Old and New Morrey Spaces with Heat Kernel Bounds

Xuan Thinh Duong, Jie Xiao, and Lixin Yan

Communicated by Hans Triebel

ABSTRACT. Given $p \in [1, \infty)$ and $\lambda \in (0, n)$, we study Morrey space $L^{p,\lambda}(\mathbb{R}^n)$ of all locally integrable complex-valued functions f on \mathbb{R}^n such that for every open Euclidean ball $B \subset \mathbb{R}^n$ with radius r_B there are numbers C = C(f) (depending on f) and c = c(f, B) (relying upon f and B) satisfying

$$r_B^{-\lambda} \int_B |f(x) - c|^p \, dx \le C$$

and derive old and new, two essentially different cases arising from either choosing $c = f_B = |B|^{-1} \int_B f(y) \, dy$ or replacing c by $P_{t_B}(x) = \int_{t_B} p_{t_B}(x,y) f(y) \, dy$ —where t_B is scaled to r_B and $p_t(\cdot,\cdot)$ is the kernel of the infinitesimal generator L of an analytic semigroup $\{e^{-tL}\}_{t\geq 0}$ on $L^2(\mathbb{R}^n)$. Consequently, we are led to simultaneously characterize the old and new Morrey spaces, but also to show that for a suitable operator L, the new Morrey space is equivalent to the old one.

1. Introduction

As well-known, a priori estimates mixing L^p and $\operatorname{Lip}_{\lambda}$ are frequently used in the study of partial differential equations—naturally, the so-called Morrey spaces are brought into play (cf. [24]). A locally integrable complex-valued function f on \mathbb{R}^n is said to be in the Morrey space $L^{p,\lambda}(\mathbb{R}^n)$, $1 \leq p < \infty$ and $\lambda \in (0, n+p)$, if for every Euclidean open ball $B \subset \mathbb{R}^n$ with radius r_B there are numbers C = C(f) (depending on f) and c = c(f, B) (relying upon f and g) satisfying

$$r_B^{-\lambda} \int_R |f(x) - c|^p \, dx \le C \; .$$

The space of $L^{p,\lambda}(\mathbb{R}^n)$ -functions was introduced by Morrey [18]. Since then, the space has been studied extensively—see, for example, [4, 13, 12, 20, 21, 22, 28].

Math Subject Classifications. 42B20, 42B35, 47B38.

Keywords and Phrases. Morrey spaces, semigroup, holomorphic functional calculus, Littlewood-Paley functions

Acknowledgements and Notes. First author was supported by a grant from Australia Research Council; second author was supported in part by NSERC of Canada; third author was partially supported by NSF of China (Grant No. 10371134/10571182).

We would like to note that as in [20], for $1 \le p < \infty$ and $\lambda = n$, the spaces $L^{p,n}(\mathbb{R}^n)$ are variants of the classical BMO (bounded mean oscillation) function space of John-Nirenberg. For $1 \le p < \infty$ and $\lambda \in (n, n+p)$, the spaces $L^{p,\lambda}(\mathbb{R}^n)$ are variants of the homogeneous Lipschitz spaces $\operatorname{Lip}_{(\lambda-n)/p}(\mathbb{R}^n)$.

Clearly, the remaining cases: $1 \le p < \infty$ and $\lambda \in (0, n)$ are of independent interest, and hence motivate our investigation. The purpose of this article is twofold. First, we explore some new characterizations of $L^{p,\lambda}(\mathbb{R}^n)$ through the fact that $L^{p,\lambda}(\mathbb{R}^n)$ consists of all locally integrable complex-valued functions f on \mathbb{R}^n satisfying

$$||f||_{\mathbf{L}^{p,\lambda}} = \sup_{B \subset \mathbb{R}^n} \left[r_B^{-\lambda} \int_B |f(x) - f_B|^p \, dx \right]^{1/p} < \infty \,, \tag{1.1}$$

where the supremum is taken over all Euclidean open balls $B = B(x_0, r_B)$ with center x_0 and radius r_B , and f_B stands for the mean value of f over B, i.e.,

$$f_B = |B|^{-1} \int_B f(x) \, dx$$
.

The second aim is to use those new characterizations as motives of a continuous study of [1, 7, 5, 9] and so to introduce new Morrey spaces $L_L^{p,\lambda}(\mathbb{R}^n)$ associated with operators. Roughly speaking, if L is the infinitesimal generator of an analytic semigroup $\{e^{-tL}\}_{t\geq 0}$ on $L^2(\mathbb{R}^n)$ with kernel $p_t(x, y)$ which decays fast enough, then we can view $P_t f = e^{-tL} f$ as an average version of f at the scale t and use the quantity

$$P_{t_B}f(x) = \int_{\mathbb{D}^n} p_{t_B}(x, y) f(y) \, dy$$

to replace the mean value f_B in the equivalent semi-norm (1.1) of the original Morrey space, where t_B is scaled to the radius of the ball B. Hence, we say that a function f (with appropriate bound on its size |f|) belongs to the space $L_L^{p,\lambda}(\mathbb{R}^n)$ (where $1 \le p < \infty$ and $\lambda \in (0, n)$), provided

$$||f||_{\mathbf{L}_{L}^{p,\lambda}} = \sup_{B \subset \mathbb{R}^{n}} \left[r_{B}^{-\lambda} \int_{B} |f(x) - P_{t_{B}} f(x)|^{p} dx \right]^{1/p} < \infty$$
 (1.2)

where $t_B = r_B^m$ for a fixed constant m > 0—see the forthcoming Sections 2.2 and 3.1.

We pursue a better understanding of (1.1) and (1.2) through the following aspects:

In Section 2, we collect most useful materials on the bounded holomorphic functional calculus.

In Section 3, we study some characterizations of $L^{p,\lambda}(\mathbb{R}^n)$ and $L^{p,\lambda}_L(\mathbb{R}^n)$ and give a criterion for $L^{p,\lambda}(\mathbb{R}^n) \subseteq L^{p,\lambda}_L(\mathbb{R}^n)$. The later fact illustrates that $L^{p,\lambda}(\mathbb{R}^n)$ exists as the minimal Morrey space, and consequently induces a concept of the maximal Morrey space.

In Section 4, we establish an identity formula associated with the operator L. This formula is a key to handle the quadratic features of the old and new Morrey spaces.

As an immediate continuation of Section 4, Section 5 is devoted to Littlewood-Paley type characterizations of $L^{p,\lambda}(\mathbb{R}^n)$ and $L^{p,\lambda}_L(\mathbb{R}^n)$ via the predual of $L^{p,\lambda}_L(\mathbb{R}^n)$ (cf. [28]) and a number of important estimates for functions in $L^{p,\lambda}_L(\mathbb{R}^n)$ and $L^{p,\lambda}_L(\mathbb{R}^n)$. Moreover, we show that for a suitable semigroup $\{e^{-tL}\}_{t>0}$, $L^{p,\lambda}_L(\mathbb{R}^n)$ equals $L^{p,\lambda}(\mathbb{R}^n)$ with equivalent seminorms—in particular, if L is either $-\Delta$ or $\sqrt{-\Delta}$ on \mathbb{R}^n , then $L^{p,\lambda}(\mathbb{R}^n)$ coincides with

 $L^{p,\lambda}_{\sqrt{-\Delta}}(\mathbb{R}^n)$ and $L^{p,\lambda}_{-\Delta}(\mathbb{R}^n)$, where $\Delta=\Delta_x=\sum_{k=1}^n \partial^2/\partial x_k^2$ is the classical Laplace operator in the spatial variable $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$.

Throughout, the letters c, c_1, c_2, \ldots will denote (possibly different) constants that are independent of the essential variables.

2. **Preliminaries**

Holomorphic Functional Calculi of Operators

We start with a review of some definitions of holomorphic functional calculi introduced by McIntosh [17]. Let $0 < \omega < \nu < \pi$. We define the closed sector in the complex plane \mathbb{C}

$$S_{\omega} = \{z \in \mathbb{C} : |\arg z| \le \omega\} \cup \{0\}$$

and denote the interior of S_{ω} by S_{ω}^{0} . We employ the following subspaces of the space $H(S_{\nu}^{0})$ of all holomorphic functions on S_{ν}^{0} :

$$H_{\infty}(S_{\nu}^{0}) = \left\{ b \in H(S_{\nu}^{0}) : ||b||_{\infty} < \infty \right\},\,$$

where

$$||b||_{\infty} = \sup\{|b(z)| : z \in S_{\nu}^{0}\}$$

and

$$\Psi(S_{\nu}^{0}) = \{ \psi \in H(S_{\nu}^{0}) : \exists s > 0, \ |\psi(z)| \le c|z|^{s} (1 + |z|^{2s})^{-1} \}.$$

Given $0 < \omega < \pi$ and \mathcal{I} – the identity operator on $L^2(\mathbb{R}^n)$, a closed operator L in $L^2(\mathbb{R}^n)$ is said to be of type ω if its spectrum $\sigma(L) \subset S_\omega$, and for each $\nu > \omega$, there exists a constant c_{ν} such that

$$\|(L - \lambda \mathcal{I})^{-1}\|_{2,2} = \|(L - \lambda \mathcal{I})^{-1}\|_{L^2 \to L^2} \le c_{\nu} |\lambda|^{-1}, \quad \lambda \notin S_{\nu}.$$

If L is of type ω and $\psi \in \Psi(S_n^0)$, we define $\psi(L) \in \mathcal{L}(L^2, L^2)$ by

$$\psi(L) = \frac{1}{2\pi i} \int_{\Gamma} (L - \lambda \mathcal{I})^{-1} \psi(\lambda) \, d\lambda \,, \tag{2.1}$$

where Γ is the contour $\{\xi = re^{\pm i\theta} : r \geq 0\}$ parametrised clockwise around S_{ω} , and $\omega < \theta < \nu$. Clearly, this integral is absolutely convergent in $\mathcal{L}(L^2, L^2)$ (which is the class of all bounded linear operators on L²), and it is straightforward to show, using Cauchy's theorem, that the definition is independent of the choice of $\theta \in (\omega, \nu)$. If, in addition, L is one-one and has dense range and if $b \in H_{\infty}(S_{\nu}^{0})$, then b(L) can be defined by

$$b(L) = [\psi(L)]^{-1}(b\psi)(L)$$
 where $\psi(z) = z(1+z)^{-2}$.

It can be shown that b(L) is a well-defined linear operator in $L^2(\mathbb{R}^n)$.

We say that L has a bounded H_{∞} calculus in $L^2(\mathbb{R}^n)$ provided there exists $c_{\nu,2} > 0$ such that $b(L) \in \mathcal{L}(L^2, L^2)$ and

$$\|b(L)\|_{2,2} = \|b(L)\|_{\mathrm{L}^2 \to \mathrm{L}^2} \le c_{\nu,2} ||b||_{\infty} \quad \forall b \in H_{\infty} \big(S_{\nu}^0\big) \,.$$

For the conditions and properties of operators which have holomorphic functional calculi, see [17] and [2] which also contain a proof of the following convergence lemma.

Lemma 1. Let X be a complex Banach space. Given $0 \le \omega < v \le \pi$, let L be an operator of type ω which is one-to-one with dense domain and range. Suppose $\{f_{\alpha}\}$ is a uniformly bounded net in $H_{\infty}(S_{\nu}^{0})$, which converges to $f \in H_{\infty}(S_{\nu}^{0})$ uniformly on compact subsets of S_{ν}^{0} , such that $\{f_{\alpha}(L)\}$ is a uniformly bounded net in the space $\mathcal{L}(X,X)$ of continuous linear operators on X. Then $f(L) \in \mathcal{L}(X,X)$, $f_{\alpha}(L)u \to f(L)u$ for all $u \in X$ and

$$||f(L)|| = ||f(L)||_{X \to X} \le \sup_{\alpha} ||f_{\alpha}(L)|| = \sup_{\alpha} ||f_{\alpha}(L)||_{X \to X}$$
.

2.2 Two More Assumptions

Let L be a linear operator of type ω on L²(\mathbb{R}^n) with $\omega < \pi/2$, hence, L generates a holomorphic semigroup e^{-zL} , $0 \le |\text{Arg}(z)| < \pi/2 - \omega$. Assume the following two conditions.

