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ABSTRACT. Given p € [1,00) and A € (0, n), we study Morrey space LP-M(R™) of all locally
integrable complex-valued functions f on R" such that for every open Euclidean ball B C R"
with radius rg there are numbers C = C(f) (depending on f) and c = c(f, B) (relying upon f
and B) satisfying
rg*/B If(x) —c|Pdx <C

and derive old and new, two essentially different cases arising from either choosing ¢ = fp =
|B|71 fB f)dy or replacing ¢ by P (x) = -/IB Pig (x, y) f(y) dy—where tg is scaled to rp
and p; (-, -) is the kernel of the infinitesimal generator L of an analytic semigroup {eftL},Zo on
L2 (R™). Consequently, we are led to simultaneously characterize the old and new Morrey spaces,
but also to show that for a suitable operator L, the new Morrey space is equivalent to the old one.

1. Introduction

As well-known, a priori estimates mixing L” and Lip, are frequently used in the study of
partial differential equations—naturally, the so-called Morrey spaces are brought into play
(cf. [24]). A locally integrable complex-valued function f on R” is said to be in the Morrey
space LPA(R"), 1 < p <ooand X € (0,n + p), if for every Euclidean open ball B C R"
with radius rp there are numbers C = C(f) (depending on f) and ¢ = c(f, B) (relying
upon f and B) satisfying

rgA/B lf(x)—c|Pdx <C.

The space of L”+* (R")-functions was introduced by Morrey [18]. Since then, the space has
been studied extensively—see, for example, [4, 13, 12, 20, 21, 22, 28].
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We would like to note that as in [20], for | < p < oo and A = n, the spaces
L7 (R") are variants of the classical BMO (bounded mean oscillation) function space of
John-Nirenberg. For 1 < p < oo and A € (n,n + p), the spaces L”*(R") are variants of
the homogeneous Lipschitz spaces Lip; _)/, (R").

Clearly, the remaining cases: 1 < p < oo and A € (0, n) are of independent interest,
and hence motivate our investigation. The purpose of this article is twofold. First, we
explore some new characterizations of L”**(R") through the fact that L?-* (R") consists of
all locally integrable complex-valued functions f on R” satisfying

1/p
Il fllLpr = sup [VEA/ If(x)—fBI”dx] <00, (1.1)
BCR” B

where the supremum is taken over all Euclidean open balls B = B(xo, rp) with center xg
and radius rp, and fp stands for the mean value of f over B, i.e.,

fB=|B|*‘/ fx)dx .
B

The second aim is to use those new characterizations as motives of a continuous study
of [1,7, 5, 9] and so to introduce new Morrey spaces LZ"\(R”) associated with operators.
Roughly speaking, if L is the infinitesimal generator of an analytic semigroup {e~'L},>0
on L?(R") with kernel p; (x, y) which decays fast enough, then we can view P, f = e 'L f
as an average version of f at the scale ¢ and use the quantity

Py f(x) = /R P ) dy

to replace the mean value fp in the equivalent semi-norm (1.1) of the original Morrey
space, where ¢p is scaled to the radius of the ball B. Hence, we say that a function f (with
appropriate bound on its size | f|) belongs to the space L{"\(R") (where 1 < p < oo and
X € (0, n)), provided

1/p
IAll pr = Bsuﬂg [rgk/B | f(x) — Pth(X)I”dX} <00 (1.2)
L CR»

where tp = r}j for a fixed constant m > 0—see the forthcoming Sections 2.2 and 3.1.

We pursue a better understanding of (1.1) and (1.2) through the following aspects:

In Section 2, we collect most useful materials on the bounded holomorphic func-
tional calculus.

In Section 3, we study some characterizations of L?7*([R") and LZ’A(R") and give
a criterion for L?*(R")C LZ’)‘(R”). The later fact illustrates that L?+*(R") exists as the
minimal Morrey space, and consequently induces a concept of the maximal Morrey space.

In Section 4, we establish an identity formula associated with the operator L. This
formula is a key to handle the quadratic features of the old and new Morrey spaces.

As an immediate continuation of Section 4, Section 5 is devoted to Littlewood-Paley
type characterizations of L”**(R") and LIL)’A(R”) via the predual of L”**(R") (cf. [28]) and
a number of important estimates for functions in L7*(R") and LZ’A(R”). Moreover, we
show that for a suitable semigroup {e~"%};~o, LZ"\(R”) equals L?*(R") with equivalent
seminorms—in particular, if L is either —A or ~/—A on R”, then L7*(R") coincides with
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L%(R”) andLL? ’2 (R™),where A = Ay =)}, 9%/ E)x,% is the classical Laplace operator
in the spatial variable x = (xq, ..., x,) € R".

Throughout, the letters ¢, c1, c2, ... will denote (possibly different) constants that
are independent of the essential variables.

2. Preliminaries

2.1 Holomorphic Functional Calculi of Operators

We start with a review of some definitions of holomorphic functional calculi introduced by
Mclntosh [17]. Let 0 < w < v < 7. We define the closed sector in the complex plane C

Sy ={z € C: |argz| < w} U {0}

and denote the interior of S, by 0.
We employ the following subspaces of the space H (SB ) of all holomorphic functions
on SY:
Hoo(SY) = {b e H(SD) : |Iblloc < 00},

where
|1b]los = sup{|b(2)| : z € SO}

and
W(S0) = {y e H(SY) 135 >0, Y@l < clal' (1 +12%) 7'}

Given 0 < w < 7 and Z — the identity operator on L?(R"), a closed operator L in
L2(R") is said to be of type w if its spectrum o (L) C S, and for each v > w, there exists
a constant ¢, such that

(L —r1)~ <A™, ags,.

—L2 =

oo = IE=2D7

If L is of type w and ¥ € W(SY), we define (L) € L(L?, L?) by

V(L) = 2# f (L —=2D~ Yy dr, @1
Tt Jr

where T is the contour {¢ = re*? : r > 0} parametrised clockwise around S, and

w < 6 < v. Clearly, this integral is absolutely convergent in £(L2, L?) (which is the class

of all bounded linear operators on L?), and it is straightforward to show, using Cauchy’s

theorem, that the definition is independent of the choice of 8 € (w, v). If, in addition, L is

one-one and has dense range and if b € HOO(SS), then b(L) can be defined by

b(L) = [y (L) " (by)(L) where ¥(z) =z(1+2)72.

