Volume 13, Issue 1, 2007

Old and New Morrey Spaces with Heat Kernel Bounds

Xuan Thinh Duong, Jie Xiao, and Lixin Yan

Communicated by Hans Triebel

ABSTRACT. Given $p \in [1, \infty)$ *and* $\lambda \in (0, n)$ *, we study Morrey space* $L^{p, \lambda}(\mathbb{R}^n)$ *of all locally integrable complex-valued functions f on* \mathbb{R}^n *such that for every open Euclidean ball* $B \subset \mathbb{R}^n$ *with radius* r_B *there are numbers* $C = C(f)$ *(depending on f*) and $c = c(f, B)$ *(relying upon f and B) satisfying*

$$
r_B^{-\lambda} \int_B |f(x) - c|^p dx \le C
$$

B B *B*
and derive old and new, two essentially different cases arising from either choosing $c = f_B$ = $|B|^{-1} \int_B f(y) dy$ or replacing *c* by $P_{tB}(x) = \int_{tB} p_{tB}(x, y) f(y) dy$ —where tB is scaled to r_B *and* $p_t(·, ·)$ *is the kernel of the infinitesimal generator L of an analytic semigroup* $\{e^{-tL}\}_{t>0}$ *on* $L^2(\mathbb{R}^n)$ *. Consequently, we are led to simultaneously characterize the old and new Morrey spaces, but also to show that for a suitable operator L, the new Morrey space is equivalent to the old one.*

1. Introduction

As well-known, a priori estimates mixing L^p and Lip_λ are frequently used in the study of partial differential equations—naturally, the so-called Morrey spaces are brought into play (cf. [24]). A locally integrable complex-valued function f on \mathbb{R}^n is said to be in the Morrey space $L^{p,\lambda}(\mathbb{R}^n)$, $1 \leq p < \infty$ and $\lambda \in (0, n + p)$, if for every Euclidean open ball $B \subset \mathbb{R}^n$ with radius r_B there are numbers $C = C(f)$ (depending on f) and $c = c(f, B)$ (relying upon *f* and *B*) satisfying

$$
r_B^{-\lambda} \int_B |f(x) - c|^p dx \leq C.
$$

The space of $L^{p,\lambda}(\mathbb{R}^n)$ -functions was introduced by Morrey [18]. Since then, the space has been studied extensively—see, for example, [4, 13, 12, 20, 21, 22, 28].

Math Subject Classifications. 42B20, 42B35, 47B38.

Keywords and Phrases. Morrey spaces, semigroup, holomorphic functional calculus, Littlewood-Paley functions.

Acknowledgements and Notes. First author was supported by a grant from Australia Research Council; second author was supported in part by NSERC of Canada; third author was partially supported by NSF of China (Grant No. 10371134/10571182).

[©] 2006 Birkhäuser Boston. All rights reserved

ISSN 1069-5869 DOI: 10.1007/s00041-006-6057-2

We would like to note that as in [20], for $1 \leq p \leq \infty$ and $\lambda = n$, the spaces $L^{p,n}(\mathbb{R}^n)$ are variants of the classical BMO (bounded mean oscillation) function space of John-Nirenberg. For $1 \le p < \infty$ and $\lambda \in (n, n + p)$, the spaces $L^{p,\lambda}(\mathbb{R}^n)$ are variants of the homogeneous Lipschitz spaces Lip_{(λ −*n*)/ p (\mathbb{R}^n).}

Clearly, the remaining cases: $1 \leq p < \infty$ and $\lambda \in (0, n)$ are of independent interest, and hence motivate our investigation. The purpose of this article is twofold. First, we explore some new characterizations of $L^{p,\lambda}(\mathbb{R}^n)$ through the fact that $L^{p,\lambda}(\mathbb{R}^n)$ consists of all locally integrable complex-valued functions f on \mathbb{R}^n satisfying

$$
||f||_{L^{p,\lambda}} = \sup_{B \subset \mathbb{R}^n} \left[r_B^{-\lambda} \int_B |f(x) - f_B|^p \, dx \right]^{1/p} < \infty \,, \tag{1.1}
$$

where the supremum is taken over all Euclidean open balls $B = B(x_0, r_B)$ with center x_0 and radius r_B , and f_B stands for the mean value of f over B , i.e.,

$$
f_B = |B|^{-1} \int_B f(x) dx.
$$

The second aim is to use those new characterizations as motives of a continuous study of [1, 7, 5, 9] and so to introduce new Morrey spaces $L_L^{p,\lambda}(\mathbb{R}^n)$ associated with operators. Roughly speaking, if *L* is the infinitesimal generator of an analytic semigroup $\{e^{-tL}\}_{t\geq 0}$ on L²(\mathbb{R}^n) with kernel $p_t(x, y)$ which decays fast enough, then we can view $P_t f = e^{-tL} f$ as an average version of *f* at the scale *t* and use the quantity

$$
P_{t_B} f(x) = \int_{\mathbb{R}^n} p_{t_B}(x, y) f(y) dy
$$

to replace the mean value f_B in the equivalent semi-norm (1.1) of the original Morrey space, where t_B is scaled to the radius of the ball *B*. Hence, we say that a function f (with appropriate bound on its size $|f|$) belongs to the space $L_L^{p,\lambda}(\mathbb{R}^n)$ (where $1 \le p < \infty$ and $\lambda \in (0, n)$, provided

$$
||f||_{L_L^{p,\lambda}} = \sup_{B \subset \mathbb{R}^n} \left[r_B^{-\lambda} \int_B |f(x) - P_{t_B} f(x)|^p \, dx \right]^{1/p} < \infty \tag{1.2}
$$

where $t_B = r_B^m$ for a fixed constant $m > 0$ —see the forthcoming Sections 2.2 and 3.1.

We pursue a better understanding of (1.1) and (1.2) through the following aspects: In Section 2, we collect most useful materials on the bounded holomorphic func-

tional calculus.

In Section 3, we study some characterizations of $L^{p,\lambda}(\mathbb{R}^n)$ and $L^{p,\lambda}_L(\mathbb{R}^n)$ and give a criterion for $L^{p,\lambda}(\mathbb{R}^n) \subseteq L^{p,\lambda}_L(\mathbb{R}^n)$. The later fact illustrates that $L^{p,\lambda}(\mathbb{R}^n)$ exists as the minimal Morrey space, and consequently induces a concept of the maximal Morrey space.

In Section 4, we establish an identity formula associated with the operator *L*. This formula is a key to handle the quadratic features of the old and new Morrey spaces.

As an immediate continuation of Section 4, Section 5 is devoted to Littlewood-Paley type characterizations of $L^{p,\lambda}(\mathbb{R}^n)$ and $L^{p,\lambda}_L(\mathbb{R}^n)$ via the predual of $L^{p,\lambda}(\mathbb{R}^n)$ (cf. [28]) and a number of important estimates for functions in $L^{p,\lambda}(\mathbb{R}^n)$ and $L^{p,\lambda}_L(\mathbb{R}^n)$. Moreover, we show that for a suitable semigroup ${e^{-tL}}_{t>0}$, $L_L^{p,\lambda}(\mathbb{R}^n)$ equals $L^{p,\lambda}(\mathbb{R}^n)$ with equivalent show that for a suitable semigroup $\{e^i\}_{i>0}$, L_L (∞) equals L^{∞} (∞) with equivalent seminorms—in particular, if *L* is either $-\Delta$ or $\sqrt{-\Delta}$ on \mathbb{R}^n , then $L^{p,\lambda}(\mathbb{R}^n)$ coincides with

 $L_{\sqrt{-\Delta}}^{p,\lambda}(\mathbb{R}^n)$ and $L_{-\Delta}^{p,\lambda}(\mathbb{R}^n)$, where $\Delta = \Delta_x = \sum_{k=1}^n \frac{\partial^2}{\partial x_k^2}$ is the classical Laplace operator in the spatial variable $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$.

Throughout, the letters c, c_1, c_2, \ldots will denote (possibly different) constants that are independent of the essential variables.

2. Preliminaries

2.1 Holomorphic Functional Calculi of Operators

We start with a review of some definitions of holomorphic functional calculi introduced by McIntosh [17]. Let $0 \leq \omega < \nu < \pi$. We define the closed sector in the complex plane C

$$
S_{\omega} = \{ z \in \mathbb{C} : |\text{arg}z| \le \omega \} \cup \{0\}
$$

and denote the interior of S_{ω} by S_{ω}^{0} .

We employ the following subspaces of the space $H(S_v^0)$ of all holomorphic functions **on** *S*⁰_{*ν*}:

$$
H_{\infty}(S_{\nu}^{0}) = \left\{ b \in H(S_{\nu}^{0}) : ||b||_{\infty} < \infty \right\},\
$$

where

$$
||b||_{\infty} = \sup \{ |b(z)| : z \in S_{\nu}^{0} \}
$$

and

$$
\Psi(S_{\nu}^{0}) = \left\{ \psi \in H(S_{\nu}^{0}) : \exists s > 0, \ |\psi(z)| \leq c|z|^{s} \left(1 + |z|^{2s}\right)^{-1} \right\}.
$$

Given $0 \leq \omega < \pi$ and \mathcal{I} – the identity operator on $L^2(\mathbb{R}^n)$, a closed operator *L* in $L^2(\mathbb{R}^n)$ is said to be of type ω if its spectrum $\sigma(L) \subset S_\omega$, and for each $\nu > \omega$, there exists a constant *cν* such that

$$
\|(L - \lambda \mathcal{I})^{-1}\|_{2,2} = \|(L - \lambda \mathcal{I})^{-1}\|_{L^2 \to L^2} \le c_{\nu} |\lambda|^{-1}, \quad \lambda \notin S_{\nu}.
$$

If *L* is of type ω and $\psi \in \Psi(S_v^0)$, we define $\psi(L) \in \mathcal{L}(L^2, L^2)$ by

$$
\psi(L) = \frac{1}{2\pi i} \int_{\Gamma} (L - \lambda \mathcal{I})^{-1} \psi(\lambda) d\lambda , \qquad (2.1)
$$

where Γ is the contour $\{\xi = re^{\pm i\theta} : r \geq 0\}$ parametrised clockwise around S_{ω} , and $\omega < \theta < \nu$. Clearly, this integral is absolutely convergent in $\mathcal{L}(L^2, L^2)$ (which is the class of all bounded linear operators on L^2), and it is straightforward to show, using Cauchy's theorem, that the definition is independent of the choice of $\theta \in (\omega, v)$. If, in addition, *L* is one-one and has dense range and if $b \in H_{\infty}(S_v^0)$, then $b(L)$ can be defined by

$$
b(L) = [\psi(L)]^{-1} (b\psi)(L)
$$
 where $\psi(z) = z(1+z)^{-2}$.

It can be shown that $b(L)$ is a well-defined linear operator in $L^2(\mathbb{R}^n)$.

We say that *L* has a bounded H_{∞} calculus in $L^2(\mathbb{R}^n)$ provided there exists $c_{\nu,2} > 0$ such that $b(L) \in \mathcal{L}(L^2, L^2)$ and

$$
||b(L)||_{2,2} = ||b(L)||_{L^2 \to L^2} \leq c_{\nu,2} ||b||_{\infty} \quad \forall b \in H_{\infty}(S_{\nu}^0).
$$

For the conditions and properties of operators which have holomorphic functional calculi, see [17] and [2] which also contain a proof of the following convergence lemma.

Lemma 1. Let X be a complex Banach space. Given $0 \leq \omega < \nu \leq \pi$, let *L be an operator of type ω which is one-to-one with dense domain and range. Suppose* {*fα*} *is a uniformly bounded net in* $H_{\infty}(S_v^0)$, which converges to $f \in H_{\infty}(S_v^0)$ uniformly on compact subsets *of* S_v^0 , such that $\{f_\alpha(L)\}$ is a uniformly bounded net in the space $\mathcal{L}(X, X)$ of continuous *linear operators on X. Then* $f(L) \in \mathcal{L}(X, X)$ *,* $f_{\alpha}(L)u \rightarrow f(L)u$ *for all* $u \in X$ *and*

$$
|| f(L)|| = || f(L)||_{X \to X} \le \sup_{\alpha} || f_{\alpha}(L)|| = \sup_{\alpha} || f_{\alpha}(L)||_{X \to X}.
$$

2.2 Two More Assumptions

Let *L* be a linear operator of type ω on $L^2(\mathbb{R}^n)$ with $\omega < \pi/2$, hence, *L* generates a holomorphic semigroup e^{-zL} , $0 \leq |\text{Arg}(z)| < \pi/2 - \omega$. Assume the following two conditions.