Assumption (a): The holomorphic semigroup

$$\{e^{-zL}\}_{0 \le |\operatorname{Arg}(z)| < \pi/2 - \omega}$$

is represented by kernel $p_z(x, y)$ which satisfies an upper bound

$$|p_z(x, y)| \le c_\theta h_{|z|}(x, y) \quad \forall x, y \in \mathbb{R}^n$$

and

$$|Arg(z)| < \pi/2 - \theta$$
 for $\theta > \omega$,

where $h_t(\cdot, \cdot)$ is determined by

$$h_t(x, y) = t^{-n/m} g\left(\frac{|x - y|}{t^{1/m}}\right),$$
 (2.2)

in which m is a positive constant and g is a positive, bounded, decreasing function satisfying

$$\lim_{r \to \infty} r^{n+\epsilon} g(r) = 0 \quad \text{for some } \epsilon > 0.$$
 (2.3)

Assumption (b): The operator L has a bounded H_{∞} -calculus in $L^{2}(\mathbb{R}^{n})$.

Now, we give some consequences of the Assumptions (a) and (b) which will be used later.

First, if $\{e^{-tL}\}_{t>0}$ is a bounded analytic semigroup on $L^2(\mathbb{R}^n)$ whose kernel $p_t(x, y)$ satisfies the estimates (2.2) and (2.3), then for any $k \in \mathbb{N}$, the time derivatives of p_t satisfy

$$\left| t^k \frac{\partial^k p_t(x, y)}{\partial t^k} \right| \le \frac{c}{t^{n/m}} g\left(\frac{|x - y|}{t^{1/m}} \right) \quad \text{for all } t > 0 \text{ and almost all } x, y \in \mathbb{R}^n \ . \tag{2.4}$$

For each $k \in \mathbb{N}$, the function g might depend on k but it always satisfies (2.3). See Theorem 6.17 of [19].

Secondly, L has a bounded H_{∞} -calculus in $L^2(\mathbb{R}^n)$ if and only if for any nonzero function $\psi \in \Psi(S_v^0)$, L satisfies the square function estimate and its reverse

$$c_1 \|f\|_{L^2} \le \left(\int_0^\infty \|\psi_t(L)f\|_{L^2}^2 \frac{dt}{t} \right)^{1/2} \le c_2 \|f\|_{L^2}$$
 (2.5)

for some $0 < c_1 \le c_2 < \infty$, where $\psi_t(\xi) = \psi(t\xi)$. Note that different choices of $\nu > \omega$ and $\psi \in \Psi(S_{\nu}^0)$ lead to equivalent quadratic norms of f.

As noted in [17], positive self-adjoint operators satisfy the quadratic estimate (2.5). So do normal operators with spectra in a sector, and maximal accretive operators. For the definitions of these classes of operators, we refer readers to [27].

The following result, existing as a special case of [6, Theorem 6], tells us the L²-boundedness of a bounded H_{∞} -calculus can be extended to L^p-boundedness, p > 1.

Lemma 2. Under the Assumptions (a) and (b), the operator L has a bounded H_{∞} -calculus in $L^p(\mathbb{R}^n)$, $p \in (1, \infty)$, that is, $b(L) \in \mathcal{L}(L^p, L^p)$ with

$$||b(L)||_{p,p} = ||b(L)||_{L^p \to L^p} \le c_{\nu,p} ||b||_{\infty} \quad \forall b \in H_{\infty}(S_{\nu}^0).$$

Moreover, if p = 1 then b(L) is of weak type (1, 1).

Thirdly, the Littlewood-Paley function $\mathcal{G}_L(f)$ associated with an operator L is defined by

$$\mathcal{G}_L(f)(x) = \left(\int_0^\infty |\psi_t(L)f|^2 \, \frac{dt}{t}\right)^{1/2},\tag{2.6}$$

where again $\psi \in \Psi(S_{\nu}^{0})$, and $\psi_{t}(\xi) = \psi(t\xi)$. It follows from Theorem 6 of [3] that the function $\mathcal{G}_{L}(f)$ is bounded on L^{p} for $1 . More specifically, there exist constants <math>c_{3}$, c_{4} such that $0 < c_{3} \le c_{4} < \infty$ and

$$c_3 \|f\|_{L^p} \le \|\mathcal{G}_L(f)\|_{L^p} \le c_4 \|f\|_{L^p}$$
 (2.7)

for all $f \in L^p$, 1 .

By duality, the operator $\mathcal{G}_{L^*}(f)$ also satisfies the estimate (2.7), where L^* is the adjoint operator of L.

2.3 Acting Class of Semigroup $\{e^{-tL}\}_{t>0}$

We now define the class of functions that the operators e^{-tL} act upon. Fix $1 \le p < \infty$. For any $\beta > 0$, a complex-valued function $f \in L^p_{loc}(\mathbb{R}^n)$ is said to be a function of type $(p;\beta)$ if f satisfies

$$\left(\int_{\mathbb{R}^n} \frac{|f(x)|^p}{(1+|x|)^{n+\beta}} dx\right)^{1/p} \le c < \infty. \tag{2.8}$$

We denote by $\mathcal{M}_{(p;\beta)}$ the collection of all functions of type $(p;\beta)$. If $f \in \mathcal{M}_{(p;\beta)}$, the norm of $f \in \mathcal{M}_{(p;\beta)}$ is defined by

$$||f||_{\mathcal{M}_{(p;\beta)}} = \inf \{c \ge 0 : (2.8) \text{ holds} \}.$$

It is not hard to see that $\mathcal{M}_{(p;\beta)}$ is a complex Banach space under $||f||_{\mathcal{M}_{(p;\beta)}} < \infty$. For any given operator L, let

$$\Theta(L) = \sup \left\{ \epsilon > 0 : (2.3) \text{ holds} \right\}$$
 (2.9)

and write

$$\mathcal{M}_{p} = \left\{ \begin{array}{ll} \mathcal{M}_{(p;\Theta(L))} & \text{if} \quad \Theta(L) < \infty ; \\ \bigcup_{\beta : \ 0 < \beta < \infty} \mathcal{M}_{(p;\beta)} & \text{if} \quad \Theta(L) = \infty . \end{array} \right.$$

Note that if $L = -\Delta$ or $L = \sqrt{-\Delta}$ on \mathbb{R}^n , then $\Theta(-\Delta) = \infty$ or $\Theta(\sqrt{-\Delta}) = 1$. For any $(x, t) \in \mathbb{R}^n \times (0, +\infty) = \mathbb{R}^{n+1}_+$ and $f \in \mathcal{M}_p$, define

$$P_t f(x) = e^{-tL} f(x) = \int_{\mathbb{R}^n} p_t(x, y) f(y) \, dy \tag{2.10}$$

and

$$Q_t f(x) = tLe^{-tL} f(x) = \int_{\mathbb{R}^n} -t \left(\frac{dp_t(x, y)}{dt}\right) f(y) \, dy \,. \tag{2.11}$$

It follows from the estimate (2.4) that the operators $P_t f$ and $Q_t f$ are well defined. Moreover, the operator Q_t has the following two properties:

(i) For any $t_1, t_2 > 0$ and almost all $x \in \mathbb{R}^n$,

$$Q_{t_1}Q_{t_2}f(x) = t_1t_2\left(\frac{d^2P_t}{dt^2}\Big|_{t=t_1+t_2}f\right)(x);$$

(ii) the kernel $q_{t^m}(x, y)$ of Q_{t^m} satisfies

$$\left| q_{t^m}(x, y) \right| \le ct^{-n} g\left(\frac{|x - y|}{t}\right) \tag{2.12}$$

where the function g satisfies the condition (2.3).

3. Basic Properties

3.1 A Comparison of Definitions

Assume that L is an operator which generates a semigroup e^{-tL} with the heat kernel bounds (2.2) and (2.3). In what follows, B(x, t) denotes the ball centered at x and of the radius t. Given B = B(x, t) and $\lambda > 0$, we will write λB for the λ -dilate ball, which is the ball with the same center x and with radius λt .

Definition 1. Let $1 \le p < \infty$ and $\lambda \in (0, n)$. We say that

- (i) $f \in L^p_{loc}(\mathbb{R}^n)$ belongs to $L^{p,\lambda}(\mathbb{R}^n)$ provided (1.1) holds;
- (ii) $f \in \mathcal{M}_p$ associated with an operator L, is in $L_L^{p,\lambda}(\mathbb{R}^n)$ provided (1.2) holds.

Remark 1.

(i) Note first that $(L^{p,\lambda}(\mathbb{R}^n), \|\cdot\|_{L^{p,\lambda}})$ and $(L^{p,\lambda}_L(\mathbb{R}^n), \|\cdot\|_{L^{p,\lambda}_L})$ are vector spaces with the seminorms vanishing on constants and

$$\mathcal{K}_{L,p} = \left\{ f \in \mathcal{M}_p : P_t f(x) = f(x) \text{ for almost all } x \in \mathbb{R}^n \text{ and all } t > 0 \right\},$$

respectively. Of course, the spaces $L^{p,\lambda}(\mathbb{R}^n)$ and $L^{p,\lambda}_L(\mathbb{R}^n)$ are understood to be modulo constants and $\mathcal{K}_{L,p}$, respectively. See Section 6 of [8] for a discussion of the dimensions of $\mathcal{K}_{L,2}$ when L is a second order elliptic operator of divergence form or a Schrödinger operator.

- (ii) We now give a list of examples of $L_L^{p,\lambda}(\mathbb{R}^n)$ in different settings.
 - (α) Define P_t by putting $p_t(x, y)$ to be the heat kernel or the Poisson kernel:

$$(4\pi t)^{-n/2}e^{-|x-y|^2/4t}$$
 or $\frac{c_n t}{\left(t^2+|x-y|^2\right)^{(n+1)/2}}$ where $c_n = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^{\frac{n+1}{2}}}$.

Then we will show that the corresponding space $L_L^{p,\lambda}(\mathbb{R}^n)$ (modulo $\mathcal{K}_{L,p}$) coincides with the classical $L^{p,\lambda}(\mathbb{R}^n)$ (modulo constants).

 (β) Consider the Schrödinger operator with a nonnegative potential V(x):

$$L = -\Delta + V(x) .$$

To study singular integral operators associated to L such as functional calculi f(L) or Riesz transform $\nabla L^{-1/2}$, it is useful to choose P_t with kernel $p_t(x, y)$ to be the heat kernel of L. By domination, its kernel $p_t(x, y)$ has a Gaussian upper bound.

The following proposition shows that $L^{p,\lambda}(\mathbb{R}^n)$ is a subspace of $L^{p,\lambda}_L(\mathbb{R}^n)$ in many cases.

Proposition 1. Let $1 \leq p < \infty$ and $\lambda \in (0, n)$. Given an operator L which generates a semigroup e^{-tL} with the heat kernel bounds (2.2) and (2.3). A necessary and sufficient condition for the classical space $L^{p,\lambda}(\mathbb{R}^n) \subseteq L^{p,\lambda}_L(\mathbb{R}^n)$ with

$$||f||_{\mathbf{L}_{I}^{p,\lambda}} \le c||f||_{\mathbf{L}^{p,\lambda}}$$
 (3.1)

is that for every t > 0, $e^{-tL}(1) = 1$ almost everywhere, that is, $\int_{\mathbb{R}^n} p_t(x, y) dy = 1$ for almost all $x \in \mathbb{R}^n$.

Proof. Clearly, the condition $e^{-tL}(1) = 1$, a.e. is necessary for $L^{p,\lambda}(\mathbb{R}^n) \subseteq L^{p,\lambda}_L(\mathbb{R}^n)$. Indeed, let us take f = 1. Then, (3.1) implies $\|1\|_{L^{p,\lambda}_L} = 0$ and thus for every t > 0, $e^{-tL}(1) = 1$ almost everywhere.

