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ABSTRACT. We develop a general condition for automatically discretizing strong type bisublin-
ear maximal estimates that arise in the context of the real line. In particular, this method applies
directly to Michael Lacey’s strong type boundedness results for the bisublinear maximal Hilbert
transform and for the bisublinear Hardy-Littlewood maximal operator, furnishing the counterpart
of each of these two results (without changes to the range of exponents) for the sequence spaces
�p (Z). We then take up some transference applications of discretized maximal bisublinear op-
erators to maximal estimates and almost everywhere convergence in Lebesgue spaces of abstract
measures. We also broaden the scope of such applications, which are based on transference from
Z, by developing general methods for transplanting bisublinear maximal estimates from arbitrary
locally compact abelian groups.

1. Introduction

In [10] and [11] R. R. Coifman and G. Weiss expanded the scope of A. P. Calderón’s seminal
techniques in [9] by developing a wide framework for transferring operators, along with
their bounds, from groups to the setting of measure spaces. The resulting “transference”
methodology has been developed and its scope extended by many authors, providing a versa-
tile overview for systematically expanding the role of harmonic analysis throughout modern
analysis, including abstract Banach spaces. In particular, the transference of individual mul-
tilinear operators to measure spaces was introduced in [17], and recently, in [7], the general
transference of individual bilinear operators was further developed, branching out to dis-
cretization techniques and to transference applications of the Lacey-Thiele result [27, 28]
that established the boundedness of the bilinear Hilbert transform for the real line.
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The theme of our considerations below will be the transference of strong type bisublin-
ear maximal estimates and their consequent applications to almost everywhere convergence.
We start off by developing in Theorem 1 below a sufficient condition for the automatic dis-
cretization of bisublinear maximal estimates which arise in the context of the real line R. We
then show how discrete bisublinear maximal estimates can be transferred to the Lebesgue
spaces of abstract measures via isomeries of the Lebesgue spaces—with consequent appli-
cations to almost everywhere convergence such as the almost everywhere convergence of the
discrete bilinear ergodic Hilbert averages defined by any translation operator in the setting
of an arbitrary locally compact abelian group (Theorem 12). We thereafter use separation-
preserving operators to go beyond the discrete context by developing general methods for
transferring bisublinear maximal estimates from arbitrary locally compact abelian groups
to Lebesgue spaces of abstract sigma-finite measures.

Our central discretization result in Theorem 1 below yields, in particular, the coun-
terparts for the sequence spaces �p (Z) of Michael Lacey’s strong type boundedness re-
sults in [26] for the bisublinear maximal Hilbert transform and for the bisublinear Hardy-
Littlewood maximal operator. The resultant discrete bisublinear maximal Hilbert transform
and discrete bisublinear Hardy-Littlewood maximal operator (described in Theorems 4
and 5) then serve as concrete models covered by our transference results. While we shall
indicate the role of the discrete bisublinear Hardy-Littlewood maximal operator in such mat-
ters, our emphasis will be on the discrete bisublinear maximal Hilbert transform, inasmuch
as the recent article [14] is devoted to multisublinear versions of the Hardy-Littlewood
maximal operator, including their discretization and transference by measure-preserving
transformations to discrete dynamical systems.

For convenience in formulating the central discretization result in Theorem 1, we now
take up a few items of notation.

Definition 1. For K ∈ L1 (R), we shall denote by SK the bilinear mapping of L2 (R)×
L2 (R) into L1 (R) specified by

(SK (f, g)) (x) =
∫

R

f (x + y) g (x − y)K (y) dy . (1.1)

Given a sequence
{
Kj
}∞
j=1 ⊆L1 (R), the corresponding bisublinear maximal operator will

be symbolized by S�{Kj }. Thus, for f, g ∈ L2 (R), and almost all x ∈ R,(
S
�

{Kj } (f, g)
)
(x) = sup

j∈N

∣∣(SKj (f, g)) (x)∣∣ . (1.2)

Definition 2. Let K = {Kn}∞n=−∞ be a sequence of complex numbers belonging to
�1 (Z), and suppose that 0 < p1,p2 ≤ ∞. Since �∞ (Z) contains �p1 (Z)

⋃
�p2 (Z), it is

clear that for all a ∈ �p1 , all b ∈ �p2 (Z), and all m ∈ Z,
∞∑

n=−∞
|am+nbm−nKn| < ∞ ,

and we shall denote by SK the bilinear mapping which takes �p1 (Z) × �p2 (Z) into the
complex-valued sequences defined on Z, and which is specified for all a ∈ �p1 , all b ∈
�p2 (Z), and all m ∈ Z by putting

(SK (a, b)) (m) =
∞∑

n=−∞
am+nbm−nKn . (1.3)
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Given a sequence
{K(j)

}∞
j=1 of elements of �1 (Z), the corresponding bisublinear maximal

operator will be symbolized by S
�

{K(j)}, and so for a ∈ �p1 , b ∈ �p2 (Z), and m ∈ Z,

(
S
�

{K(j)} (a, b)
)
(m) = sup

j∈N

∣∣(SK(j) (a, b)
)
(m)
∣∣ . (1.4)

The linear space of all complex-valued bilateral sequences which have finite support
will be denoted by �0 (Z). Notice that if K ∈�1 (Z), then SK maps �0 (Z) × �0 (Z) into

�0 (Z). Throughout all that follows, let I designate the closed interval
[
− 1

4
,

1

4

]
in R, and

for each m ∈ Z, let Im = I +m.

Remark 1. Suppose thatK ∈ L1 (R), and that for each n ∈ Z, the restrictionK |In has
a continuous derivative (in symbols, (K |In ) ∈ C1 (In)). Put∥∥(K |In )′

∥∥
u

= sup
x∈In

∣∣(K |In )′ (x)
∣∣ .

The following elementary argument shows that if
{∥∥(K |In )′

∥∥
u

} ∈ �1 (Z), then the se-
quence K ≡ {K (n)}∞n=−∞ ∈ �1 (Z) [and hence the bilinear form SK specified in (1.1) can
be discretized to the bilinear form SK given by (1.3)]. For each n ∈ Z,

|K (n)|
2

≤
∫
In

|K (n)−K (y)| dy +
∫
In

|K (y)| dy ,

and since for each y ∈ In,

|K (y)−K (n)| =
∣∣∣∣
∫ y

n

K ′ (t) dt
∣∣∣∣ ≤ ∥∥(K |In )′

∥∥
u
|y − n| , (1.5)

we have

|K (n)|
2

≤ ∥∥(K |In )′
∥∥
u

∫
In

|y − n| dy +
∫
In

|K (y)| dy

=
∥∥(K |In )′

∥∥
u

16
+
∫
In

|K (y)| dy .

We can now state our fundamental discretization theorem (whose demonstration will
be deferred to Section 2).

Theorem 1. Suppose that

0 < p1, p2, p3 ≤ ∞ ; (1.6)

1

p1
+ 1

p2
= 1

p3
. (1.7)

Let
{
Kj
}∞
j=1 be a sequence of functions belonging to L1 (R) such that for some constant C

(depending on p1, p2, and
{
Kj
}∞
j=1) we have∥∥∥S�{Kj } (f, g)
∥∥∥
Lp3 (R)

≤ C ‖f ‖Lp1 (R) ‖g‖Lp2 (R) , (1.8)

for all f ∈ Lp1 (R)
⋂
L2 (R) , all g ∈ Lp2 (R)

⋂
L2 (R) .
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Assume that for each j ∈ N, the restriction
(
Kj |In

)
belongs to C1 (In) for each n ∈ Z,

and define

An = An

({
Kj
}∞
j=1

)
by putting

An = sup
{∣∣∣(Kj |In

)′
(x)

∣∣∣ : j ∈ N, x ∈ In
}

. (1.9)

Let p∗ = min (p3, 1), and suppose that

{An}∞n=−∞ ∈ �p∗
(Z) . (1.10)

Then the following conclusions hold.

(i) For each j ∈ N, �1 (Z) contains the sequence of complex numbers K(j) ≡{K(j)
n

}∞
n=−∞specified by taking

K(j)
n = Kj (n) , for all n ∈ Z .

(ii) The discrete bisublinear maximal operator S
�

{K(j)} specified by (1.4) satisfies a

strong type estimate∥∥∥S�

{K(j)} (a, b)
∥∥∥
�p3 (Z)

≤ η ‖a‖�p1 (Z) ‖b‖�p2 (Z) , (1.11)

for all a ∈ �p1 (Z) , and all b ∈ �p2 (Z) ,

where η is a constant depending only on p1, p2, and
{
Kj
}∞
j=1.

As will be discussed shortly, Theorem 1 readily furnishes discrete counterparts to
the following two boundedness results of Michael Lacey [26] for the bisublinear maximal
Hilbert transform and for the bisublinear Hardy-Littlewood maximal operator.

Theorem 2. Suppose that

1 < p1, p2 ≤ ∞ ; (1.12)

1

p1
+ 1

p2
= 1

p3
; (1.13)

2

3
< p3 < ∞ . (1.14)

For f ∈ Lp1 (R)
⋂
L2 (R), g ∈ Lp2 (R)

⋂
L2 (R), let

H (f, g) (x) = sup
0<ε<δ<∞

∣∣∣∣
∫
ε<|y|<δ

f (x + y) g (x − y)

y
dy

∣∣∣∣ , for all x ∈ R . (1.15)

Then there is a constant Ap1,p2 , depending only on p1 and p2, such that

‖H (f, g)‖Lp3 (R) ≤ Ap1,p2 ‖f ‖Lp1 (R) ‖g‖Lp2 (R) , (1.16)

for all f ∈ Lp1 (R)
⋂
L2 (R) , g ∈ Lp2 (R)

⋂
L2 (R) .
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Theorem 3. Suppose that

1 < p1, p2 < ∞ ; (1.17)

1

p1
+ 1

p2
= 1

p3
<

3

2
. (1.18)

For f ∈ Lp1 (R)
⋂
L2 (R), g ∈ Lp2 (R)

⋂
L2 (R), let

M (f, g) (x) = sup
t>0

1

2t

∫ t

−t
|f (x + y) g (x − y)| dy, for all x ∈ R . (1.19)

Then there is a constant Bp1,p2 , depending only on p1 and p2, such that

‖M (f, g)‖Lp3 (R) ≤ Bp1,p2 ‖f ‖Lp1 (R) ‖g‖Lp2 (R) , (1.20)

for all f ∈ Lp1 (R)
⋂
L2 (R) , g ∈ Lp2 (R)

⋂
L2 (R) .

The discretized versions of the above two theorems are stated as follows.