Assumption (a): The holomorphic semigroup

$$
\{e^{-zL}\}_{0 \leq |\text{Arg}(z)| < \pi/2 - \omega}
$$

is represented by kernel $p_7(x, y)$ which satisfies an upper bound

$$
|p_z(x, y)| \le c_\theta h_{|z|}(x, y) \quad \forall x, y \in \mathbb{R}^n
$$

and

$$
|\text{Arg}(z)| < \pi/2 - \theta \quad \text{for} \quad \theta > \omega \,,
$$

where $h_t(\cdot, \cdot)$ is determined by

$$
h_t(x, y) = t^{-n/m} g\left(\frac{|x - y|}{t^{1/m}}\right),
$$
\n(2.2)

in which m is a positive constant and g is a positive, bounded, decreasing function satisfying

$$
\lim_{r \to \infty} r^{n+\epsilon} g(r) = 0 \quad \text{for some } \epsilon > 0. \tag{2.3}
$$

Assumption (b): The operator *L* has a bounded H_{∞} -calculus in $L^2(\mathbb{R}^n)$.

Now, we give some consequences of the Assumptions (a) and (b) which will be used later.

First, if $\{e^{-tL}\}_{t>0}$ is a bounded analytic semigroup on $L^2(\mathbb{R}^n)$ whose kernel $p_t(x, y)$ satisfies the estimates (2.2) and (2.3), then for any $k \in \mathbb{N}$, the time derivatives of p_t satisfy

$$
\left|t^k \frac{\partial^k p_t(x, y)}{\partial t^k}\right| \le \frac{c}{t^{n/m}} g\left(\frac{|x - y|}{t^{1/m}}\right) \quad \text{for all } t > 0 \text{ and almost all } x, y \in \mathbb{R}^n \,. \tag{2.4}
$$

For each $k \in \mathbb{N}$, the function *g* might depend on *k* but it always satisfies (2.3). See Theorem 6.17 of [19].

Secondly, *L* has a bounded H_{∞} -calculus in $L^2(\mathbb{R}^n)$ if and only if for any nonzero function $\psi \in \Psi(S_v^0)$, *L* satisfies the square function estimate and its reverse

$$
c_1 \|f\|_{\mathcal{L}^2} \le \left(\int_0^\infty \|\psi_t(L)f\|_{\mathcal{L}^2}^2 \frac{dt}{t}\right)^{1/2} \le c_2 \|f\|_{\mathcal{L}^2}
$$
 (2.5)

for some $0 < c_1 \leq c_2 < \infty$, where $\psi_t(\xi) = \psi(t\xi)$. Note that different choices of $\nu > \omega$ and $\psi \in \Psi(S_v^0)$ lead to equivalent quadratic norms of f .

As noted in [17], positive self-adjoint operators satisfy the quadratic estimate (2.5). So do normal operators with spectra in a sector, and maximal accretive operators. For the definitions of these classes of operators, we refer readers to [27].

The following result, existing as a special case of [6, Theorem 6], tells us the L^2 boundedness of a bounded H_{∞} -calculus can be extended to L^p -boundedness, $p > 1$.

Lemma 2. Under the Assumptions (a) and (b), the operator L has a bounded H_{∞} -calculus *in* $L^p(\mathbb{R}^n)$ *, p* ∈ $(1, ∞)$ *, that is, b* $(L) \in \mathcal{L}(L^p, L^p)$ *with*

$$
||b(L)||_{p,p} = ||b(L)||_{L^p \to L^p} \leq c_{\nu,p} ||b||_{\infty} \quad \forall b \in H_{\infty}(S_{\nu}^0).
$$

Moreover, if $p = 1$ *then* $b(L)$ *is of weak type* $(1, 1)$ *.*

Thirdly, the Littlewood-Paley function $\mathcal{G}_L(f)$ associated with an operator L is defined by

$$
\mathcal{G}_L(f)(x) = \left(\int_0^\infty |\psi_t(L)f|^2 \, \frac{dt}{t}\right)^{1/2},\tag{2.6}
$$

where again $\psi \in \Psi(S_v^0)$, and $\psi_t(\xi) = \psi(t\xi)$. It follows from Theorem 6 of [3] that the function $\mathcal{G}_L(f)$ is bounded on L^p for $1 < p < \infty$. More specifically, there exist constants *c*₃*, c*₄ such that $0 < c_3 \leq c_4 < \infty$ and

$$
c_3 \|f\|_{\mathcal{L}^p} \le \|\mathcal{G}_L(f)\|_{\mathcal{L}^p} \le c_4 \|f\|_{\mathcal{L}^p}
$$
\n(2.7)

for all $f \in L^p$, $1 < p < \infty$.

By duality, the operator $G_{L^*}(f)$ also satisfies the estimate (2.7), where L^* is the adjoint operator of *L*.

2.3 Acting Class of Semigroup ${e^{-tL}}_{t>0}$

We now define the class of functions that the operators e^{-tL} act upon. Fix $1 \leq p < \infty$. For any $\beta > 0$, a complex-valued function $f \in L^p_{loc}(\mathbb{R}^n)$ is said to be a function of type *(p*; $β$) if *f* satisfies

$$
\left(\int_{\mathbb{R}^n} \frac{|f(x)|^p}{(1+|x|)^{n+\beta}} dx\right)^{1/p} \le c < \infty.
$$
 (2.8)

We denote by $\mathcal{M}_{(p;\beta)}$ the collection of all functions of type $(p;\beta)$. If $f \in \mathcal{M}_{(p;\beta)}$, the norm of $f \in \mathcal{M}_{(p;\beta)}$ is defined by

$$
|| f ||_{\mathcal{M}_{(p;\beta)}} = \inf \left\{ c \ge 0 : (2.8) \text{ holds} \right\}.
$$

It is not hard to see that $\mathcal{M}_{(p;\beta)}$ is a complex Banach space under $||f||_{\mathcal{M}_{(p;\beta)}} < \infty$. For any given operator *L*, let

$$
\Theta(L) = \sup \{ \epsilon > 0 : (2.3) \text{ holds} \}
$$
 (2.9)

and write

$$
\mathcal{M}_p = \begin{cases} \mathcal{M}_{(p;\Theta(L))} & \text{if } \Theta(L) < \infty; \\ \bigcup_{\beta: 0 < \beta < \infty} \mathcal{M}_{(p;\beta)} & \text{if } \Theta(L) = \infty. \end{cases}
$$

Note that if $L = -\Delta$ or $L = \sqrt{-\Delta}$ on \mathbb{R}^n , then $\Theta(-\Delta) = \infty$ or $\Theta(\sqrt{-\Delta}) = 1$. For any $(x, t) \in \mathbb{R}^n \times (0, +\infty) = \mathbb{R}^{n+1}_+$ and $f \in \mathcal{M}_p$, define

$$
P_t f(x) = e^{-tL} f(x) = \int_{\mathbb{R}^n} p_t(x, y) f(y) \, dy \tag{2.10}
$$

and

$$
Q_t f(x) = tLe^{-tL} f(x) = \int_{\mathbb{R}^n} -t \left(\frac{dp_t(x, y)}{dt} \right) f(y) \, dy \,. \tag{2.11}
$$

It follows from the estimate (2.4) that the operators $P_t f$ and $Q_t f$ are well defined. Moreover, the operator Q_t has the following two properties:

(i) For any $t_1, t_2 > 0$ and almost all $x \in \mathbb{R}^n$,

$$
Q_{t_1} Q_{t_2} f(x) = t_1 t_2 \left(\frac{d^2 P_t}{dt^2} \Big|_{t=t_1+t_2} f \right)(x) ;
$$

(ii) the kernel $q_{t^m}(x, y)$ of Q_{t^m} satisfies

$$
\left| q_{t^m}(x, y) \right| \le ct^{-n} g\left(\frac{|x - y|}{t}\right) \tag{2.12}
$$

where the function *g* satisfies the condition (2.3).

3. Basic Properties

3.1 A Comparison of Definitions

Assume that *L* is an operator which generates a semigroup *e*−*tL* with the heat kernel bounds (2.2) and (2.3). In what follows, $B(x, t)$ denotes the ball centered at x and of the radius *t*. Given $B = B(x, t)$ and $\lambda > 0$, we will write λB for the λ -dilate ball, which is the ball with the same center *x* and with radius *λt*.

Definition 1. Let $1 \leq p < \infty$ and $\lambda \in (0, n)$. We say that (i) $f \in L^p_{loc}(\mathbb{R}^n)$ belongs to $L^{p,\lambda}(\mathbb{R}^n)$ provided (1.1) holds;

(ii) $f \in \mathcal{M}_p$ associated with an operator *L*, is in $L_L^{p,\lambda}(\mathbb{R}^n)$ provided (1.2) holds.

Remark 1.

(i) Note first that $(L^{p,\lambda}(\mathbb{R}^n), \| \cdot \|_{L^{p,\lambda}})$ and $(L^{p,\lambda}_L(\mathbb{R}^n), \| \cdot \|_{L^{p,\lambda}_L})$ are vector spaces with the seminorms vanishing on constants and

$$
\mathcal{K}_{L,p} = \left\{ f \in \mathcal{M}_p : P_t f(x) = f(x) \text{ for almost all } x \in \mathbb{R}^n \text{ and all } t > 0 \right\},\
$$

respectively. Of course, the spaces $L^{p,\lambda}(\mathbb{R}^n)$ and $L^{p,\lambda}_L(\mathbb{R}^n)$ are understood to be modulo constants and $\mathcal{K}_{L,p}$, respectively. See Section 6 of [8] for a discussion of the dimensions of $\mathcal{K}_{L,2}$ when *L* is a second order elliptic operator of divergence form or a Schrödinger operator.

(ii) We now give a list of examples of $L_L^{p,\lambda}(\mathbb{R}^n)$ in different settings.

(*α*) Define P_t by putting $p_t(x, y)$ to be the heat kernel or the Poisson kernel:

$$
(4\pi t)^{-n/2}e^{-|x-y|^2/4t} \quad \text{or} \quad \frac{c_nt}{(t^2+|x-y|^2)^{(n+1)/2}} \quad \text{where} \quad c_n = \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}}.
$$

Then we will show that the corresponding space $L_L^{p,\lambda}(\mathbb{R}^n)$ (modulo $\mathcal{K}_{L,p}$) coincides with the classical $L^{p,\lambda}(\mathbb{R}^n)$ (modulo constants).

(*β*) Consider the Schrödinger operator with a nonnegative potential *V (x)*:

$$
L=-\Delta+V(x)\ .
$$

To study singular integral operators associated to *L* such as functional calculi *f (L)* or Riesz transform $\nabla L^{-1/2}$, it is useful to choose P_t with kernel $p_t(x, y)$ to be the heat kernel of *L*. By domination, its kernel $p_t(x, y)$ has a Gaussian upper bound.

The following proposition shows that $L^{p,\lambda}(\mathbb{R}^n)$ is a subspace of $L^{p,\lambda}_{L}(\mathbb{R}^n)$ in many cases.

Proposition 1. Let $1 \leq p < \infty$ *and* $\lambda \in (0, n)$ *. Given an operator L which generates a semigroup e*−*tL with the heat kernel bounds* (2.2) *and* (2.3)*. A necessary and sufficient condition for the classical space* $L^{p,\lambda}(\mathbb{R}^n) \subseteq L_L^{p,\lambda}(\mathbb{R}^n)$ *with*

$$
||f||_{L^{p,\lambda}_L} \le c||f||_{L^{p,\lambda}} \tag{3.1}
$$

is that for every $t > 0$, $e^{-tL}(1) = 1$ *almost everywhere, that is,* $\int_{\mathbb{R}^n} p_t(x, y) dy = 1$ *for almost all* $x \in \mathbb{R}^n$.

Proof. Clearly, the condition $e^{-tL}(1) = 1$, a.e. is necessary for $L^{p,\lambda}(\mathbb{R}^n) \subseteq L^{p,\lambda}_L(\mathbb{R}^n)$. Indeed, let us take $f = 1$. Then, (3.1) implies $||1||_{L_L^{p,\lambda}} = 0$ and thus for every $t > 0$, $e^{-tL}(1) = 1$ almost everywhere.