For the sufficiency, we borrow the idea of [16, Proposition 3.1]. To be more specific, suppose $f \in L^{p,\lambda}(\mathbb{R}^n)$. Then for any Euclidean open ball B with radius r_B , we compute

$$\begin{split} \|f - P_{t_B} f\|_{L^p(B)} & \leq \|f - f_B\|_{L^p(B)} + \|f_B - P_{t_B} f\|_{L^p(B)} \\ & \leq \|f\|_{L^{p,\lambda}} r_B^{\lambda/p} + \left(\int_B \left(\int_{\mathbb{R}^n} |f_B - f(y)| P_{t_B}(x, y) \, dy\right)^p dx\right)^{1/p} \\ & = \|f\|_{L^{p,\lambda}} r_B^{\lambda/p} + \left(\int_B \left(I(B) + J(B)\right)^p dx\right)^{1/p} , \end{split}$$

where

$$I(B) = \int_{2B} |f_B - f(y)| P_{t_B}(x, y) \, dy$$

and

$$J(B) = \sum_{k=1}^{\infty} \int_{2^{k+1}B \setminus 2^k B} |f_B - f(y)| P_{t_B}(x, y) \, dy.$$

Next we make further estimates on I(B) and J(B). Thanks to (2.2) and (2.3), we have

$$||I(B)||_{L^p(B)} \le cr_R^{-n}g(0)||f_B - f||_{L^1(B)} \le cr_R^{\lambda/p}||f||_{L^{p,\lambda}}.$$

Again, using (2.2) and (2.3), we derive that for $x \in B$ and $y \in 2^{k+1}B \setminus 2^k B$,

$$P_{t_B}(x, y) \le cr_B^{-n}g(2^k) \le cr_B^{-n}2^{-k(n+\epsilon)}, \quad k = 1, 2, \dots,$$

where $\epsilon > 0$ is a constant. Consequently,

$$||J(B)||_{L^{p}(B)} \leq cr_{B}^{-n} \left(\int_{B} \left(\sum_{k=1}^{\infty} g(2^{k}) \int_{2^{k+1}B \setminus 2^{k}B} |f_{B} - f(y)| \, dy \right)^{p} \, dx \right)^{1/p}$$

$$\leq cr_{B}^{n/p-n} \sum_{k=1}^{\infty} g(2^{k}) \left(\int_{2^{k+1}B} |f_{2^{k+1}B} - f(y)| \, dy + \left(2^{k}r_{B}\right)^{n} |f_{2^{k+1}B} - f_{B}| \right)$$

$$\leq cr_{B}^{\lambda/p} ||f||_{L^{p,\lambda}} \left(\sum_{k=1}^{\infty} 2^{-k(\epsilon + \frac{n-\lambda}{p})} + \sum_{k=1}^{\infty} k2^{-k\epsilon} \right).$$

Putting these inequalities together, we find $f \in L_L^{p,\lambda}(\mathbb{R}^n)$.

3.2 Fundamental Characterizations

In the argument for Proposition 1, we have used the following crucial fact that for any $f \in L^{p,\lambda}(\mathbb{R}^n)$ and a constant K > 1,

$$|f_B - f_{KB}| \le c r_B^{\frac{\lambda - n}{p}} ||f||_{\mathbf{L}^{p,\lambda}}.$$

Now, this property can be used to give a characterization of $L^{p,\lambda}(\mathbb{R}^n)$ spaces in terms of the Poisson integral. To this end, we observe that if

$$f \in \mathcal{M}_{\sqrt{-\Delta},p} = \left\{ f \in L^p_{loc}(\mathbb{R}^n) : |f(\cdot)|^p (1 + |\cdot|^{n+1})^{-1} \in L^1(\mathbb{R}^n) \right\},\,$$

then we can define the operator $e^{-t\sqrt{-\Delta}}$ by the Poisson integral as follows:

$$e^{-t\sqrt{-\Delta}}f(x) = \int_{\mathbb{R}^n} p_t(x-y)f(y) \, dy, \quad t > 0 \,,$$

where

$$p_t(x - y) = \frac{c_n t}{\left(t^2 + |x - y|^2\right)^{(n+1)/2}}.$$

Proposition 2. Let $1 \leq p < \infty$, $\lambda \in (0, n)$ and $f \in \mathcal{M}_{\sqrt{-\Delta}, p}$. Then $f \in L^{p, \lambda}(\mathbb{R}^n)$ if and only if

$$|||f||_{\mathbf{L}^{p,\lambda}(\mathbb{R}^n)} = \left(\sup_{(x,t) \in \mathbb{R}^{n+1}_+} t^{n-\lambda} e^{-t\sqrt{-\Delta}} (|f - e^{-t\sqrt{-\Delta}} f(x)|^p)(x) \right)^{1/p} < \infty.$$
 (3.2)

Proof. On the one hand, assume (3.2). Note that |y - x| < t implies

$$\frac{c_n t}{\left(t^2 + |y - x|^2\right)^{\frac{n+1}{2}}} \ge c t^{-n} .$$

For a fixed ball $B = B(x, r_B)$ centered at x, we let $t_B = r_B$. We then have

$$r_{B}^{-\lambda} \| f - f_{B} \|_{\mathbf{L}^{p}(B)}^{p} \leq c r_{B}^{-\lambda} \| f - e^{-t_{B}\sqrt{-\Delta}} f(x) \|_{\mathbf{L}^{p}(B)}^{p}$$

$$\leq c r_{B}^{n-\lambda} \int_{B} \left| f(y) - e^{-t_{B}\sqrt{-\Delta}} f(x) \right|^{p} \frac{c_{n} t_{B}}{\left(t_{B}^{2} + |y - x|^{2}\right)^{\frac{n+1}{2}}} dy$$

$$\leq c \| f \|_{\mathbf{L}^{p,\lambda}}^{p} ,$$

whence producing $f \in L^{p,\lambda}(\mathbb{R}^n)$.

On the other hand, suppose $f \in L^{p,\lambda}(\mathbb{R}^n)$. In a similar manner to proving the sufficiency part of Proposition 1, we obtain that if $(x,t) \in \mathbb{R}^{n+1}_+$ then

$$\begin{split} e^{-t\sqrt{-\Delta}} \Big(\big| f - e^{-t\sqrt{-\Delta}} f(x) \big|^p \Big)(x) &\leq c t^{\lambda - n} \| f \|_{\mathbf{L}^{p, \lambda}}^p + c \sum_{k=1}^{\infty} \int_{2^{k+1} B \setminus 2^k B} \frac{|f(y) - f_B|^p t}{\left(t^2 + |y - x|^2 \right)^{\frac{n+1}{2}}} \, dy \\ &\leq c t^{\lambda - n} \| f \|_{\mathbf{L}^{p, \lambda}}^p \; , \end{split}$$

and hence (3.2) holds.

Remark 2. Since a simple computation gives

$$\begin{split} &e^{-t\sqrt{-\Delta}} \Big(\Big| f - e^{-t\sqrt{-\Delta}} f(x) \Big|^2 \Big)(x) \\ &= \int_{\mathbb{R}^n} \Big(f(y) - e^{-t\sqrt{-\Delta}} f(x) \Big) \overline{\Big(f(y) - e^{-t\sqrt{-\Delta}} f(x) \Big)} p_t(x - y) \, dy \\ &= \int_{\mathbb{R}^n} |f(y)|^2 p_t(x - y) \, dy - e^{-t\sqrt{-\Delta}} f(x) \left(\int_{\mathbb{R}^n} \overline{f(y)} p_t(x - y) \, dy \right) \\ &- \overline{e^{-t\sqrt{-\Delta}} f(x)} \left(\int_{\mathbb{R}^n} f(y) p_t(x - y) \, dy \right) + \left| e^{-t\sqrt{-\Delta}} f(x) \right|^2 \\ &= e^{-t\sqrt{-\Delta}} |f|^2 (x) - \left| e^{-t\sqrt{-\Delta}} f(x) \right|^2, \end{split}$$

we have that if $f \in \mathcal{M}_{\sqrt{-\Delta},2}$ then $f \in L^{2,\lambda}(\mathbb{R}^n)$ when and only when

$$\sup_{(x,t)\in\mathbb{R}^{n+1}_+}t^{n-\lambda}\Big(e^{-t\sqrt{-\Delta}}|f|^2(x)-\left|e^{-t\sqrt{-\Delta}}f(x)\right|^2\Big)<\infty$$

which is equivalent to (see also [15] for the BMO-setting, i.e., $\lambda = n$)

$$\sup_{(x,t)\in\mathbb{R}^{n+1}_+} t^{n-\lambda} \int_{\mathbb{R}^{n+1}_+} G_{\mathbb{R}^{n+1}_+} \big((x,t), (y,s) \big) \big| \nabla_{y,s} e^{-s\sqrt{-\Delta}} f(y) \big|^2 \, dy \, ds < \infty \,,$$

where $G_{\mathbb{R}^{n+1}_+}((x,t),(y,s))$ is the Green function of \mathbb{R}^{n+1}_+ and $\nabla_{y,s}$ is the gradient operator in the space-time variable (y,s).

To find out an $L_L^{p,\lambda}(\mathbb{R}^n)$ analog of Proposition 2, we take Proposition 2.6 of [7] into account, and establish the following property of the class of operators P_t .

Lemma 3. Let $1 \leq p < \infty$ and $\lambda \in (0, n)$. Suppose $f \in L_L^{p,\lambda}(\mathbb{R}^n)$. Then:

(i) For any t > 0 and K > 1, there exists a constant c > 0 independent of t and K such that

$$|P_t f(x) - P_{Kt} f(x)| \le ct^{\frac{\lambda - n}{pm}} ||f||_{\mathbf{L}_L^{p,\lambda}}$$
 (3.3)

for almost all $x \in \mathbb{R}^n$.

(ii) For any $\delta > 0$, there exists $c(\delta) > 0$ such that

$$\int_{\mathbb{R}^{n}} \frac{t^{\delta/m}}{\left(t^{1/m} + |x - y|^{n + \delta}\right| (\mathcal{I} - P_{t}) f(y) | dy} \le c(\delta) t^{\frac{\lambda - n}{pm}} \|f\|_{L_{L}^{p, \lambda}}$$
(3.4)

for any $x \in \mathbb{R}^n$.

Proof.

(i) For any t > 0, we choose s such that $t/4 \le s \le t$. Assume that $f \in L_L^{p,\lambda}(\mathbb{R}^n)$, where $1 \le p < \infty$ and $\lambda \in (0, n)$, we estimate the term $|P_t f(x) - P_{t+s} f(x)|$. Using the commutative property of the semigroup $\{P_t\}_{t>0}$, we can write

$$P_t f(x) - P_{t+s} f(x) = P_t (f - P_s f)(x)$$
.

Since $f \in L_L^{p,\lambda}(\mathbb{R}^n)$, one has

$$\begin{split} |P_{t}f(x) - P_{t+s}f(x)| &\leq \int_{\mathbb{R}^{n}} |p_{t}(x, y)| |f(y) - P_{s}f(y)| \, dy \\ &\leq \frac{c}{|B(x, t^{1/m})|} \int_{\mathbb{R}^{n}} \left(1 + \frac{|x - y|}{t^{1/m}}\right)^{-(n+\epsilon)} |f(y) - P_{s}f(y)| \, dy \\ &\leq c \left(\frac{1}{|B(x, s^{1/m})|} \int_{B(x, s^{1/m})} |f(y) - P_{s}f(y)|^{p} \, dy\right)^{1/p} \\ &\quad + \frac{c}{|B(x, s^{1/m})|} \int_{B(x, s^{1/m})^{c}} \left(1 + \frac{|x - y|}{s^{1/m}}\right)^{-(n+\epsilon)} |f(y) - P_{s}f(y)| \, dy \\ &\leq c s^{\frac{\lambda - n}{pm}} \|f\|_{\mathcal{L}^{p, \lambda}_{t}} + I. \end{split}$$

We then decompose \mathbb{R}^n into a geometrically increasing sequence of concentric balls, and obtain

$$\begin{split} & \mathbf{I} = c \sum_{k=0}^{\infty} \frac{1}{\left| B\left(x, s^{1/m}\right) \right|} \int_{B(x, 2^{k+1} s^{1/m}) \setminus B(x, 2^k s^{1/m})} \left(1 + \frac{|x - y|}{s^{1/m}} \right)^{-(n+\epsilon)} |f(y) - P_s f(y)| \, dy \\ & \leq c \sum_{k=0}^{\infty} 2^{-k(n+\epsilon)} \frac{1}{\left| B\left(x, s^{1/m}\right) \right|} \int_{B(x, 2^{k+1} s^{1/m})} |f(y) - P_s f(y)| \, dy \, , \end{split}$$

since

$$(1+s^{-1/m}|x-y|)^{-n-\epsilon} \le c2^{-k(n+\epsilon)} \quad \forall \ y \in B(x, 2^{k+1}s^{1/m}) \setminus B(x, 2^ks^{1/m}).$$

For a fixed positive integer k, we consider the ball $B(x, 2^k s^{1/m})$. This ball is contained in the cube $Q[x, 2^{k+1} s^{1/m}]$ centered at x and of the side length $2^{k+1} s^{1/m}$. We then divide this cube $Q[x, 2^{k+1} s^{1/m}]$ into $[2^{k+1} ([\sqrt{n}] + 1)]^n$ small cubes $\{Q_{x_{k_i}}\}_{i=1}^{N_k}$ centered at x_{k_i} and of equal side length $([\sqrt{n}] + 1)^{-1} s^{1/m}$, where $N_k = [2^{k+1} ([\sqrt{n}] + 1)]^n$. For any $i = 1, 2, \cdots, N_k$, each of these small cubes $Q_{x_{k_i}}$ is then contained in the corresponding ball B_{k_i} with the same center x_{k_i} and radius $r = s^{1/m}$, Consequently, for any ball $B(x, 2^k t)$, $k = 1, 2, \cdots$, there exists a corresponding collection of balls B_{k_1} , B_{k_2} , \cdots , $B_{k_{N_k}}$ such that (i) each ball B_{k_i} is of the radius t;

(ii)
$$B(x, 2^k s^{1/m}) \subset \bigcup_{i=1}^{N_k} B_{k_i};$$

- (iii) there exists a constant c > 0 independent of k such that $N_k \le c2^{kn}$;
- (iv) each point of $B(x, 2^k s^{1/m})$ is contained in at most a finite number M of the balls B_{k_i} , where M is independent of k.

