m

5 , then∫
Rn

f (x)
(I − P ∗

rmB

)
g(x) dx = bm

∫
R
n+1+
F(x, t)G(x, t)

dx dt

t
. (4.3)

Proof. From Lemma 4 (i) it turns out that∫
R
n+1+

∣∣F(x, t)G(x, t)∣∣dx dt
t

< ∞ .
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By the dominated convergence theorem, the following integral converges absolutely and sat-
isfies ∫

R
n+1+
F(x, t)G(x, t)

dx dt

t
= lim
δ→0

lim
N→∞

∫ N

δ

∫
Rn

F (x, t)G(x, t)
dx dt

t
.

Next, by Fubini’s theorem, together with the commutative property of the semigroup
{e−tL}t>0, we have∫

Rn

F (x, t)G(x, t) dx =
∫

Rn

f (x)
(
Q∗
tm

)2(I − P ∗
tm

)(I − P ∗
rmB

)
g(x) dx, ∀t > 0 .

This gives∫
R
n+1+
F(x, t)G(x, t)

dx dt

t

= lim
δ→0

lim
N→∞

∫ N

δ

[ ∫
Rn

f (x)
(
Q∗
tm

)2(I − P ∗
tm

)(I − P ∗
rmB

)
g(x) dx

]
dt

t

= lim
δ→0

lim
N→∞

∫
Rn

f (x)

[ ∫ N

δ

(
Q∗
tm

)2(I − P ∗
tm

)(I − P ∗
rmB

)
g(x)

dt

t

]
dx

= lim
δ→0

lim
N→∞

∫
Rn

f1(x)

[ ∫ N

δ

(
Q∗
tm

)2(I − P ∗
tm

)(I − P ∗
rmB

)
g(x)

dt

t

]
dx

+ lim
δ→0

lim
N→∞

∫
Rn

f2(x)

[ ∫ N

δ

(
Q∗
tm

)2(I − P ∗
tm

)(I − P ∗
rmB

)
g(x)

dt

t

]
dx

= I + II , (4.4)

where f1 = f χ4B , f2 = f χ(4B)c and χE stands for the characteristic function of E ⊆ R
n.

We first consider the term I. Since g ∈ Lq(B), where q = p/(p − 1), we conclude
(I − P ∗

rmB
)g ∈ Lq . By Lemma 4 (ii), we obtain

(I − P ∗
rmB

)
g = lim

δ→0
lim
N→∞ bm

∫ N

δ

(
Q∗
tm

)2(I − P ∗
tm

)(I − P ∗
rmB

)
(g)

dt

t

in Lq . Hence,

I = lim
δ→0

lim
N→∞

∫
Rn

f1(x)

[ ∫ N

δ

(
Q∗
tm

)2(I − P ∗
tm

)(I − P ∗
rmB

)
(g)(x)

dt

t

]
dx

= b−1
m

∫
Rn

f1(x)
(I − P ∗

rmB

)
g(x) dx .

In order to estimate the term II, we need to show that for all y �∈ 4B, there exists a
constant c = c(g, L) such that

sup
δ>0, N>0

∣∣∣∣
∫ N

δ

(
Q∗
tm

)2(I − P ∗
tm

)(I − P ∗
rmB

)
g(x)

dt

t

∣∣∣∣ ≤ c(1 + |x − x0|)−(n+ε) . (4.5)

To this end, set

�t,s
(
L∗)h(y) = (

2tm + sm
)3(d3P ∗

r

dr3

∣∣∣∣
r=2tm+sm

(I − P ∗
tm

)
h

)
(y) .
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Note that (I − P ∗
rmB

)
g = m

∫ rB

0
Q∗
sm(g)s

−1 ds .

So, we use (2.3) and (2.4) to deduce

∣∣∣∣
∫ N

δ

(
Q∗
tm

)2(I − P ∗
tm

)(I − P ∗
rmB

)
g(x)

dt

t

∣∣∣∣
=
∣∣∣∣
∫ N

δ

∫ rB

0

(
Q∗
tm

)2
Q∗
sm

(I − P ∗
tm

)
g(x)

ds dt

st

∣∣∣∣
≤ c

∫ N

δ

∫ rB

0

(
t2msm(
tm + sm

)3
)

|�t,s(L)g(x)|ds dt
st

≤ c

∫ N

δ

∫ rB

0

[ ∫
B(x0,rB)

(
t2msm(
tm+sm)3

)(
(t+s)ε

(t+s+|x−y|)n+ε
)

|g(y)| dy
]
ds dt

st
.