It can be shown that b(L) is a well-defined linear operator in L2(R™).
We say that L has a bounded Hy, calculus in LZ(R”) provided there exists ¢, 2 > 0
such that b(L) € £(L?, L?) and

I6(L) 2.2 = 16212 < cvallbllos Vb € Hoo(SY) .

For the conditions and properties of operators which have holomorphic functional calculi,
see [17] and [2] which also contain a proof of the following convergence lemma.
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Lemma l. Let X beacomplex Banach space. Given0 < w < v < 7, let L be an operator
of type w which is one-to-one with dense domain and range. Suppose { fy} is a uniformly
bounded net in HOO(S,(,)), which converges to f € Hoo(Sg) uniformly on compact subsets
of SS, such that { f, (L)} is a uniformly bounded net in the space L(X, X) of continuous
linear operators on X. Then f(L) € L(X, X), fo(L)u — f(L)u forallu € X and

I = 1f (D lx—x = sup || fa(D)] = sup || fu (L)l x—x -

2.2 Two More Assumptions

Let L be a linear operator of type w on L?(R") with @ < /2, hence, L generates a holo-
morphic semigroup e =L, 0 < |Arg(z)| < 7/2 — w. Assume the following two conditions.

Assumption (a): The holomorphic semigroup
—zL
{e= }O§|Arg(z)|<7r/2—w
is represented by kernel p,(x, y) which satisfies an upper bound
|Pz(x7Y)|§C'9h\z|(xay) Vx?))eRn

and
|Arg(z)| < /2 -0 for 6 > w,

where A, (-, -) is determined by

_ lx =yl
he(x,y) =1 n/mg< ) 2.2)
in which m is a positive constant and g is a positive, bounded, decreasing function satisfying
lim r"t€g(r) =0 forsome € > 0. (2.3)
r—>00

Assumption (b): The operator L has a bounded Hso-calculus in L2(R").

Now, we give some consequences of the Assumptions (a) and (b) which will be
used later.

First, if {e™! L }¢=0 1s a bounded analytic semigroup on L2(R") whose kernel pi(x,y)
satisfies the estimates (2.2) and (2.3), then for any k € N, the time derivatives of p; satisfy

k
ﬁ8mﬁdw< c (M—H
ark -

—8(Se) forallr >0 andaimostall x,y € R' . (24)

For each k € N, the function g might depend on k but it always satisfies (2.3). See
Theorem 6.17 of [19].

Secondly, L has a bounded Hyo-calculus in L?(R") if and only if for any nonzero
function ¢ € ‘-IJ(SS ), L satisfies the square function estimate and its reverse

00 dr\'"?
c1||f||Lzs< /0 ||wt<L>f||iZT) <ol fll2 2.5)

for some 0 < ¢; < ¢ < oo, where ¥;(§) = ¥ (t£). Note that different choices of v > w
and ¢ € \II(SB) lead to equivalent quadratic norms of f.
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As noted in [17], positive self-adjoint operators satisfy the quadratic estimate (2.5).
So do normal operators with spectra in a sector, and maximal accretive operators. For the
definitions of these classes of operators, we refer readers to [27].

The following result, existing as a special case of [6, Theorem 6], tells us the L>-
boundedness of a bounded Hso-calculus can be extended to L”-boundedness, p > 1.

Lemma 2. Underthe Assumptions (a) and (b), the operator L has a bounded Hyo-calculus
inLP(R"), p € (1, 00), that is, b(L) € L(LP,LP) with

1B p.p = DL ILr—1r < copllblloc Vb € Hoo(SY) -

Moreover, if p = 1 then b(L) is of weak type (1, 1).

Thirdly, the Littlewood-Paley function Gy (f) associated with an operator L is de-
fined by

00 dt 1/2
gL(fxx):( /0 [y (L) fI? 7) : (2.6)

where again ¢ € \II(SS), and ¥, (&) = ¥ (¢&). It follows from Theorem 6 of [3] that the
function G (f) is bounded on L? for 1 < p < co. More specifically, there exist constants
c3, ¢4 such that 0 < ¢3 < ¢4 < o0 and

a3l fliLe < NGL(H)liLe < call fliLe 2.7

forall f e LP,1 < p < o0.
By duality, the operator Gy« (f) also satisfies the estimate (2.7), where L* is the
adjoint operator of L.

2.3 Acting Class of Semigroup {e~'L},.

We now define the class of functions that the operators e /% act upon. Fix 1 < p < oo.

For any 8 > 0, a complex-valued function f € Lf;c (R") is said to be a function of type

(p; B) if f satisfies
|f (0P I/p
(/R (1 + [x])"+P d") Te<oo. (2.8)

We denote by M. ) the collection of all functions of type (p; B). If f € M(,,p), the
norm of f € M,.p) is defined by

I £l = inf {c > 0: (2.8) holds} .

It is not hard to see that M ,.g) is a complex Banach space under ||f||M<,,;ﬁ) < oo. For
any given operator L, let

®(L) = sup {e > 0:(2.3) holds } 2.9)
and write
Moy if ) <oo;
Mp = U M if O(L)=o0.

B: 0<B<oo
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Note thatif L = —A or L = /—A on R", then ®(—A) = occor O(v/—A) = 1.
For any (x,1) € R" x (0, +00) = RT’I and f € M, define

Pifx)y=e""fx) = /Rn pi(x, ) f(y)dy (2.10)

and

dpl(-xv )’)
dt

It follows from the estimate (2.4) that the operators P; f and Q; f are well defined. Moreover,
the operator Q, has the following two properties:

0.t =tLe by = [ —o( )fdy @1
Rn

(i) For any #1, © > 0 and almost all x € R",
2

d- P
01 00 f () = (=5

)@
t=t)+1
(ii) the kernel g;m (x, y) of Qm satisfies

|gom (x, )| < ct‘”g('x ;y|) 2.12)

where the function g satisfies the condition (2.3).