Applying the properties (i), (ii), (iii), and (iv) above, we obtain

$$\begin{split} &\mathbf{I} \leq c \sum_{k=0}^{\infty} 2^{-k(n+\epsilon)} \frac{1}{\left| B(x, s^{1/m}) \right|} \int_{\substack{i=1 \ i=1}}^{N_{k+1}} \frac{1}{B_{k_i}} |f(y) - P_t f(y)| \, dy \\ &\leq c \sum_{k=0}^{\infty} 2^{-k(n+\epsilon)} \sum_{i=1}^{N_{k+1}} \frac{1}{|B_{k_i}|} \int_{B_{k_i}} |f(y) - P_s f(y)| \, dy \\ &\leq c \sum_{k=0}^{\infty} 2^{-k(n+\epsilon)} N_{k+1} \sup_{i:1 \leq i \leq N_{k+1}} \left(\frac{1}{|B_{k_i}|} \int_{B_{k_i}} |f(y) - P_s f(y)|^p \, dy \right)^{1/p} \\ &\leq c \sum_{k=0}^{\infty} 2^{-k(n+\epsilon)} 2^{kn} s^{\frac{\lambda-n}{pm}} \|f\|_{\mathbf{L}_L^{p,\lambda}} \\ &\leq c s^{\frac{\lambda-n}{pm}} \|f\|_{\mathbf{L}_L^{p,\lambda}} \,, \end{split}$$

which gives (3.3) for the case $t/4 \le s \le t$.

For the case 0 < s < t/4, we write

$$P_t f(x) - P_{t+s} f(x) = (P_t f(x) - P_{2t} f(x)) - (P_{t+s} (f - P_{t-s} f)(x)).$$

Noting that $(t+s)/4 \le (t-s) < t+s$, we obtain (3.3) by using the same argument as above. In general, for any K > 1, let l be the integer satisfying $2^l \le K < 2^{l+1}$, hence $l \le \log_2 K$. This, together with the fact that $\lambda \in (0, n)$, imply that there exists a constant c > 0 independent of t and K such that

$$|P_{t}f(x) - P_{Kt}f(x)| \leq \sum_{k=0}^{l-1} |P_{2^{k}t}f(x) - P_{2^{k+1}t}f(x)| + |P_{2^{l}t}f(x) - P_{Kt}f(x)|$$

$$\leq c \sum_{k=0}^{l-1} (2^{k}t)^{\frac{\lambda-n}{pm}} ||f||_{\mathbf{L}_{L}^{p,\lambda}} + c(Kt)^{\frac{\lambda-n}{pm}} ||f||_{\mathbf{L}_{L}^{p,\lambda}}$$

$$\leq ct^{\frac{\lambda-n}{pm}} ||f||_{\mathbf{L}_{L}^{p,\lambda}}$$

for almost all $x \in \mathbb{R}^n$.

(ii) Choosing a ball B centered at x and of the radius $r_B = t^{1/m}$, and using (3.3), we have

$$\left(\frac{1}{|2^{k}B|} \int_{2^{k}B} |f(y) - P_{t}f(y)|^{p} dy\right)^{1/p} \\
\leq \left(\frac{1}{|2^{k}B|} \int_{2^{k}B} |f(y) - P_{t_{2^{k}B}}f(y)|^{p} dy\right)^{1/p} + \sup_{y \in 2^{k}B} |P_{t_{2^{k}B}}f(y) - P_{t}f(y)| \\
\leq ct^{\frac{\lambda-n}{pm}} ||f||_{L^{p,\lambda}} \tag{3.5}$$

for all k. Putting $2^{-1}B = \emptyset$, we read off

$$\int_{\mathbb{R}^{n}} \frac{t^{\delta/m}}{\left(t^{1/m} + |x - y|^{n+\delta}\right)} |(\mathcal{I} - P_{t})f(y)| dy$$

$$\leq \sum_{k=0}^{\infty} \int_{2^{k}B \setminus 2^{k-1}B} \frac{t^{\delta/m}}{\left(t^{1/m} + |x - y|^{n+\delta}\right)} |(\mathcal{I} - P_{t})f(y)| dy$$

$$\leq c \sum_{k=0}^{\infty} 2^{kn} 2^{-k(n+\delta)} \frac{1}{|2^{k}B|} \int_{2^{k}B} |f(y) - P_{t}f(y)| dy$$

$$\leq c \sum_{k=0}^{\infty} 2^{-k\delta} \left(\frac{1}{|2^{k}B|} \int_{2^{k}B} |f(y) - P_{t}f(y)|^{p} dy\right)^{1/p}$$

$$\leq c \sum_{k=0}^{\infty} 2^{-k\delta} t^{\frac{\lambda-n}{pm}} ||f||_{L_{L}^{p,\lambda}}$$

$$\leq c t^{\frac{\lambda-n}{pm}} ||f||_{L_{L}^{p,\lambda}}.$$

The above analysis suggests us to introduce the maximal Morrey space as follows.

Definition 2. Let $1 \le p < \infty$ and $\lambda \in (0, n)$. We say that $f \in \mathcal{M}_p$ is in $L_{L,\max}^{p,\lambda}(\mathbb{R}^n)$ associated with an operator L, if there exists some constant c (depending on f) such that

$$\left| P_t \left(|f - P_t f|^p \right) (x) \right|^{1/p} \le c t^{\frac{\lambda - n}{pm}} \quad \text{for almost all } x \in \mathbb{R}^n \text{ and } t > 0.$$
 (3.6)

The smallest bound c for which (3.6) holds then taken to be the norm of f in this space, and is denoted by $\|f\|_{L^{p,\lambda}_{cons}}$.

Using Lemma 3, we can derive a characterization in terms of the maximal Morrey space under an extra hypothesis.

Proposition 3. Let $1 \le p < \infty$ and $\lambda \in (0, n)$. Given an operator L which generates a semigroup e^{-tL} with the heat kernel bounds (2.2) and (2.3). Then $L_L^{p,\lambda}(\mathbb{R}^n) \subseteq L_{L,\max}^{p,\lambda}(\mathbb{R}^n)$. Furthermore, if the kernels $p_t(x, y)$ of operators P_t are nonnegative functions when t > 0, and satisfy the following lower bounds

$$p_t(x, y) \ge \frac{c}{t^{n/m}} \tag{3.7}$$

for some positive constant c independent of t, x and y, then, $L_{L,\max}^{p,\lambda}(\mathbb{R}^n)=L_L^{p,\lambda}(\mathbb{R}^n)$.

Proof. Let us first prove $L_L^{p,\lambda}(\mathbb{R}^n) \subseteq L_{L,\max}^{p,\lambda}(\mathbb{R}^n)$. For any fixed t > 0 and $x \in \mathbb{R}^n$, we choose a ball B centered at x and of the radius $r_B = t^{1/m}$. Let $f \in L_L^{p,\lambda}(\mathbb{R}^n)$. To estimate (3.6), we use the decay of function g in (2.3) to get

$$\begin{aligned} \left| P_{t} \left(|f - P_{t} f|^{p} \right) (x) \right| & \leq \int_{\mathbb{R}^{n}} |p_{t}(x, y)| |f(y) - P_{t} f(y)|^{p} \, dy \\ & \leq c \sum_{k=0}^{\infty} \frac{1}{|B|} \int_{2^{k} B \setminus 2^{k-1} B} g \left(\frac{|x - y|}{t^{1/m}} \right) |f(y) - P_{t} f(y)|^{p} \, dy \end{aligned}$$

$$\leq c \sum_{k=0}^{\infty} 2^{kn} g(2^{(k-1)}) \frac{1}{|2^{k}B|} \int_{2^{k}B} |f(y) - P_{t}f(y)|^{p} dy$$

$$\leq c \sum_{k=0}^{\infty} 2^{kn} g(2^{(k-1)}) t^{\frac{\lambda-n}{m}} ||f||_{\mathbf{L}_{L}^{p,\lambda}}^{p}$$

$$\leq c t^{\frac{\lambda-n}{m}} ||f||_{\mathbf{L}_{L}^{p,\lambda}}^{p}.$$

This proves $||f||_{\mathcal{L}_{L,\max}^{p,\lambda}} \le c||f||_{\mathcal{L}_{L}^{p,\lambda}}$.

We now prove $L_{L,\max}^{p,\lambda}(\mathbb{R}^n)\subseteq L_L^{p,\lambda}(\mathbb{R}^n)$ under (3.7). For a fixed ball $B=B(x,r_B)$ centered at x, we let $t_B=r_B^m$. For any $f\in L_{L,\max}^{p,\lambda}(\mathbb{R}^n)$, it follows from (3.7) that one has

$$\frac{1}{|B|} \int_{B} |f(y) - P_{t_{B}} f(y)|^{p} dy \leq c \int_{B(x, t_{B}^{1/m})} p_{t_{B}}(x, y) |f(y) - P_{t_{B}} f(y)|^{p} dy
\leq c \int_{\mathbb{R}^{n}} p_{t_{B}}(x, y) |f(y) - P_{t_{B}} f(y)|^{p} dy
\leq c t_{B}^{\frac{\lambda - n}{m}} ||f||_{L_{I, \max}^{p, \lambda}}^{p},$$

which proves $||f||_{L_I^{p,\lambda}} \le c||f||_{L_{I_{\max}}^{p,\lambda}}$. Hence, the proof of Proposition 3 is complete.

4. An Identity for the Dual Pairing

4.1 A Dual Inequality and a Reproducing Formula

From now on, we need the following notation. Suppose B is an open ball centered at x_B with radius r_B and $f \in \mathcal{M}_p$. Given an \mathbb{L}^q function g supported on a ball B, where $\frac{1}{q} + \frac{1}{p} = 1$. For any $(x, t) \in \mathbb{R}^{n+1}_+$, let

$$F(x,t) = Q_{t^m}(\mathcal{I} - P_{t^m})f(x)$$
 and $G(x,t) = Q_{t^m}^* (\mathcal{I} - P_{t_R^m}^*)g(x)$, (4.1)

where P_t^* and Q_t^* are the adjoint operators of P_t and Q_t , respectively.

Lemma 4. Assume that L satisfies the Assumptions (a) and (b) of Section 2.2. Suppose f, g, F, G, p, q are as in (4.1).

(i) If f also satisfies

$$|||f||_{\mathbf{L}_{L}^{p,\lambda}} = \sup_{B \subset \mathbb{R}^{n}} r_{B}^{-\frac{\lambda}{p}} ||\left\{ \int_{0}^{r_{B}} |Q_{t^{m}}(\mathcal{I} - P_{t^{m}}) f(x)|^{2} \frac{dt}{t} \right\}^{1/2} ||_{\mathbf{L}^{p}(B)} < \infty,$$

where the supremum is taken over all open ball $B \subset \mathbb{R}^n$ with radius r_B , then there exists a constant c > 0 independent of any open ball B with radius r_B such that

$$\int_{\mathbb{R}^{n+1}} |F(x,t)G(x,t)| \frac{dx \, dt}{t} \le c r_B^{\lambda/p} |||f|||_{\mathbf{L}_L^{p,\lambda}} ||g||_{\mathbf{L}^q} \,. \tag{4.2}$$

(ii) If

$$h \in L^{q}(\mathbb{R}^{n}), \quad b_{m} = \frac{36m}{5} \quad and \quad 1 = b_{m} \int_{0}^{\infty} t^{2m} e^{-2t^{m}} (1 - e^{-t^{m}}) \frac{dt}{t},$$

then

$$h(x) = b_m \int_0^\infty \left(Q_{t^m}^* \right)^2 \left(\mathcal{I} - P_{t^m}^* \right) h(x) \frac{dt}{t} ,$$

where the integral converges strongly in $L^q(\mathbb{R}^n)$.