Theorem 4. Suppose that the conditions (1.12), (1.13), and (1.14) hold. For a ≡
{an}∞n=−∞ ∈ �p1 (Z), b ≡ {bn}∞n=−∞ ∈ �p2 (Z), let

HZ (a, b) (m) = sup
j∈N

∣∣∣∣∣∣
∑

0<|n|≤j

am+nbm−n
n

∣∣∣∣∣∣ , for all m ∈ Z . (1.21)

Then there is a constant Ap1,p2 , depending only on p1 and p2, such that

‖HZ (a, b)‖�p3 (Z) ≤ Ap1,p2 ‖a‖�p1 (Z) ‖b‖�p2 (Z) , (1.22)

for all a ∈ �p1 (Z) , b ∈ �p2 (Z) .

Theorem 5. Suppose that the conditions (1.17) and (1.18) hold. For a ≡ {an}∞n=−∞ ∈
�p1 (Z), b ≡ {bn}∞n=−∞ ∈ �p2 (Z), let

MZ (a, b) (m) = sup
j∈N

1

2j + 1

j∑
n=−j

|am+n bm−n| , for all m ∈ Z . (1.23)

Then there is a constant Bp1,p2 , depending only on p1 and p2, such that

‖MZ (a, b)‖�p3 (Z) ≤ Bp1,p2 ‖a‖�p1 (Z) ‖b‖�p2 (Z) , (1.24)

for all a ∈ �p1 (Z) , b ∈ �p2 (Z) .

To deduce Theorem 4 and Theorem 5 from Theorem 2 and Theorem 3, respectively,
we reason via Theorem 1 as follows. (Strictly speaking, to complete the proof in the case
of MZ we shall also need to apply the corresponding outcome of Theorem 1 to |a| and |b|).
In the case of Theorem 4, for each j ∈ N, we takeKj ∈ L1 (R) to be the function specified
for every x ∈ R by

Kj (x) =
{
x−1, if

3

4
≤ |x| ≤ j + 1

4
;

0, otherwise .
(1.25)
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In the case of Theorem 5, we define each Kj ∈ L1 (R) by putting

Kj (x) =
{
(2j + 1)−1 , if |x| ≤ j + 1

2
;

0, otherwise .
(1.26)

It then suffices to show that (1.10) holds in the each of the present contexts. This outcome

occurs in the case of (1.25), because p∗ > 2

3
, while for all n ∈ Z \ {0},

An ≤ C

n2
.

In the case of (1.26), (1.10) holds trivially, since An = 0 for all n ∈ Z.

Remark 2. Because of the positivity of the family of kernels for the bisublinear Hardy-
Littlewood maximal operator, a more direct and immediate derivation of Theorem 5 from
Theorem 3 can be carried out (see Proposition 14.1 (iii) of [14]).

After recourse to a suitable multilinear version of the classical Banach Principle (see
the reasoning for either Theorem 1.2.1 in [13] or Theorem 6 in [18], whose statement
is reproduced below in Proposition 1), one observes directly that the maximal result in
Theorem 2 subsumes the celebrated Lacey-Thiele boundedness result for the bilinear Hilbert
transform of R [27, 28], which solved the long-standing Calderón conjecture. We observe
here that the corresponding boundedness result for the discrete bilinear Hilbert transform
follows even more simply from Theorem 4.

Theorem 6. Suppose that the conditions (1.12), (1.13), and (1.14) hold. Then for
a ≡ {aj}∞j=−∞ ∈ �p1 (Z), b ≡ {bj}∞j=−∞ ∈ �p2 (Z), the series

(HZ (a, b)) (m) ≡
∞∑

n=−∞
n	=0

am+nbm−n
n

(1.27)

converges absolutely for each m ∈ Z, and the corresponding bilinear operator HZ defined
on �p1 (Z)× �p2 (Z) satisfies

‖HZ (a, b)‖�p3 (Z) ≤ Ap1,p2 ‖a‖�p1 (Z) ‖b‖�p2 (Z) ,

for all a ∈ �p1 (Z) , b ∈ �p2 (Z) ,

where Ap1,p2 is the constant occurring in (1.22). For a ≡ {
aj
}∞
j=−∞ ∈ �p1 (Z), b ≡{

bj
}∞
j=−∞ ∈ �p2 (Z), and j ∈ N, let

Hj,Z(a, b) (m) =
∑

0<|n|≤j

am+nbm−n
n

, (1.28)

for all m ∈ Z .

Then
{
Hj,Z(a, b)

}∞
j=1 converges to HZ (a, b) in the metric topology of �p3 (Z).

Proof. In view of Theorem 4, it suffices to show that for each m ∈ Z, the series on the
right of (1.27) converges absolutely. This follows immediately by applying Corollary 1 to
the sequence of L1 (R) kernels

{
Kj
}∞
j=1 specified in (1.25).
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Remark 3. For a different kind of discrete model for Theorem 2 and for the bilinear
Hilbert transform for R, see Thiele’s results in terms of Walsh wave packets in [30, 31],
and [32].

The subsequent sections of this article will be organized as follows. Section 2 is
devoted to proving the discretization theorem (Theorem 1) and its auxiliary consequence in
Corollary 1. In order to avoid later digressions, we recall in Section 3 the requisite measure-
theoretic background items—focusing on the tools from ergodic operator theory that will be
used in Sections 4, 5, and 6 for the transference to Lebesgue spaces of bisublinear maximal
operators. Theorem 8 is a general vehicle for transferring discrete bisublinear maximal
operators. Following on this, Sections 4 and 5 include applications of specific transferred
discrete bisublinear maximal operators to almost everywhere convergence. Section 4 ends
with a brief description of the relevance to the a.e. convergence in Bourgain’s double recur-
rence theorem [8], while Section 5 establishes the a.e. convergence of the discrete ergodic
bilinear Hilbert averages defined by any translation of an arbitrary locally compact abelian
group (Theorem 12). The transference of strong type boundedness of discrete maximal
bisublinear operators is performed in Sections 4 and 5 via surjective isometries of Lebesgue
spaces, and in the last section (Section 6) we expand this framework by developing a general
approach for transferring bisublinear maximal estimates from an arbitrary locally compact
abelian group G to Lebesgue spaces of sigma-finite measures via representations of G by
separation-preserving bijections of Lebesgue spaces.

In all that follows, we shall employ the following notation. For a given measure µ
and 0 < p ≤ ∞, the algebra of all continuous linear mappings of Lp (µ) into Lp (µ)
will be designated by B (Lp (µ)).The set of nonnegative real numbers will be denoted by
R+, and the signum function on the complex plane C will be denoted by sgn (·). For an
arbitrary measure space (�,µ), the algebra (under pointwise operations) consisting of all
complex-valuedµ-measurable functions on� (identified modulo equalityµ-a.e. on�) will
be symbolized by A (µ). Given two complex-valued functions f and g on a set Y , we shall,
whenever convenient to avoid confusion, denote their pointwise product on Y by f · g. If
A is a subset of Y , then, except where otherwise indicated, the characteristic function of
A will be designated by χA, and the restriction to A of a function F defined on Y will
be written F |A . The symbol C with a (possibly empty) set of subscripts will stand for a
constant which depends only on those subscripts, and which can change in value from one
occurrence to another.

2. Proof of Theorem 1

This section is devoted to the demonstration of Theorem 1, which will be facilitated by the
following lemmas.

Lemma 1. Suppose that the exponents p1, p2, and p3 satisfy (1.6) and (1.7), and let
p∗ = min (p3, 1) (hence, in particular �p

∗
(Z) ⊆ �1 (Z)). If � is a sequence of complex

numbers belonging to �p
∗
(Z), then S� is a bilinear mapping from �p1 (Z) × �p2 (Z) to

�p3 (Z) which satisfies

‖S� (a, b)‖�p3 (Z) ≤ ‖�‖�p∗
(Z) ‖a‖�p1 (Z) ‖b‖�p2 (Z) , (2.1)

for all a ∈ �p1 (Z) , and all b ∈ �p2 (Z) .

Proof. If either or both of the exponents p1, p2 is infinite, then it is easy to see
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that (2.1) holds. So we now assume that the exponents p1, p2, and p3 are all finite, and that
a ∈ �p1 (Z), b ∈ �p2 (Z). If p3 ≥ 1, then p∗ = 1. Moreover, it follows from Minkowski’s
inequality that { ∞∑

m=−∞

( ∞∑
n=−∞

|am+n| |bm−n| |�n|
)p3
}1/p3

≤
∞∑

n=−∞

( ∞∑
m=−∞

|am+n|p3 |bm−n| p3 |�n|p3

)1/p3

=
∞∑

n=−∞
|�n|

( ∞∑
m=−∞

|am+n|p3 |bm−n| p3

)1/p3

≤
( ∞∑
n=−∞

|�n|
)

‖a‖�p1 (Z) ‖b‖�p2 (Z) .

If p3 < 1, then we have

∞∑
m=−∞

( ∞∑
n=−∞

|am+n| |bm−n| |�n|
)p3

≤
∞∑

m=−∞

∞∑
n=−∞

|am+n|p3 |bm−n| p3 |�n|p3

=
∞∑

n=−∞
|�n|p3

∞∑
m=−∞

|am+n|p3 |bm−n| p3 .

An application of Hölder’s inequality (for the conjugate exponents p1/p3 and p2/p3) to
the sum on m in the last expression shows that

∞∑
m=−∞

( ∞∑
n=−∞

|am+n| |bm−n| |�n|
)p3

≤
( ∞∑
n=−∞

|�n|p3

)
‖a‖p3

�p1 (Z)
‖b‖p3

�p2 (Z)
,

which completes the proof of the lemma, since p∗ = p3 because we are in the case p3 < 1.

It will now be convenient to introduce a few auxiliary notions. For each φ ∈ L1 (R)

such that the support of φ is a subset of I =
[

− 1

4
,

1

4

]
, we define the linear mapping

Pφ : C
Z → C

R by putting(
Pφ
({an}∞n=−∞

))
(x) =

∑
n∈Z

an φ (x − n) , (2.2)

for all {an}∞n=−∞ ∈ C
Z, and all x ∈ R .