3. Basic Properties

3.1 A Comparison of Definitions

Assume that L is an operator which generates a semigroup e~/ with the heat kernel
bounds (2.2) and (2.3). In what follows, B(x, t) denotes the ball centered at x and of the
radius 7. Given B = B(x, t) and A > 0, we will write A B for the A-dilate ball, which is the
ball with the same center x and with radius Az.

Definition 1. Let1 < p < ocoand A € (0, n). We say that

) f e Ll’Z)C (R™) belongs to L”*(R") provided (1.1) holds;

(ii) f € M, associated with an operator L, is in L{’A(R”) provided (1.2) holds.

Remark 1.

(i) Note first that (L”*(R"), || - [|».») and (LI’j"\(R"), Il - Il p.») are vector spaces with the
T

seminorms vanishing on constants and

Krp= {fe/\/l,, : P f(x) = f(x) for almost all x € R" and all ¢ >O},

respectively. Of course, the spaces L”*(R") and Lf’A(R") are understood to be modulo
constants and KCy,_,,, respectively. See Section 6 of [8] for a discussion of the dimensions of
KCr,.» when L is a second order elliptic operator of divergence form or a Schrodinger operator.

(i) We now give a list of examples of LIL)’)" (R™) in different settings.
() Define P; by putting p;(x, y) to be the heat kernel or the Poisson kernel:

ent (%)
2

where ¢, = —
(1‘2 T lx— y|2)(n-|-1)/2 ntl

T

(mt) 2P o
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Then we will show that the corresponding space LZ’A(R”)(modulo Kr,p) coincides with
the classical L?**(R")(modulo constants).
(B) Consider the Schrodinger operator with a nonnegative potential V (x):

L=—-A+V(Xx).

To study singular integral operators associated to L such as functional calculi f (L) or Riesz
transform VL~1/2_ it is useful to choose P; with kernel p;(x, y) to be the heat kernel of L.
By domination, its kernel p;(x, ¥) has a Gaussian upper bound.

The following proposition shows that LP*(R") is a subspace of L{’A(R") in
many cases.

Proposition 1. Let1 < p < coand ) € (0,n). Given an operator L which generates
a semigroup e'L with the heat kernel bounds (2.2) and (2.3). A necessary and sufficient
condition for the classical space LP*(R") C LZ'A(R”) with

IIfIILi.A <cllfllLr 3.1)

is that for every t > 0, e 'L(1) = 1 almost everywhere, that is, f]R" pi(x,y)dy =1 for
almost all x € R".

Proof. Clearly, the condition e "% (1) = 1, a.e. is necessary for L?**(R") C LZ"\(R").
Indeed, let us take f = 1. Then, (3.1) implies ||1||Lp,x = 0 and thus for every t > 0,
L

e 'L (1) = 1 almost everywhere.
For the sufficiency, we borrow the idea of [16, Proposition 3.1]. To be more specific,
suppose f € LP*(R") . Then for any Euclidean open ball B with radius r, we compute

W f =Py flliLrey < I f— fBliLe) + 11 fB — Py fllLr(p)

14
||f||L,,,Ar§/” + (/B <fR [fB — ()| Pry(x, y)dy> dx)

1/p
= IIfIILp,Arﬁ/”+</B (I(B)+J(B))pdx> ,

1/p

IA

where

18) = [ 1= 0BG dy
and
)
J(B) = ,;/zw\m f5 = FO Py, y) dy
Next we make further estimates on / (B) and J(B). Thanks to (2.2) and (2.3), we have
(B lLr sy < crg" g fz — Flluicsy < crg/” 1 fllos -
Again, using (2.2) and (2.3), we derive that for x € B and y € 2¥*1B \ 2¥B,

Piy(x,y) < crgng(Zk) < crg"2_k("+€), k=1,2,...,
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where € > 0 is a constant. Consequently,

00 p 1/p
1J(B)lILe sy < crg” > s(2h) |f8 = fldy) dx
B\ 2k+1B\2kB

<er"" Y g(2) ( /2 oy P18 = SO dy+(2"r3)"|f2k+13—fsl>
k=1

oo [ o0
< erg "1 f e (Z 2 M ZkZ’“) :
k=1

k=1

Putting these inequalities together, we find f € Lf’A(R"). L]

3.2 Fundamental Characterizations

In the argument for Proposition 1, we have used the following crucial fact that for any
f eLP*(R") and a constant K > 1,

A—n
|fe — frxsl <crg” I flLps -

Now, this property can be used to give a characterization of L”**(R") spaces in terms
of the Poisson integral. To this end, we observe that if

feM g, =|f b ®)iror+1 ) el @),

then we can define the operator e ~'¥ ~2 by the Poisson integral as follows:

e VA F () =/R px—f(y)dy, t>0,

where
(x =) o
prlx —y)= .
(1‘2 Tx— y|2)(n+1)/2
Proposition 2. Let1 < p <00, » € (0,n)and f € M s~ ,. Then f € LPMR") if
and only if

1/p
|||f|||Lp.A(Rn)=< sup r”e’”uf—e’”f(x)r”)(x)) <o00. (32)

n+l1
(x,1)eRY

Proof. On the one hand, assume (3.2). Note that |y — x| < 7 implies

cnt

> N
pEs) > ct .
2

(2 +1y —x?)