For the sufficiency, we borrow the idea of [16, Proposition 3.1]. To be more specific, suppose $f \in L^{p,\lambda}(\mathbb{R}^n)$. Then for any Euclidean open ball *B* with radius r_B , we compute

$$
\begin{array}{lcl} \|f - P_{tg} f\|_{\mathcal{L}^p(B)} & \leq & \|f - f_B\|_{\mathcal{L}^p(B)} + \|f_B - P_{tg} f\|_{\mathcal{L}^p(B)} \\ & \leq & \|f\|_{\mathcal{L}^{p,\lambda}} r_B^{\lambda/p} + \left(\int_B \left(\int_{\mathbb{R}^n} |f_B - f(y)| P_{tg}(x, y) \, dy \right)^p \, dx \right)^{1/p} \\ & = & \|f\|_{\mathcal{L}^{p,\lambda}} r_B^{\lambda/p} + \left(\int_B \left(I(B) + J(B) \right)^p \, dx \right)^{1/p} \;, \end{array}
$$

where

$$
I(B) = \int_{2B} |f_B - f(y)| P_{t_B}(x, y) dy
$$

and

$$
J(B) = \sum_{k=1}^{\infty} \int_{2^{k+1}B\backslash 2^k B} |f_B - f(y)| P_{t_B}(x, y) dy.
$$

Next we make further estimates on $I(B)$ and $J(B)$. Thanks to (2.2) and (2.3), we have

$$
||I(B)||_{\mathcal{L}^p(B)} \leq c r_B^{-n} g(0) ||f_B - f||_{\mathcal{L}^1(B)} \leq c r_B^{\lambda/p} ||f||_{\mathcal{L}^{p,\lambda}}.
$$

Again, using (2.2) and (2.3), we derive that for $x \in B$ and $y \in 2^{k+1}B \setminus 2^kB$,

$$
P_{t_B}(x, y) \leq c r_B^{-n} g(2^k) \leq c r_B^{-n} 2^{-k(n+\epsilon)}, \quad k = 1, 2, ...
$$

where $\epsilon > 0$ is a constant. Consequently,

$$
||J(B)||_{L^{p}(B)} \leq cr_{B}^{-n} \left(\int_{B} \left(\sum_{k=1}^{\infty} g(2^{k}) \int_{2^{k+1}B\setminus2^{k}B} |f_{B} - f(y)| dy \right)^{p} dx \right)^{1/p}
$$

$$
\leq cr_{B}^{n/p-n} \sum_{k=1}^{\infty} g(2^{k}) \left(\int_{2^{k+1}B} |f_{2^{k+1}B} - f(y)| dy + (2^{k}r_{B})^{n} |f_{2^{k+1}B} - f_{B}| \right)
$$

$$
\leq cr_{B}^{\lambda/p} ||f||_{L^{p,\lambda}} \left(\sum_{k=1}^{\infty} 2^{-k(\epsilon + \frac{n-\lambda}{p})} + \sum_{k=1}^{\infty} k2^{-k\epsilon} \right).
$$

Putting these inequalities together, we find $f \in L_L^{p,\lambda}(\mathbb{R}^n)$.

 \Box

3.2 Fundamental Characterizations

In the argument for Proposition 1, we have used the following crucial fact that for any $f \in L^{p,\lambda}(\mathbb{R}^n)$ and a constant $K > 1$,

$$
|f_B - f_{KB}| \leq c r_B^{\frac{\lambda - n}{p}} \|f\|_{\mathcal{L}^{p,\lambda}}.
$$

Now, this property can be used to give a characterization of $L^{p,\lambda}(\mathbb{R}^n)$ spaces in terms of the Poisson integral. To this end, we observe that if

$$
f \in \mathcal{M}_{\sqrt{-\Delta}, p} = \left\{ f \in L_{loc}^p(\mathbb{R}^n) : |f(\cdot)|^p \big(1 + |\cdot|^{n+1}\big)^{-1} \in L^1(\mathbb{R}^n) \right\},\
$$

then we can define the operator $e^{-t\sqrt{-\Delta}}$ by the Poisson integral as follows:

$$
e^{-t\sqrt{-\Delta}}f(x) = \int_{\mathbb{R}^n} p_t(x-y)f(y) dy, \quad t > 0,
$$

where

$$
p_t(x - y) = \frac{c_n t}{\left(t^2 + |x - y|^2\right)^{(n+1)/2}}.
$$

Proposition 2. Let $1 \leq p < \infty$, $\lambda \in (0, n)$ and $f \in M_{\sqrt{-\Delta}, p}$. Then $f \in L^{p, \lambda}(\mathbb{R}^n)$ if *and only if*

$$
\|f\|_{\mathcal{L}^{p,\lambda}(\mathbb{R}^n)} = \left(\sup_{(x,t)\in\mathbb{R}^{n+1}_+} t^{n-\lambda} e^{-t\sqrt{-\Delta}} \left(|f - e^{-t\sqrt{-\Delta}} f(x)|^p\right)(x)\right)^{1/p} < \infty. \tag{3.2}
$$

Proof. On the one hand, assume (3.2). Note that $|y - x| < t$ implies

$$
\frac{c_n t}{(t^2+|y-x|^2)^{\frac{n+1}{2}}} \ge ct^{-n}.
$$

For a fixed ball $B = B(x, r_B)$ centered at *x*, we let $t_B = r_B$. We then have

$$
r_B^{-\lambda} \|f - f_B\|_{\mathcal{L}^p(B)}^p \leq cr_B^{-\lambda} \|f - e^{-t_B\sqrt{-\Delta}} f(x)\|_{\mathcal{L}^p(B)}^p
$$

\n
$$
\leq cr_B^{n-\lambda} \int_B |f(y) - e^{-t_B\sqrt{-\Delta}} f(x)|^p \frac{c_n t_B}{(t_B^2 + |y - x|^2)^{\frac{n+1}{2}}} dy
$$

\n
$$
\leq c \|f\|_{\mathcal{L}^{p,\lambda}}^p,
$$

whence producing $f \in L^{p,\lambda}(\mathbb{R}^n)$.

On the other hand, suppose $f \in L^{p,\lambda}(\mathbb{R}^n)$. In a similar manner to proving the sufficiency part of Proposition 1, we obtain that if $(x, t) \in \mathbb{R}^{n+1}_+$ then

$$
e^{-t\sqrt{-\Delta}}\left(\left|f - e^{-t\sqrt{-\Delta}}f(x)\right|^p\right)(x) \le ct^{\lambda - n} \|f\|_{\mathbf{L}^{p,\lambda}}^p + c \sum_{k=1}^{\infty} \int_{2^{k+1}B\backslash 2^k B} \frac{|f(y) - f_B|^p t}{\left(t^2 + |y - x|^2\right)^{\frac{n+1}{2}}} dy
$$

$$
\le ct^{\lambda - n} \|f\|_{\mathbf{L}^{p,\lambda}}^p,
$$

and hence (3.2) holds.

Remark 2. Since a simple computation gives

$$
e^{-t\sqrt{-\Delta}}(|f - e^{-t\sqrt{-\Delta}} f(x)|^2)(x)
$$

=
$$
\int_{\mathbb{R}^n} (f(y) - e^{-t\sqrt{-\Delta}} f(x)) \overline{(f(y) - e^{-t\sqrt{-\Delta}} f(x))} p_t(x - y) dy
$$

=
$$
\int_{\mathbb{R}^n} |f(y)|^2 p_t(x - y) dy - e^{-t\sqrt{-\Delta}} f(x) \left(\int_{\mathbb{R}^n} \overline{f(y)} p_t(x - y) dy \right)
$$

=
$$
e^{-t\sqrt{-\Delta}} f(x) \left(\int_{\mathbb{R}^n} f(y) p_t(x - y) dy \right) + |e^{-t\sqrt{-\Delta}} f(x)|^2
$$

=
$$
e^{-t\sqrt{-\Delta}} |f|^2(x) - |e^{-t\sqrt{-\Delta}} f(x)|^2,
$$

we have that if *f* ∈ $\mathcal{M}_{\sqrt{-\Delta},2}$ then *f* ∈ L^{2,λ}(\mathbb{R}^n) when and only when

$$
\sup_{(x,t)\in\mathbb{R}^{n+1}_+} t^{n-\lambda}\Big(e^{-t\sqrt{-\Delta}}|f|^2(x)-\big|e^{-t\sqrt{-\Delta}}f(x)\big|^2\Big)<\infty
$$

which is equivalent to (see also [15] for the BMO-setting, i.e., $\lambda = n$)

$$
\sup_{(x,t)\in\mathbb{R}^{n+1}_+} t^{n-\lambda} \int_{\mathbb{R}^{n+1}_+} G_{\mathbb{R}^{n+1}_+}((x,t),(y,s)) |\nabla_{y,s} e^{-s\sqrt{-\Delta}} f(y)|^2 dy ds < \infty,
$$

where $G_{\mathbb{R}^{n+1}_+}((x, t), (y, s))$ is the Green function of \mathbb{R}^{n+1}_+ and $\nabla_{y, s}$ is the gradient operator in the space-time variable *(y, s)*.

To find out an $L_L^{p,\lambda}(\mathbb{R}^n)$ analog of Proposition 2, we take Proposition 2.6 of [7] into account, and establish the following property of the class of operators *Pt* .

Lemma 3. Let $1 \leq p < \infty$ *and* $\lambda \in (0, n)$ *. Suppose* $f \in L_L^{p, \lambda}(\mathbb{R}^n)$ *. Then:* (i) *For any* $t > 0$ *and* $K > 1$ *, there exists a constant* $c > 0$ *independent of t and* K *such that*

$$
|P_t f(x) - P_{Kt} f(x)| \le ct^{\frac{\lambda - n}{pm}} \|f\|_{L^{p,\lambda}_L}
$$
 (3.3)

for almost all $x \in \mathbb{R}^n$ *.*

(ii) *For any* $\delta > 0$ *, there exists* $c(\delta) > 0$ *such that*

$$
\int_{\mathbb{R}^n} \frac{t^{\delta/m}}{\left(t^{1/m} + |x - y|^{n+\delta}} |(Z - P_t)f(y)| dy \le c(\delta) t^{\frac{\lambda - n}{pm}} \|f\|_{L^{p,\lambda}_L}
$$
(3.4)

 \Box

for any $x \in \mathbb{R}^n$.

Proof.

(i) For any $t > 0$, we choose *s* such that $t/4 \leq s \leq t$. Assume that $f \in L_L^{p,\lambda}(\mathbb{R}^n)$, where $1 \leq p < \infty$ and $\lambda \in (0, n)$, we estimate the term $|P_t f(x) - P_{t+s} f(x)|$. Using the commutative property of the semigroup $\{P_t\}_{t>0}$, we can write

$$
P_t f(x) - P_{t+s} f(x) = P_t(f - P_s f)(x) .
$$

Since $f \in L_L^{p,\lambda}(\mathbb{R}^n)$, one has

$$
|P_t f(x) - P_{t+s} f(x)| \leq \int_{\mathbb{R}^n} |p_t(x, y)||f(y) - P_s f(y)| dy
$$

\n
$$
\leq \frac{c}{|B(x, t^{1/m})|} \int_{\mathbb{R}^n} \left(1 + \frac{|x - y|}{t^{1/m}}\right)^{-(n+\epsilon)} |f(y) - P_s f(y)| dy
$$

\n
$$
\leq c \left(\frac{1}{|B(x, s^{1/m})|} \int_{B(x, s^{1/m})} |f(y) - P_s f(y)|^p dy\right)^{1/p}
$$

\n
$$
+ \frac{c}{|B(x, s^{1/m})|} \int_{B(x, s^{1/m})^c} \left(1 + \frac{|x - y|}{s^{1/m}}\right)^{-(n+\epsilon)} |f(y) - P_s f(y)| dy
$$

\n
$$
\leq c s^{\frac{\lambda - n}{pm}} \|f\|_{L_L^{p,\lambda}} + 1.
$$

We then decompose \mathbb{R}^n into a geometrically increasing sequence of concentric balls, and obtain

$$
I = c \sum_{k=0}^{\infty} \frac{1}{|B(x, s^{1/m})|} \int_{B(x, 2^{k+1} s^{1/m}) \backslash B(x, 2^k s^{1/m})} \left(1 + \frac{|x - y|}{s^{1/m}}\right)^{-(n+\epsilon)} |f(y) - P_s f(y)| dy
$$

$$
\leq c \sum_{k=0}^{\infty} 2^{-k(n+\epsilon)} \frac{1}{|B(x, s^{1/m})|} \int_{B(x, 2^{k+1} s^{1/m})} |f(y) - P_s f(y)| dy,
$$

since

$$
(1+s^{-1/m}|x-y|)^{-n-\epsilon} \le c2^{-k(n+\epsilon)} \quad \forall \ y \in B(x, 2^{k+1} s^{1/m}) \setminus B(x, 2^k s^{1/m}).
$$

For a fixed positive integer *k*, we consider the ball $B(x, 2^k s^{1/m})$. This ball is contained in the cube $Q[x, 2^{k+1}s^{1/m}]$ centered at *x* and of the side length $2^{k+1}s^{1/m}$. We then divide this cube $Q[x, 2^{k+1}s^{1/m}]$ into $[2^{k+1}([\sqrt{n}]+1)]^n$ small cubes ${Q_{x_{k_i}}}^{\{N_k\}}_{i=1}^{\{N_k\}}$ centered at x_{k_i} and of equal side length $((\sqrt{n}) + 1)^{-1} s^{1/m}$, where $N_k = [2^{k+1} ((\sqrt{n}) + 1)]^n$. For any $i = 1, 2, \dots, N_k$, each of these small cubes $Q_{x_{k_i}}$ is then contained in the corresponding ball B_{k_i} with the same center x_{k_i} and radius $r = s^{1/m}$, Consequently, for any ball $B(x, 2^k t)$, $k = 1, 2, \dots$, there exists a corresponding collection of balls $B_{k_1}, B_{k_2}, \dots, B_{k_{N_k}}$ such that (i) each ball B_{k_i} is of the radius t;

$$
(ii) B(x, 2^k s^{1/m}) \subset \bigcup_{i=1}^{N_k} B_{k_i};
$$

(iii) there exists a constant $c > 0$ independent of *k* such that $N_k \le c2^{kn}$;

(iv) each point of $B(x, 2^k s^{1/m})$ is contained in at most a finite number *M* of the balls B_k . where *M* is independent of *k*.