Proof.

(i) For any ball $B \subset \mathbb{R}^n$ with radius r_B , we still put

$$T(B) = \left\{ (x, t) \in \mathbb{R}^{n+1}_+ : x \in B, \ 0 < t < r_B \right\}.$$

We then write

$$\int_{\mathbb{R}^{n+1}_+} |F(x,t)G(x,t)| \frac{dx \, dt}{t} = \int_{T(2B)} |F(x,t)G(x,t)| \frac{dx \, dt}{t} + \sum_{k=1}^{\infty} \int_{T(2^{k+1}B)\backslash T(2^kB)} |F(x,t)G(x,t)| \frac{dx \, dt}{t}$$

$$= A_1 + \sum_{k=2}^{\infty} A_k .$$

Recall that q > 1 and $\frac{1}{q} + \frac{1}{p} = 1$. Using the Hölder inequality, together with (2.7) (here $\psi(z) = ze^{-z}$), we obtain

$$A_{1} \leq \left\| \left\{ \int_{0}^{r_{2B}} \left| Q_{t^{m}}(\mathcal{I} - P_{t^{m}}) f(x) \right|^{2} \frac{dt}{t} \right\}^{1/2} \right\|_{L^{p}(2B)} \\
\times \left\| \left\{ \int_{0}^{r_{2B}} \left| Q_{t^{m}}^{*} (\mathcal{I} - P_{r_{B}^{*}}^{*}) g(x) \right|^{2} \frac{dt}{t} \right\}^{1/2} \right\|_{L^{q}(2B)} \\
\leq \left\| \left\{ \int_{0}^{r_{2B}} \left| Q_{t^{m}} (\mathcal{I} - P_{t^{m}}) f(x) \right|^{2} \frac{dt}{t} \right\}^{1/2} \right\|_{L^{p}(2B)} \left\| \mathcal{G}_{L^{*}} \left((\mathcal{I} - P_{r_{B}^{*}}^{*}) g \right) \right\|_{L^{q}} \\
\leq c r_{B}^{\frac{\lambda}{p}} \left\| f \right\|_{L^{p,\lambda}} \left\| g \right\|_{L^{q}}.$$

Let us estimate A_k for $k=2,3,\cdots$. Note that for $x\in 2^{k+1}B\setminus 2^kB$ and $y\in B$, we have that $|x-y|\geq 2^{k-1}r_B$. Using (2.4) and the commutative property of $\{P_t\}_{t>0}$, we get

$$\begin{split} \left| Q_{t^{m}}^{*} \left(\mathcal{I} - P_{r_{B}^{m}}^{*} \right) g(x) \right| & \leq \left| Q_{t^{m}}^{*} g(x) \right| + c \left(\frac{t}{t + r_{B}} \right)^{m} \left| Q_{t^{m} + r_{B}^{m}} g(x) \right| \\ & \leq c \int_{B} \frac{t^{\epsilon} |g(y)|}{(t + |x - y|)^{n + \epsilon}} \, dy \\ & + c \left(\frac{t}{r_{B}} \right)^{m} \int_{B} \frac{r_{B}^{\epsilon} |g(y)|}{(r_{B} + |x - y|)^{n + \epsilon}} \, dy \\ & \leq \frac{ct^{\epsilon_{0}}}{\left(2^{k} r_{B} \right)^{n + \epsilon_{0}}} \int_{B} |g(y)| \, dy \\ & \leq \left(\frac{ct^{\epsilon_{0}}}{\left(2^{k} r_{B} \right)^{n + \epsilon_{0}}} \right) r_{B}^{\frac{n}{p}} \|g\|_{L^{q}} \,, \end{split}$$

where $\epsilon_0 = 2^{-1} \min(m, \epsilon)$ and q = p/(p-1). Consequently,

$$\left\| \left\{ \int_0^{2^k r_B} \left| Q_{t^m}^* \left(\mathcal{I} - P_{r_B^m}^* \right) g(x) \chi_{T(2^{k+1}B) \setminus T(2^kB)} \right|^2 \frac{dt}{t} \right\}^{1/2} \right\|_{L^q(2^kB)} \le c 2^{kn(\frac{1}{q}-1)} \|g\|_{L^q}.$$

Therefore,

$$\begin{split} \mathbf{A}_{k} & \leq & \left\| \left\{ \int_{0}^{2^{k} r_{B}} \left| Q_{t^{m}} (\mathcal{I} - P_{t^{m}}) f(x) \right|^{2} \frac{dt}{t} \right\}^{1/2} \right\|_{\mathbf{L}^{p}(2^{k}B)} \\ & \times & \left\| \left\{ \int_{0}^{2^{k} r_{B}} \left| Q_{t^{m}}^{*} (\mathcal{I} - P_{r_{B}^{m}}^{*}) g(x) \chi_{T(2^{k+1}B) \setminus T(2^{k}B)} \right|^{2} \frac{dt}{t} \right\}^{1/2} \right\|_{\mathbf{L}^{q}(2^{k}B)} \\ & \leq & c (2^{k} r_{B})^{\frac{\lambda}{p}} 2^{kn(\frac{1}{q}-1)} \| f \|_{\mathbf{L}^{p,\lambda}_{L}} \| g \|_{\mathbf{L}^{q}} \\ & \leq & c 2^{\frac{k(\lambda-n)}{p}} r_{B}^{\frac{\lambda}{p}} \| f \|_{\mathbf{L}^{p,\lambda}_{L}} \| g \|_{\mathbf{L}^{q}} \; . \end{split}$$

Since $\lambda \in (0, n)$, we have

$$\begin{split} \int_{\mathbb{R}^{n+1}_+} |F(x,t)G(x,t)| \frac{dx\,dt}{t} & \leq & c r_B^{\frac{\lambda}{p}} \, \|f\|_{\mathbb{L}^{p,\lambda}_L} \|g\|_{\mathbb{L}^q} + c \sum_{k=1}^\infty 2^{\frac{k(\lambda-n)}{2}} r_B^{\frac{\lambda}{p}} \, \|f\|_{\mathbb{L}^{p,\lambda}_L} \|g\|_{\mathbb{L}^q} \\ & \leq & c r_B^{\frac{\lambda}{p}} \, \|f\|_{\mathbb{L}^{p,\lambda}_L} \|g\|_{\mathbb{L}^q} \;, \end{split}$$

as desired.

(ii) From Lemma 2 we know that L has a bounded H_{∞} -calculus in L^q for all q > 1. This, together with elementary integration, shows that $\{g_{\alpha\beta}(L^*)\}$ is a uniformly bounded net in $\mathcal{L}(L^q, L^q)$, where

$$g_{\alpha\beta}(L^*) = b_m \int_{\alpha}^{\beta} \left(Q_{t^m}^*\right)^2 \left(\mathcal{I} - P_{t^m}^*\right) \frac{dt}{t}$$

for all $0 < \alpha < \beta < \infty$.

As a consequence of Lemma 1, we have that for any $h \in L^q(\mathbb{R}^n)$,

$$h(x) = b_m \int_0^\infty \left(Q_{t^m}^* \right)^2 \left(\mathcal{I} - P_{t^m}^* \right) h(x) \frac{dt}{t}$$

where $b_m = \frac{36m}{5}$ and the integral is strongly convergent in $L^q(\mathbb{R}^n)$.

4.2 The Desired Dual Identity

Next, we establish the following dual identity associated with the operator L.

Proposition 4. Assume that L satisfies the Assumptions (a) and (b) of Section 2.2. Suppose B, f, g, F, G, p, q are defined as in (4.1). If $|||f|||_{L^{p,\lambda}_L} < \infty$ and $b_m = \frac{36m}{5}$, then

$$\int_{\mathbb{R}^n} f(x) \left(\mathcal{I} - P_{r_B^m}^* \right) g(x) \, dx = b_m \int_{\mathbb{R}^{n+1}} F(x, t) G(x, t) \frac{dx \, dt}{t} \, . \tag{4.3}$$

Proof. From Lemma 4 (i) it turns out that

$$\int_{\mathbb{R}^{n+1}_+} \left| F(x,t)G(x,t) \right| \frac{dx\,dt}{t} < \infty.$$

By the dominated convergence theorem, the following integral converges absolutely and satisfies

$$\int_{\mathbb{R}^{n+1}_+} F(x,t)G(x,t) \frac{dx\,dt}{t} = \lim_{\delta \to 0} \lim_{N \to \infty} \int_{\delta}^{N} \int_{\mathbb{R}^n} F(x,t)G(x,t) \frac{dx\,dt}{t} .$$

Next, by Fubini's theorem, together with the commutative property of the semigroup $\{e^{-tL}\}_{t>0}$, we have

$$\int_{\mathbb{R}^n} F(x,t)G(x,t) \, dx = \int_{\mathbb{R}^n} f(x) \Big(Q_{t^m}^* \Big)^2 \Big(\mathcal{I} - P_{t^m}^* \Big) \Big(\mathcal{I} - P_{r_B^m}^* \Big) g(x) \, dx, \quad \forall t > 0 \, .$$

This gives

$$\int_{\mathbb{R}^{n+1}_{+}} F(x,t)G(x,t) \frac{dx \, dt}{t}$$

$$= \lim_{\delta \to 0} \lim_{N \to \infty} \int_{\delta}^{N} \left[\int_{\mathbb{R}^{n}} f(x) \left(Q_{t^{m}}^{*} \right)^{2} \left(\mathcal{I} - P_{t^{m}}^{*} \right) \left(\mathcal{I} - P_{r_{B}^{m}}^{*} \right) g(x) \, dx \right] \frac{dt}{t}$$

$$= \lim_{\delta \to 0} \lim_{N \to \infty} \int_{\mathbb{R}^{n}} f(x) \left[\int_{\delta}^{N} \left(Q_{t^{m}}^{*} \right)^{2} \left(\mathcal{I} - P_{t^{m}}^{*} \right) \left(\mathcal{I} - P_{r_{B}^{m}}^{*} \right) g(x) \frac{dt}{t} \right] dx$$

$$= \lim_{\delta \to 0} \lim_{N \to \infty} \int_{\mathbb{R}^{n}} f_{1}(x) \left[\int_{\delta}^{N} \left(Q_{t^{m}}^{*} \right)^{2} \left(\mathcal{I} - P_{t^{m}}^{*} \right) \left(\mathcal{I} - P_{r_{B}^{m}}^{*} \right) g(x) \frac{dt}{t} \right] dx$$

$$+ \lim_{\delta \to 0} \lim_{N \to \infty} \int_{\mathbb{R}^{n}} f_{2}(x) \left[\int_{\delta}^{N} \left(Q_{t^{m}}^{*} \right)^{2} \left(\mathcal{I} - P_{t^{m}}^{*} \right) \left(\mathcal{I} - P_{r_{B}^{m}}^{*} \right) g(x) \frac{dt}{t} \right] dx$$

$$= I + II , \qquad (4.4)$$

where $f_1 = f \chi_{4B}$, $f_2 = f \chi_{(4B)^c}$ and χ_E stands for the characteristic function of $E \subseteq \mathbb{R}^n$. We first consider the term I. Since $g \in L^q(B)$, where q = p/(p-1), we conclude $(\mathcal{I} - P_{r_n^m}^*)g \in L^q$. By Lemma 4 (ii), we obtain

$$(\mathcal{I} - P_{r_B^m}^*)g = \lim_{\delta \to 0} \lim_{N \to \infty} b_m \int_{\delta}^N (Q_{t^m}^*)^2 (\mathcal{I} - P_{t^m}^*) (\mathcal{I} - P_{r_B^m}^*)(g) \frac{dt}{t}$$

in L^q . Hence,

$$I = \lim_{\delta \to 0} \lim_{N \to \infty} \int_{\mathbb{R}^n} f_1(x) \left[\int_{\delta}^{N} (Q_{t^m}^*)^2 (\mathcal{I} - P_{t^m}^*) (\mathcal{I} - P_{r_B}^*)(g)(x) \frac{dt}{t} \right] dx$$
$$= b_m^{-1} \int_{\mathbb{R}^n} f_1(x) (\mathcal{I} - P_{r_B}^*) g(x) dx.$$

In order to estimate the term II, we need to show that for all $y \notin 4B$, there exists a constant c = c(g, L) such that

$$\sup_{\delta>0, \ N>0} \left| \int_{\delta}^{N} \left(Q_{t^m}^* \right)^2 \left(\mathcal{I} - P_{t^m}^* \right) \left(\mathcal{I} - P_{r_B^m}^* \right) g(x) \frac{dt}{t} \right| \le c (1 + |x - x_0|)^{-(n+\epsilon)} \ . \tag{4.5}$$

To this end, set

$$\Psi_{t,s}(L^*)h(y) = (2t^m + s^m)^3 \left(\frac{d^3 P_r^*}{dr^3}\Big|_{r=2t^m+s^m} (\mathcal{I} - P_{t^m}^*)h\right)(y) .$$

Note that

$$(\mathcal{I} - P_{r_B^m}^*)g = m \int_0^{r_B} Q_{s^m}^*(g)s^{-1} ds$$
.