For a fixed ball B = B(x, rp) centered at x, we let g = rg. We then have

I = fel < gt f = e YR W)L
ot
< Crg_k\/\ |f(y) _e—lgm‘f(x”p CnlB o dy
B (13 +1y—x?) 2
=<

NI s
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whence producing f € LP*(R").
On the other hand, suppose f € L”*(R"). In a similar manner to proving the
sufficiency part of Proposition 1, we obtain that if (x, t) € R’fl then

e~! —A(’f_g—l\/jf(x”p)(x)Sctk—n”f“ pk+CZ/ Mdy

2k+1B\2k B t2~|—|y x|2)

A—
<c* AL s

and hence (3.2) holds. L]

Remark 2. Since a simple computation gives

VA — eV R ) )
= /R (f3) = e V72 ) (f(y) — eV=B £ (1) pr(x — y) dy

= /R FOP P = y)dy =™V R () ( /R TP =) dy)

— VR ) ( fR O =) dy) eV A r @
= e VAP = |e VA F o

we have that if f € M ,—x, then f € L?*(R") when and only when

sup " (eftﬂ|f|2(x) — |eftﬂf(X)|2> < 00

(x,1)eR"H!
which is equivalent to (see also [15] for the BMO-setting, i.e., A = n)

- —sA/— 2
sup 1" */ L Gt (0.0, (3.9))|Vyse VT2 F )| dyds < o0,
Ry

(x.n)eR"H!
where Gpnt1((x, 1), (y, 5)) is the Green function of RT’] and V, ; is the gradient operator
+
in the space-time variable (y, s).

To find out an LZ’A(R”) analog of Proposition 2, we take Proposition 2.6 of [7] into
account, and establish the following property of the class of operators P;.

Lemma 3. Let1 < p < ooand ) € (0, n). Suppose f € LZ’A(R”). Then:
(i) Foranyt > Oand K > 1, there exists a constant ¢ > 0 independent of t and K such that

P @) = Pref O] < et 7 | 1 (33)

Sfor almost all x € R".
(i1) For any 6 > 0, there exists c(8) > O such that

t8/m e
I-F d 8)t P 34
/,, (tl/mﬂx_y)ml( DS Wldy = e@tm Il (3.4)
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for any x € R™.

Proof.

(i) For any ¢t > 0, we choose s such that 7/4 < s < r. Assume that f € LZ”\(R"),
where 1 < p < oo and A € (0, n), we estimate the term | P; f (x) — Py f(x)]. Using the
commutative property of the semigroup { P;};~, we can write

Prf(x) = Prys f(x) = Pi(f — Ps f)(x) .

Since f € Lf’A(R”), one has
[P f(x) — Prys f(0)] < f |pe (e, I — P f(y)ldy
| (n+e€)
= ) o () 0= Bronay

I/p
Tr(+ Jd/m\l P rdq
<|B(x’sl/m)| B(x,sl/m) |f(y) f(y)| y)

e (222 p =Pl
|B(X, Sl/m)| B(x Sl/m)r Sl/m Y s Y Y
A=n

< s fl o 41

We then decompose R” into a geometrically increasing sequence of concentric balls, and ob-
tain

I_CZ|BX si/m)|
1

<c 2~ k(n+e) / — P dy,
Z T80T Jageasingim O~ B Oy

— —(n+e)
I - Pl dy
N

|
B(x, 2k+1g l/m)\B(x kg l/m) (

since
(1 +S_1/m|.x _y|)—n—e < C2—k(n+€) Vy c B(X,2k+lsl/m)\B(.x,2kS1/m) .

For a fixed positive integer k, we consider the ball B (x, 2kgl/ ). This ball is contained
in the cube Q[x, 2T 1s!/™] centered at x and of the side length 2K+ 51/ We then divide
this cube Q[x, 28151/ into [2F1([/n] + 1)]" small cubes {Qx, } *, centered at x,
and of equal side length ([/n] + 1)~ 's!/™ where N, = [2"“([[] + 1)]". For any
i =1,2,---, Ng, each of these small cubes kai is then contained in the corresponding
ball By, with the same center x;, and radius r = st/m. Consequently, for any ball B(x, 2k 1),
k=1,2, -, there exists a corresponding collection of balls By, , Bx,, - - - , Bka such that

(i) each ball By, is of the radius t;
Nk
(i) B(x, 2ks1/™y ¢ U By;;
i=1
(iii) there exists a constant ¢ > 0 independent of k such that N < c2kn,

(iv) each point of B(x, 2kgl/my is contained in at most a finite number M of the balls By,
where M is independent of k.
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Applying the properties (i), (ii), (iii), and (iv) above, we obtain

1
k(n+5) —
I < CZZ (x sl/m)| NHlBk. lf ) — P f()ldy
i1
Nit1
< CZZ k(n+e) Z B |/ lfy) — Py f(y)|dy
; 1 1/p
< cZZ_ ('H_G)N/ﬁq sup <—/ [f(y) — Psf()’)|pdy>
= in<i<Nept \ Bk | JB,
e rA—n
< e Y 2K )
k=0 t
A—n
< s | fllpa

which gives (3.3) for the case /4 < s < t.
For the case 0 < s < t/4, we write

Prf(x) = Pigs f(x) = (Pr f(x) — Po f(x)) = (P (f — Pr—s /(X)) .
Noting that (r + 5)/4 < (t —s) < t + s, we obtain (3.3) by using the same argument as
above. In general, for any K > 1, let [ be the integer satisfying 2/ < K < 2/*! hence
| <log,K. This, together with the fact that A € (0, n), imply that there exists a constant

¢ > 0 independent of ¢ and K such that

-1

IPf@) = Pref Ol < ) IPoty £(X) = Poser f (O] + | Pat, £ (x) = Po f (%)
k=0
=1 A—n A—n
< ) @0 If g+ Ky £l ps
k=0
< AP flp

for almost all x € R".
(i1) Choosing a ball B centered at x and of the radius rp = t1/m and using (3.3), we have

1 1/p
<W /2 ) sz(y)l”dy>
1 ) 1/p

A—n
<t | fllpa (3.5)

for all k. Putting 27! B = @, we read off
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té/m
T - P d
/Rn ( t/m 4 x — )n+8|( D)) dy

<Zf

<32 k<"+5>’2k3|/ FG) = Pif )l dy

t8/m

| —P)fyld
2kB\2k-1pB 1/m+|x_y)n+8 tfy y

k=0
o0 1 1/p
<c) 27k / - P Pd)
< ]; <|2kB| [T = PO dy
> A—n
<c) 2700 fllpa
k=0
<ctm | f]

VN
Ly [
The above analysis suggests us to introduce the maximal Morrey space as follows.