Applying the properties (i), (ii), (iii), and (iv) above, we obtain

$$
I \leq c \sum_{k=0}^{\infty} 2^{-k(n+\epsilon)} \frac{1}{|B(x, s^{1/m})|} \int_{\substack{k+1 \\ j=1}}^{N_{k+1}} |f(y) - P_t f(y)| dy
$$

\n
$$
\leq c \sum_{k=0}^{\infty} 2^{-k(n+\epsilon)} \sum_{i=1}^{N_{k+1}} \frac{1}{|B_{k_i}|} \int_{B_{k_i}} |f(y) - P_s f(y)| dy
$$

\n
$$
\leq c \sum_{k=0}^{\infty} 2^{-k(n+\epsilon)} N_{k+1} \sup_{i:1 \leq i \leq N_{k+1}} \left(\frac{1}{|B_{k_i}|} \int_{B_{k_i}} |f(y) - P_s f(y)|^p dy \right)^{1/p}
$$

\n
$$
\leq c \sum_{k=0}^{\infty} 2^{-k(n+\epsilon)} 2^{kn} s^{\frac{\lambda - n}{pm}} \|f\|_{L_L^{p,\lambda}}
$$

\n
$$
\leq c s^{\frac{\lambda - n}{pm}} \|f\|_{L_L^{p,\lambda}},
$$

which gives (3.3) for the case $t/4 \leq s \leq t$.

For the case $0 < s < t/4$, we write

$$
P_t f(x) - P_{t+s} f(x) = (P_t f(x) - P_{2t} f(x)) - (P_{t+s}(f - P_{t-s} f)(x).
$$

Noting that $(t + s)/4 \le (t - s) < t + s$, we obtain (3.3) by using the same argument as above. In general, for any $K > 1$, let *l* be the integer satisfying $2^{l} \leq K < 2^{l+1}$, hence $l \leq \log_2 K$. This, together with the fact that $\lambda \in (0, n)$, imply that there exists a constant $c > 0$ independent of *t* and *K* such that

$$
|P_t f(x) - P_{Kt} f(x)| \leq \sum_{k=0}^{l-1} |P_{2^kt} f(x) - P_{2^{k+1}t} f(x)| + |P_{2^lt} f(x) - P_{Kt} f(x)|
$$

$$
\leq c \sum_{k=0}^{l-1} (2^k t)^{\frac{\lambda - n}{pm}} \|f\|_{L_L^{p,\lambda}} + c(Kt)^{\frac{\lambda - n}{pm}} \|f\|_{L_L^{p,\lambda}}
$$

$$
\leq ct^{\frac{\lambda - n}{pm}} \|f\|_{L_L^{p,\lambda}}
$$

for almost all $x \in \mathbb{R}^n$.

(ii) Choosing a ball *B* centered at *x* and of the radius $r_B = t^{1/m}$, and using (3.3), we have

$$
\left(\frac{1}{|2^k B|} \int_{2^k B} |f(y) - P_t f(y)|^p dy\right)^{1/p} \n\leq \left(\frac{1}{|2^k B|} \int_{2^k B} |f(y) - P_{t_{2^k B}} f(y)|^p dy\right)^{1/p} + \sup_{y \in 2^k B} |P_{t_{2^k B}} f(y) - P_t f(y)| \n\leq ct^{\frac{\lambda - m}{pm}} \|f\|_{L_L^{p,\lambda}}
$$
\n(3.5)

for all *k*. Putting $2^{-1}B = \emptyset$, we read off

$$
\int_{\mathbb{R}^n} \frac{t^{\delta/m}}{(t^{1/m} + |x - y)^{n+\delta}} |(I - P_t)f(y)| dy
$$
\n
$$
\leq \sum_{k=0}^{\infty} \int_{2^k B \setminus 2^{k-1} B} \frac{t^{\delta/m}}{(t^{1/m} + |x - y)^{n+\delta}} |(I - P_t)f(y)| dy
$$
\n
$$
\leq c \sum_{k=0}^{\infty} 2^{kn} 2^{-k(n+\delta)} \frac{1}{|2^k B|} \int_{2^k B} |f(y) - P_t f(y)| dy
$$
\n
$$
\leq c \sum_{k=0}^{\infty} 2^{-k\delta} \left(\frac{1}{|2^k B|} \int_{2^k B} |f(y) - P_t f(y)|^p dy \right)^{1/p}
$$
\n
$$
\leq c \sum_{k=0}^{\infty} 2^{-k\delta} t^{\frac{\lambda - m}{pm}} \|f\|_{L_L^{p,\lambda}}
$$
\n
$$
\leq ct^{\frac{\lambda - m}{pm}} \|f\|_{L_L^{p,\lambda}}.
$$

The above analysis suggests us to introduce the maximal Morrey space as follows.

Definition 2. Let $1 \le p < \infty$ and $\lambda \in (0, n)$. We say that $f \in \mathcal{M}_p$ is in $L_{L, \max}^{p, \lambda}(\mathbb{R}^n)$ associated with an operator L , if there exists some constant c (depending on f) such that

$$
\left|P_t\big(|f - P_tf|^p\big)(x)\right|^{1/p} \le ct^{\frac{\lambda - n}{pm}} \quad \text{for almost all } x \in \mathbb{R}^n \text{ and } t > 0. \tag{3.6}
$$

The smallest bound *c* for which (3.6) holds then taken to be the norm of *f* in this space, and is denoted by $|| f ||_{L_{L, \max}^{p, \lambda}}$.

Using Lemma 3, we can derive a characterization in terms of the maximal Morrey space under an extra hypothesis.

Proposition 3. Let $1 \leq p < \infty$ *and* $\lambda \in (0, n)$ *. Given an operator L which generates a* $S^{emigroup}$ e^{-tL} with the heat kernel bounds (2.2) and (2.3). Then $L^{p,\lambda}_L(\mathbb R^n)\subseteq L^{p,\lambda}_{L,\max}(\mathbb R^n)$. *Furthermore, if the kernels* $p_t(x, y)$ *of operators* P_t *are nonnegative functions when* $t > 0$ *, and satisfy the following lower bounds*

$$
p_t(x, y) \ge \frac{c}{t^{n/m}}
$$
\n(3.7)

 \Box

for some positive constant c independent of <i>t, *x and y*, *then*, $L_{L, max}^{p, \lambda}(\mathbb{R}^n) = L_L^{p, \lambda}(\mathbb{R}^n)$.

Proof. Let us first prove $L_L^{p,\lambda}(\mathbb{R}^n) \subseteq L_{L,\max}^{p,\lambda}(\mathbb{R}^n)$. For any fixed $t > 0$ and $x \in \mathbb{R}^n$, we choose a ball *B* centered at *x* and of the radius $r_B = t^{1/m}$. Let $f \in L_L^{p,\lambda}(\mathbb{R}^n)$. To estimate (3.6), we use the decay of function *g* in (2.3) to get

$$
\begin{array}{rcl} \left| P_t \left(|f - P_t f|^p \right) (x) \right| & \leq & \int_{\mathbb{R}^n} |p_t(x, y)| |f(y) - P_t f(y)|^p \, dy \\ & \leq & c \sum_{k=0}^\infty \frac{1}{|B|} \int_{2^k B \setminus 2^{k-1} B} g\left(\frac{|x - y|}{t^{1/m}} \right) |f(y) - P_t f(y)|^p \, dy \end{array}
$$

$$
\leq c \sum_{k=0}^{\infty} 2^{kn} g(2^{(k-1)}) \frac{1}{|2^k B|} \int_{2^k B} |f(y) - P_t f(y)|^p dy
$$

\n
$$
\leq c \sum_{k=0}^{\infty} 2^{kn} g(2^{(k-1)}) t^{\frac{\lambda - n}{m}} ||f||_{L^{p,\lambda}_L}^p
$$

\n
$$
\leq ct^{\frac{\lambda - n}{m}} ||f||_{L^{p,\lambda}_L}^p.
$$

This proves $||f||_{L_{L,\max}^{p,\lambda}} \le c||f||_{L_{L}^{p,\lambda}}$.

We now prove $L_{L, \max}^{p, \lambda}(\mathbb{R}^n) \subseteq L_L^{p, \lambda}(\mathbb{R}^n)$ under (3.7). For a fixed ball $B = B(x, r_B)$ centered at *x*, we let $t_B = r_B^m$. For any $f \in L_{L, max}^{p, \lambda}(\mathbb{R}^n)$, it follows from (3.7) that one has

$$
\frac{1}{|B|} \int_{B} |f(y) - P_{t_B} f(y)|^p dy \le c \int_{B(x, t_B^{1/m})} p_{t_B}(x, y) |f(y) - P_{t_B} f(y)|^p dy
$$

\n
$$
\le c \int_{\mathbb{R}^n} p_{t_B}(x, y) |f(y) - P_{t_B} f(y)|^p dy
$$

\n
$$
\le c t_B^{\frac{\lambda - n}{m}} \|f\|_{L^p_{L, \max}^p}^p,
$$

which proves $||f||_{L_L^{p,\lambda}} \le c||f||_{L_{L,\max}^{p,\lambda}}$. Hence, the proof of Proposition 3 is complete. \Box

4. An Identity for the Dual Pairing

4.1 A Dual Inequality and a Reproducing Formula

From now on, we need the following notation. Suppose B is an open ball centered at x_B with radius r_B and $f \in \mathcal{M}_p$. Given an L^q function g supported on a ball B, where $\frac{1}{q} + \frac{1}{p} = 1$. For any $(x, t) \in \mathbb{R}^{n+1}_+$, let

$$
F(x,t) = Q_{t^m}(I - P_{t^m})f(x) \text{ and } G(x,t) = Q_{t^m}^*(I - P_{r_B^m}^*)g(x), \qquad (4.1)
$$

where P_t^* and Q_t^* are the adjoint operators of P_t and Q_t , respectively.

Lemma 4. Assume that L satisfies the Assumptions (a) and (b) of Section 2.2. Suppose f, g, F , G, p, q are as in (4.1)*.*

(i) *If f also satisfies*

$$
\|f\|_{L^{p,\lambda}_L} = \sup_{B \subset \mathbb{R}^n} r_B^{-\frac{\lambda}{p}} \left\| \left\{ \int_0^{r_B} |Q_{t^m}(\mathcal{I} - P_{t^m}) f(x)|^2 \frac{dt}{t} \right\}^{1/2} \right\|_{L^p(B)} < \infty,
$$

where the supremum is taken over all open ball $B \subset \mathbb{R}^n$ *with radius* r_B *, then there exists a constant* $c > 0$ *independent* of any open ball B with radius r_B such that

$$
\int_{\mathbb{R}^{n+1}_+} |F(x,t)G(x,t)| \frac{dx\,dt}{t} \leq c r_B^{\lambda/p} \|f\|_{L^{p,\lambda}_L} \|g\|_{L^q} \,. \tag{4.2}
$$

(ii) *If*

$$
h \in \mathrm{L}^q(\mathbb{R}^n), \quad b_m = \frac{36m}{5} \quad \text{and} \quad 1 = b_m \int_0^\infty t^{2m} e^{-2t^m} \big(1 - e^{-t^m}\big) \frac{dt}{t} \, ,
$$

then

$$
h(x) = b_m \int_0^\infty (Q_{t^m}^*)^2 (I - P_{t^m}^*) h(x) \frac{dt}{t},
$$

where the integral converges strongly in $L^q(\mathbb{R}^n)$ *.*

Proof.