Because x �∈ 4B yields |x − y| ≥ |x − x0|/2, the inequality

t2msm(t + s)ε(
tm + sm

)3 ≤ cmin
{
(ts)ε/2, t−ε/2s3ε/2

}
,

together with Hölder’s inequality and elementary integration, produces a positive constant
c independent of δ,N > 0 such that for all x �∈ 4B,

∣∣∣∣
∫ N

δ

Q2
tm(I − Ptm)g(y)

dt

t

∣∣∣∣ ≤ crεB |x − x0|−(n+ε)‖g‖L1

≤ cr
ε+ n

2
B ‖g‖L2 |x − x0|−(n+ε) .

Accordingly, (4.5) follows readily.
We now estimate the term II. For f ∈ Mp, we derive f ∈ Lp

(
(1 + |x|)−(n+ε0) dx

)
.

The estimate (4.5) yields a constant c > 0 such that

sup
δ>0, N>0

∫
Rn

∣∣∣∣f2(x)

∫ N

δ

(
Q∗
tm

)2(I − P ∗
tm

)(I − P ∗
rmB

)
(g)(x)

dt

t

∣∣∣∣ dx ≤ c .

This allows us to pass the limit inside the integral of II. Hence,

II = lim
δ→0

lim
N→∞

∫
Rn

f2(x)

[ ∫ N

δ

(
Q∗
tm

)2(I − P ∗
tm

)(I − P ∗
rmB

)
(g)(x)

dt

t

]
dx

=
∫

Rn

f2(x)

(
lim
δ→0

lim
N→∞

[ ∫ N

δ

(
Q∗
tm

)2(I − P ∗
tm

)(I − P ∗
rmB

)
(g)(x)

dt

t

])
dx

= b−1
m

∫
Rn

f2(x)
(I − P ∗

rmB

)
g(x) dx .

Combining the previous formulas for I and II, we obtain the identity (4.3).
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Remark 3. For a background of Proposition 4, see also [8, Proposition 5.1].

5. Description Through Littlewood-Paley Function

5.1 The Space Lp,λ(Rn) as the Dual of the Atomic Space

Following [28], we give the following definition.

Definition 3. Let 1 < p < ∞, q = p/(p − 1) and λ ∈ (0, n). Then

(i) A complex-valued function a on R
n is called a (q, λ)-atom provided:

(α) a is supported on an open ball B ⊂ R
n with radius rB ;

(β)
∫

Rn
a(x) dx = 0;

(γ ) ‖a‖Lq ≤ r
−λ/p
B .

(ii) Hq,λ(Rn) comprises those linear functionals admitting an atomic decomposition f =∑∞
j=1 ηjaj , where aj ’s are (q, λ)-atoms, and

∑
j |ηj | < ∞.

The forthcoming result reveals that Hq,λ(Rn) exists as a predual of Lp,λ(Rn).

Proposition 5. Let 1 < p < ∞, q = p/(p − 1) and λ ∈ (0, n). Then Lp,λ(Rn) is the
dual (Hq,λ(Rn))∗ of Hq,λ(Rn). More precisely, if h = ∑

j ηj aj ∈ Hq,λ(Rn) then

〈h, �〉 = lim
k→∞

k∑
j=1

ηj

∫
Rn

aj (x)�(x) dx

is a well-defined continuous linear functional for each � ∈ Lp,λ(Rn), whose norm is equiv-
alent to ‖�‖Lp,λ ; moreover, each continuous linear functional on Hq,λ(Rn) has this form.

Proof. See [28, Proposition 5] for a proof of Proposition 5.

5.2 Characterization of Lp,λ(Rn) by Means of Littlewood-Paley Function

We now state a full characterization of Lp,λ(Rn) space for 1 < p < ∞ and λ ∈ (0, n). For
the case p = 2, see also [26, Lemma 2.1] as well as [25, Theorem 1 (i)].