Definition 2. Let1 < p < ooand A € (0,n). We say that f € M, isin LL mM(R”)
associated with an operator L, if there exists some constant ¢ (depending on f) such that

A—n
P (If = PfIP))|'? < ct'mm foralmostall x € R” and 7> 0. (3.6)

The smallest bound ¢ for which (3.6) holds then taken to be the norm of f in this space,
and is denoted by ||f||Lp,x .
L ,max

Using Lemma 3, we can derive a characterization in terms of the maximal Morrey
space under an extra hypothesis.

Proposition 3. Let 1 < p < 0o and A € (0, n). Given an operator L which generates a
semigroup e~'L with the heat kernel bounds (2.2) and (2.3). Then LZ’)‘ (R"y c LY » (R™).

L ,max
Furthermore, if the kernels p;(x, y) of operators P; are nonnegative functions when't > 0,

and satisfy the following lower bounds

pi(x,y) = (3.7)

tn/m

for some positive constant c independent of t, x and y, then, LIL) i‘nax R") = LZ’A(R”) .

Proof.  Let us first prove L‘Z (R" < LY L max (R™). For any fixed + > 0 and x € R”,

we choose a ball B centered at x and of the radius rg = '/, Let f € LZ’A(R”). To
estimate (3.6), we use the decay of function g in (2.3) to get

P (1f = P fI7) ()

IA

/Rn [p:(x, WIFQ) = P fD)IF dy

o]

> L Ix =yl
— P Pd
Ck:() |B| 2kB\2k—|3g< t1/m )lf()’) r fODIP dy
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IA

- 1
kn (k—1) _ p
ck§:02 22 )|2k3;/2k3'f(” P f()IP dy

o
< Y gDy S g
k=0

L
A—n
= p
S ctom ”f”Lp,)» .
L

This proves || fIl px =< cllfll pa-
L, max L

We now prove L7 (R") C LE’A(R") under (3.7). For a fixed ball B = B(x, rg)

L ,max

centered at x, we let g = r. Forany f € Li:ﬁlax(R”), it follows from (3.7) that one has

1
—/If(y)—PzBf(y)l”dy < c/ . Pis @ D) = Py f(DIP dy
|B| Jp Blx,ty™)
< o Pl O = By I dy
< ety W17,

which proves | f ||Lp.x <c|fll . Hence, the proof of Proposition 3 is complete.  []
L

P
LL,max

4. An Identity for the Dual Pairing

4.1 A Dual Inequality and a Reproducing Formula

From now on, we need the following notation. Suppose B is an open ball centered at x p with
radius rg and f € M. Given an L? function g supported on a ball B, where qi + % =1.
For any (x,1) € IR{'_L‘H, let

Fx,0)= QI —Pm)f(x) and G(x,1) = 0/n(T — Ply)g(x) , “.1)

where P;* and Q] are the adjoint operators of P, and Q,, respectively.

Lemma 4. Assume that L satisfies the Assumptions (a) and (b) of Section 2.2. Suppose
/-8, F,G,p,qareas in (4.1).

() If f also satisfies

x 1/2

Wl e = sup rg”
L BCR"

< 00,
LP(B)

rp d
{ / |Qm (T — Ptm>f(x>|2—t}
0 t

where the supremum is taken over all open ball B C R" with radius rp, then there exists a
constant ¢ > 0 independent of any open ball B with radius rp such that

dx dt A/p
[F(x,)G(x, )| —— =< crg "Il fll polIgllLa 4.2)
Rn+1 t LL

+
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(i) If
_ 36m

n *© 2m 21" —" dt
heLq(R), bm—? and 1=bm/ t7"e (l—e )—,
0

t
then
o % \2 % dt
h(x) =bw | (O) (T - P”")h(x)T :
0
where the integral converges strongly in LY (R™).

Proof.
(i) For any ball B C R" with radius rp, we still put

T(B)Z{(X,t)eR'er:xeB, 0<t<rg}.

We then write

dx dt dx dt
|F(x, )G (x, )| —— = |F(x, DG (x, )| ——
R t T(2B) t
(0.¢]
dx dt
-+ Z/ |F(x, G (x, 1)
i1 Y T IB\T (24 B) t
oo
= A+ ZAk .
k=2

Recall that ¢ > 1 and 37 + % = 1. Using the Holder inequality, together with (2.7) (here
¥ (z) = ze™ %), we obtain

1/2
2B 2dl
Ay < H{ / | Qi (T = Pom) f(0)|"—
0 ! LP(2B)
1/2
2B dl
2
x {/ |0 (T = Ply)e)| —}
0 4 L9(2B)
2B > dt 1/2
= H{/ |Qin (T — Pym) f(x)] —} 1GL-((Z = Pfy)8) o
0 ! LP(2B)
by
< oy AN pallgle -
Let us estimate Ay for k = 2,3, ---. Note that for x € 2¥*!B\2¥B and y € B, we have

that |x — y| > 2k=lrp. Using (2.4) and the commutative property of { P;};~0, we get

|05 (T = P)e)] < !Qfmg(X)|+C<t+r3)m|sz+r;gg(X)]
c/ t1g(»)l dy
g (t +|x — y|nte
r\m rglel
- d
+e(;;) /B<rB+|x—y|>"+€ Y
cto
< = d
< (2kr3)”+€°/3|g(y)| y
<

€0 n
(W)ré’ lgllLa
rB
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where €9 = 2~ 'min(m, €) and ¢ = p/(p — 1). Consequently,

2rp 2di ' kn(L—1)
n(d_
‘H/ |Q;<m(I_Pﬁg)g(x)XT(zkHB)\T(sz)| —} =270 gl -
0 d L9(2%B)
Therefore,
Prp a2
2dt
o= ([ en@-pmyreoret]
0 ! LP(2kB)
2y a2
2dt
x {/ |Q;km(I—Przn)g(x)XT(zkHB)\T(sz)| —}
0 4 L9(2%B)
A rn(l_q
< c(2brp) P2 VNS o gl
k(—n) %
< 2 7oy |||f|||L€1?~||g||L‘1~

Since A € (0, n), we have

dx dt a -
- FG 0G0l < crglfllpaligli +¢ 2

t
k=1

k(—n) %
s |||f|||L£,A llgliLa

A

A
cry A pallglie .