(i) For any ball $B \subset \mathbb{R}^n$ with radius r_B , we still put

$$
T(B) = \left\{ (x, t) \in \mathbb{R}^{n+1}_+ : x \in B, \ 0 < t < r_B \right\}.
$$

We then write

$$
\int_{\mathbb{R}^{n+1}_{+}} |F(x,t)G(x,t)| \frac{dx \, dt}{t} = \int_{T(2B)} |F(x,t)G(x,t)| \frac{dx \, dt}{t} \n+ \sum_{k=1}^{\infty} \int_{T(2^{k+1}B) \backslash T(2^{k}B)} |F(x,t)G(x,t)| \frac{dx \, dt}{t} \n= A_{1} + \sum_{k=2}^{\infty} A_{k}.
$$

Recall that $q > 1$ and $\frac{1}{q} + \frac{1}{p} = 1$. Using the Hölder inequality, together with (2.7) (here $\psi(z) = ze^{-z}$, we obtain

$$
A_{1} \leq \left\| \left\{ \int_{0}^{r_{2B}} \left| Q_{t^{m}}(\mathcal{I} - P_{t^{m}}) f(x) \right|^{2} \frac{dt}{t} \right\}^{1/2} \right\|_{L^{p}(2B)} \times \left\| \left\{ \int_{0}^{r_{2B}} \left| Q_{t^{m}}^{*}(\mathcal{I} - P_{r_{B}^{*}}^{*}) g(x) \right|^{2} \frac{dt}{t} \right\}^{1/2} \right\|_{L^{q}(2B)} \n\leq \left\| \left\{ \int_{0}^{r_{2B}} \left| Q_{t^{m}}(\mathcal{I} - P_{t^{m}}) f(x) \right|^{2} \frac{dt}{t} \right\}^{1/2} \right\|_{L^{p}(2B)} \left\| G_{L^{*}}((\mathcal{I} - P_{r_{B}^{*}}^{*}) g) \right\|_{L^{q}} \n\leq c r_{B}^{\frac{\lambda}{p}} \| f \|_{L_{L}^{p,\lambda}} \| g \|_{L^{q}}.
$$

Let us estimate A_k for $k = 2, 3, \cdots$. Note that for $x \in 2^{k+1}B\backslash 2^kB$ and $y \in B$, we have that $|x - y| \ge 2^{k-1}r_B$. Using (2.4) and the commutative property of $\{P_t\}_{t>0}$, we get

$$
\begin{array}{rcl}\n\left| \mathcal{Q}_{t^m}^*(\mathcal{I} - P_{r_B}^*)g(x) \right| & \leq & \left| \mathcal{Q}_{t^m}^*g(x) \right| + c\left(\frac{t}{t+r_B}\right)^m \left| \mathcal{Q}_{t^m+r_B^m}g(x) \right| \\
& \leq & c \int_B \frac{t^{\epsilon}|g(y)|}{(t+|x-y|)^{n+\epsilon}} \, dy \\
& \quad + c\left(\frac{t}{r_B}\right)^m \int_B \frac{r_B^{\epsilon}|g(y)|}{(r_B+|x-y|)^{n+\epsilon}} \, dy \\
& \leq & \frac{ct^{\epsilon_0}}{\left(2^k r_B\right)^{n+\epsilon_0}} \int_B |g(y)| \, dy \\
& \leq & \left(\frac{ct^{\epsilon_0}}{\left(2^k r_B\right)^{n+\epsilon_0}}\right) r_B^{\frac{n}{\epsilon}} \|g\|_{\mathbb{L}^q} \, ,\n\end{array}
$$

where $\epsilon_0 = 2^{-1}$ min (m, ϵ) and $q = p/(p - 1)$. Consequently,

$$
\left\| \left\{ \int_0^{2^k r_B} \left| Q_{t^m}^* (\mathcal{I} - P_{r_B^m}^*) g(x) \chi_{T(2^{k+1}B) \setminus T(2^k B)} \right|^2 \frac{dt}{t} \right\}^{1/2} \right\|_{L^q(2^k B)} \leq c 2^{kn(\frac{1}{q}-1)} \|g\|_{L^q}.
$$

Therefore,

$$
A_{k} \leq \left\| \left\{ \int_{0}^{2^{k} r_{B}} \left| Q_{t^{m}} (\mathcal{I} - P_{t^{m}}) f(x) \right|^{2} \frac{dt}{t} \right\}^{1/2} \right\|_{L^{p}(2^{k} B)} \times \left\| \left\{ \int_{0}^{2^{k} r_{B}} \left| Q_{t^{m}} (\mathcal{I} - P_{r_{B}^{m}}^{*}) g(x) \chi_{T(2^{k+1} B) \setminus T(2^{k} B)} \right|^{2} \frac{dt}{t} \right\}^{1/2} \right\|_{L^{q}(2^{k} B)} \n\leq c (2^{k} r_{B})^{\frac{\lambda}{p}} 2^{k n (\frac{1}{q} - 1)} \| f \|_{L_{L}^{p,\lambda}} \| g \|_{L^{q}} \n\leq c 2^{\frac{k(\lambda - n)}{p}} r_{B}^{\frac{\lambda}{p}} \| f \|_{L_{L}^{p,\lambda}} \| g \|_{L^{q}}.
$$

Since $λ ∈ (0, n)$, we have

$$
\int_{\mathbb{R}^{n+1}_{+}} |F(x,t)G(x,t)| \frac{dx\,dt}{t} \leq c r_B^{\frac{\lambda}{p}} \|f\|_{L^{p,\lambda}_L} \|g\|_{L^q} + c \sum_{k=1}^{\infty} 2^{\frac{k(\lambda-n)}{2}} r_B^{\frac{\lambda}{p}} \|f\|_{L^{p,\lambda}_L} \|g\|_{L^q}
$$

$$
\leq c r_B^{\frac{\lambda}{p}} \|f\|_{L^{p,\lambda}_L} \|g\|_{L^q} ,
$$

as desired.

(ii) From Lemma 2 we know that *L* has a bounded H_{∞} -calculus in L^q for all $q > 1$. This, together with elementary integration, shows that ${g_{\alpha\beta}(L^*)}$ is a uniformly bounded net in $\mathcal{L}(L^q, L^q)$, where

$$
g_{\alpha\beta}(L^*)=b_m\int_{\alpha}^{\beta}\left(Q_{t^m}^*\right)^2\left(\mathcal{I}-P_{t^m}^*\right)\frac{dt}{t}
$$

for all $0 < \alpha < \beta < \infty$.

As a consequence of Lemma 1, we have that for any $h \in L^q(\mathbb{R}^n)$,

$$
h(x) = b_m \int_0^{\infty} (Q_{t^m}^*)^2 (I - P_{t^m}^*) h(x) \frac{dt}{t}
$$

where $b_m = \frac{36m}{5}$ and the integral is strongly convergent in $L^q(\mathbb{R}^n)$.

 \Box

4.2 The Desired Dual Identity

Next, we establish the following dual identity associated with the operator *L*.

Proposition 4. Assume that L satisfies the Assumptions (a) and (b) of Section 2.2. Suppose B, *f*, *g*, *F*, *G*, *p*, *q* are defined as in (4.1). If $|| f ||_{L_L^{p,\lambda}} < \infty$ and $b_m = \frac{36m}{5}$, then

$$
\int_{\mathbb{R}^n} f(x) \big(\mathcal{I} - P_{r_B^m}^* \big) g(x) \, dx = b_m \int_{\mathbb{R}^{n+1}_+} F(x, t) G(x, t) \frac{dx \, dt}{t} \,. \tag{4.3}
$$

Proof. From Lemma 4 (i) it turns out that

$$
\int_{\mathbb{R}^{n+1}_+} \left| F(x,t)G(x,t) \right| \frac{dx\,dt}{t} < \infty \, .
$$

By the dominated convergence theorem, the following integral converges absolutely and satisfies

$$
\int_{\mathbb{R}^{n+1}_+} F(x,t)G(x,t) \frac{dx\,dt}{t} = \lim_{\delta \to 0} \lim_{N \to \infty} \int_{\delta}^N \int_{\mathbb{R}^n} F(x,t)G(x,t) \frac{dx\,dt}{t}.
$$

Next, by Fubini's theorem, together with the commutative property of the semigroup ${e^{-tL}}_{t>0}$, we have

$$
\int_{\mathbb{R}^n} F(x,t)G(x,t) dx = \int_{\mathbb{R}^n} f(x) (Q_{t^m}^*)^2 (I - P_{t^m}^*) (I - P_{t^m}^*) g(x) dx, \quad \forall t > 0.
$$

This gives

$$
\int_{\mathbb{R}_{+}^{n+1}} F(x, t)G(x, t) \frac{dx}{t} dt
$$
\n
$$
= \lim_{\delta \to 0} \lim_{N \to \infty} \int_{\delta}^{N} \left[\int_{\mathbb{R}^{n}} f(x) (\mathcal{Q}_{t}^{*})^{2} (\mathcal{I} - P_{t}^{*}) (\mathcal{I} - P_{t}^{*}) g(x) dx \right] \frac{dt}{t}
$$
\n
$$
= \lim_{\delta \to 0} \lim_{N \to \infty} \int_{\mathbb{R}^{n}} f(x) \left[\int_{\delta}^{N} (\mathcal{Q}_{t}^{*})^{2} (\mathcal{I} - P_{t}^{*}) (\mathcal{I} - P_{t}^{*}) g(x) \frac{dt}{t} \right] dx
$$
\n
$$
= \lim_{\delta \to 0} \lim_{N \to \infty} \int_{\mathbb{R}^{n}} f_1(x) \left[\int_{\delta}^{N} (\mathcal{Q}_{t}^{*})^{2} (\mathcal{I} - P_{t}^{*}) (\mathcal{I} - P_{t}^{*}) g(x) \frac{dt}{t} \right] dx
$$
\n
$$
+ \lim_{\delta \to 0} \lim_{N \to \infty} \int_{\mathbb{R}^{n}} f_2(x) \left[\int_{\delta}^{N} (\mathcal{Q}_{t}^{*})^{2} (\mathcal{I} - P_{t}^{*}) (\mathcal{I} - P_{t}^{*}) g(x) \frac{dt}{t} \right] dx
$$
\n
$$
= I + II,
$$
\n(4.4)

where $f_1 = f \chi_{4B}$, $f_2 = f \chi_{(4B)^c}$ and χ_E stands for the characteristic function of $E \subseteq \mathbb{R}^n$. We first consider the term I. Since $g \in L^q(B)$, where $q = p/(p-1)$, we conclude

 $(\mathcal{I} - P_{r_B^m}^*) g \in \mathbb{L}^q$. By Lemma 4 (ii), we obtain

$$
(\mathcal{I} - P_{r_B^m}^*)g = \lim_{\delta \to 0} \lim_{N \to \infty} b_m \int_{\delta}^N (Q_{t^m}^*)^2 (\mathcal{I} - P_{t^m}^*) (\mathcal{I} - P_{r_B^m}^*) (g) \frac{dt}{t}
$$

in L*^q* . Hence,

$$
I = \lim_{\delta \to 0} \lim_{N \to \infty} \int_{\mathbb{R}^n} f_1(x) \left[\int_{\delta}^N (Q_{t^m}^*)^2 (I - P_{t^m}^*) (I - P_{t^m}^*)(g)(x) \frac{dt}{t} \right] dx
$$