Proposition 6. Let 1 < p < ∞, λ ∈ (0, n) and f ∈ M√−�,p. Then the following two
conditions are equivalent:

(i) f ∈ Lp,λ(Rn);

(ii)

I (f, p) = sup
B⊂Rn

r
− λ
p

B

∥∥∥∥
{ ∫ rB

0

∣∣∣t ∂
∂t
e−t

√−�f (x)
∣∣∣2 dt
t

}1/2∥∥∥∥
Lp(B)

< ∞ ,

where the supremum is taken over all Euclidean open ball B ⊂ R
n with radius rB .

Proof. It suffices to verify (ii)⇒(i) for which the reverse implication follows readily
from [11, Theorem 2.1]. Suppose (ii) holds. Proposition 5 suggests us to show f ∈
(H

p
p−1 ,λ(Rn))∗ in order to verify (i). Now, let g be a ( p

p−1 , λ)-atom and

pt (x) = cnt(
t2 + |x|2) n+1

2

.
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Then for any open ball B ⊂ R
n with radius rB and its tent

T (B) = {
(x, t) ∈ R

n+1+ : x ∈ B, t ∈ (0, rB)
}
,

we have (cf. [23, p. 183])

|〈f, g〉| =
∣∣∣∣
∫

Rn

f (x)g(x) dx

∣∣∣∣
= 4

∣∣∣∣
∫

Rn

∫ ∞

0

(
t
∂

∂t
pt ∗ f (x)

)(
t
∂

∂t
pt ∗ g(x)

)dt dx
t

∣∣∣∣
≤ 4

(
I (B)+ J (B)

)
.

Here,

I (B) =
∫

4B

∫ r4B

0

∣∣∣t ∂
∂t
pt ∗ f (x)

∣∣∣∣∣∣t ∂
∂t
pt ∗ g(x)

∣∣∣dt dx
t

≤
(∫

4B

(∫ r4B

0

∣∣∣t ∂
∂t
pt ∗ f (x)

∣∣∣2 dt
t

) p
2

dx

) 1
p

×
(∫

4B

(∫ r4B

0

∣∣∣t ∂
∂t
pt ∗ g(x)

∣∣∣2 dt
t

) p
2(p−1)

dx

) p−1
p

≤ cr
λ
p

B I (f, p)‖g‖L
p
p−1 (Rn)

≤ cI (f, p) ,

due to Hölder’s inequality, the L
p
p−1 -boundedness of the Littlewood-Paley G-function, and

g being a ( p
p−1 , λ)-atom.

Meanwhile,

J (B) =
∞∑
k=1

∫
T (2k+1B)\T (2kB)

∣∣∣t ∂
∂t
pt ∗ f (x)

∣∣∣∣∣∣t ∂
∂t
pt ∗ g(x)

∣∣∣dt dx
t

≤ c

∞∑
k=1

∥∥∥∥
{ ∫ 2k+1rB

0

∣∣∣t ∂
∂t
pt ∗ f (x)

∣∣∣2 dt
t

} 1
2
∥∥∥∥

Lp(2k+1B)

×
∥∥∥∥
{ ∫ 2k+1rB

0

∣∣∣t ∂
∂t
pt ∗ g(x)

∣∣∣2 dt
t

} 1
2
∥∥∥∥

L
p
p−1 (2k+1B)

≤ c

∞∑
k=1

(
2krB

) λ
p I (f, p)2− kn

p r
− λ
p

B

≤ cI (f, p),

for which we have used the Hölder inequality and the fact that if |y − x| ≥ 2krB then

∣∣∣t ∂
∂t
pt ∗ g(x)

∣∣∣ ≤ ct3‖g‖L1(B)(
2krB

)3+n ≤ ct3r
n−λ
p

B(
2krB

)3+n

for the ( p
p−1 , λ)-atom g. Accordingly, f ∈ Lp,λ(Rn).
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5.3 Characterization of Lp,λL (Rn) by Means of Littlewood-Paley Function

Of course, it is natural to explore a characterization of Lp,λL (Rn) similar to Proposition 6.

Proposition 7. Let 1 < p < ∞, λ ∈ (0, n) and f ∈ Mp. Assume that L satisfies the
Assumptions (a) and (b) of Section 2.2. Then the following two conditions are equivalent:

(i) f ∈ Lp,λL (Rn);

(ii)

|||f |||
Lp,λL

= sup
B⊂Rn

r
− λ
p

B

∥∥∥∥
{ ∫ rB

0
|Qtm(I − Ptm)f (x)|2 dt

t

}1/2∥∥∥∥
Lp(B)

< ∞ ,

where the supremum is taken over all Euclidean open ball B ⊂ R
n with radius rB .