When φ is specialized to be χI , the characteristic function of I, we shall writeP rather than
Pφ . Clearly, if 0 < p ≤ ∞, and if φ ∈ L1 (R)

⋂
Lp (R) with support contained in I, then∥∥Pφ ({an}∞n=−∞

)∥∥
Lp(R)

= ‖φ‖Lp(R)
∥∥{an}∞n=−∞

∥∥
�p(Z)

, (2.3)

for all {an}∞n=−∞ ∈ �p (Z) .
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Notice also that if φ ∈ L1 (R) is a nonnegative function with support contained in I, if
N ∈ N, if, for 1 ≤ j ≤ N , a(j) ≡ {a(j)n }∞n=−∞ is a sequence of real numbers, and if we put

a#
n = sup

1≤j≤N
a
(j)
n , for all n ∈ Z ,

then pointwise on R we have

Pφ

({
a#
n

}∞
n=−∞

)
= sup

1≤j≤N
Pφ

({
a
(j)
n

}∞
n=−∞

)
. (2.4)

Definition 3. For K ∈ L1 (R) and n ∈ Z, we define the continuous function 
n,K :
R → C by writing for each x ∈ R,


n,K (x) = (χI (x))
∫ (1/4)−|x|

(−1/4)+|x|
K (n+ y) dy . (2.5)

Lemma 2. Suppose thatK ∈ L1 (R), k ∈ Z, and a and b are finitely supported sequences
defined on Z. Then if x ∈ Ik . we have

(SK (Pa, Pb)) (x) =
∞∑

n=−∞
ak+nbk−n
n,K (x − k) . (2.6)

Proof. Clearly

(SK (Pa, Pb)) (x) =
∑
r,s∈Z

arbs
(
SK
(
χIr , χIs

))
(x) (2.7)

=
∑
r,s∈Z

arbs

∫
(I+r−x)⋂(I−s+x)

K (y) dy .

Elementary considerations with endpoints show that for r ∈ Z, s ∈ Z, the closed in-
tervals (I + r − x) and (I − s + x) will intersect in a set of positive Lebesgue measure
if and only if

|r + s − 2x| < 1

2
. (2.8)

Since x ∈ Ik , (2.8) implies that

|r + s − 2k| < 1 ,

whence

r + s = 2k .

Hence, we can rewrite the last member of (2.7) by taking r = k + n, s = k − n and letting
n run through Z. This gives

(SK (Pa, Pb)) (x) (2.9)

=
∞∑

n=−∞
ak+nbk−n

∫
(I+k+n−x)⋂(I−k+n+x)

K (y) dy

=
∞∑

n=−∞
ak+nbk−n

∫
(I+k−x)⋂(I−k+x)

K (y + n) dy .
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It is clear that if u ∈ I, then

(u+ I)
⋂
(−u+ I) =

[
−1

4
+ |u| , 1

4
− |u|

]
.

Taking u = (x − k), we can apply this to (2.9) to get (2.6).

Lemma 3. Let N ∈ N, and suppose that
{
Kj
}N
j=1 ⊆ L1 (R) is such that for 1 ≤ j ≤ N ,

and each n ∈ Z, the restriction
(
Kj |In

)
belongs to C1 (In). For each n ∈ Z, let

�n = sup
{∣∣∣(Kj |In

)′
(x)

∣∣∣ : 1 ≤ j ≤ N , x ∈ In
}

,

and assume that the sequence � ≡ {�n}∞n=−∞ ∈ �1 (Z). Let(
S(N) (f, g)

)
(x) = sup

1≤j≤N
∣∣(SKj (f, g)) (x)∣∣ ,

for all f, g ∈ L2 (R) , and all x ∈ R ,

and put

(
S(N) (a, b)

)
(m) = sup

1≤j≤N

∣∣∣∣∣
∞∑

n=−∞
am+nbm−nKj (n)

∣∣∣∣∣ ,

for all a, b ∈ �2 (Z) , and all m ∈ Z .

Further, let φ0 ≥ 0 and φ1 ≥ 0 be the functions defined on R by writing for each u ∈ R,

φ0 (u) = 2

(
1

4
− |u|

)
χI (u) ; (2.10)

φ1 (u) =
(

1

4
− |u|

)2

χI (u) . (2.11)

Then for every pair a, b of finitely supported complex-valued sequences defined on Z, the
following inequality holds pointwise on R.

Pφ0

(
S(N) (a, b)

)
≤ S(N) (Pa, Pb)+ Pφ1 (S� (|a| , |b|)) . (2.12)

Proof. First of all we observe that by (2.4) it suffices to establish (2.12) in the special
case N = 1. So without loss of generality we now replace

{
Kj
}N
j=1 by a single kernel K ,

and adjust the notation accordingly. Next observe that for any sequence w ≡ {wn}∞n=−∞
of complex numbers, Pφ0 (w) vanishes on the complement of the union of the intervals In,
n ∈ Z. Consequently, we now fix k ∈ Z, and x ∈ Ik , and we shall complete the proof by
showing that (2.12) holds at x. For each n ∈ Z, we have


n,K (x − k) = φ0 (x − k)K (n)+
∫ 1

4 −|x−k|

− 1
4 +|x−k|

{K (y + n)−K (n)} dy . (2.13)

Moreover, as in (1.5), the Fundamental Theorem of Calculus shows that for each y ∈[− 1
4 + |x − k| , 1

4 − |x − k| ], we have

|K (y + n)−K (n)| ≤ An |y| . (2.14)
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Using (2.13) and (2.14), we find that(
Pφ0

(
S(1) (a, b)

))
(x)

=
∣∣∣∣∣

∞∑
n=−∞

ak+nbk−nK (n) φ0 (x − k)

∣∣∣∣∣
≤
∣∣∣∣∣

∞∑
n=−∞

ak+nbk−n
n,K (x − k)

∣∣∣∣∣
+
∣∣∣∣∣

∞∑
n=−∞

ak+nbk−n
(

n,K (x − k)− φ0 (x − k)K (n)

)∣∣∣∣∣
≤
∣∣∣∣∣

∞∑
n=−∞

ak+nbk−n
n,K (x − k)

∣∣∣∣∣+
∞∑

n=−∞
|ak+n| |bk−n|�nφ1 (x − k)

=
∣∣∣∣∣

∞∑
n=−∞

ak+nbk−n
n,K (x − k)

∣∣∣∣∣+ (Pφ1 (S� (|a| , |b|))
)
(x) .

An appeal to Lemma 2 now completes the proof of Lemma 3.

Proof of Theorem 1. We first observe that conclusion (i) is an immediate consequence
of Remark 1. In order to obtain conclusion (ii) temporarily fix an arbitrary N ∈ N, and let
a ≡ {an}∞n=−∞ , b ≡ {bn}∞n=−∞ be finitely supported sequences of complex numbers. By
the hypothesis in (1.8), followed by use of (2.3), we have, in the notation of Lemma 3,∥∥∥S(N) (Pa, Pb)∥∥∥

Lp3 (R)
≤ C ‖Pa‖Lp1 (R) ‖Pb‖Lp2 (R) (2.15)

= C2−1/p3 ‖a‖�p1 (Z) ‖b‖�p2 (Z) .

It is evident from the definition in (2.11) that ‖φ1‖Lp3 (R) ≤ 1

16
, and so from Lemma 1

and (2.3) we see that

∥∥Pφ1 (S� (|a| , |b|))
∥∥
Lp3 (R)

≤ ‖A‖�p∗
(Z) ‖a‖�p1 (Z) ‖b‖�p2 (Z)

16
. (2.16)

From (2.12) we infer that
∥∥Pφ0

(
S(N) (a, b)

)∥∥
Lp3 (R)

= ‖φ0‖Lp3 (R)

∥∥S(N) (a, b)
∥∥
�p3 (Z)

does not exceed∥∥S(N) (Pa, Pb)∥∥
Lp3 (R)

+ ∥∥Pφ1 (S� (|a| , |b|))
∥∥
Lp3 (R)

, if 1 ≤ p3 ≤ ∞ ;(∥∥S(N) (Pa, Pb)∥∥p3

Lp3 (R)
+ ∥∥Pφ1 (S� (|a| , |b|))

∥∥p3
Lp3 (R)

)1/p3
, if 0 < p3 < 1 .

In view of (2.15) and (2.16) these two estimates show that there is a constant η depending
only on p1, p2, and

{
Kj
}∞
j=1. such that for arbitrary N ∈ N and for arbitrary finitely

supported sequences a ≡ {an}∞n=−∞ , b ≡ {bn}∞n=−∞,∥∥∥S(N) (a, b)

∥∥∥
�p3 (Z)

≤ η ‖a‖�p1 (Z) ‖b‖�p2 (Z) . (2.17)
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Now let a ≡ {an}∞n=−∞ , b ≡ {bn}∞n=−∞be arbitrary vectors in �p1 (Z) and �p2 (Z),
respectively. For arbitrary L ∈ N, denote by ξL the characteristic function, defined on Z,
of {k ∈ Z : |k| ≤ L}, and define the finitely supported sequences a(L) and b(L) by writing
for each n ∈ Z,

a(L)n = anξL (n) ;

b(L)n = bnξL (n) .

Observe that for N ∈ N, and each m ∈ Z, we have, for 1 ≤ j ≤ N ,

∞∑
n=−∞

a
(L)
m+nb

(L)
m−nKj (n) =

min(−m+L,m+L)∑
n=max(−m−L,m−L)

am+nbm−nKj (n) ,

and it follows that as L → ∞,

S(N)
(
a(L), b(L)

)
→ S(N) (a, b) pointwise on Z . (2.18)

Consequently, (2.17) remains valid for all a ≡ {an}∞n=−∞ ∈ �p1 (Z), and all b ≡
{bn}∞n=−∞ ∈ �p2 (Z) [if p3 < ∞, use Fatou’s Lemma together with (2.17) applied to
S(N)

(
a(L), b(L)

)
, and if p1 = p2 = p3 = ∞, this estimate follows directly from (2.17)

together with (2.18)]. Thereafter, we can letN → ∞ in the resulting version of (2.17) in or-
der to obtain (1.11) in similar fashion (using the monotone convergence theorem whenp3 <

∞).

We close this section with the following immediate corollary of Theorem 1.

Corollary 1. Under the hypotheses of Theorem 1, the constantη in (1.11) has the following
property: For all a ≡ {an}∞n=−∞ ∈ �p1 (Z), all b ≡ {bn}∞n=−∞ ∈ �p2 (Z), each j ∈ N, and
each m ∈ Z,

∞∑
n=−∞

|am+n| |bm−n|
∣∣Kj (n)∣∣ ≤ η ‖a‖�p1 (Z) ‖b‖�p2 (Z) .

Proof. Define the sequences a∗ ≡ {a∗
n

}∞
n=−∞ ∈ �p1 (Z), and b∗ ≡ {b∗

n

}∞
n=−∞ ∈ �p2 (Z)

by writing for each n ∈ Z,

a∗
n = |an|

(
sgn
(
Kj (n−m)

))
;

b∗
n = |bn| .