IA

as desired.

(i1) From Lemma 2 we know that L has a bounded Hoo-calculus in LY for all ¢ > 1. This,
together with elementary integration, shows that {g,g(L*)} is a uniformly bounded net in
L(L4,1L9), where

* B % \2 % dt
e @) =t [ ()T 1)

o
forall0 <o < B < 0.
As a consequence of Lemma 1, we have that for any 7 € L9(R"),

o d
h(x) =bm/0 (0T - Piyhn ™

where b, = 36Tm and the integral is strongly convergent in L (R"). L]

4.2 The Desired Dual Identity
Next, we establish the following dual identity associated with the operator L.

Proposition 4. Assume that L satisfies the Assumptions (a) and (b) of Section 2.2.
Suppose B, f, g, F, G, p, q are defined as in (4.1). If|||f|||L€,x < oo and by, = %Tm, then

FC(Z = Ph)gx)dx = bm/ F(x,)G(x, t)M . (4.3)
R~ B R:rrl t

Proof. From Lemma 4 (i) it turns out that

dx dt
/ |F(x,G(x, )| —— < 00
Rt t
"



102 Xuan Thinh Duong, Jie Xiao, and Lixin Yan

By the dominated convergence theorem, the following integral converges absolutely and sat-
isfies

§—>0 N—oo

/ F(x,t)G(x, t)—d = lim lim / / F(x,t)G(x, )
R

Next, by Fubini’s theorem, together with the commutative property of the semigroup
{e7'L},~0, we have

/ F(x,1)G(x,1)dx =/ Q) (T = Pi) (T — Ph)ex)dx, V¥i>0.
n Rn B

This gives

dx dt
f F(X,I)G(X,t)_
R t

+

N d
= lim lim [/R F(05) (T - Pa) (T - P:;n)g(x)dx:|7t

§—>0N—o0 Js

§—>0N—o00

N * \2 * * dt
= lim lim f(x)[/ (Q5) (T - Ph)(T - P,gl)g(x)T} dx

d
= lim Jim | fl(x)[/a (Q3) (T = P3)(T - Pfig)g(x)ﬂdx

§—>0N—o0

N d
+ lim lim fz(x)|:/ (Qfm)2(I — Ph) (T~ P:’g)g(x)Tt] dx

8§—0N—o0o

1411, (4.4)

where fi = fxap, f» = fx@Bp) and xg stands for the characteristic function of £ C R".
We first consider the term 1. Since g € L9(B), where ¢ = p/(p — 1), we conclude
(Z — Ply)g € L9. By Lemma 4 (ii), we obtain
B

N
(T Py = lim lim by [ (0)'(Z - PR)E - P)o T

in LY. Hence,

§—>0 N—oo

N .2 . N dt
I = lim lim fl(x)|:/ (03) (Z—-Ph)(T - P,;;)(g)(x)T} dx

_ b’#/ﬂ;n AT~ Ply)g)dx .

In order to estimate the term II, we need to show that for all y ¢ 4B, there exists a
constant ¢ = c¢(g, L) such that

sup <c(l+|x —xoD) " . @5)

§>0, N>0

N d
fa (05} (T = PR)(T - Py)eo]

To this end, set

3 *
d r

W (L*)h(y) = (21" +5™) ( 03

(T - P;:n)h>(y) )

r=2t"-+4gm



Old and New Morrey Spaces with Heat Kernel Bounds 103

Note that
* = * —1
(- Prg)g = m/o Qin(g)s™' ds

So, we use (2.3) and (2.4) to deduce

N d
[ @y - e

ds dt

N rp
[ @y - pr)ew

B st
s ds dt
<C/ / ( )wm@m@n
"4 sm)
t2msm (t+s)6 ) :|dsdt
dy |—.
_C/‘S '/O |:/B(X0»VB)<(tm+sm)3)((t+s+|x—y|)”+€ lg()ldy st

Because x ¢ 4B yields |x — y| > |x — xo|/2, the inequality

t2m my €
Lﬂz < cmin{(m)e/z’ t—e/zs3e/2} ’
(tm + sm)

together with Holder’s inequality and elementary integration, produces a positive constant
c independent of §, N > 0 such that for all x ¢ 4B,

IA

ergle —xol " gl

N d
‘A Q%a—ﬂmmw{‘

IA

+3 —
cry *llgliialy — x|~
Accordingly, (4.5) follows readily.

We now estimate the term II. For f € M, we derive f € L?((1 + |x|)~"T€0) dx).
The estimate (4.5) yields a constant ¢ > 0 such that

sup /
§>0, N>0 n

This allows us to pass the limit inside the integral of II. Hence,

fﬂﬂl mm)@—ﬂw@—aywmesza

I

L N2 . N dt
lim lim / fz(x)[/ (Qn) (T —Ph)(Z - Prm)(g)(x)—i|dx
— —00 JRn 5 B t
: : N % \2 * * dt
/Rn fg(x)((%l_r)r(l)lvlgr})o[/a (05) (T - Ph)(T - Prg,)(g)(x)T]) dx

by /R @) (I = Ply)g(x)dx .

Combining the previous formulas for I and II, we obtain the identity (4.3). L]
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Remark 3. For a background of Proposition 4, see also [8, Proposition 5.1].

5. Description Through Littlewood-Paley Function

5.1 The Space L”"*(IR") as the Dual of the Atomic Space
Following [28], we give the following definition.

Definition 3. Letl < p < 00,9 = p/(p — 1) and A € (0, n). Then

(i) A complex-valued function a on R” is called a (¢, A)-atom provided:
() a is supported on an open ball B C R” with radius rp;

(B) Jgna(x)dx =0;
-2
W) llalie < rg*'”.
(i) H9*(R™) comprises those linear functionals admitting an atomic decomposition f =
> i1 mnjaj, where a;’s are (¢, A)-atoms, and 3 ; |n;| < .
The forthcoming result reveals that HZ-* (R") exists as a predual of LP*(R").