= $b_m^{-1} \int_{\mathbb{R}^n} f_1(x) (I - P_{t^m}^*) g(x) dx.$

In order to estimate the term II, we need to show that for all $y \notin 4B$, there exists a constant $c = c(g, L)$ such that

$$
\sup_{\delta>0, N>0} \left| \int_{\delta}^{N} \left(\mathcal{Q}_{t^m}^* \right)^2 \left(\mathcal{I} - P_{t^m}^* \right) \left(\mathcal{I} - P_{t^m}^* \right) g(x) \frac{dt}{t} \right| \le c \left(1 + |x - x_0| \right)^{-(n+\epsilon)}.
$$
 (4.5)

To this end, set

$$
\Psi_{t,s}(L^*)h(y) = (2t^m + s^m)^3 \left(\frac{d^3 P_r^*}{dr^3} \bigg|_{r=2t^m+s^m} \left(\mathcal{I} - P_{t^m}^* \right) h \right)(y) .
$$

Note that

$$
\left(\mathcal{I}-P_{r_B^m}^*\right)g=m\int_0^{r_B}Q_{s^m}^*(g)s^{-1}\,ds\;.
$$

So, we use (2.3) and (2.4) to deduce

$$
\left| \int_{\delta}^{N} (Q_{t^m}^*)^2 (\mathcal{I} - P_{t^m}^*) (\mathcal{I} - P_{t^m}^*) g(x) \frac{dt}{t} \right|
$$

\n
$$
= \left| \int_{\delta}^{N} \int_{0}^{r_B} (Q_{t^m}^*)^2 Q_{s^m}^* (\mathcal{I} - P_{t^m}^*) g(x) \frac{ds \, dt}{st} \right|
$$

\n
$$
\leq c \int_{\delta}^{N} \int_{0}^{r_B} \left(\frac{t^{2m} s^m}{(t^m + s^m)^3} \right) |\Psi_{t,s}(L) g(x)| \frac{ds \, dt}{st}
$$

\n
$$
\leq c \int_{\delta}^{N} \int_{0}^{r_B} \left[\int_{B(x_0, r_B)} \left(\frac{t^{2m} s^m}{(t^m + s^m)^3} \right) \left(\frac{(t+s)^{\epsilon}}{(t+s+|x-y|)^{n+\epsilon}} \right) |g(y)| \, dy \right] \frac{ds \, dt}{st}.
$$

Because $x \notin 4B$ yields $|x - y| \ge |x - x_0|/2$, the inequality

$$
\frac{t^{2m} s^m (t+s)^{\epsilon}}{\left(t^m+s^m\right)^3} \leq c \min\left\{(ts)^{\epsilon/2}, t^{-\epsilon/2} s^{3\epsilon/2}\right\},\,
$$

together with Hölder's inequality and elementary integration, produces a positive constant *c* independent of δ , $N > 0$ such that for all $x \notin 4B$,

$$
\left| \int_{\delta}^{N} Q_{t^m}^2 (\mathcal{I} - P_{t^m}) g(y) \frac{dt}{t} \right| \leq c r_B^{\epsilon} |x - x_0|^{-(n+\epsilon)} \|g\|_{L^1}
$$

$$
\leq c r_B^{\epsilon + \frac{n}{2}} \|g\|_{L^2} |x - x_0|^{-(n+\epsilon)}.
$$

Accordingly, (4.5) follows readily.

We now estimate the term II. For $f \in M_p$, we derive $f \in L^p((1+|x|)^{-(n+\epsilon_0)} dx)$. The estimate (4.5) yields a constant $c > 0$ such that

$$
\sup_{\delta>0, N>0}\int_{\mathbb{R}^n}\left|f_2(x)\int_{\delta}^N (Q_{t^m}^*)^2(\mathcal{I}-P_{t^m}^*)(\mathcal{I}-P_{t^m}^*)(g)(x)\frac{dt}{t}\right|dx\leq c.
$$

This allows us to pass the limit inside the integral of II. Hence,

$$
\begin{split}\n\Pi &= \lim_{\delta \to 0} \lim_{N \to \infty} \int_{\mathbb{R}^n} f_2(x) \bigg[\int_{\delta}^N (Q_{t^m}^*)^2 (\mathcal{I} - P_{t^m}^*) (\mathcal{I} - P_{t^m}^*) (g)(x) \frac{dt}{t} \bigg] \, dx \\
&= \int_{\mathbb{R}^n} f_2(x) \bigg(\lim_{\delta \to 0} \lim_{N \to \infty} \bigg[\int_{\delta}^N (Q_{t^m}^*)^2 (\mathcal{I} - P_{t^m}^*) (\mathcal{I} - P_{t^m}^*) (g)(x) \frac{dt}{t} \bigg] \bigg) \, dx \\
&= b_m^{-1} \int_{\mathbb{R}^n} f_2(x) (\mathcal{I} - P_{t^m}^*) g(x) \, dx \, .\n\end{split}
$$

Combining the previous formulas for I and II, we obtain the identity (4.3).

 \Box

Remark 3. For a background of Proposition 4, see also [8, Proposition 5.1].

5. Description Through Littlewood-Paley Function

5.1 The Space $L^{p,\lambda}(\mathbb{R}^n)$ as the Dual of the Atomic Space

Following [28], we give the following definition.

Definition 3. Let $1 < p < \infty$, $q = p/(p-1)$ and $\lambda \in (0, n)$. Then

- (i) A complex-valued function *a* on \mathbb{R}^n is called a (q, λ) -atom provided:
	- (α) *a* is supported on an open ball $B \subset \mathbb{R}^n$ with radius r_B ;
	- $(β)$ $\int_{\mathbb{R}^n} a(x) dx = 0;$
	- (γ) $\|a\|_{\mathbf{L}^q} \leq r_B^{-\lambda/p}$.

(ii) $H^{q,\lambda}(\mathbb{R}^n)$ comprises those linear functionals admitting an atomic decomposition $f = \sum_{n=0}^{\infty} n a_n$, where q, λ are (q, λ) stams and $\sum_{n=0}^{\infty} |a_n| < 2\infty$ $\sum_{j=1}^{\infty} \eta_j a_j$, where a_j 's are (q, λ) -atoms, and $\sum_j |\eta_j| < \infty$.

The forthcoming result reveals that $H^{q,\lambda}(\mathbb{R}^n)$ exists as a predual of $L^{p,\lambda}(\mathbb{R}^n)$.

Proposition 5. Let $1 < p < \infty$, $q = p/(p-1)$ *and* $\lambda \in (0, n)$ *. Then* $L^{p,\lambda}(\mathbb{R}^n)$ *is the dual* $(H^{q,\lambda}(\mathbb{R}^n))^*$ *of* $H^{q,\lambda}(\mathbb{R}^n)$ *. More precisely, if* $h = \sum_j \eta_j a_j \in H^{q,\lambda}(\mathbb{R}^n)$ *then*

$$
\langle h, \ell \rangle = \lim_{k \to \infty} \sum_{j=1}^{k} \eta_j \int_{\mathbb{R}^n} a_j(x) \ell(x) \, dx
$$

is a well-defined continuous linear functional for each $\ell \in L^{p,\lambda}(\mathbb{R}^n)$, whose norm is equiv*alent to* $\|\ell\|_{L^{p,\lambda}}$ *; moreover, each continuous linear functional on* $H^{q,\lambda}(\mathbb{R}^n)$ *has this form.*

Proof. See [28, Proposition 5] for a proof of Proposition 5.

 \Box

5.2 Characterization of $L^{p,\lambda}(\mathbb{R}^n)$ by Means of Littlewood-Paley Function

We now state a full characterization of $L^{p,\lambda}(\mathbb{R}^n)$ space for $1 < p < \infty$ and $\lambda \in (0, n)$. For the case $p = 2$, see also [26, Lemma 2.1] as well as [25, Theorem 1 (i)].

Proposition 6. Let $1 < p < \infty$, $\lambda \in (0, n)$ and $f \in \mathcal{M}_{\sqrt{-\Delta}, p}$. Then the following two *conditions are equivalent:*

(i) $f \in L^{p,\lambda}(\mathbb{R}^n)$; (ii)

$$
I(f, p) = \sup_{B \subset \mathbb{R}^n} r_B^{-\frac{\lambda}{p}} \left\| \left\{ \int_0^{r_B} \left| t \frac{\partial}{\partial t} e^{-t \sqrt{-\Delta}} f(x) \right|^2 \frac{dt}{t} \right\}^{1/2} \right\|_{L^p(B)} < \infty,
$$

where the supremum is taken over all Euclidean open ball $B \subset \mathbb{R}^n$ *with radius* r_B *.*

Proof. It suffices to verify $(ii) \Rightarrow (i)$ for which the reverse implication follows readily from [11, Theorem 2.1]. Suppose (ii) holds. Proposition 5 suggests us to show f ∈ $(H^{\frac{p}{p-1},\lambda}(\mathbb{R}^n))^*$ in order to verify (i). Now, let *g* be a $(\frac{p}{p-1},\lambda)$ -atom and

$$
p_t(x) = \frac{c_n t}{(t^2 + |x|^2)^{\frac{n+1}{2}}}.
$$

Then for any open ball $B \subset \mathbb{R}^n$ with radius r_B and its tent

$$
T(B) = \left\{ (x, t) \in \mathbb{R}^{n+1}_+ : x \in B, t \in (0, r_B) \right\},\,
$$

we have (cf. [23, p. 183])

$$
|\langle f, g \rangle| = \left| \int_{\mathbb{R}^n} f(x)g(x) dx \right|
$$

= $4 \left| \int_{\mathbb{R}^n} \int_0^\infty \left(t \frac{\partial}{\partial t} p_t * f(x) \right) \left(t \frac{\partial}{\partial t} p_t * g(x) \right) \frac{dt dx}{t} \right|$
 $\leq 4 \left(I(B) + J(B) \right).$

Here,

$$
I(B) = \int_{4B} \int_0^{r_{4B}} \left| t \frac{\partial}{\partial t} p_t * f(x) \right| \left| t \frac{\partial}{\partial t} p_t * g(x) \right| \frac{dt \, dx}{t}
$$

\n
$$
\leq \left(\int_{4B} \left(\int_0^{r_{4B}} \left| t \frac{\partial}{\partial t} p_t * f(x) \right|^2 \frac{dt}{t} \right)^{\frac{p}{2}} dx \right)^{\frac{1}{p}}
$$

\n
$$
\times \left(\int_{4B} \left(\int_0^{r_{4B}} \left| t \frac{\partial}{\partial t} p_t * g(x) \right|^2 \frac{dt}{t} \right)^{\frac{p}{2(p-1)}} dx \right)^{\frac{p-1}{p}}
$$

\n
$$
\leq c r_B^{\frac{\lambda}{p}} I(f, p) \|g\|_{L^{\frac{p}{p-1}}(\mathbb{R}^n)}
$$

\n
$$
\leq c I(f, p),
$$

due to Hölder's inequality, the L^{p-1} -boundedness of the Littlewood-Paley G-function, and *g* being a $(\frac{p}{p-1}, \lambda)$ -atom.

Meanwhile,

$$
J(B) = \sum_{k=1}^{\infty} \int_{T(2^{k+1}B)\backslash T(2^{k}B)} \left| t \frac{\partial}{\partial t} p_{t} * f(x) \right| \left| t \frac{\partial}{\partial t} p_{t} * g(x) \right| \frac{dt \, dx}{t}
$$

\n
$$
\leq c \sum_{k=1}^{\infty} \left\| \left\{ \int_{0}^{2^{k+1}r_{B}} \left| t \frac{\partial}{\partial t} p_{t} * f(x) \right|^{2} \frac{dt}{t} \right\}^{\frac{1}{2}} \right\|_{L^{p}(2^{k+1}B)}
$$

\n
$$
\times \left\| \left\{ \int_{0}^{2^{k+1}r_{B}} \left| t \frac{\partial}{\partial t} p_{t} * g(x) \right|^{2} \frac{dt}{t} \right\}^{\frac{1}{2}} \right\|_{L^{\frac{p}{p-1}}(2^{k+1}B)}
$$

\n
$$
\leq c \sum_{k=1}^{\infty} (2^{k}r_{B})^{\frac{\lambda}{p}} I(f, p) 2^{-\frac{kn}{p}} r_{B}^{-\frac{\lambda}{p}}
$$

\n
$$
\leq cf(f, p),
$$

for which we have used the Hölder inequality and the fact that if $|y - x| \ge 2^k r_B$ then

$$
\left| t \frac{\partial}{\partial t} p_t * g(x) \right| \le \frac{ct^3 \|g\|_{L^1(B)}}{\left(2^k r_B\right)^{3+n}} \le \frac{ct^3 r_B^{\frac{n-\lambda}{p}}}{\left(2^k r_B\right)^{3+n}}
$$

for the $(\frac{p}{p-1}, \lambda)$ -atom *g*. Accordingly, $f \in L^{p,\lambda}(\mathbb{R}^n)$.