Using (1.11) we see that

∞∑
n=−∞

|am+n| |bm−n|
∣∣Kj (n)∣∣ =

∞∑
n=−∞

a∗
m+nb∗

m−nKj (n)

≤
∥∥∥S�

{K(j)}
(
a∗, b∗)∥∥∥

�p3 (Z)
≤η ‖a‖�p1 (Z) ‖b‖�p2 (Z) .

3. Measure-Theoretic Background Items

In this section we collect the necessary tools for the transference to measure spaces of
bisublinear maximal estimates and almost everywhere convergence of bilinear mappings.
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For the almost everywhere convergence aspects, we shall require the following multilinear
version of the Banach Principle (a calculational proof of this multilinear Banach Principle
is indicated in the reasoning for Theorem 6 of [18]; alteratively, its demonstration can be
carried out directly by induction onm, since form = 1 the proposition asserts the standard
Banach Principle for linear operators).

Proposition 1. Letm ∈ N, and let (�, σ ) and
(
�j ,µj

)
, 1 ≤ j ≤ m, be arbitrary measure

spaces. Suppose that for 1 ≤ j ≤ m, pj is a positive real number, and Sj is a dense subset
ofLpj

(
µj
)
. Assume that {Tk}∞k=1 is a sequence of multilinear mappings of

∏m
j=1 L

pj
(
µj
)

into the algebra A (σ ), consisting of all complex-valued σ -measurable functions on �
(identified modulo equality σ -a.e., on �), and for all (f1, f2, · · · , fm) ∈ ∏m

j=1 L
pj
(
µj
)

and all x ∈ �, put

(T∗ (f1, f2, · · · , fm)) (x) = sup
k∈N

|(Tk (f1, f2, · · · , fm)) (x)| .

Suppose further that there are a constant B and a positive real number r such that

σ {x ∈ � : (T∗ (f1, f2, · · · , fm)) (x) > y} ≤
((

B

y

) m∏
j=1

∥∥fj∥∥Lpj (µj )
)r
,

for all positive real numbers y, and all (f1, f2, · · · , fm) ∈
m∏
j=1

Lpj
(
µj
)
.

If for every (g1, g2, · · · , gm) ∈∏m
j=1 Sj ,

lim
k
(Tk (g1, g2, · · · , gm)) (x)

exists in C for σ -almost all x ∈ �, then likewise for all (f1, f2, · · · , fm) ∈∏m
j=1 L

pj
(
µj
)
,

lim
k
(Tk (f1, f2, · · · , fm)) (x)

exists in C for σ -almost all x ∈ �.

For the transference to measure spaces of strong type maximal estimates defined
by families of multilinear operators, we now recall key facts regarding the structure of
separation-preserving linear operators. (For the transference of strong type maximal
estimates defined by sequences of linear operators, see, e.g., [1] and Theorem (2.11) of [6].)

Definition 4. Let (�,µ) be an arbitrary measure space, and suppose that 0 < p < ∞.
A continuous linear mapping S of Lp(µ) into Lp(µ) will be called separation-preserving
provided that whenever f ∈ Lp(µ), g ∈ Lp(µ) and the pointwise product fg vanishes
µ-a.e. on �, it follows that the pointwise product (Sf )(Sg) vanishes µ-a.e. on �. A
continuous linear mapping P of Lp(µ) into Lp(µ) will be called positive provided that
Pf ≥ 0 µ-a.e. on � whenever f ∈ Lp(µ) and f ≥ 0 µ-a.e. on �.

In the literature separation-preserving operators are also called Lamperti or
disjointness-preserving (see [24] for a full account of their basic features). The proof
of Theorem 3.1 in [24] is valid for (�,µ) and p as in Definition 4, and furnishes the
following characterization of the separation-preserving property.

Theorem 7. Suppose that (�,µ) is an arbitrary measure space, 0 < p < ∞, and T is
a continuous linear mapping of Lp(µ) into Lp(µ). Then T is separation-preserving if and
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only if there is a continuous linear transformation |T | mapping Lp(µ) into Lp(µ) such
that |T | is positive, and

|Tf | = |T | (|f |) , for all f ∈ Lp(µ) . (3.1)

If this is the case, then (3.1) characterizes |T | among the continuous linear mappings
of Lp(µ) into Lp(µ) (we then call |T | the “linear modulus” of T ). Moreover, |T | is
separation-preserving, and satisfies

|Tf | = | |T | (f ) | , for all f ∈ Lp(µ) . (3.2)

(Hence, for all f ∈ Lp(µ), ‖Tf ‖Lp(µ) = ‖ |T | (|f |) ‖Lp(µ) = ‖ |T | (f ) ‖Lp(µ)).
Application of (3.1) to the functions f ≥ 0 in Lp(µ) yields the following obvi-

ous corollary.

Corollary 2. If (�,µ) is an arbitrary measure space, 0 < p < ∞, and T is a continuous
linear mapping ofLp(µ) intoLp(µ) such that T is separation-preserving, then T is positive
if and only if T = |T |.

Since |T | is a positive operator on Lp(µ), |T | maps the class of real-valued functions
belonging toLp(µ) into itself. The following basic corollary of Theorem 7 already indicates
the utility of separation-preserving operators for the transference of maximal estimates.

Corollary 3. Suppose that (�,µ) is an arbitrary measure space, 0 < p < ∞, and T
is a continuous linear mapping of Lp(µ) into Lp(µ) such that T is separation-preserving.
Suppose further that N ∈ N, and that

{
fj
}N
j=1 ⊆ Lp(µ), with fj real-valued for 1 ≤ j ≤

N . Then |T |, the linear modulus of T , satisfies:

|T |
(

sup
1≤j≤N

fj

)
= sup

1≤j≤N
(|T | (fj )) ; (3.3)

|T |
(

inf
1≤j≤N fj

)
= inf

1≤j≤N
(|T | (fj )) . (3.4)

Proof. The case N = 1 is trivial. In the case N = 2, we have:

sup
1≤j≤2

fj = |f1 − f2| + f1 + f2

2
; (3.5)

inf
1≤j≤2

fj = f1 + f2 − |f1 − f2|
2

. (3.6)

Applying |T | to (3.5) and (3.6), we see with the aid of the general properties of |T | asserted
by (3.1) and (3.2) that

|T |
(

sup
1≤j≤2

fj

)
= ||T | f1 − |T | f2| + |T | f1 + |T | f2

2
= sup

1≤j≤2

(|T | fj
)

; (3.7)

|T |
(

inf
1≤j≤2

fj

)
= |T | f1 + |T | f2 − ||T | f1 − |T | f2|

2
= inf

1≤j≤2

(|T | fj
)

. (3.8)

The desired conclusions in (3.3) and (3.4) follow by induction on N by utilizing the case
for N = 2 in (3.7) and (3.8).
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Recall that by the closed graph theorem for F-spaces (see, e.g., Theorem II.2.2 of [16])
if 0 < p < ∞, µ is an arbitrary measure, and Q is a one-to-one continuous linear map-
ping of Lp(µ) onto Lp(µ), then Q−1 is also a continuous linear mapping of Lp(µ) onto
Lp(µ). This fact is taken for granted in the following well-known proposition relating the
separation-preserving property and invertibility (for a proof of this proposition, see, e.g.,
the demonstration of Scholium (2.3) in [3], where the reasoning is valid for 0 < p < ∞).

Proposition 2. Suppose that (�,µ) is an arbitrary measure space, 0 < p < ∞,
and T is a one-to-one continuous linear mapping of Lp(µ) onto Lp(µ) such that T is
separation-preserving. Then T −1 is separation-preserving, |T | is a one-to-one continuous
linear mapping of Lp(µ) onto Lp(µ), and

|T |−1 =
∣∣∣T −1

∣∣∣ . (3.9)

Remark 4. It follows readily from (3.1) and (3.9) that if the hypotheses of Proposition 2
hold, then for all n ∈ Z, T n is separation-preserving, and∣∣T n∣∣ = |T |n . (3.10)

We next describe two important classes of separation-preserving operators in the
setting of an arbitrary measure µ, and 0 < p < ∞. If S is a continuous, positive, invertible
linear mapping of Lp(µ) onto Lp(µ), then S is separation-preserving if and only if S−1

is positive (the “only if” part follows from (3.9), while the proof of Proposition 3.1 in [24]
covers the “if” part in the generality stated here). The second special class of separation-
preserving operators is specified by the following proposition, which follows directly from
Corollary 2.1 of [29].

Proposition 3. Suppose that (�,µ) is an arbitrary measure space, 0 < p < ∞, and
p 	= 2. If U is a linear isometry of Lp(µ) into Lp(µ), then U is separation-preserving.

As pointed out by C-H Kan [24], when we confine our attention to sigma-finite
measure spaces, the following major structural theorem for separation-preserving operators
results (see the reasoning used for Theorem 4.1 in [24], which relies on adjustments to both
the proof of Theorem 3.1 in [29] and the discussion on p. 453, 454 of [15]—this approach
furnishes the range 0 < p < ∞ stated here).

Proposition 4. Suppose that (�,µ) is a sigma-finite measure space, and 0 < p < ∞.
Denote by A (µ) the algebra under pointwise operations consisting of all complex-valued
µ-measurable functions on � (identified modulo equality µ-a.e. on �), and let T be a
linear, continuous, separation-preserving bijection of Lp(µ) onto Lp(µ). Then there are
sequences

{
hj
}∞
j=−∞ and

{

j
}∞
j=−∞ such that for each j ∈ Z:

(i) hj ∈ A (µ), with
∣∣hj ∣∣ > 0 on �, and 
j is an algebra automorphism of A (µ)

onto A(µ);
(ii) for every f ∈ Lp (µ), T jf is expressed by the pointwise product on � of the functions
hj and 
j (f );

(iii) whenever {fk}∞k=1 ⊆ A (µ), f ∈ A (µ), and fk → f µ-a.e. on �, it follows that as
k → ∞, 
j (fk) → 
j (f ) µ-a.e. on �. The sequences

{
hj
}∞
j=−∞ and

{

j
}∞
j=−∞ are

uniquely determined by these properties.

The sequences
{
hj
}∞
j=−∞ and

{

j
}∞
j=−∞ in Proposition 4 are said to be associated

with T . It is easily seen that for each j ∈ Z,
j (g)≥ 0 for each g ≥ 0 belonging to A (µ),
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and that for f ∈ A (µ), and 0 < α < ∞, we have∣∣
j (f )∣∣α = 
j
(|f |α) . (3.11)

Application of the group property T j+k = T jT k to the uniquely determined sequences{
hj
}∞
j=−∞ and

{

j
}∞
j=−∞ associated with T furnishes the following relationships, valid

for all j ∈ Z, k ∈ Z.


j+k (f ) = 
j (
k (f )) , for every f ∈ A (µ) . (3.12)

hj+k (x) = hj (x)
(

jhk

)
(x) , for µ-almost all x ∈ � . (3.13)

The following version of Corollary 3.1 in [29] will be useful when we use Lebesgue
space isometries to transfer the boundedness results of Sections 1, 2 for discrete bisublinear
maximal operators.