So, we use (2.3) and (2.4) to deduce

$$\begin{split} & \left| \int_{\delta}^{N} \left(Q_{t^{m}}^{*} \right)^{2} \left(\mathcal{I} - P_{t^{m}}^{*} \right) \left(\mathcal{I} - P_{r_{B}^{m}}^{*} \right) g(x) \frac{dt}{t} \right| \\ & = \left| \int_{\delta}^{N} \int_{0}^{r_{B}} \left(Q_{t^{m}}^{*} \right)^{2} Q_{s^{m}}^{*} \left(\mathcal{I} - P_{t^{m}}^{*} \right) g(x) \frac{ds \ dt}{st} \right| \\ & \leq c \int_{\delta}^{N} \int_{0}^{r_{B}} \left(\frac{t^{2m} s^{m}}{\left(t^{m} + s^{m} \right)^{3}} \right) |\Psi_{t,s}(L) g(x)| \frac{ds \ dt}{st} \\ & \leq c \int_{\delta}^{N} \int_{0}^{r_{B}} \left[\int_{B(x_{0}, r_{B})} \left(\frac{t^{2m} s^{m}}{\left(t^{m} + s^{m} \right)^{3}} \right) \left(\frac{(t+s)^{\epsilon}}{(t+s+|x-y|)^{n+\epsilon}} \right) |g(y)| \ dy \right] \frac{ds \ dt}{st} \ . \end{split}$$

Because $x \notin 4B$ yields $|x - y| \ge |x - x_0|/2$, the inequality

$$\frac{t^{2m}s^m(t+s)^{\epsilon}}{\left(t^m+s^m\right)^3} \le c\min\left\{(ts)^{\epsilon/2}, t^{-\epsilon/2}s^{3\epsilon/2}\right\},\,$$

together with Hölder's inequality and elementary integration, produces a positive constant c independent of δ , N > 0 such that for all $x \notin 4B$,

$$\left| \int_{\delta}^{N} Q_{t^{m}}^{2} (\mathcal{I} - P_{t^{m}}) g(y) \frac{dt}{t} \right| \leq c r_{B}^{\epsilon} |x - x_{0}|^{-(n+\epsilon)} ||g||_{L^{1}}$$

$$\leq c r_{B}^{\epsilon + \frac{n}{2}} ||g||_{L^{2}} |x - x_{0}|^{-(n+\epsilon)}$$

Accordingly, (4.5) follows readily.

We now estimate the term II. For $f \in \mathcal{M}_p$, we derive $f \in L^p((1+|x|)^{-(n+\epsilon_0)}dx)$. The estimate (4.5) yields a constant c > 0 such that

$$\sup_{\delta > 0, \ N > 0} \int_{\mathbb{R}^n} \left| f_2(x) \int_{\delta}^{N} \left(Q_{t^m}^* \right)^2 \left(\mathcal{I} - P_{t^m}^* \right) \left(\mathcal{I} - P_{r_B^m}^* \right) (g)(x) \frac{dt}{t} \right| dx \le c.$$

This allows us to pass the limit inside the integral of II. Hence,

$$\Pi = \lim_{\delta \to 0} \lim_{N \to \infty} \int_{\mathbb{R}^{n}} f_{2}(x) \left[\int_{\delta}^{N} (Q_{t^{m}}^{*})^{2} (\mathcal{I} - P_{t^{m}}^{*}) (\mathcal{I} - P_{r_{B}^{m}}^{*})(g)(x) \frac{dt}{t} \right] dx
= \int_{\mathbb{R}^{n}} f_{2}(x) \left(\lim_{\delta \to 0} \lim_{N \to \infty} \left[\int_{\delta}^{N} (Q_{t^{m}}^{*})^{2} (\mathcal{I} - P_{t^{m}}^{*}) (\mathcal{I} - P_{r_{B}^{m}}^{*})(g)(x) \frac{dt}{t} \right] \right) dx
= b_{m}^{-1} \int_{\mathbb{R}^{n}} f_{2}(x) (\mathcal{I} - P_{r_{B}^{m}}^{*}) g(x) dx .$$

Combining the previous formulas for I and II, we obtain the identity (4.3).

Remark 3. For a background of Proposition 4, see also [8, Proposition 5.1].

5. Description Through Littlewood-Paley Function

5.1 The Space $L^{p,\lambda}(\mathbb{R}^n)$ as the Dual of the Atomic Space

Following [28], we give the following definition.

Definition 3. Let 1 , <math>q = p/(p-1) and $\lambda \in (0, n)$. Then

- (i) A complex-valued function a on \mathbb{R}^n is called a (q, λ) -atom provided:
 - (α) a is supported on an open ball $B \subset \mathbb{R}^n$ with radius r_B ;
 - $(\beta) \int_{\mathbb{R}^n} a(x) \, dx = 0;$
 - $(\gamma) \|a\|_{\mathbf{L}^q} \le r_B^{-\lambda/p}.$
- (ii) $H^{q,\lambda}(\mathbb{R}^n)$ comprises those linear functionals admitting an atomic decomposition $f = \sum_{j=1}^{\infty} \eta_j a_j$, where a_j 's are (q, λ) -atoms, and $\sum_j |\eta_j| < \infty$.

The forthcoming result reveals that $H^{q,\lambda}(\mathbb{R}^n)$ exists as a predual of $L^{p,\lambda}(\mathbb{R}^n)$.

Proposition 5. Let 1 , <math>q = p/(p-1) and $\lambda \in (0, n)$. Then $L^{p,\lambda}(\mathbb{R}^n)$ is the dual $(H^{q,\lambda}(\mathbb{R}^n))^*$ of $H^{q,\lambda}(\mathbb{R}^n)$. More precisely, if $h = \sum_j \eta_j a_j \in H^{q,\lambda}(\mathbb{R}^n)$ then

$$\langle h, \ell \rangle = \lim_{k \to \infty} \sum_{i=1}^{k} \eta_{j} \int_{\mathbb{R}^{n}} a_{j}(x) \ell(x) dx$$

is a well-defined continuous linear functional for each $\ell \in L^{p,\lambda}(\mathbb{R}^n)$, whose norm is equivalent to $\|\ell\|_{L^{p,\lambda}}$; moreover, each continuous linear functional on $H^{q,\lambda}(\mathbb{R}^n)$ has this form.

Proof. See [28, Proposition 5] for a proof of Proposition 5.

5.2 Characterization of $L^{p,\lambda}(\mathbb{R}^n)$ by Means of Littlewood-Paley Function

We now state a full characterization of $L^{p,\lambda}(\mathbb{R}^n)$ space for $1 and <math>\lambda \in (0, n)$. For the case p = 2, see also [26, Lemma 2.1] as well as [25, Theorem 1 (i)].

Proposition 6. Let $1 , <math>\lambda \in (0, n)$ and $f \in \mathcal{M}_{\sqrt{-\Delta}, p}$. Then the following two conditions are equivalent:

(i) $f \in L^{p,\lambda}(\mathbb{R}^n)$;

(ii)

$$I(f, p) = \sup_{B \subset \mathbb{R}^n} r_B^{-\frac{\lambda}{p}} \left\| \left\{ \int_0^{r_B} \left| t \frac{\partial}{\partial t} e^{-t\sqrt{-\Delta}} f(x) \right|^2 \frac{dt}{t} \right\}^{1/2} \right\|_{L^p(B)} < \infty ,$$

where the supremum is taken over all Euclidean open ball $B \subset \mathbb{R}^n$ with radius r_B .

Proof. It suffices to verify (ii) \Rightarrow (i) for which the reverse implication follows readily from [11, Theorem 2.1]. Suppose (ii) holds. Proposition 5 suggests us to show $f \in (H^{\frac{p}{p-1},\lambda}(\mathbb{R}^n))^*$ in order to verify (i). Now, let g be a $(\frac{p}{p-1},\lambda)$ -atom and

$$p_t(x) = \frac{c_n t}{\left(t^2 + |x|^2\right)^{\frac{n+1}{2}}}.$$

Then for any open ball $B \subset \mathbb{R}^n$ with radius r_B and its tent

$$T(B) = \{(x, t) \in \mathbb{R}^{n+1}_+ : x \in B, t \in (0, r_B)\},\$$

we have (cf. [23, p. 183])

$$|\langle f, g \rangle| = \left| \int_{\mathbb{R}^n} f(x)g(x) \, dx \right|$$

$$= 4 \left| \int_{\mathbb{R}^n} \int_0^\infty \left(t \frac{\partial}{\partial t} p_t * f(x) \right) \left(t \frac{\partial}{\partial t} p_t * g(x) \right) \frac{dt \, dx}{t} \right|$$

$$\leq 4 \left(I(B) + I(B) \right).$$

Here,

$$\begin{split} I(B) &= \int_{4B} \int_{0}^{r_{4B}} \left| t \frac{\partial}{\partial t} p_{t} * f(x) \right| \left| t \frac{\partial}{\partial t} p_{t} * g(x) \right| \frac{dt \, dx}{t} \\ &\leq \left(\int_{4B} \left(\int_{0}^{r_{4B}} \left| t \frac{\partial}{\partial t} p_{t} * f(x) \right|^{2} \frac{dt}{t} \right)^{\frac{p}{2}} dx \right)^{\frac{1}{p}} \\ &\times \left(\int_{4B} \left(\int_{0}^{r_{4B}} \left| t \frac{\partial}{\partial t} p_{t} * g(x) \right|^{2} \frac{dt}{t} \right)^{\frac{p}{2(p-1)}} dx \right)^{\frac{p-1}{p}} \\ &\leq c r_{B}^{\frac{\lambda}{p}} I(f, p) \|g\|_{\mathbf{L}^{\frac{p}{p-1}}(\mathbb{R}^{n})} \\ &\leq c I(f, p) \,, \end{split}$$

due to Hölder's inequality, the $L^{\frac{p}{p-1}}$ -boundedness of the Littlewood-Paley \mathcal{G} -function, and g being a $(\frac{p}{p-1}, \lambda)$ -atom. Meanwhile,

$$J(B) = \sum_{k=1}^{\infty} \int_{T(2^{k+1}B)\setminus T(2^{k}B)} \left| t \frac{\partial}{\partial t} p_{t} * f(x) \right| \left| t \frac{\partial}{\partial t} p_{t} * g(x) \right| \frac{dt \, dx}{t}$$

$$\leq c \sum_{k=1}^{\infty} \left\| \left\{ \int_{0}^{2^{k+1}r_{B}} \left| t \frac{\partial}{\partial t} p_{t} * f(x) \right|^{2} \frac{dt}{t} \right\}^{\frac{1}{2}} \right\|_{L^{p}(2^{k+1}B)}$$

$$\times \left\| \left\{ \int_{0}^{2^{k+1}r_{B}} \left| t \frac{\partial}{\partial t} p_{t} * g(x) \right|^{2} \frac{dt}{t} \right\}^{\frac{1}{2}} \right\|_{L^{\frac{p}{p-1}}(2^{k+1}B)}$$

$$\leq c \sum_{k=1}^{\infty} \left(2^{k} r_{B} \right)^{\frac{\lambda}{p}} I(f, p) 2^{-\frac{kn}{p}} r_{B}^{-\frac{\lambda}{p}}$$

$$\leq c I(f, p),$$

for which we have used the Hölder inequality and the fact that if $|y - x| \ge 2^k r_B$ then

$$\left| t \frac{\partial}{\partial t} p_t * g(x) \right| \le \frac{ct^3 \|g\|_{L^1(B)}}{\left(2^k r_B \right)^{3+n}} \le \frac{ct^3 r_B^{\frac{n-k}{p}}}{\left(2^k r_B \right)^{3+n}}$$

for the $(\frac{p}{p-1}, \lambda)$ -atom g. Accordingly, $f \in L^{p,\lambda}(\mathbb{R}^n)$.

5.3 Characterization of $\operatorname{L}^{p,\lambda}_L(\mathbb{R}^n)$ by Means of Littlewood-Paley Function

Of course, it is natural to explore a characterization of $L_I^{p,\lambda}(\mathbb{R}^n)$ similar to Proposition 6.