Proof.
(i)⇒(ii). Suppose f ∈ Lp,λL (Rn). Note that

Qtm(I − Ptm) = Qtm(I − Ptm)(I − PrmB
)+Qtm(I − Ptm)PrmB

.

So, we turn to verify both∥∥∥∥
{ ∫ rB

0

∣∣Qtm(I − Ptm)
(I − PrmB

)
f (x)

∣∣2 dt
t

}1/2∥∥∥∥
Lp(B)

≤ cr
λ
p

B ‖f ‖
Lp,λL

(5.1)

and ∥∥∥∥
{ ∫ rB

0

∣∣Qtm
(I − Ptm

)
PrmB

f (x)
∣∣2 dt
t

}1/2∥∥∥∥
Lp(B)

≤ cr
λ
p

B ‖f ‖
Lp,λL

, (5.2)

thereby proving (ii). To do so, we will adapt the argument on pp. 85–86 of [14] to present
situation—see also p. 955 of [8]. To prove (5.1), let us consider the square function G(h)
given by

G(h)(x) =
(∫ ∞

0

∣∣Qtm(I − Ptm)h(x)
∣∣2 dt
t

)1/2

.

From (2.7), the function G(h) is bounded on Lp(Rn) for 1 < p < ∞. Let b = b1 + b2,
where b1 = (I − PrmB

)f χ2B , and b2 = (I − PrmB
)f χ(2B)c . Using Lemma 3, we obtain

∥∥∥∥
{ ∫ rB

0
|Qtm(I − Ptm)b1(x)|2 dt

t

}1/2∥∥∥∥
Lp(B)

≤
∥∥∥∥
{ ∫ ∞

0
|Qtm(I − Ptm)b1(x)|2 dt

t

}1/2∥∥∥∥
Lp

≤ c‖G(b1)‖Lp

≤ c‖b1‖Lp

= c

(∫
2B

∣∣(I − PrmB

)
f (x)

∣∣p dx)1/p

≤ c

(∫
2B

∣∣(I − Prm2B

)
f (x)

∣∣p dx)1/p

+ cr
n/p
B sup

x∈2B

∣∣PrmB f (x)− Prm2B
f (x)

∣∣p
≤ cr

λ
p

B ‖f ‖
Lp,λL

. (5.3)
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On the other hand, for any x ∈ B and y ∈ (2B)c, one has |x−y| ≥ rB . From Proposition 2,
we obtain

|Qtm(I − Ptm)b2(x)| ≤ c

∫
Rn\2B

tε

(t + |x − y|)n+ε
∣∣(I − PrmB

)
f (y)

∣∣ dy
≤ c

( t
rB

)ε ∫
Rn

rεB

(rB + |x − y|)n+ε
∣∣(I − PrmB

)
f (y)

∣∣ dy
≤ c

( t
rB

)ε
r
λ−n
p

B ‖f ‖
Lp,λL

,

which implies∥∥∥∥
{ ∫ rB

0
|Qtm(I − Ptm)b2(x)|2 dt

t

}1/2∥∥∥∥
Lp(B)

≤ cr
λ
p

B ‖f ‖
Lp,λL

.

This, together with (5.3), gives (5.1).
Next, let us check (5.2). This time, we have 0 < t < rB , whence getting from

Lemma 3 that for any x ∈ R
n,

∣∣P 1
2 r
m
B
f (x)− P

(tm+ 1
2 r
m
B )
f (x)

∣∣ ≤ cr
λ−n
p

B ‖f ‖
Lp,λL

.

By (2.4), the kernel Kt,rB (x, y) of the operator

QtmP 1
2 r
m
B

= tm

tm + 1
2 r
m
B

Q
(tm+ 1

2 r
m
B )

satisfies

|Kt,rB (x, y)| ≤ c
( t
rB

)m rεB

(rB + |x − y|)n+ε .
Using the commutative property of the semigroup {e−tL}t>0 and the estimate (2.4), we de-
duce∣∣Qtm

(I − Ptm
)
PrmB

f (x)
∣∣ = ∣∣QtmP 1

2 r
m
B

(
P 1

2 r
m
B

− P
(tm+ 1

2 r
m
B )

)
f (x)

∣∣
≤ c

( t
rB

)m ∫
Rn

rεB

(rB + |x − y|)n+ε
∣∣(P 1

2 r
m
B

−P
(tm+ 1

2 r
m
B )

)
f (y)

∣∣ dy
≤ c

( t
rB

)m
r
λ−n
p

B ‖f ‖
Lp,λL

,

whence deriving∥∥∥∥
{ ∫ rB

0

∣∣Qtm(I − Ptm)PrmB
f (x)

∣∣2 dt
t

}1/2∥∥∥∥
Lp(B)

≤ cr
λ
p

B ‖f ‖
Lp,λL

.