Proposition 5. Suppose that (�,µ) is a sigma-finite measure space, and 0 < α, β ≤ ∞,
withα 	= β. LetU be a bijective linear mapping of A (µ) onto A (µ) such that the following
two conditions hold.

(i) Whenever {gk}∞k=1 ⊆ A (µ), g ∈ A (µ), and gk → g µ-a.e. on �, it follows that
as k → ∞,U (gk) → U (g) µ-a.e. on�, andU−1 (gk) → U −1 (g) µ-a.e. on�.

(ii) The restrictions (U |Lα (µ)) and
(
U
∣∣Lβ (µ)) are surjective linear isometries of

Lα (µ) and Lβ (µ), respectively.

Then there are unique sequences
{
hj
}∞
j=−∞ and

{

j
}∞
j=−∞ such that for each j ∈ Z:

(j) hj ∈ A (µ), with
∣∣hj ∣∣ = 1 on �, and 
j is an algebra automorphism of A (µ)

onto A (µ);

(jj) for every f ∈ A (µ), Ujf is expressed by the pointwise product on � of the
functions hj and 
j (f );

(jjj) whenever {fk}∞k=1 ⊆ A (µ), f ∈ A (µ), and fk → f µ-a.e. on �, it follows that
as k → ∞, 
j (fk) → 
j (f ) µ-a.e. on �.

This unique sequence
{

j
}∞
j=−∞ has the property that

µ (E) =
∫
�


j (χE) dµ , (3.14)

for each j ∈ Z, and each µ-measurable set E .

In consequence of the foregoing, the restriction (U |Lp (µ)) is a surjective linear isometry
of Lp (µ), for 0 < p ≤ ∞.

Proof. The contents of this proposition are well-known, and so we shall merely outline its
proof. The existence assertions when both α and β are finite can be seen from the discussion
of Corollary 3.1 in [29]. So we take up the existence assertions for the case where one of
α, β equals ∞. For sake of definiteness, suppose that β = ∞ and 0 < α < ∞. Since the
Gelfand representation of the commutative C∗-algebra L∞ (µ) identifies L∞ (µ) with the
Banach algebra C (�) of all continuous complex-valued functions on a compact Hausdorff
space � (see, e.g., Theorem (C.28) in [21]), we can apply the Banach-Stone theorem’s
characterization for the surjective linear isometries of C (�) (see, e.g., Theorem VI.2.1
of [12]) to infer that for each j ∈ Z,(

Uj
∣∣L∞ (µ)

)
(f ) = Hj ·�j (f ) , for all f ∈ L∞ (µ) ,
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where Hj ∈ A (µ), with
∣∣Hj ∣∣ = 1 on �, and �j is a norm-preserving algebra automor-

phism of L∞ (µ) onto L∞ (µ). Using this, we can invoke the continuity of U |Lα (µ) [or,
alternatively the hypothesis in (i)] to infer that U |Lα (µ) is separation- preserving (even if
α = 2). We can thus associate with U |Lα (µ) the sequences

{
hj
}∞
j=−∞ and

{

j
}∞
j=−∞

furnished by Proposition 4. If j ∈ Z, and µ (E) < ∞, then 
j (χE) and �j (χE) are
characteristic functions which the equality

hj
j (χE) = Hj�j (χE) (3.15)

shows must have the same set of zeroes. Hence, 
j (χE) = �j (χE). By taking absolute
values on both sides of (3.15) we can now infer that for j ∈ Z, and µ (E) < ∞,∣∣hj ∣∣
j (χE) = 
j (χE) .

Sinceµ is sigma-finite, and
j preservesµ-a.e. convergence on�, this implies that for each
j ∈ Z,

∣∣hj ∣∣ = 
j (1) = 1 on �. The sigma-finiteness of µ implies that each f ∈ A (µ)

is the µ-a.e. limit on � of a sequence of µ-integrable simple functions, and so the desired
conclusion in (jj) follows from the fact that(

Uj
∣∣Lα (µ)) (f ) = hj ·
j (f ) , for all f ∈ Lα (µ) ,

since 
j preserves µ-a.e. convergence on �, and by our hypothesis in (i) so does Uj .
The desired conclusion in (3.14) is readily seen when µ (E) < ∞, since

(
Uj |Lα (µ)) is

an isometry of Lα (µ), and
∣∣hj ∣∣ = 1 on �. The sigma-finiteness of µ can then be used

to remove the requirement that the measure of E is finite, and complete the proof of the
existence assertions.

Turning now to the proof of the remaining conclusions for the general case of α and
β, and putting δ = min {α, β}, we obtain the uniqueness assertion of the present proposition
immediately by applying to

(
Uj
∣∣Lδ (µ)) the uniqueness conclusion in Proposition 4. For

0 < p < ∞, it is clear from conclusion (j) and (3.14) that for every µ-integrable simple
function f , ‖Uf ‖Lp(µ) = ∥∥U−1f

∥∥
Lp(µ)

= ‖f ‖Lp(µ), and so for 0 < p < ∞, the last
conclusion of the present proposition follows by the density of the µ-integrable simple
functions in Lp (µ), used in conjunction with hypothesis (i). To show that (U |L∞ (µ)) is
a surjective isometry of L∞ (µ) it suffices to observe that for j ∈ Z, and F ∈ L∞ (µ), we
can infer with the aid of (j), (3.11), and the positivity of 
j on A (µ) that∣∣∣UjF ∣∣∣ = ∣∣
j (F )∣∣ = 
j (|F |) ≤ ‖F‖L∞(µ) ,

and so
∥∥UjF∥∥

L∞(µ) ≤ ‖F‖L∞(µ).

Remark 5.
(i) As has already been indicated above, the unique sequences

{
hj
}∞
j=−∞ and

{

j
}∞
j=−∞

furnished by the conclusion of Proposition 5 clearly coincide with the unique pair of se-
quences associated by Proposition 4 with (U |Lp (µ))whenever 0 < p < ∞, and so, with-
out ambiguity, we shall expand our terminology by referring to these sequences

{
hj
}∞
j=−∞

and
{

j
}∞
j=−∞ as being associated with the bijective linear mapping U of A (µ) onto

A (µ) in the hypotheses of Proposition 5. In particular, the sequences
{
hj
}∞
j=−∞ and{


j
}∞
j=−∞ associated with U satisfy (3.11) through (3.13).
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(ii) Examples of a bijective linear mapping U of A (µ) onto A (µ) associated by Propo-
sition 5 with a sequence

{
hj
}∞
j=−∞ of nonconstant functions can be formed by starting

with an invertible measure-preserving mapping ψ of (�,µ) and a measurable function
u : � → T, and then setting

(Uf ) (x) ≡ u (ψ (x))

u (x)
f (ψ (x)) , for all f ∈ A (µ) .

When µ is taken to be Haar measure on a compact abelian group having Archimedean
ordered dual, then examples of U associated with nontrivial

{
hj
}∞
j=−∞ can be fashioned

from the “cocycles” arising in Helson’s theory of generalized analyticity and invariant
subspaces (for this circle of ideas, see, e.g., [4, 19], and [20]).

The following corollary will be convenient for applying Proposition 5 to the transfer-
ence of maximal operators affiliated with sequences of bilinear operators.

Corollary 4. Assume the hypotheses of Proposition 5, and let
{
hj
}∞
j=−∞ and{


j
}∞
j=−∞ be the sequences thereby associated with U . Define the linear bijection V

of A (µ) onto A (µ) by writing

V (f ) = h1 U (f ) = h2
1
1 (f ) , for all f ∈ A (µ) . (3.16)

ThenV also satisfies the hypotheses of Proposition 5, which associates withV the sequences{
h2
j

}∞
j=−∞ and

{

j
}∞
j=−∞. For all j ∈ Z,m ∈ Z, n ∈ Z, f ∈ A (µ), g ∈ A (µ), we have,

pointwise on �,

V j
((
Umf

) · (Ung)) =
(
Uj+mf

)
·
(
Uj+ng

)
. (3.17)

Proof. Since |h1| = 1 on �, it is clear that multiplication by h1 on A (µ) (respectively
on Lα (µ), Lβ (µ)) is a linear bijection of A (µ) (respectively, a surjective linear isometry).
Hence, V = h1U has these mapping properties as well. Moreover, for all f ∈ A (µ)

V −1f = U−1
(
f

h1

)
.

These observations show that V satisfies the hypotheses of Proposition 5. With the aid
of (3.12) (applied to U and to V ), together with the left and right sides of (3.16), it is
readily verified that

{

j
}∞
j=−∞ is also the sequence of A (µ)-automorphisms associated

with V . Similar considerations that apply (3.13) to U and to V now show that
{
h2
j

}∞
j=−∞

is the sequence of unimodular functions associated with V . For all j ∈ Z, m ∈ Z, n ∈ Z,
f ∈ A (µ), g ∈ A (µ), we have, pointwise on �,

V j
((
Umf

) · (Ung)) = h2
j ·
j

(
Umf

) ·
j
(
Ung

)
= h2

j ·
j (hm
mf ) ·
j (hn
ng)
= (

hj
j (hm)
j+mf
) (
hj
j (hn)
j+ng

)
.

Using (3.13) on the right establishes (3.17) and thereby completes the proof of Corollary 4.
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4. Transference of Maximal Estimates by Isometries

The following theorem uses isometries to transfer to sigma-finite measure spaces the strong
type bounds for discrete bisublinear maximal operators.

Theorem 8. Suppose that the exponents p1, p2, and p3 satisfy the conditions:

0 < p1, p2 ≤ ∞ ; (4.1)

1

p1
+ 1

p2
= 1

p3
; (4.2)

0 < p3 < ∞ . (4.3)

For each j ∈ N, let �(j) ≡ {
�
(j)
n

}∞
n=−∞ be a finitely supported sequence of complex

numbers, and suppose that there is a constant c such that, in the notation of Definition 2,
the bisublinear maximal operator S

�

{�(j)} satisfies

∥∥∥S�

{�(j)} (a, b)
∥∥∥
�p3 (Z)

≤ c ‖a‖�p1 (Z) ‖b‖�p2 (Z) , (4.4)

for all a ∈ �p1 , and all b ∈ �p2 (Z) .