Proposition 5. Let1 < p < oo, q = p/(p—1) and » € (0, n). Then LP*(R") is the
dual (H?*(R™))* of HI*(R"). More precisely, if h = Zj njaj € HY*(R™) then

k
(h,t) = klin;o;nj /]R aj(x)0(x)dx

is a well-defined continuous linear functional for each £ € LP*(R™), whose norm is equiv-
alent to ||£||p.»; moreover, each continuous linear functional on H?*(R™) has this form.

Proof. See [28, Proposition 5] for a proof of Proposition 5. L]

5.2 Characterization of L”"*(R") by Means of Littlewood-Paley Function

We now state a full characterization of L?* (R") space for 1 < p < oo and A € (0, n). For
the case p = 2, see also [26, Lemma 2.1] as well as [25, Theorem 1 (i)].

Proposition 6. Let1 < p < oo, A € (0,n) and f € M ;=f . Then the following two
conditions are equivalent:
(i) f € LP*(R");
(i)

A

I(f,p)= sup rp”
BCR"

< o0,

5 172
tieitViAf(x)) ﬂ}
L?(B)

at t

K

where the supremum is taken over all Euclidean open ball B C R" with radius rp.

Proof. Tt suffices to verify (ii)=(i) for which the reverse implication follows readily
from [11, Theorem 2.1]. Suppose (ii) holds. Proposition 5 suggests us to show f €

(H%”\(R”))* in order to verify (i). Now, let g be a (ﬁ, A)-atom and
Ct

pr(x) = ———7 .
(2 +1x?) =
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Then for any open ball B C R” with radius rp and its tent
T(B)={(x,) eR: xeB, 1e0rp),
we have (cf. [23, p. 183])

I(f. 8l = ‘/ J(x)g(x)dx

// t—Pz*f(x))(t_pt*g(x))dtdx

< 4B +I(B)).
Here,
Y4B d d
1) = [ [ e g g0 <
4B
1
B 9 2dr\* \’
< (/;B</0 fgpt*f(x)‘ T) dx)
p—1
U 20\ 0\ 7
X LB(/(; tgp,*g(x) T) dx
< chI(f,p)llgllL%(Rn)
< cl(f,p),

_P_
due to Holder’s inequality, the L »~T-boundedness of the Littlewood-Paley G-function, and
g being a (%, A)-atom.

Meanwhile,
o
0 dt dx
1B = / - pre Sy 0]
Z (21 B\T (2K B) ot ! x
o0 2/\+er a zd[ %
< 3 {/ i @) —}
= Jat t Lp(2k+1 B)
2Ly 24t i
x {f t—py e g () —} ,
0 4 t L7-T (2k+1 By

o
< ¢y (2kr3)%l(f, p)2_k7r;;
k=1

< cI(f, p),

for which we have used the Holder inequality and the fact that if |y — x| > 2%rp then
ct? ||g||L1(B) ct rT

(2 rB)cH-l’l - (2kV3)3+n

for the( p , A)-atom g. Accordingly, f € LP*(R"). L]

el
1P g(o)| =
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5.3 Characterization of Li’)” (R™) by Means of Littlewood-Paley Function

Of course, it is natural to explore a characterization of Li’)‘ (R™) similar to Proposition 6.

Proposition 7. Let1 < p < oo, A € (0,n) and f € M. Assume that L satisfies the
Assumptions (a) and (b) of Section 2.2. Then the following two conditions are equivalent:

@) f e LI R,
(ii)

< 00,
LP(B)

- rg a2
1fllps = sup g H{ /0 Ith(I—sz)f(x)FT}

BCR"

where the supremum is taken over all Euclidean open ball B C R" with radius rp.

Proof.
(i)=>(ii). Suppose f € L?*(R"). Note that

th(I— Ptm) = th(I— le)(I— Pr'él) + th(z— Ptm)PrYé’l .

So, we turn to verify both

1/2 N

<crflflps (5D
LP(B) L

rp d
H{/O |0 (@ = Pun)(T = Py) f0I

and

1/2 A
> dt =
} <cry AN s (5.2)
LP(B) L

H{ |Qin (T = Pim) P f ()|

thereby proving (ii). To do so, we will adapt the argument on pp. 85-86 of [14] to present
situation—see also p. 955 of [8]. To prove (5.1), let us consider the square function G (h)
given by

% a2
Gh)(x) = (fo |th Z - Ptm)h(x)|27t) .

From (2.7), the function G (k) is bounded on L”(R") for 1 < p < oco. Let b = by + by,
where by = (Z — P,;jn)fsz, and b, = (T — P,gn)fX(ZB)C. Using Lemma 3, we obtain

Jd 172
H{ 10 (T — P,m>b1(x)|7’}

L7 (B)
12
dt
< {/ |th(I—P,m>b1(x)|2—}
0 t Lr
< clGBD)Lr
<cllbllLr

1/p
- c(/ I(Z - Prg)f(x)}pdx>
2B

1/p
< c</ (Z— Py )f (x)|de> +cri? sup | Pon f () = P f ()|
2B x€2B

<crpll Fllps - (5.3)
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On the other hand, forany x € B and y € (2B)¢, one has |x —y| > rp. From Proposition 2,
we obtain

té
mI—Pmb —I—Pm d
10 (T — Po)ba(x)| - < C/Rn\m e T Pl as
T \€ rg
- C(I"B) \/R" (rB+|x_y|)n+e|(I PI’Z)f(y)|dy
€ A-n
=

(_t ) ! WAl
c r A,
rg/ B Ly

which implies

. a2
”{/0 Isz(I—sz)bz(x)IZTI}

This, together with (5.3), gives (5.1).
Next, let us check (5.2). This time, we have 0 < t < rp, whence getting from
Lemma 3 that for any x € R”,

X
<cryg 1Al o
LP(B) L

A—n
[Py £ = Py gy FOO| < erg” N F -
By (2.4), the kernel K; ,, (x, y) of the operator
tm
Qin Py =
2B