This gives (5.2) and consequently (ii).

(ii)⇒(i). Suppose (ii) holds. The duality argument for Lp shows that for any open ball
B ⊂ R

n with radius rB ,(
r−λB

∫
B

∣∣f (x)−PrmB f (x)∣∣p dx
)1/p

= sup
‖g‖Lq (B)≤1

r
−λ/p
B

∣∣∣∣
∫

Rn

(I−PrmB
)
f (x)g(x) dx

∣∣∣∣
= sup

‖g‖Lq (B)≤1

r
−λ/p
B

∣∣∣∣
∫

Rn

f (x)
(I−P ∗

rmB

)
g(x) dx

∣∣∣∣ . (5.4)
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Using the identity (4.3), the estimate (4.2) and the Hölder inequality, we have∣∣∣∣
∫

Rn

f (x)
(I − P ∗

rmB

)
g(x) dx

∣∣∣∣ ≤ c

∫
R
n+1+

∣∣Qtm(I − Ptm)f (x)Q
∗
tm

(I − P ∗
rmB

)
g(x)

∣∣dx dt
t

≤ cr
λ/p
B |||f |||

Lp,λL
‖g‖Lq . (5.5)

Substituting (5.5) back to (5.4), by Definition 1 we find a constant c > 0 such that

‖f ‖
Lp,λL

≤ c|||f |||
Lp,λL

< ∞ .

This just proves f ∈ Lp,λL (Rn), thereby yielding (i).

Remark 4. In the case of p = 2, we can interpret Proposition 7 as a measure-theoretic
characterization, namely, f ∈ L2,λ

L (Rn) when and only when

dµf (x, t) = |Qtm(I − Ptm)f (x)|2 dx dt
t

is a λ-Carleson measure on R
n+1+ . According to [10, Lemma 4.1], we find further that

f ∈ L2,λ
L (Rn) is equivalent to

sup
(y,s)∈R

n+1+

∫
R
n+1+


 s(|x − y|2 + (t + s)2

) n+1
2



λ

dµf (x, t) < ∞ .

5.4 A Sufficient Condition for Lp,λ
L (Rn) = Lp,λ(Rn)

In what follows, we assume thatL is a linear operator of typeω on L2(Rn)withω < π/2—
hence L generates an analytic semigroup e−zL, 0 ≤ |Arg(z)| < π/2 − ω. We also assume
that for each t > 0, the kernel pt (x, y) of e−tL is Hölder continuous in both variables x,
y and there exist positive constants m, β > 0 and 0 < γ ≤ 1 such that for all t > 0,
and x, y, h ∈ R

n,

|pt (x, y)| ≤ ctβ/m(
t1/m + |x − y|)n+β ∀ t > 0, x, y ∈ R

n , (5.6)

|pt (x + h, y)− pt (x, y)| + |pt (x, y + h)− pt (x, y)|

≤ c|h|γ tβ/m(
t1/m + |x − y|)n+β+γ ∀ h ∈ R

n with 2|h| ≤ t1/m + |x − y| , (5.7)

and ∫
Rn

pt (x, y) dx =
∫

Rn

pt (x, y) dy = 1 ∀ t > 0 . (5.8)

Proposition 8. Let 1 < p < ∞ and λ ∈ (0, n). Given an operator L which generates
a semigroup e−tL with the heat kernel bounds (2.2) and (2.3). Assume that L satisfies the
conditions (5.6), (5.7), and (5.8). Then Lp,λL (Rn) and Lp,λ(Rn) coincide, and their norms
are equivalent.
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Proof. Since Proposition 1 tells us that Lp,λ(Rn) ⊆ Lp,λL (Rn) under the above-given

conditions, we only need to check Lp,λL (Rn)⊆ Lp,λ(Rn). Note that Lp,λ(Rn) is the dual of