Let (�,µ) be a sigma-finite measure space, and let U be a bijective linear mapping of
A (µ) onto A (µ) such that the following two conditions hold:

(i) Whenever {gk}∞k=1 ⊆ A (µ), g ∈ A (µ), and gk → g µ-a.e. on �, it follows that
as k → ∞,U (gk) → U (g) µ-a.e. on�, andU−1 (gk) → U −1 (g) µ-a.e. on�.

(ii) For ν = 1, 2, 3, the restriction (U |Lpν (µ)) is a surjective linear isometry
of Lpν (µ).

Define the bisublinear maximal function M on Lp1 (µ)× Lp2 (µ) by writing for all
f ∈ Lp1 (µ), all g ∈ Lp2 (µ), and all x ∈ �,

(M (f, g)) (x) = sup
j∈N

∣∣∣∣∣
∞∑

n=−∞

(
Unf

)
(x)
(
U−ng

)
(x)�

(j)
n

∣∣∣∣∣ . (4.5)

Then the constant c in (4.4) also satisfies

‖M (f, g)‖Lp3 (µ) ≤ c ‖f ‖Lp1 (µ) ‖g‖Lp2 (µ) , (4.6)

for all f ∈ Lp1 (µ) , and all g ∈ Lp2 (µ) .

Proof. Since p3 < ∞, at most one of the exponents p1, p2 is ∞. It is thus clear
from the current hypotheses on the exponents p1, p2, and p3 that at least two of them are
distinct. Consequently, the present setup satisfies the hypotheses of Proposition 5 and of
Corollary 4 (whose notation we now follow). Temporarily fix J ∈ N, and define M(J ) on
Lp1 (µ)× Lp2 (µ) by writing for all f ∈ Lp1 (µ), all g ∈ Lp2 (µ), and all x ∈ �,

(
M(J ) (f, g)

)
(x) = sup

1≤j≤J

∣∣∣∣∣
∞∑

n=−∞

(
Unf

)
(x)
(
U−ng

)
(x)�

(j)
n

∣∣∣∣∣ .

Let f ∈ Lp1 (µ), g ∈ Lp2 (µ), and consider the transformation V of (3.16). It is clear
from (3.1), Corollary 3, and (3.17) that for eachm ∈ Z, the transformation Vm satisfies the
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following equality µ-a.e. on �:∣∣∣(Vm ∣∣Lp3 (µ)
) (

M(J ) (f, g)
)∣∣∣ (4.7)

sup
1≤j≤J

∣∣∣∣∣
∞∑

n=−∞

(
Um+nf

) (
Um−ng

)
�
(j)
n

∣∣∣∣∣ .

Since (V m |Lp3 (µ)) is isometric, we see from (4.7) that the following holds for an arbitrary
positive integer L.

(2L+ 1)
∥∥∥M(J ) (f, g)

∥∥∥p3

Lp3 (µ)
(4.8)

=
L∑

m=−L

∥∥∥∥∥ sup
1≤j≤J

∣∣∣∣∣
∞∑

n=−∞

(
Um+nf

) (
Um−ng

)
�
(j)
n

∣∣∣∣∣
∥∥∥∥∥
p3

Lp3 (µ)

=
∫
�

L∑
m=−L

sup
1≤j≤J

∣∣∣∣∣
∞∑

n=−∞

(
Um+nf

) (
Um−ng

)
�
(j)
n

∣∣∣∣∣
p3

dµ .

Let NJ be the least positive integer such that whenever 1 ≤ j ≤ J , and n ∈ Z with
|n| > NJ , we have

�
(j)
n = 0 .

After denoting by ξ the characteristic function, defined on Z, of {k ∈ Z : |k| ≤ L+NJ },
we rewrite (4.8) in the form

(2L+ 1)
∥∥∥M(J ) (f, g)

∥∥∥p3

Lp3 (µ)
(4.9)

=
∫
�

L∑
m=−L

sup
1≤j≤J

∣∣∣∣∣
∞∑

n=−∞
ξ (m+ n)

(
Um+nf

)
ξ (m− n)

(
Um−ng

)
�
(j)
n

∣∣∣∣∣
p3

dµ .

We first complete the proof for the case in which both p1 and p2 are finite. Using the
hypothesis in (4.4) to estimate pointwise on� the size of the integrand on the right of (4.9),
we find that

L∑
m=−L

sup
1≤j≤J

∣∣∣∣∣
∞∑

n=−∞
ξ (m+ n)

(
Um+nf

)
ξ (m− n)

(
Um−ng

)
�
(j)
n

∣∣∣∣∣
p3

≤ cp3


 L+NJ∑
n=−L−NJ

∣∣Unf ∣∣p1



p3/p1

·

 L+NJ∑
n=−L−NJ

∣∣Ung∣∣p2



p3/p2

.

Using this estimate inside the integral on the right of (4.9), we deduce that

(2L+ 1)
∥∥∥M(J ) (f, g)

∥∥∥p3

Lp3 (µ)

≤ cp3

∫
�


 L+NJ∑
n=−L−NJ

∣∣Unf ∣∣p1



p3/p1


 L+NJ∑
j=−L−NJ

∣∣Ung∣∣p2



p3/p2

dµ .
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After applying Hölder’s inequality on the right for the pair of conjugate indices (p1/p3)

and (p2/p3), and then taking into account that (U |Lp1 (µ)), (U |Lp2 (µ)) are surjective
isometries, we see that∥∥∥M(J ) (f, g)

∥∥∥p3

Lp3 (µ)
≤ 2L+ 2NJ + 1

2L+ 1
cp3 ‖f ‖p3

Lp1 (µ)
‖g‖p3

Lp2 (µ)
. (4.10)

While keeping J fixed, we now let L → ∞ on the right. This shows that for each J ∈ N,
all f ∈ Lp1 (µ), and all g ∈ Lp2 (µ),∥∥∥M(J ) (f, g)

∥∥∥p3

Lp3 (µ)
≤ cp3 ‖f ‖p3

Lp1 (µ)
‖g‖p3

Lp2 (µ)
. (4.11)

We can now let J → ∞ in (4.11) to obtain (4.6) by monotone convergence.
In the remaining case, precisely one of the exponentsp1, p2 is ∞ (for sake of definite-

ness, say p2= ∞, which implies that p3 = p1), and then by making obvious corresponding
adjustments to the reasoning subsequent to (4.9) we arrive at the following substitute esti-
mate for (4.10).

∥∥∥M(J ) (f, g)

∥∥∥p3

Lp3 (µ)
≤ 2L+ 2NJ + 1

2L+ 1
cp3 ‖f ‖p1

Lp1 (µ)

∥∥∥∥∥ sup
|n|≤L+NJ

∣∣Ung∣∣
∥∥∥∥∥
p3

L∞(µ)
.

Since for each n ∈ Z, (Un |L∞ (µ)) is isometric, we have pointwise µ-a.e. on �,∣∣Ung∣∣ ≤ ∥∥Ung∥∥
L∞(µ) = ‖g‖L∞(µ) ,

and so ∥∥∥M(J ) (f, g)

∥∥∥p3

Lp3 (µ)
≤ 2L+ 2NJ + 1

2L+ 1
cp3 ‖f ‖p1

Lp1 (µ)
‖g‖p3

L∞(µ) .

Since p3 = p1 in the case at hand, the proof of (4.6) in this case can now be completed as
before by first letting L → ∞ and then letting J → ∞ .

Upon specializing the sequence of discrete kernels
{
�(j)

}∞
j=1 in Theorem 8 by writing

for each j ∈ N, and each n ∈ Z,

�
(j)
n =

{
n−1 , if 0 < |n| ≤ j ;

0, otherwise ,

we arrive at the following transferred version of the discrete bisublinear maximal Hilbert
transform in Theorem 4 .

Theorem 9. Suppose that the exponents p1, p2, and p3 satisfy the conditions (1.12),
(1.13), and (1.14). Let (�,µ) be a sigma-finite measure space, and let U be a bijective
linear mapping of A (µ) onto A (µ) such that the conditions (i) and (ii) in Theorem 8
hold. Define the bisublinear maximal function HU on Lp1 (µ)×Lp2 (µ) by writing for all
f ∈ Lp1 (µ), all g ∈ Lp2 (µ), and all x ∈ �,

(HU (f, g)) (x) = sup
j∈N

∣∣∣∣∣∣
∑

0<|n|≤j

{(Unf ) (x)} {(U−ng
)
(x)
}

n

∣∣∣∣∣∣ .
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Then

‖HU (f, g)‖Lp3 (µ) ≤ Ap1,p2 ‖f ‖Lp1 (µ) ‖g‖Lp2 (µ) ,

for all f ∈ Lp1 (µ) , and all g ∈ Lp2 (µ) ,

where Ap1,p2 is the constant depending only on p1 and p2 which appears in (1.22).

Similarly, after specifying the sequence of discrete kernels
{
�(j)

}∞
j=1 in Theorem 8

by writing for each j ∈ N, and each n ∈ Z,

�
(j)
n =

{
(2j + 1)−1 , if |n| ≤ j ;
0, otherwise ,

we can obtain the following transferred version of the discrete bisublinear Hardy-Littlewood
maximal operator in Theorem 5.

Theorem 10. Suppose that the exponents p1, p2, and p3 satisfy the conditions (1.17)
and (1.18). Let (�,µ) be a sigma-finite measure space, and let U be a bijective linear
mapping of A (µ) onto A (µ) such that the conditions (i) and (ii) in Theorem 8 hold. Define
the bisublinear maximal function MU onLp1 (µ)×Lp2 (µ) by writing for all f ∈ Lp1 (µ),
all g ∈ Lp2 (µ), and all x ∈ �,

(MU (f, g)) (x) = sup
j∈N

1

2j + 1

j∑
n=−j

∣∣(Unf ) (x)∣∣ ∣∣(U−ng
)
(x)
∣∣ . (4.12)

Then

‖MU (f, g)‖Lp3 (µ) ≤ Bp1,p2 ‖f ‖Lp1 (µ) ‖g‖Lp2 (µ) , (4.13)

for all f ∈ Lp1 (µ) , and all g ∈ Lp2 (µ) ,

where Bp1,p2 is the constant depending only on p1 and p2 which appears in (1.24).

Proof. Since the absolute value signs on the right of (4.12) occur inside the summation
sign, the form of MU does not , strictly speaking, conform to the definition of M in
Theorem 8. This detail is easily attended to, since the automorphism 
1 of A (µ) which
Proposition 5 associates with U also satisfies the hypotheses of Theorem 8 in place of U .
In order to obtain the present theorem for MU as defined in (4.12), we need only apply
Theorem 8 to
1 in place ofU and to |f | and |g| for arbitrary f ∈ Lp1 (µ) and arbitrary g ∈
Lp2 (µ).