Proposition 7. Let $1 , <math>\lambda \in (0, n)$ and $f \in \mathcal{M}_p$. Assume that L satisfies the Assumptions (a) and (b) of Section 2.2. Then the following two conditions are equivalent: (i) $f \in L_I^{p,\lambda}(\mathbb{R}^n)$;

(ii)

$$|||f||_{\mathbf{L}_{L}^{p,\lambda}} = \sup_{B \subset \mathbb{R}^{n}} r_{B}^{-\frac{\lambda}{p}} || \left\{ \int_{0}^{r_{B}} |Q_{t^{m}}(\mathcal{I} - P_{t^{m}}) f(x)|^{2} \frac{dt}{t} \right\}^{1/2} ||_{\mathbf{L}_{p}(B)} < \infty ,$$

where the supremum is taken over all Euclidean open ball $B \subset \mathbb{R}^n$ with radius r_B .

Proof.

(i) \Rightarrow (ii). Suppose $f \in L_L^{p,\lambda}(\mathbb{R}^n)$. Note that

$$Q_{t^m}(\mathcal{I} - P_{t^m}) = Q_{t^m}(\mathcal{I} - P_{t^m})(\mathcal{I} - P_{r_R^m}) + Q_{t^m}(\mathcal{I} - P_{t^m})P_{r_R^m}$$

So, we turn to verify both

$$\left\| \left\{ \int_{0}^{r_{B}} \left| Q_{t^{m}} (\mathcal{I} - P_{t^{m}}) (\mathcal{I} - P_{r_{B}^{m}}) f(x) \right|^{2} \frac{dt}{t} \right\}^{1/2} \right\|_{L^{p}(B)} \leq c r_{B}^{\frac{\lambda}{p}} \left\| f \right\|_{L_{L}^{p,\lambda}}$$
(5.1)

and

$$\left\| \left\{ \int_{0}^{r_{B}} \left| Q_{t^{m}} \left(\mathcal{I} - P_{t^{m}} \right) P_{r_{B}^{m}} f(x) \right|^{2} \frac{dt}{t} \right\}^{1/2} \right\|_{\mathcal{L}^{p}(B)} \leq c r_{B}^{\frac{\lambda}{p}} \left\| f \right\|_{\mathcal{L}^{p,\lambda}_{L}}, \tag{5.2}$$

thereby proving (ii). To do so, we will adapt the argument on pp. 85–86 of [14] to present situation—see also p. 955 of [8]. To prove (5.1), let us consider the square function $\mathcal{G}(h)$ given by

$$\mathcal{G}(h)(x) = \left(\int_0^\infty \left| Q_{t^m} (\mathcal{I} - P_{t^m}) h(x) \right|^2 \frac{dt}{t} \right)^{1/2}.$$

From (2.7), the function $\mathcal{G}(h)$ is bounded on $L^p(\mathbb{R}^n)$ for $1 . Let <math>b = b_1 + b_2$, where $b_1 = (\mathcal{I} - P_{r_B^m}) f \chi_{2B}$, and $b_2 = (\mathcal{I} - P_{r_B^m}) f \chi_{(2B)^c}$. Using Lemma 3, we obtain

$$\left\| \left\{ \int_{0}^{r_{B}} |Q_{t^{m}}(\mathcal{I} - P_{t^{m}})b_{1}(x)|^{2} \frac{dt}{t} \right\}^{1/2} \right\|_{L^{p}(B)} \\
\leq \left\| \left\{ \int_{0}^{\infty} |Q_{t^{m}}(\mathcal{I} - P_{t^{m}})b_{1}(x)|^{2} \frac{dt}{t} \right\}^{1/2} \right\|_{L^{p}} \\
\leq c \|\mathcal{G}(b_{1})\|_{L^{p}} \\
\leq c \|b_{1}\|_{L^{p}} \\
= c \left(\int_{2B} \left| (\mathcal{I} - P_{r_{B}^{m}})f(x)|^{p} dx \right)^{1/p} \\
\leq c \left(\int_{2B} \left| (\mathcal{I} - P_{r_{2B}^{m}})f(x)|^{p} dx \right)^{1/p} + cr_{B}^{n/p} \sup_{x \in 2B} \left| P_{r_{B}^{m}}f(x) - P_{r_{2B}^{m}}f(x)|^{p} \right| \\
\leq cr_{B}^{\frac{\lambda}{p}} \|f\|_{L^{p,\lambda}_{L}}. \tag{5.3}$$

On the other hand, for any $x \in B$ and $y \in (2B)^c$, one has $|x - y| \ge r_B$. From Proposition 2, we obtain

$$|Q_{t^{m}}(\mathcal{I} - P_{t^{m}})b_{2}(x)| \leq c \int_{\mathbb{R}^{n} \setminus 2B} \frac{t^{\epsilon}}{(t + |x - y|)^{n + \epsilon}} |(\mathcal{I} - P_{r_{B}^{m}})f(y)| dy$$

$$\leq c \left(\frac{t}{r_{B}}\right)^{\epsilon} \int_{\mathbb{R}^{n}} \frac{r_{B}^{\epsilon}}{(r_{B} + |x - y|)^{n + \epsilon}} |(\mathcal{I} - P_{r_{B}^{m}})f(y)| dy$$

$$\leq c \left(\frac{t}{r_{B}}\right)^{\epsilon} r_{B}^{\frac{\lambda - n}{p}} ||f||_{L_{L}^{p,\lambda}},$$

which implies

$$\left\| \left\{ \int_0^{r_B} |Q_{t^m}(\mathcal{I} - P_{t^m}) b_2(x)|^2 \frac{dt}{t} \right\}^{1/2} \right\|_{\mathbf{L}^p(B)} \le c r_B^{\frac{\lambda}{p}} \|f\|_{\mathbf{L}^{p,\lambda}_L}.$$

This, together with (5.3), gives (5.1).

Next, let us check (5.2). This time, we have $0 < t < r_B$, whence getting from Lemma 3 that for any $x \in \mathbb{R}^n$,

$$\left| P_{\frac{1}{2}r_B^m} f(x) - P_{(t^m + \frac{1}{2}r_B^m)} f(x) \right| \le c r_B^{\frac{\lambda - n}{p}} \|f\|_{\mathbf{L}_L^{p,\lambda}}.$$

By (2.4), the kernel $K_{t,r_B}(x, y)$ of the operator

$$Q_{t^m} P_{\frac{1}{2}r_B^m} = \frac{t^m}{t^m + \frac{1}{2}r_B^m} Q_{(t^m + \frac{1}{2}r_B^m)}$$

satisfies

$$|K_{t,r_B}(x,y)| \le c \left(\frac{t}{r_B}\right)^m \frac{r_B^{\epsilon}}{(r_B + |x - y|)^{n + \epsilon}}.$$

Using the commutative property of the semigroup $\{e^{-tL}\}_{t>0}$ and the estimate (2.4), we deduce

$$\begin{aligned} \left| Q_{t^{m}} \left(\mathcal{I} - P_{t^{m}} \right) P_{r_{B}^{m}} f(x) \right| &= \left| Q_{t^{m}} P_{\frac{1}{2} r_{B}^{m}} \left(P_{\frac{1}{2} r_{B}^{m}} - P_{(t^{m} + \frac{1}{2} r_{B}^{m})} \right) f(x) \right| \\ &\leq c \left(\frac{t}{r_{B}} \right)^{m} \int_{\mathbb{R}^{n}} \frac{r_{B}^{\epsilon}}{(r_{B} + |x - y|)^{n + \epsilon}} \left| \left(P_{\frac{1}{2} r_{B}^{m}} - P_{(t^{m} + \frac{1}{2} r_{B}^{m})} \right) f(y) \right| dy \\ &\leq c \left(\frac{t}{r_{B}} \right)^{m} r_{B}^{\frac{\lambda - n}{p}} \left\| f \right\|_{\mathcal{L}_{L}^{p, \lambda}}, \end{aligned}$$

whence deriving

$$\left\| \left\{ \int_0^{r_B} \left| Q_{I^m} (\mathcal{I} - P_{I^m}) P_{r_B^m} f(x) \right|^2 \frac{dt}{t} \right\}^{1/2} \right\|_{L^p(B)} \le c r_B^{\frac{\lambda}{p}} \|f\|_{L^{p,\lambda}_L}.$$

This gives (5.2) and consequently (ii).

(ii) \Rightarrow (i). Suppose (ii) holds. The duality argument for L^p shows that for any open ball $B \subset \mathbb{R}^n$ with radius r_B ,

$$\left(r_{B}^{-\lambda} \int_{B} \left| f(x) - P_{r_{B}^{m}} f(x) \right|^{p} dx \right)^{1/p} = \sup_{\|g\|_{L^{q}(B) \le 1}} r_{B}^{-\lambda/p} \left| \int_{\mathbb{R}^{n}} \left(\mathcal{I} - P_{r_{B}^{m}} \right) f(x) g(x) dx \right|
= \sup_{\|g\|_{L^{q}(B) \le 1}} r_{B}^{-\lambda/p} \left| \int_{\mathbb{R}^{n}} f(x) \left(\mathcal{I} - P_{r_{B}^{m}}^{*} \right) g(x) dx \right|.$$
(5.4)

Using the identity (4.3), the estimate (4.2) and the Hölder inequality, we have

$$\left| \int_{\mathbb{R}^{n}} f(x) \left(\mathcal{I} - P_{r_{B}^{m}}^{*} \right) g(x) \, dx \right| \leq c \int_{\mathbb{R}^{n+1}_{+}} \left| Q_{t^{m}} (\mathcal{I} - P_{t^{m}}) f(x) \, Q_{t^{m}}^{*} \left(\mathcal{I} - P_{r_{B}^{m}}^{*} \right) g(x) \right| \frac{dx \, dt}{t}$$

$$\leq c r_{B}^{\lambda/p} \| \| f \|_{\mathcal{L}_{I}^{p,\lambda}} \| g \|_{\mathcal{L}^{q}} . \tag{5.5}$$

Substituting (5.5) back to (5.4), by Definition 1 we find a constant c > 0 such that

$$\|f\|_{{\rm L}^{p,\lambda}_L} \le c \|f\|_{{\rm L}^{p,\lambda}_L} < \infty \; .$$

This just proves $f \in L^{p,\lambda}_I(\mathbb{R}^n)$, thereby yielding (i).

Remark 4. In the case of p=2, we can interpret Proposition 7 as a measure-theoretic characterization, namely, $f \in L^{2,\lambda}_L(\mathbb{R}^n)$ when and only when

$$d\mu_f(x,t) = |Q_{t^m}(\mathcal{I} - P_{t^m})f(x)|^2 \frac{dx dt}{t}$$

is a λ -Carleson measure on \mathbb{R}^{n+1}_+ . According to [10, Lemma 4.1], we find further that $f \in \mathrm{L}^{2,\lambda}_L(\mathbb{R}^n)$ is equivalent to

$$\sup_{(y,s)\in\mathbb{R}^{n+1}_+} \int_{\mathbb{R}^{n+1}_+} \left(\frac{s}{\left(|x-y|^2 + (t+s)^2 \right)^{\frac{n+1}{2}}} \right)^{\lambda} d\mu_f(x,t) < \infty.$$

5.4 A Sufficient Condition for $L_I^{p,\lambda}(\mathbb{R}^n) = L^{p,\lambda}(\mathbb{R}^n)$

In what follows, we assume that L is a linear operator of type ω on $L^2(\mathbb{R}^n)$ with $\omega < \pi/2$ —hence L generates an analytic semigroup e^{-zL} , $0 \le |\text{Arg}(z)| < \pi/2 - \omega$. We also assume that for each t > 0, the kernel $p_t(x, y)$ of e^{-tL} is Hölder continuous in both variables x, y and there exist positive constants m, $\beta > 0$ and $0 < \gamma \le 1$ such that for all t > 0, and $x, y, h \in \mathbb{R}^n$,

$$|p_{t}(x, y)| \leq \frac{ct^{\beta/m}}{\left(t^{1/m} + |x - y|\right)^{n+\beta}} \quad \forall t > 0, \ x, y \in \mathbb{R}^{n},$$

$$|p_{t}(x + h, y) - p_{t}(x, y)| + |p_{t}(x, y + h) - p_{t}(x, y)|$$

$$\leq \frac{c|h|^{\gamma}t^{\beta/m}}{\left(t^{1/m} + |x - y|\right)^{n+\beta+\gamma}} \quad \forall h \in \mathbb{R}^{n} \quad \text{with} \quad 2|h| \leq t^{1/m} + |x - y|, \quad (5.7)$$

and

$$\int_{\mathbb{R}^n} p_t(x, y) \, dx = \int_{\mathbb{R}^n} p_t(x, y) \, dy = 1 \quad \forall \, t > 0 \,. \tag{5.8}$$

Proposition 8. Let $1 and <math>\lambda \in (0, n)$. Given an operator L which generates a semigroup e^{-tL} with the heat kernel bounds (2.2) and (2.3). Assume that L satisfies the conditions (5.6), (5.7), and (5.8). Then $L_L^{p,\lambda}(\mathbb{R}^n)$ and $L^{p,\lambda}(\mathbb{R}^n)$ coincide, and their norms are equivalent.