 $\qquad \qquad \Box$

5.3 Characterization of $L_L^{p,\lambda}(\mathbb{R}^n)$ by Means of Littlewood-Paley Function

Of course, it is natural to explore a characterization of $L_L^{p,\lambda}(\mathbb{R}^n)$ similar to Proposition 6.

Proposition 7. Let $1 < p < \infty$, $\lambda \in (0, n)$ *and* $f \in M_p$ *. Assume that L satisfies the Assumptions (a) and (b) of Section 2.2. Then the following two conditions are equivalent:* (i) $f \in L_L^{p,\lambda}(\mathbb{R}^n)$;

(ii)

$$
\|f\|_{L^{p,\lambda}_L} = \sup_{B \subset \mathbb{R}^n} r_B^{-\frac{\lambda}{p}} \left\| \left\{ \int_0^{r_B} |Q_{t^m}(\mathcal{I} - P_{t^m}) f(x)|^2 \frac{dt}{t} \right\}^{1/2} \right\|_{L^p(B)} < \infty,
$$

where the supremum is taken over all Euclidean open ball $B \subset \mathbb{R}^n$ *with radius* r_B *.*

Proof.

(i)⇒(ii). Suppose $f \in L_L^{p,\lambda}(\mathbb{R}^n)$. Note that

$$
Q_{t^m}(\mathcal{I}-P_{t^m})=Q_{t^m}(\mathcal{I}-P_{t^m})(\mathcal{I}-P_{r_B^m})+Q_{t^m}(\mathcal{I}-P_{t^m})P_{r_B^m}.
$$

So, we turn to verify both

$$
\left\| \left\{ \int_0^{r_B} \left| Q_{t^m} (\mathcal{I} - P_{t^m}) (\mathcal{I} - P_{t^m}^*) f(x) \right|^2 \frac{dt}{t} \right\}^{1/2} \right\|_{\mathcal{L}^p(B)} \leq c r_B^{\frac{\lambda}{p}} \| f \|_{\mathcal{L}_L^{p,\lambda}} \tag{5.1}
$$

and

$$
\left\| \left\{ \int_0^{r_B} \left| Q_{t^m} (\mathcal{I} - P_{t^m}) P_{r_B^m} f(x) \right|^2 \frac{dt}{t} \right\}^{1/2} \right\|_{\mathcal{L}^p(B)} \leq c r_B^{\frac{\lambda}{p}} \| f \|_{\mathcal{L}^{p,\lambda}_{\mathcal{L}}}, \tag{5.2}
$$

.

thereby proving (ii). To do so, we will adapt the argument on pp. 85–86 of [14] to present situation—see also p. 955 of [8]. To prove (5.1), let us consider the square function $\mathcal{G}(h)$ given by

$$
\mathcal{G}(h)(x) = \left(\int_0^\infty \left|Q_{t^m}(\mathcal{I} - P_{t^m})h(x)\right|^2 \frac{dt}{t}\right)^{1/2}
$$

From (2.7), the function $\mathcal{G}(h)$ is bounded on $L^p(\mathbb{R}^n)$ for $1 < p < \infty$. Let $b = b_1 + b_2$, where $b_1 = (\mathcal{I} - P_{r_B^m}) f \chi_{2B}$, and $b_2 = (\mathcal{I} - P_{r_B^m}) f \chi_{(2B)^c}$. Using Lemma 3, we obtain

$$
\left\| \left\{ \int_0^{r_B} |\mathcal{Q}_{t^m}(\mathcal{I} - P_{t^m}) b_1(x)|^2 \frac{dt}{t} \right\}^{1/2} \right\|_{L^p(B)} \n\leq \left\| \left\{ \int_0^{\infty} |\mathcal{Q}_{t^m}(\mathcal{I} - P_{t^m}) b_1(x)|^2 \frac{dt}{t} \right\}^{1/2} \right\|_{L^p} \n\leq c \| \mathcal{G}(b_1) \|_{L^p} \n\leq c \| b_1 \|_{L^p} \n= c \left(\int_{2B} \left| (\mathcal{I} - P_{r_B^m}) f(x)|^p dx \right)^{1/p} \n\leq c \left(\int_{2B} \left| (\mathcal{I} - P_{r_B^m}) f(x)|^p dx \right)^{1/p} + c r_B^{n/p} \sup_{x \in 2B} \left| P_{r_B^m} f(x) - P_{r_{2B}^m} f(x) \right|^p \n\leq c r_B^{\frac{1}{p}} \| f \|_{L^p_L}.
$$
\n(5.3)

On the other hand, for any $x \in B$ and $y \in (2B)^c$, one has $|x - y| \ge r_B$. From Proposition 2, we obtain

$$
|Q_{t^m}(\mathcal{I} - P_{t^m})b_2(x)| \leq c \int_{\mathbb{R}^n \setminus 2B} \frac{t^{\epsilon}}{(t + |x - y|)^{n + \epsilon}} \left| (\mathcal{I} - P_{r_B^m}) f(y) \right| dy
$$

\n
$$
\leq c \Big(\frac{t}{r_B} \Big)^{\epsilon} \int_{\mathbb{R}^n} \frac{r_B^{\epsilon}}{(r_B + |x - y|)^{n + \epsilon}} \left| (\mathcal{I} - P_{r_B^m}) f(y) \right| dy
$$

\n
$$
\leq c \Big(\frac{t}{r_B} \Big)^{\epsilon} r_B^{\frac{\lambda - n}{p}} \|f\|_{L_L^{p,\lambda}},
$$

which implies

$$
\left\| \left\{ \int_0^{r_B} |Q_{t^m}(\mathcal{I} - P_{t^m}) b_2(x)|^2 \frac{dt}{t} \right\}^{1/2} \right\|_{L^p(B)} \leq c r_B^{\frac{\lambda}{p}} \|f\|_{L^{p,\lambda}_L}.
$$

This, together with (5.3), gives (5.1).

Next, let us check (5.2). This time, we have $0 < t < r_B$, whence getting from Lemma 3 that for any $x \in \mathbb{R}^n$,

$$
\left|P_{\frac{1}{2}r_{B}^{m}}f(x)-P_{(t^{m}+\frac{1}{2}r_{B}^{m})}f(x)\right|\leq c r_{B}^{\frac{\lambda-n}{p}}\|f\|_{L_{L}^{p,\lambda}}.
$$

By (2.4), the kernel $K_{t,r_B}(x, y)$ of the operator

$$
Q_{t^m} P_{\frac{1}{2}r_B^m} = \frac{t^m}{t^m + \frac{1}{2}r_B^m} Q_{(t^m + \frac{1}{2}r_B^m)}
$$

satisfies

$$
|K_{t,r_B}(x, y)| \leq c \left(\frac{t}{r_B}\right)^m \frac{r_B^{\epsilon}}{(r_B+|x-y|)^{n+\epsilon}}.
$$

Using the commutative property of the semigroup ${e^{-tL}}_{t>0}$ and the estimate (2.4), we deduce

$$
\begin{split} \left| Q_{t^m}(\mathcal{I} - P_{t^m}) P_{r_B^m} f(x) \right| &= \left| Q_{t^m} P_{\frac{1}{2}r_B^m} (P_{\frac{1}{2}r_B^m} - P_{(t^m + \frac{1}{2}r_B^m)}) f(x) \right| \\ &\le c \Big(\frac{t}{r_B} \Big)^m \int_{\mathbb{R}^n} \frac{r_B^{\epsilon}}{(r_B + |x - y|)^{n + \epsilon}} \left| (P_{\frac{1}{2}r_B^m} - P_{(t^m + \frac{1}{2}r_B^m)}) f(y) \right| dy \\ &\le c \Big(\frac{t}{r_B} \Big)^m \frac{\lambda - n}{r_B} \left| |f| \right|_{\mathcal{L}_L^{p,\lambda}}, \end{split}
$$

whence deriving

$$
\left\| \left\{ \int_0^{r_B} \left| Q_{t^m}(\mathcal{I} - P_{t^m}) P_{r_B^m} f(x) \right|^2 \frac{dt}{t} \right\}^{1/2} \right\|_{L^p(B)} \leq c r_B^{\frac{\lambda}{p}} \|f\|_{L^{p,\lambda}_L}.
$$

This gives (5.2) and consequently (ii).

(ii)⇒(i). Suppose (ii) holds. The duality argument for L*^p* shows that for any open ball $B \subset \mathbb{R}^n$ with radius r_B ,

$$
\left(r_B^{-\lambda} \int_B |f(x) - P_{r_B^m} f(x)|^p dx\right)^{1/p} = \sup_{\|g\|_{L^q(B) \le 1}} r_B^{-\lambda/p} \left| \int_{\mathbb{R}^n} (I - P_{r_B^m}) f(x) g(x) dx \right|
$$

=
$$
\sup_{\|g\|_{L^q(B) \le 1}} r_B^{-\lambda/p} \left| \int_{\mathbb{R}^n} f(x) (I - P_{r_B^m}) g(x) dx \right|.
$$
 (5.4)

Using the identity (4.3), the estimate (4.2) and the Hölder inequality, we have

$$
\left| \int_{\mathbb{R}^n} f(x) (\mathcal{I} - P_{r_B^m}^*) g(x) dx \right| \le c \int_{\mathbb{R}_+^{n+1}} |Q_{t^m} (\mathcal{I} - P_{t^m}) f(x) Q_{t^m}^* (\mathcal{I} - P_{r_B^m}^*) g(x) | \frac{dx dt}{t}
$$

$$
\le c r_B^{\lambda/p} \| f \|_{\mathcal{L}_L^{p,\lambda}} \| g \|_{\mathcal{L}^q} . \tag{5.5}
$$

Substituting (5.5) back to (5.4), by Definition 1 we find a constant $c > 0$ such that

$$
||f||_{L_L^{p,\lambda}} \leq c||f||_{L_L^{p,\lambda}} < \infty.
$$

This just proves $f \in L_L^{p,\lambda}(\mathbb{R}^n)$, thereby yielding (i).

Remark 4. In the case of $p = 2$, we can interpret Proposition 7 as a measure-theoretic characterization, namely, $f \in L_L^{2,\lambda}(\mathbb{R}^n)$ when and only when

$$
d\mu_f(x,t) = |Q_{t^m}(\mathcal{I} - P_{t^m})f(x)|^2 \frac{dx\,dt}{t}
$$

is a *λ*-Carleson measure on \mathbb{R}^{n+1}_+ . According to [10, Lemma 4.1], we find further that $f \in L^{2,\lambda}_L(\mathbb{R}^n)$ is equivalent to

$$
\sup_{(y,s)\in\mathbb{R}^{n+1}_+} \int_{\mathbb{R}^{n+1}_+} \left(\frac{s}{(|x-y|^2 + (t+s)^2)^{\frac{n+1}{2}}} \right)^{\lambda} d\mu_f(x,t) < \infty.
$$

5.4 A Sufficient Condition for $L_L^{p,\lambda}(\mathbb{R}^n) = L^{p,\lambda}(\mathbb{R}^n)$

In what follows, we assume that *L* is a linear operator of type ω on $L^2(\mathbb{R}^n)$ with $\omega < \pi/2$ hence *L* generates an analytic semigroup e^{-zL} , $0 \leq |\text{Arg}(z)| < \pi/2 - \omega$. We also assume that for each $t > 0$, the kernel $p_t(x, y)$ of e^{-tL} is Hölder continuous in both variables *x*, *y* and there exist positive constants *m*, $\beta > 0$ and $0 < \gamma \le 1$ such that for all $t > 0$, and *x*, *y*, $h \in \mathbb{R}^n$,

$$
|p_t(x, y)| \le \frac{ct^{\beta/m}}{\left(t^{1/m} + |x - y|\right)^{n+\beta}} \quad \forall \, t > 0, \, x, y \in \mathbb{R}^n \,, \tag{5.6}
$$
\n
$$
|p_t(x+h, y) - p_t(x, y)| + |p_t(x, y+h) - p_t(x, y)|
$$
\n
$$
\le \frac{c|h|^{\gamma}t^{\beta/m}}{\left(t^{1/m} + |x - y|\right)^{n+\beta+\gamma}} \quad \forall \, h \in \mathbb{R}^n \quad \text{with} \quad 2|h| \le t^{1/m} + |x - y| \,, \tag{5.7}
$$

and

$$
\int_{\mathbb{R}^n} p_t(x, y) dx = \int_{\mathbb{R}^n} p_t(x, y) dy = 1 \quad \forall \, t > 0 \,.
$$
\n(5.8)