Hq,λ(Rn), q = p/(p−1). It reduces to prove that if f ∈ Lp,λL (Rn), then f ∈ (Hq,λ(Rn))∗.
Letg be a (q, λ)-atom. Using the conditions (5.6), (5.7), and (5.8) of the operatorL, together
with the properties of (q, λ)-atom ofg, we can follow the argument for Lemma 4 (ii) to verify∫

Rn

f (x)g(x) dx = bm

∫
R
n+1+
Qtm(I − Ptm)f (x)Q

∗
tmg(x)

dx dt

t
where bm = 36m

5
.

Consequently,

|〈f, g〉| =
∣∣∣∣
∫

Rn

f (x)g(x) dx

∣∣∣∣
=

∣∣∣∣
∫

R
n+1+
Qtm(I − Ptm)f (x)Q

∗
tmg(x)

dx dt

t

∣∣∣∣
≤

∫
T (2B)

∣∣Qtm(I − Ptm)f (x)Q
∗
tmg(x)

∣∣dx dt
t

+
∞∑
k=1

∫
T (2k+1B)\T (2kB)

∣∣Qtm(I − Ptm)f (x) Q
∗
tmg(x)

∣∣dx dt
t

= D1 +
∞∑
k=2

Dk .

Define the Littlewood-Paley function Gh by

G(h)(x) =
[ ∫ ∞

0

∣∣Q∗
tmh(x)

∣∣2 dt
t

]1/2

.

By (2.7), G is bounded on Lp(Rn) for 1 < p < ∞.
Following the proof of Lemma 4 (i), together with the property (γ ) of (q, λ)-atom g,

we derive

D1 ≤
∥∥∥∥
{ ∫ r2B

0

∣∣Qtm(I − Ptm)f (x)
∣∣2 dt
t

}1/2∥∥∥∥
Lp(2B)

∥∥∥∥
{ ∫ r2B

0

∣∣Q∗
tmg(x)

∣∣2 dt
t

}1/2∥∥∥∥
Lq (2B)

≤
∥∥∥∥
{ ∫ r2B

0

∣∣Qtm(I − Ptm)f (x)
∣∣2 dt
t

}1/2∥∥∥∥
Lp(2B)

‖G(g)‖Lq

≤ cr
λ
p

B |||f |||
Lp,λL

‖g‖Lq ≤ c‖f ‖
Lp,λL

.

On the other hand, we note that for x ∈ 2k+1B\2kB and y ∈ B, we have that |x − y| ≥
2k−1rB . Using the estimate (2.4) and the properties ((α) and (γ ) of (q, λ)-atom g, we
obtain ∣∣Q∗

tmg(x)
∣∣ ≤ c

∫
B

tε

(t + |x − y|)n+ε |g(y)| dy

≤ ctε(
2krB

)n+ε
∫
B

|g(y)| dy

≤
(

ctε(
2krB

)n+ε
)
r
n−λ
p

B ,
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which implies∥∥∥∥
{ ∫ 2krB

0

∣∣Q∗
tmg(x)χT (2k+1B)\T (2kB)

∣∣2 dt
t

}1/2∥∥∥∥
Lq (2kB)

≤ c2kn(
1
q
−1)
r
− λ
p

B .

Therefore,

Dk ≤
∥∥∥∥
{ ∫ 2krB

0
|Qtm(I − Ptm)f (x)|2 dt

t

}1/2∥∥∥∥
Lp(2kB)

×
∥∥∥∥
{ ∫ 2krB

0

∣∣Q∗
tmg(x)χT (2k+1B)\T (2kB)

∣∣2 dt
t

}1/2∥∥∥∥
Lq (2kB)

≤ c
(
2krB

) λ
p 2kn(

1
q
−1)
r
− λ
p

B |||f |||
Lp,λL

≤ c2
k(λ−n)
p ‖f ‖

Lp,λL
.

Since λ ∈ (0, n), we have

|〈f, g〉| ≤ c‖f ‖
Lp,λL

+ c

∞∑
k=1

2
k(λ−n)
p ‖f ‖

Lp,λL
≤ c‖f ‖

Lp,λL
.

This, together with Proposition 5, implies f ∈ (Hq,λ(Rn))∗ = Lp,λ(Rn) .
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