Proof. Since Proposition 1 tells us that $L^{p,\lambda}(\mathbb{R}^n) \subseteq L^{p,\lambda}_L(\mathbb{R}^n)$ under the above-given conditions, we only need to check $L^{p,\lambda}_L(\mathbb{R}^n) \subseteq L^{p,\lambda}_L(\mathbb{R}^n)$. Note that $L^{p,\lambda}(\mathbb{R}^n)$ is the dual of $H^{q,\lambda}(\mathbb{R}^n)$, q = p/(p-1). It reduces to prove that if $f \in L^{p,\lambda}_L(\mathbb{R}^n)$, then $f \in (H^{q,\lambda}(\mathbb{R}^n))^*$. Let g be a (q,λ) -atom. Using the conditions (5.6), (5.7), and (5.8) of the operator L, together with the properties of (q,λ) -atom of g, we can follow the argument for Lemma 4 (ii) to verify

$$\int_{\mathbb{R}^n} f(x)g(x) \, dx = b_m \int_{\mathbb{R}^{n+1}_+} Q_{t^m} (\mathcal{I} - P_{t^m}) f(x) Q_{t^m}^* g(x) \frac{dx \, dt}{t} \quad \text{where} \quad b_m = \frac{36m}{5} \; .$$

Consequently,

$$\begin{aligned} |\langle f, g \rangle| &= \left| \int_{\mathbb{R}^{n}} f(x)g(x) \, dx \right| \\ &= \left| \int_{\mathbb{R}^{n+1}_{+}} Q_{t^{m}} (\mathcal{I} - P_{t^{m}}) f(x) Q_{t^{m}}^{*} g(x) \frac{dx \, dt}{t} \right| \\ &\leq \int_{T(2B)} \left| Q_{t^{m}} (\mathcal{I} - P_{t^{m}}) f(x) Q_{t^{m}}^{*} g(x) \right| \frac{dx \, dt}{t} \\ &+ \sum_{k=1}^{\infty} \int_{T(2^{k+1}B) \setminus T(2^{k}B)} \left| Q_{t^{m}} (\mathcal{I} - P_{t^{m}}) f(x) Q_{t^{m}}^{*} g(x) \right| \frac{dx \, dt}{t} \\ &= D_{1} + \sum_{k=2}^{\infty} D_{k} \, . \end{aligned}$$

Define the Littlewood-Paley function Gh by

$$\mathcal{G}(h)(x) = \left[\int_0^\infty \left| Q_{t^m}^* h(x) \right|^2 \frac{dt}{t} \right]^{1/2}.$$

By (2.7), \mathcal{G} is bounded on $L^p(\mathbb{R}^n)$ for 1 .

Following the proof of Lemma 4 (i), together with the property (γ) of (q, λ) -atom g, we derive

$$\begin{split} \mathbf{D}_{1} &\leq \left\| \left\{ \int_{0}^{r_{2B}} \left| Q_{t^{m}} (\mathcal{I} - P_{t^{m}}) f(x) \right|^{2} \frac{dt}{t} \right\}^{1/2} \right\|_{\mathbf{L}^{p}(2B)} \left\| \left\{ \int_{0}^{r_{2B}} \left| Q_{t^{m}}^{*} g(x) \right|^{2} \frac{dt}{t} \right\}^{1/2} \right\|_{\mathbf{L}^{q}(2B)} \\ &\leq \left\| \left\{ \int_{0}^{r_{2B}} \left| Q_{t^{m}} (\mathcal{I} - P_{t^{m}}) f(x) \right|^{2} \frac{dt}{t} \right\}^{1/2} \right\|_{\mathbf{L}^{p}(2B)} \|\mathcal{G}(g)\|_{\mathbf{L}^{q}} \\ &\leq c r_{B}^{\frac{\lambda}{p}} \| f \|_{\mathbf{L}^{p,\lambda}_{L}} \| g \|_{\mathbf{L}^{q}} \leq c \| f \|_{\mathbf{L}^{p,\lambda}_{L}}. \end{split}$$

On the other hand, we note that for $x \in 2^{k+1}B \setminus 2^k B$ and $y \in B$, we have that $|x-y| \ge 2^{k-1}r_B$. Using the estimate (2.4) and the properties ((α) and (γ) of (q, λ)-atom g, we obtain

$$\begin{aligned} \left| Q_{t^m}^* g(x) \right| & \leq c \int_B \frac{t^{\epsilon}}{(t + |x - y|)^{n + \epsilon}} |g(y)| \, dy \\ & \leq \frac{ct^{\epsilon}}{\left(2^k r_B\right)^{n + \epsilon}} \int_B |g(y)| \, dy \\ & \leq \left(\frac{ct^{\epsilon}}{\left(2^k r_B\right)^{n + \epsilon}}\right) r_B^{\frac{n - \lambda}{p}}, \end{aligned}$$

which implies

$$\left\| \left\{ \int_0^{2^k r_B} \left| \mathcal{Q}_{t^m}^* g(x) \chi_{T(2^{k+1}B) \setminus T(2^kB)} \right|^2 \frac{dt}{t} \right\}^{1/2} \right\|_{L^q(2^kB)} \le c 2^{kn(\frac{1}{q}-1)} r_B^{-\frac{\lambda}{p}}.$$

Therefore,

$$\begin{split} \mathbf{D}_{k} & \leq & \left\| \left\{ \int_{0}^{2^{k} r_{B}} |Q_{t^{m}}(\mathcal{I} - P_{t^{m}}) f(x)|^{2} \frac{dt}{t} \right\}^{1/2} \right\|_{\mathbf{L}^{p}(2^{k}B)} \\ & \times \left\| \left\{ \int_{0}^{2^{k} r_{B}} |Q_{t^{m}}^{*} g(x) \chi_{T(2^{k+1}B) \backslash T(2^{k}B)}|^{2} \frac{dt}{t} \right\}^{1/2} \right\|_{\mathbf{L}^{q}(2^{k}B)} \\ & \leq & c (2^{k} r_{B})^{\frac{\lambda}{p}} 2^{kn(\frac{1}{q}-1)} r_{B}^{-\frac{\lambda}{p}} \| f \|_{\mathbf{L}^{p,\lambda}_{L}} \\ & \leq & c 2^{\frac{k(\lambda-n)}{p}} \| f \|_{\mathbf{L}^{p,\lambda}_{L}}. \end{split}$$

Since $\lambda \in (0, n)$, we have

$$|\langle f, g \rangle| \le c \|f\|_{\mathbf{L}_{L}^{p,\lambda}} + c \sum_{k=1}^{\infty} 2^{\frac{k(\lambda - n)}{p}} \|f\|_{\mathbf{L}_{L}^{p,\lambda}} \le c \|f\|_{\mathbf{L}_{L}^{p,\lambda}}.$$

This, together with Proposition 5, implies $f \in (H^{q,\lambda}(\mathbb{R}^n))^* = L^{p,\lambda}(\mathbb{R}^n)$.

References

- Adams, D. R. and Xiao, J. (2004). Nonlinear potential analysis on Morrey spaces and their capacities, Indiana Univ. Math. J. 53, 1629–1663.
- [2] Albrecht, D., Duong, X. T., and McIntosh, A. (1996). Operator theory and harmonic analysis, Workshop in Analysis and Geometry 1995, Proceedings of the Centre for Mathematics and its Applications, ANU, 34, 77–136
- [3] Auscher, P., Duong, X. T., and McIntosh, A. (2005). Boundedness of Banach space valued singular integral operators and Hardy spaces, preprint.
- [4] Campanato, S. (1964). Proprietà di una famiglia di spazi funzionali, Ann Scuola Norm. Sup. Pisa (3) 18, 137–160.
- [5] Deng, D. G., Duong, X. T., and Yan, L. X. (2005). A characterization of the Morrey-Campanato spaces, Math. Z. 250, 641–655.
- [6] Duong, X. T. and McIntosh, A. (1999). Singular integral operators with nonsmooth kernels on irregular domains, Rev. Mat. Iberoamericana 15, 233–265.
- [7] Duong, X. T. and Yan, L. X. (2005). New function spaces of BMO type, the John-Nirenberg inequality, interpolation and applications, Comm. Pure Appl. Math. 58, 1375–1420.
- [8] Duong, X. T. and Yan, L. X. (2005). Duality of Hardy and BMO spaces associated with operators with heat kernel bounds, J. Amer. Math. Soc. 18, 943–973.
- [9] Duong, X. T. and Yan, L. X. (2005). New Morrey-Campanato spaces associated with operators and applications, preprint.
- [10] Essén, M., Janson, S., Peng, L., and Xiao, J. (2000). Q Spaces of several real variables, Indiana Univ. Math. J. 49, 575–615.
- [11] Fabes, E. B., Johnson, R. L., and Neri, U. (1976). Spaces of harmonic functions representable by Poisson integrals of functions in BMO and L_{p,λ}, *Indiana Univ. Math. J.* 25, 159–170.
- [12] Janson, S., Taibleson, M. H., and Weiss, G. (1983). Elementary characterizations of the Morrey-Campanato spaces, Lecture Notes in Math. 992, 101–114.

- [13] John, F. and Nirenberg, L. (1961). On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14, 415–426.
- [14] Journé, J. L. (1983). Calderón-Zygmund operators, pseudo-differential operators and the Cauchy integral of Calderón, *Lecture Notes in Math.* 994, Springer, Berlin-New York.
- [15] Leutwiler, H. (1989). BMO on harmonic spaces, Univ. Joensuu Dept. Math. Rep. Ser. 14, 71-78.
- [16] Martell, J. M. (2004). Sharp maximal functions associated with approximations of the identity in spaces of homogeneous type and applications, *Studia Math.* 161, 113–145.
- [17] McIntosh, A. (1986). Operators which have an H_{∞} functional calculus, *Miniconference on Operator Theory and Partial Differential Equations*, Proceedings of the Centre for Mathematical Analysis, ANU, **14**, 210–231.
- [18] Morrey, C. B. (1943). Multiple integral problems in the calculus of variations and related topics, *Univ. of California Publ. Math. (N.S.)* 1, 1–130.
- [19] Ouhabaz, E. M. (2004). Analysis of heat equations on domains, London Math. Soc. Monogr. (N. S.) 31, Princeton University Press.
- [20] Peetre, J. (1969). On the theory of $\mathcal{L}_{p,\lambda}$ spaces, J. Funct. Anal. 4, 71–87.
- [21] Spanne, S. (1965). Some function spaces defined by using the mean oscillation over cubes, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19, 593–608.
- [22] Stampacchia, G. (1964). $\mathcal{L}^{(p,\lambda)}$ spaces and interpolation, Comm. Pure Appl. Math. 17, 293–306.
- [23] Stein, E. M. (1993). Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals, Princeton University Press, Princeton, NJ.
- [24] Taylor, M. E. (1992). Analysis of Morrey spaces and applications to Navier-Stokes and other evolution equations, Comm. Partial Differential Equations 17, 1407–1456.
- [25] Wu, Z. J. and Xie, C. P. (2003). *Q* spaces and Morrey spaces, *J. Funct. Anal.* **201**, 282–297.
- [26] Xiao, J. (2006). Affine variant of fractional Sobolev space with application to Navier-Stokes system, arXiv:math.AP/0608578.
- [27] Yosida, K. (1978). Functional Analysis, fifth ed. Spring-Verlag, Berlin.
- [28] Zorko, C. T. (1986). Morrey space, Proc. Amer. Math. Soc. 98, 586-592.

Received July 19, 2006

Department of Mathematics, MacQuarie University, NSW 2109, Australia e-mail: duong@ics.mq.edu.au

Department of Mathematics and Statistics, Memorial University of Newfoundland St. John's, NL, A1C 5S7, Canada e-mail: jxiao@math.mun.ca

Department of Mathematics, Zhongshan University, Guangzhou 510275, P. R. China e-mail: mcsylx@mail.sysu.edu.cn