Proposition 8. Let $1 < p < \infty$ *and* $\lambda \in (0, n)$ *. Given an operator L which generates a semigroup e*−*tL with the heat kernel bounds* (2.2) *and* (2.3)*. Assume that L satisfies the conditions* (5.6)*,* (5.7)*, and* (5.8)*.* Then $L_L^{p,\lambda}(\mathbb{R}^n)$ and $L^{p,\lambda}(\mathbb{R}^n)$ *coincide, and their norms are equivalent.*

 \Box

Proof. Since Proposition 1 tells us that $L^{p,\lambda}(\mathbb{R}^n) \subseteq L_L^{p,\lambda}(\mathbb{R}^n)$ under the above-given conditions, we only need to check $L_L^{p,\lambda}(\mathbb{R}^n) \subseteq L^{p,\lambda}(\mathbb{R}^n)$. Note that $L^{p,\lambda}(\mathbb{R}^n)$ is the dual of $H^{q,\lambda}(\mathbb{R}^n)$, $q = p/(p-1)$. It reduces to prove that if $f \in L_L^{p,\lambda}(\mathbb{R}^n)$, then $f \in (H^{q,\lambda}(\mathbb{R}^n))^*$. Let *g* be a (q, λ) -atom. Using the conditions (5.6), (5.7), and (5.8) of the operator L, together with the properties of (q, λ) -atom of *g*, we can follow the argument for Lemma 4 (ii) to verify

$$
\int_{\mathbb{R}^n} f(x)g(x) dx = b_m \int_{\mathbb{R}^{n+1}_+} Q_{t^m} (\mathcal{I} - P_{t^m}) f(x) Q_{t^m}^* g(x) \frac{dx dt}{t} \text{ where } b_m = \frac{36m}{5}.
$$

Consequently,

$$
\begin{array}{rcl}\n|(f,g)| & = & \left| \int_{\mathbb{R}^n} f(x)g(x) \, dx \right| \\
& = & \left| \int_{\mathbb{R}^{n+1}_+} Q_{t^m}(\mathcal{I} - P_{t^m}) f(x) Q_{t^m}^* g(x) \frac{dx \, dt}{t} \right| \\
& \leq & \int_{T(2B)} \left| Q_{t^m}(\mathcal{I} - P_{t^m}) f(x) Q_{t^m}^* g(x) \right| \frac{dx \, dt}{t} \\
& + \sum_{k=1}^\infty \int_{T(2^{k+1}B) \backslash T(2^k B)} \left| Q_{t^m}(\mathcal{I} - P_{t^m}) f(x) Q_{t^m}^* g(x) \right| \frac{dx \, dt}{t} \\
& = & D_1 + \sum_{k=2}^\infty D_k \, .\n\end{array}
$$

Define the Littlewood-Paley function G*h* by

$$
\mathcal{G}(h)(x) = \left[\int_0^\infty \left| Q_{t^m}^* h(x) \right|^2 \frac{dt}{t} \right]^{1/2}.
$$

By (2.7), G is bounded on $L^p(\mathbb{R}^n)$ for $1 < p < \infty$.

Following the proof of Lemma 4 (i), together with the property ($γ$) of (q , $λ$)-atom g , we derive

$$
D_1 \leq \left\| \left\{ \int_0^{r_{2B}} \left| Q_{t^m}(\mathcal{I} - P_{t^m}) f(x) \right|^2 \frac{dt}{t} \right\}^{1/2} \right\|_{\mathcal{L}^p(2B)} \left\| \left\{ \int_0^{r_{2B}} \left| Q_{t^m}^* g(x) \right|^2 \frac{dt}{t} \right\}^{1/2} \right\|_{\mathcal{L}^q(2B)} \n\leq \left\| \left\{ \int_0^{r_{2B}} \left| Q_{t^m}(\mathcal{I} - P_{t^m}) f(x) \right|^2 \frac{dt}{t} \right\}^{1/2} \right\|_{\mathcal{L}^p(2B)} \|\mathcal{G}(g)\|_{\mathcal{L}^q} \n\leq cr_p^{\frac{\lambda}{p}} \|f\|_{\mathcal{L}_L^{p,\lambda}} \|g\|_{\mathcal{L}^q} \leq c \|f\|_{\mathcal{L}_L^{p,\lambda}}.
$$

On the other hand, we note that for $x \in 2^{k+1}B\backslash 2^kB$ and $y \in B$, we have that $|x - y| \ge$ $2^{k-1}r_B$. Using the estimate (2.4) and the properties (*(a)* and (*γ)* of (*q, λ*)-atom *g*, we obtain

$$
\begin{array}{rcl} \left| \mathcal{Q}_{t^m}^* g(x) \right| & \leq & c \int_B \frac{t^{\epsilon}}{(t + |x - y|)^{n + \epsilon}} |g(y)| \, dy \\ & \leq & \frac{ct^{\epsilon}}{\left(2^k r_B\right)^{n + \epsilon}} \int_B |g(y)| \, dy \\ & \leq & \left(\frac{ct^{\epsilon}}{\left(2^k r_B\right)^{n + \epsilon}}\right) r_B^{\frac{n - \lambda}{p}}, \end{array}
$$

which implies

$$
\left\| \left\{ \int_0^{2^k r_B} \left| \mathcal{Q}_{t^m}^* g(x) \chi_{T(2^{k+1}B) \backslash T(2^k B)} \right|^2 \frac{dt}{t} \right\}^{1/2} \right\|_{\mathrm{L}^q(2^k B)} \leq c 2^{kn(\frac{1}{q}-1)} r_B^{-\frac{\lambda}{p}} \; .
$$

Therefore,

$$
D_k \leq \left\| \left\{ \int_0^{2^k r_B} |Q_{t^m} (\mathcal{I} - P_{t^m}) f(x)|^2 \frac{dt}{t} \right\}^{1/2} \right\|_{L^p(2^k B)} \times \left\| \left\{ \int_0^{2^k r_B} |Q_{t^m}^* g(x) \chi_{T(2^{k+1}B) \setminus T(2^k B)}|^2 \frac{dt}{t} \right\}^{1/2} \right\|_{L^q(2^k B)} \n\leq c (2^k r_B)^{\frac{\lambda}{p}} 2^{kn(\frac{1}{q}-1)} r_B^{-\frac{\lambda}{p}} \|f\|_{L^{p,\lambda}_L} \n\leq c 2^{\frac{k(\lambda - n)}{p}} \|f\|_{L^{p,\lambda}_L}.
$$

Since $\lambda \in (0, n)$, we have

$$
|\langle f, g \rangle| \le c \|f\|_{L_L^{p,\lambda}} + c \sum_{k=1}^{\infty} 2^{\frac{k(\lambda - n)}{p}} \|f\|_{L_L^{p,\lambda}} \le c \|f\|_{L_L^{p,\lambda}}.
$$

This, together with Proposition 5, implies $f \in (H^{q,\lambda}(\mathbb{R}^n))^* = L^{p,\lambda}(\mathbb{R}^n)$.

 \Box

References

- [1] Adams, D. R. and Xiao, J. (2004). Nonlinear potential analysis on Morrey spaces and their capacities, *Indiana Univ. Math. J.* **53**, 1629–1663.
- [2] Albrecht, D., Duong, X. T., and McIntosh, A. (1996). Operator theory and harmonic analysis, *Workshop in Analysis and Geometry 1995,* Proceedings of the Centre for Mathematics and its Applications, ANU, **34**, 77–136.
- [3] Auscher, P., Duong, X. T., and McIntosh, A. (2005). Boundedness of Banach space valued singular integral operators and Hardy spaces, preprint.
- [4] Campanato, S. (1964). Proprietà di una famiglia di spazi funzionali, *Ann Scuola Norm. Sup. Pisa (3)* **18**, 137–160.
- [5] Deng, D. G., Duong, X. T., and Yan, L. X. (2005). A characterization of the Morrey-Campanato spaces, *Math. Z.* **250**, 641–655.
- [6] Duong, X. T. and McIntosh, A. (1999). Singular integral operators with nonsmooth kernels on irregular domains, *Rev. Mat. Iberoamericana* **15**, 233–265.
- [7] Duong, X. T. and Yan, L. X. (2005). New function spaces of BMO type, the John-Nirenberg inequality, interpolation and applications, *Comm. Pure Appl. Math.* **58**, 1375–1420.
- [8] Duong, X. T. and Yan, L. X. (2005). Duality of Hardy and BMO spaces associated with operators with heat kernel bounds, *J. Amer. Math. Soc.* **18**, 943–973.
- [9] Duong, X. T. and Yan, L. X. (2005). New Morrey-Campanato spaces associated with operators and applications, preprint.
- [10] Essén, M., Janson, S., Peng, L., and Xiao, J. (2000). *Q* Spaces of several real variables, *Indiana Univ. Math. J.* **49**, 575–615.
- [11] Fabes, E. B., Johnson, R. L., and Neri, U. (1976). Spaces of harmonic functions representable by Poisson integrals of functions in BMO and $\mathcal{L}_{p,\lambda}$, *Indiana Univ. Math. J.* **25**, 159–170.
- [12] Janson, S., Taibleson, M. H., and Weiss, G. (1983). Elementary characterizations of the Morrey-Campanato spaces, *Lecture Notes in Math.* **992**, 101–114.

- [13] John, F. and Nirenberg, L. (1961). On functions of bounded mean oscillation, *Comm. Pure Appl. Math.* **14**, 415–426.
- [14] Journé, J. L. (1983). Calderón-Zygmund operators, pseudo-differential operators and the Cauchy integral of Calderón, *Lecture Notes in Math.* **994**, Springer, Berlin-New York.
- [15] Leutwiler, H. (1989). BMO on harmonic spaces, *Univ. Joensuu Dept. Math. Rep. Ser.* **14**, 71–78.
- [16] Martell, J. M. (2004). Sharp maximal functions associated with approximations of the identity in spaces of homogeneous type and applications, *Studia Math.* **161**, 113–145.
- [17] McIntosh, A. (1986). Operators which have an *H*∞ functional calculus, *Miniconference on Operator Theory and Partial Differential Equations,* Proceedings of the Centre for Mathematical Analysis, ANU, **14**, 210–231.
- [18] Morrey, C. B. (1943). Multiple integral problems in the calculus of variations and related topics, *Univ. of California Publ. Math. (N.S.)* **1**, 1–130.
- [19] Ouhabaz, E. M. (2004). Analysis of heat equations on domains, *London Math. Soc. Monogr. (N. S.)* **31**, Princeton University Press.
- [20] Peetre, J. (1969). On the theory of $\mathcal{L}_{p,\lambda}$ spaces, *J. Funct. Anal.* **4**, 71–87.
- [21] Spanne, S. (1965). Some function spaces defined by using the mean oscillation over cubes, *Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)* **19**, 593–608.
- [22] Stampacchia, G. (1964). $\mathcal{L}^{(p,\lambda)}$ spaces and interpolation, *Comm. Pure Appl. Math.* **17**, 293–306.
- [23] Stein, E. M. (1993). *Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals,* Princeton University Press, Princeton, NJ.
- [24] Taylor, M. E. (1992). Analysis of Morrey spaces and applications to Navier-Stokes and other evolution equations, *Comm. Partial Differential Equations* **17**, 1407–1456.
- [25] Wu, Z. J. and Xie, C. P. (2003). *Q* spaces and Morrey spaces, *J. Funct. Anal.* **201**, 282–297.
- [26] Xiao, J. (2006). Affine variant of fractional Sobolev space with application to Navier-Stokes system, arXiv:math.AP/0608578.
- [27] Yosida, K. (1978). *Functional Analysis,* fifth ed. Spring-Verlag, Berlin.
- [28] Zorko, C. T. (1986). Morrey space, *Proc. Amer. Math. Soc.* **98**, 586–592.

Received July 19, 2006

Department of Mathematics, MacQuarie University, NSW 2109, Australia e-mail: duong@ics.mq.edu.au

Department of Mathematics and Statistics, Memorial University of Newfoundland St. John's, NL, A1C 5S7, Canada e-mail: jxiao@math.mun.ca

Department of Mathematics, Zhongshan University, Guangzhou 510275, P. R. China e-mail: mcsylx@mail.sysu.edu.cn