———— Q0 m 1 m
t’"+%rg’ (tm+3rg)

satisfies
ré
B

(rp + |x — yhrre

Using the commutative property of the semigroup {e~/%},. ¢ and the estimate (2.4), we de-
duce

| Qi (Z = Pim) Prp f ()| = [ Qe Py Py = Py f ()]

t\m rfg .,
C<E) /]R o v e Prg = Pans ) O]y

A—n

(—t ) "L
r )
) B Ly

t m
|Ke (v, )| = o =)

B

IA

IA
o

whence deriving

A

<erglflpo -

5 dt }1/2
LP(B)

”{/ |0 (T — Pun) Py f 025
0 t

This gives (5.2) and consequently (ii).
(i1))=(i). Suppose (ii) holds. The duality argument for L? shows that for any open ball
B c R" with radius rp,

1/p
<rB*/Byf(x)—P,gf(x)|f’dx) = sup rp'”

llgll e (By<i

/Rn (Z—=Pm)f(x)g(x)dx

= sup r
llgliLa sy<i

-1/
57 (54)

/ f(x)(I—P,*;;z)g(x)dx.
Rﬂ
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Using the identity (4.3), the estimate (4.2) and the Holder inequality, we have

[T = Py)ends| <c fR ot [0 @ = Py [0 Q1 (T = i) ) dxt‘“
<ery PIfl gl (5.5)
Substituting (5.5) back to (5.4), by Definition 1 we find a constant ¢ > 0 such that
1 £l ps < ellfllps < 00,
This just proves f € LZ’A(R"), thereby yielding (i). L]

Remark 4. 1In the case of p = 2, we can interpret Proposition 7 as a measure-theoretic
characterization, namely, f € LE’A(R") when and only when

dx dt
t

dpg(x, 1) = QT — Pm) f ()|
is a A-Carleson measure on R’fl. According to [10, Lemma 4.1], we find further that
f € Li’)‘(R") is equivalent to
A

s
sup / 1 — dup(x,t) <o0.
GoeRf B (e =y + (¢ +92) 7

54 A Sufficient Condition for L?"* (R") = LP*(R")

In what follows, we assume that L is a linear operator of type  on L2(R") with w < 7/2—
hence L generates an analytic semigroup e 3L, 0 < |Arg(z)| < 7/2 — w. We also assume
that for each ¢t > 0, the kernel p,(x, y) of e™* L is Holder continuous in both variables x,
y and there exist positive constants m, B > 0 and 0 < y < 1 such that for all ¥ > O,
and x, y, h € R",

ctﬁ/m
Ip:(x, y)| < g Vi>0, x,y eR", (5.6)
(e1/m +1x = yl)
Ipe(x +h,y) = pe(x, V)| + [pe(x, y +h) — pi(x, )l
clh|VtB/m . 1
< VheR" with 2/h <tY"™ +|x—y|, (5.7)
(tl/m+|x_y|),,+ﬁ+y 7| lx — ¥l
and
/R pz(x,y)dx=/R pi(x,y)dy=1 Vi>0. (5.8)

Proposition 8. Let1 < p < oo and A € (0,n). Given an operator L which generates
a semigroup e~ 'L with the heat kernel bounds (2.2) and (2.3). Assume that L satisfies the
conditions (5.6), (5.7), and (5.8). Then Lf’)‘(R”) and LP*(R™) coincide, and their norms
are equivalent.
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Proof.  Since Proposition 1 tells us that L?*(R") C LZ"\ (R™) under the above-given
conditions, we only need to check LZ’A(R”)Q LP*(R"). Note that LP-*(R") is the dual of
H?*(R"),q = p/(p — 1). It reduces to prove that if f € L{’*(R"), then f e (H?*(R"))*.
Letgbea (g, A)-atom. Using the conditions (5.6), (5.7), and (5.8) of the operator L, together
with the properties of (g, A)-atom of g, we can follow the argument for Lemma 4 (ii) to verify

" dx dt 36m
/ f(x)gx)dx = bm/ . O (L — Pm) f(x)Qmg(x) where b, = — .
Rn Rl* t 5
Consequently,
(f. 8 = ‘/}Rn f(x)gx)dx
dx dt
= ‘ / Qi (T — Pin) f () Qfn g (1) =
]Rtl:—I t
dxd
< / Qi (T — Pun) £ () Qng ()| 24
T(2B) t
> dxd
> |0 (@ = P () Q)| 22"
i J T B\T(2B) t
= Di+) Dx.
k=2
Define the Littlewood-Paley function Gh by
00 dr 112
Gy (x) = [/0 }Q?‘mh(X)IZTt} .

By (2.7), G is bounded on L”(R") for 1 < p < oo.
Following the proof of Lemma 4 (i), together with the property (y) of (¢, A)-atom g,

we derive
1/2 1/2

2B 2dt 2B 2dl

D < {/ |sz(I—Ptm)f(x)| —} {/ |Q}kmg(x)| —}
0 4 LrespitJo ! L7(2B)
B 2 dt 172

< {/ |Qun (T — Pm) f (x)] —} 1G(&)ILa

0 t L?(2B)

i
<crg WA N8l < el fll pa -

On the other hand, we note that for x € 2k+lB\2kB and y € B, we have that |[x — y| >
2k=1yp. Using the estimate (2.4) and the properties ((«) and (y) of (g, A)-atom g, we
obtain

tG
Qg0 = cfgmm(ywy
ct€
W/BE’()’)W)’
rp

()
(zkrB)n—i-e B ’

IA
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which implies

2kr3 d 1/2 X
2at kn(t-1) =%
H{ / |Q;kmg(X)XT(2k+lB)\T(2kB)| _} < c2 n(q I'B p
0 ! L9(2€B)
Therefore,
2krp L dt 1/2
D < H{f Qi (T — Pn) f ()] —}
0 4 LP(2*B)
2y . L di 172
X |thg(x)XT(2k+lB)\T(2kB)| T
0 La(2kB)
ko \Eokn(lon) =%
< c(@ra) 72" Vry 1Sl
2k(k—n)
< I .
< 2 flp
Since A € (0, n), we have
0 k(L—n)
(F. &) < el fl o +c];2T 1Sl pi < ellf N po -
This, together with Proposition 5, implies f € (H9*(R"))* = LP*(R") . L]
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