For the transference of multisublinear versions of the Hardy-Littlewood maximal
operator to a discrete dynamical system via the system’s measure-preserving transformation,
see Proposition 14.1 in [14]. In the case of the discrete bisublinear Hardy-Littlewood
maximal operator, such transference to dynamical systems automatically furnishes some
expansion to the range of exponents for which the a.e. convergence in Bourgain’s double
recurrence theorem holds, and we now briefly describe this state of affairs. In [8] J. Bourgain
established the following double recurrence theorem (see the discussion on p. 140 of [8]
regarding the a.e. convergence for L2-functions quoted here).

Theorem 11. Suppose that (�,µ) is a measure space such that µ (�) < ∞, and T is an
invertible measure-preserving transformation of � onto �. Then for all f ∈ L2 (µ), and
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all g ∈ L2 (µ),

1

N

N∑
n=1

f
(
T nx

) · g (T −nx
)

(4.14)

converges for µ-almost all x ∈ �, as N → ∞.

In view of the Banach Principle in Proposition 1 and the strong type boundedness of
the discrete bisublinear Hardy-Littlewood maximal operator transferred via T , it is clear
that the almost everywhere convergence of the bilinear ergodic averages in (4.14) will hold
whenever f ∈ Lp1 (µ), and g ∈ Lp2 (µ), provided

1 < p1, p2 < ∞ ; (4.15)

1

p1
+ 1

p2
<

3

2
. (4.16)

Example 1. Suppose that (4.15) and (4.16) hold. Letm ∈ N, let µ be Lebesgue measure
of R

m, and suppose that U is an orthogonal linear transformation of R
m onto R

m. Since
|det (U)| = 1, U is an invertible measure-preserving transformation of (Rm,µ). For each
k ∈ N, denote by Bk the closed k-ball {x ∈ R

m : ‖x‖Rm ≤ k}. Then (U |Bk ) is an invertible
measure-preserving transformation of Bk . Since µ (Bk) < ∞, we can apply the preceding
observation to see that if f ∈ Lp1 (Rm,µ) and g ∈ Lp2 (Rm,µ), then the bilinear ergodic
averages

1

N

N∑
n=1

f
(
Unx

) · g (U−nx
)

converge for µ-almost all x in each Bk , and hence converge for µ-almost all x ∈ R
m.

5. An Application to a.e. Convergence of the Transferred
Bilinear Hilbert Averages

The following theorem applies Theorem 9 to infer almost everywhere convergence for the
bilinear Hilbert averages induced by translations of locally compact abelian groups.

Theorem 12. Let λ be Haar measure for a locally compact abelian group G, and let
τ ∈ G. Denote by Uτ the translation operator corresponding to τ that acts on the algebra
A (λ), consisting of all complex-valued λ-measurable functions on G (identified modulo
equality λ-a.e. on G). Suppose that the exponents p1, p2, and p3 satisfy the conditions

1 < p1, p2 < ∞ ; (5.1)

1

p1
+ 1

p2
= 1

p3
<

3

2
. (5.2)

Define the bisublinear mapping HG,τ on Lp1 (λ)×Lp2 (λ) by writing for all f ∈ Lp1 (λ),
all g ∈ Lp2 (λ), and all x ∈ G,

(
HG,τ (f, g)

)
(x) = sup

N∈N

∣∣∣∣∣∣
∑

0<|n|≤N

{(
Unτ f

)
(x)
} {(

U−n
τ g

)
(x)
}

n

∣∣∣∣∣∣ . (5.3)

Then for all f ∈ Lp1 (λ), and all g ∈ Lp2 (λ), we have:
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(i)
∥∥HG,τ (f, g)∥∥Lp3 (λ)

≤ Ap1,p2 ‖f ‖Lp1 (λ) ‖g‖Lp2 (λ), where Ap1,p2 is the constant
depending only on p1 and p2 that occurs in (1.22);

(ii) the sequence of functions


∑
0<|n|≤N

(
Unτ f

) · (U−n
τ g

)
n




∞

N=1

converges λ-a.e. on G to a function HG,τ (f, g) ∈ Lp3 (λ) such that∥∥HG,τ (f, g)∥∥Lp3 (λ)
≤ Ap1,p2 ‖f ‖Lp1 (λ) ‖g‖Lp2 (λ) .

Before taking up the proof of Theorem 12, we make a few simplifying observations
which, in particular, furnish a reduction to the case of sigma-finite λ, as required for satis-
fying the hypotheses of Theorem 9. We begin this process by recalling a few items from
the structure theory of locally compact groups.

Definition 5. A topological group G is said to be compactly generated provided there is
a compact subset F of G such that G coincides with the abstract subgroup generated by F .

Notice that a compactly generated group is automatically sigma-compact. The fol-
lowing standard item (see, e.g., Theorem (5.14) in [21]) fits compactly generated groups
into analysis on locally compact groups.

Proposition 6. Let F be a compact subset of a locally compact group G. Then there is
an open and closed compactly generated subgroup of G that contains F .

We remark that the existence of an open sigma-compact subgroup of the arbitrary
locally compact group G can be used to show that every subset of G which has finite
left Haar measure is sigma-bounded (that is, is a subset of the union of a sequence of
compact sets). The following item from the structure theory of locally compact abelian
groups (Theorem (9.8) in [21]) will play a central role in establishing Theorem 12 in the
full generality stated.

Proposition 7. Every compactly generated locally compact abelian group G is topolog-
ically isomorphic with a direct product

R
a × Z

b ×K , (5.4)

where a and b are nonnegative integers, and K is a compact abelian group.

We claim that the proof of Theorem 12 can be reduced to the special case in which
G is compactly generated. To establish the claim, assume that Theorem 12 is known to be
valid whenG is compactly generated, and consider the general case whereG is an arbitrary
locally compact abelian group. Let f ∈ Lp1 (λ), g ∈ Lp2 (λ). Then there is a sequence
{Fk}∞k=1 of compact subsets of G such that

{t ∈ G : f (t) 	= 0} ⊆
∞⋃
k=1

Fk . (5.5)

Consequently, we can apply Proposition 6 to obtain an increasing sequence {Gk}∞k=1 consist-
ing of open and closed compactly generated subgroups ofG, and such that for each k ∈ N,

Fk
⋃

{τ } ⊆ Gk . (5.6)
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(Since each subgroup Gk is open, the Haar measure λ of G, when restricted to Gk , serves
as Haar measure for Gk .) For each k ∈ N, we can temporarily confine our attention to Gk ,
and there apply the special case of Theorem 12 to infer that∥∥∥∥∥∥ sup
N∈N

∣∣∣∣∣∣
∑

0<|n|≤N

(
Unτ f

) · (U−n
τ g

)
n

∣∣∣∣∣∣
∥∥∥∥∥∥
Lp3 (Gk,λ)

≤ Ap1,p2 ‖f ‖Lp1 (G,λ) ‖g‖Lp2 (G,λ) . (5.7)

Observe that for all x ∈ G \ (⋃∞
k=1Gk

)
, and all n ∈ Z, we have

(
Unτ f

)
(x) = 0. Hence,

we can let k → ∞ in (5.7) to deduce by monotone convergence that the assertion in
Theorem 12 (i) holds. The assertion in Theorem 12 (ii) can be justified by using the
sequence {Gk}∞k=1 to argue similarly from the special case of the theorem.

Proof of Theorem 12. As has just been described, we can (and will) assume without
loss of generality thatG is compactly generated. Since, in particular, G is sigma-compact,
we can apply Theorem 9 directly to (G, λ) in order to obtain conclusion (i) of the theorem.

So it now remains only to establish the λ-a.e. convergence of the bilinear Hilbert
averages, as asserted in conclusion (ii) of the theorem. For this purpose we proceed to show
that the a.e.-convergence hypothesis of the multilinear Banach Principle (Proposition 1) is
satisfied here. By Proposition 7, we can write G in the form (5.4). Thus, in the sense of
integration over locally compact spaces (as treated by Chapter III of [21]), λ is the product
measure of the Haar measures λ1, λ2, λ3 of R

a , Z
b, and K , respectively. Our method of

proof will exhaust the separate cases which arise according to the possible combinations of
values for the nonnegative integers a and b in (5.4).

Case I (a = b = 0). In this case G can be identified with the compact abelian group
K . Since it follows with the aid of the Stone-Weierstrass Theorem that the trigonometric
polynomials onK (that is, the finite linear combinations of continuous characters ofK) are
dense in Lp (λ) for 0 < p < ∞, it suffices for Case I to observe that for all continuous
characters γ1, γ2 of K , and for every x ∈ K , the sequence

∑

0<|n|≤N

((
Unτ γ1

)
(x)
) ((
U−n
τ γ2

)
(x)
)

n




∞

N=1

=

γ1 (x) γ2 (x)

∑
0<|n|≤N

(
γ1 (τ ) γ2 (τ )

)n
n




∞

N=1

converges. The convergence of the sequence on the right is elementary, since the function
φ of bounded variation on the circle specified by φ (1) = 0, and

φ
(
eit
) = i (π − t) , for 0 < t < 2π ,

has Fourier series

∞∑
n=−∞
n	=0

zn

n
, (5.8)

which converges to φ (z) at every z ∈ T.

Case II (a = 0, b > 0). In this caseG can be identified with the direct product Z
b×K . Put

τ = (u, v) ∈ Z
b ×K ,
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and for m ∈ Z
b, let ηm denote the characteristic function, defined on Z

b, of the singleton
set consisting of m. For 0 < p < ∞ we can take as a dense subset of Lp (λ) the linear
span of all functions having the form

(x, y) ∈ Z
b ×K �→ ηm (x) γ (y) ,

where m ∈ Z
b, and γ is a continuous character ofK . So for Case II it suffices to show that

if m1 ∈ Z
b, m2 ∈ Z

b, γ1 and γ2 are continuous characters ofK , and (x, y) ∈ Z
b ×K , then

the sequence
γ1 (y) γ2 (y)

∑
0<|n|≤N

ηm1 (x + nu) ηm2 (x − nu)
(
γ1 (v) γ2 (v)

)n
n




∞

N=1

(5.9)

is convergent. This convergence can readily be see as follows. If u = 0, then the conver-
gence is immediate by virtue of the above-noted pointwise convergence on T of the Fourier
series in (5.8). If u 	= 0, then ηm1 (x + nu) = 0 as soon as

|n| ‖u‖Zb − ‖x‖Zb > ‖m1‖Zb ,

and so there is N0 ∈ N such that the sequence in (5.9) has the same value for all N ≥ N0.

Case III (a > 0, b = 0). In this caseG can be identified with the direct product R
a ×K ,

and for 0 < p < ∞ we can take as a dense subset of Lp (λ) the linear span of all functions
having the form

(x, y) ∈ R
a ×K �→ ψ (x) γ (y) ,

where ψ : R
a → C is a continuous function with compact support, and γ is a continuous

character of K . The proof for Case III can be carried out in analogy with the proof for
Case II by replacing the functions ηm (m ∈ Z

b) in the reasoning for Case II with the
continuous compactly supported functions ψ on R

a .

Case IV (a > 0, b > 0). In this caseG is identified with the direct product R
a × Z

b ×K ,
and the details of the proof are similar to those in the preceding cases.

Remark 6. Theorem 12 does not have a valid analogue for the one-sided bilinear Hilbert
averages induced by a translation operator because of the following fundamental feature of
ergodic theory (shown independently in [25] and as Corollary 2 of [23]).

Example 2. Whenever we are given an invertible ergodic measure-preserving transfor-
mation ζ of a nonatomic probability space (�,µ), there is always an f0 ∈ L∞ (µ) with∫
�
f0 dµ = 0 such that

sup
N∈N

∣∣∣∣∣
N∑
n=1

f0 (ζ
n (x))

n

∣∣∣∣∣ = ∞, for µ-almost all x ∈ � .

Example 2 obviously extends to the one-sided bilinear Hilbert averages in the ergodic
theory setting, since we can let g0 ∈ L∞ (µ) be the function identically equal to 1 on � in
order to conclude that

sup
N∈N

∣∣∣∣∣
N∑
n=1

f0
(
ζ n (x)

)
g0
(
ζ−n (x)

)
n

∣∣∣∣∣ = ∞, for µ-almost all x ∈ � . (5.10)
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In particular, if we take � to be T with its normalized Haar measure λ, we can satisfy the
hypotheses of Example 2 by choosing an arbitrary irrational number s, putting τ = e2πis,
and then taking translation of T by τ as the ergodic transformation ζ . Clearly, the hypotheses
of Theorem 12 onG, λ, and τ are also satisfied under these circumstances, but (5.10) shows
that the analogues of Theorem 12 (i), (ii) for the one-sided bilinear Hilbert averages can
fail to hold.

6. Transference of Bisublinear Maximal Estimates from
lca Groups

In this last section, we develop a general approach to the transference of bisublinear maximal
estimates from arbitrary locally compact abelian groups to Lebesgue spaces of abstract
sigma-finite measures. We begin by introducing the requisite machinery and notation,
which will be in effect henceforth. The exponents p1, p2, and p3 will satisfy

1 ≤ p1, p2 < ∞ ; (6.1)

1

p1
+ 1

p2
= 1

p3
. (6.2)

G will be an arbitrary locally compact abelian group with Haar measure λ. We generalize
Definition 1 to the setting of G as follows.

Definition 6. For K ∈ L1 (G), we shall denote by BK the bilinear mapping of L2 (G)×
L2 (G) into L1 (G) specified by

(
BK (f, g)

)
(x) =

∫
G
f (x + y) g (x − y)K (y) dλ (y) .

Given a sequence
{
Kj
}∞
j=1 ⊆ L1 (G), the corresponding bisublinear maximal operator will

be symbolized by B�{
Kj

}. Thus, for f, g ∈ L2 (G), and almost all x ∈ G,

(
B
�{
Kj

} (f, g)
)
(x) = sup

j∈N

∣∣∣(BKj
(f, g)

)
(x)

∣∣∣ .

We now suppose that we are given a sequence of compactly supported functions{
Kj
}∞
j=1 ⊆ L1 (G) such that for some constant ρ,

∥∥∥B�{Kj } (f, g)
∥∥∥
Lp3 (G)

≤ ρ ‖f ‖Lp1 (G) ‖g‖Lp2 (G) , (6.3)

for all f ∈ Lp1 (G)
⋂
L2 (G) , all g ∈ Lp2 (G)

⋂
L2 (G) .

Our goal will be to transfer the maximal estimate in (6.3) to the setting of an arbitrary
sigma-finite measure space (�,µ), and we now seek to formulate suitable properties for
operators representing G to implement such a transference. In keeping with (3.3), it is
desirable for such operators to incorporate the separation-preserving property. Moreover,
these operators will have to act simultaneously on Lp (µ)-spaces for different values of
the exponent p, while some extra care will be needed, because we shall have to control
the Lp3 (µ)-norms of vector-valued integrals, even in the cases when p3 < 1. For these
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purposes, we shall utilize A (µ), the algebra (under pointwise operations) consisting of all
complex-valued µ-measurable functions on � (identified modulo equality µ-a.e. on �), to
“represent” G by linear bijections of A (µ) onto A (µ). Specifically, we shall consider a
mapping R : u �→ Ru of G with the following properties.

(1) R is a homomorphism of G into the group (under composition) of all linear bijec-
tions of A (µ) onto A (µ).

(2) For each u ∈ G, limk Ru (gk) = Ru (g) µ-a.e. on �, whenever {gk}∞k=1 ⊆ A (µ),
g ∈ A (µ), and limk gk = g µ-a.e. on �.

(3) For ν = 1, 2, 3, Lpν (µ) is invariant under {Ru : u ∈ G}, and the mapping u ∈
G �→ (Ru|Lpν (µ)) is a strongly continuous homomorphism of G into the group
of invertible separation-preserving operators belonging to B (Lpν (µ)) such that

sν ≡ sup
{∥∥Ru|Lpν (µ)∥∥B(Lpν (µ))

: u ∈ G
}
< ∞ . (6.4)

Before taking up the transference of (6.3), we shall take up some further properties
of R that automatically flow from the above assumptions. One sees easily with the aid of
Proposition 4 and property (2) above that there are unique families {hu}u∈G and {
u}u∈G
such that for every u ∈ G: hu ∈ A (µ)with |hu| > 0 on�;
u is an algebra automorphism
of A (µ) onto A (µ); for all f ∈ A (µ), Ruf = hu
u (f ); whenever {gk}∞k=1 ⊆ A (µ),
g ∈ A (µ), and limk gk = g µ-a.e. on�, it follows that limk 
u (gk) = 
u (g) µ-a.e. on�.
It is now straightforward to deduce the following analogues in the present context for (3.11),
(3.12), and (3.13).

|
u (f )|α = 
u
(|f |α) , for u ∈ G, f ∈ A (µ) , 0 < α < ∞. (6.5)


u+v (f ) = 
u (
v (f )) , for u ∈ G, v ∈ G, f ∈ A (µ) . (6.6)

hu+v = hu
u (hv) , for u ∈ G, v ∈ G . (6.7)

We next show that, since p3 < p1, we can infer from (6.4) that(
s
p1
1 s

p3
3

)−1/(p1−p3) ≤ |hu| ≤ (sp1
1 s

p3
3

)1/(p1−p3)
µ-a.e. on � , (6.8)

for every u ∈ G .

To this end, note first that if µ (E) < ∞, and u ∈ G, then we have for υ = 1, 3,

s−pν
ν

∫
�

|hu|pν 
u (χE) dµ ≤ µ (E) ≤ spνν

∫
�

|hu|pν 
u (χE) dµ < ∞ .

This, together with sigma-finiteness, implies that for everyµ-measurable setW , eachu ∈ G,
and for (ν1, ν2) = (1, 3) or (3, 1),

s
−pν1
ν1

∫
W

|hu|pν1 dµ ≤ s
pν2
ν2

∫
W

|hu|pν2 dµ . (6.9)

Suppose again that µ (E) < ∞, and let χB ∈ A (µ), with 
u (χE) = χB . Put

B0 =
{
x ∈ B : s

−pν1
ν1 |hu|pν1 > s

pν2
ν2 |hu|pν2

}
.

Then

∞ > s
−pν1
ν1

∫
�

|hu|pν1 
u (χE) dµ ≥ s
−pν1
ν1

∫
B0

|hu|pν1 dµ ≥ s
pν2
ν2

∫
B0

|hu|pν2 dµ .
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In view of this and (6.9), we have

∞ > s
−pν1
ν1

∫
B0

|hu|pν1 dµ = s
pν2
ν2

∫
B0

|hu|pν2 dµ ,

which, together with the definition of B0, shows that µ-a.e. in B0, we have s
−pν1
ν1 |hu|pν1 =

s
pν2
ν2 |hu|pν2 . And it is now clear from the definition of B0 that µ (B0) = 0. Since (�,µ) is

sigma-finite, and ν1, ν2 are distinct, this yields (6.8).
We next show that for 0 < p < ∞, Lp (µ) is invariant under {Ru : u ∈ G}, and the

mapping u ∈ G �→ (Ru|Lp (µ)) is a homomorphism of G into the group of invertible
separation-preserving operators belonging to B (Lp (µ)) such that

�p ≡ sup
{∥∥Ru|Lp (µ)∥∥B(Lp(µ))

: u ∈ G
}
< ∞ . (6.10)

To see this, suppose that 0 < p < ∞, and f is a µ-integrable simple function. Then there
is a µ-integrable simple function g ≥ 0 such that

|f | = gp1/p ,

and, with the aid of two successive applications of (6.8), we find that for each u ∈ G,∫
�

|Ruf |p dµ

=
∫
�

|hu|p 
u
(
gp1
)
dµ

≤ (sp1
1 s

p3
3

)p/(p1−p3)
∫
�


u
(
gp1
)
dµ

≤ (sp1
1 s

p3
3

)p/(p1−p3)
(
s
p1
1 s

p3
3

)p1/(p1−p3)
∫
�

|hu|p1 
u
(
gp1
)
dµ

= (sp1
1 s

p3
3

)p/(p1−p3)
(
s
p1
1 s

p3
3

)p1/(p1−p3) ‖Rug‖p1
Lp1 (µ)

.

Since ‖Rug‖p1
Lp1 (µ)

≤ s
p1
1 ‖g‖p1

Lp1 (µ)
= s

p1
1 ‖f ‖p

Lp(µ), we can now use property (2) of R
together with Fatou’s Lemma to obtain (6.10). At this juncture, the following proposition
(Proposition (3.2) of [2]) permits us to infer from (6.1) in conjunction with the strong
continuity provision in property (3) above and (6.10) that

for 1≤p<∞, the representation u ∈ G �→ Ru|Lp (µ) is strongly continuous. (6.11)

Proposition 8. LetGbe a locally compact abelian group and (X, σ )an arbitrary measure
space. Suppose that 1 ≤ r1, r2 < ∞, and, for j = 1, 2, let u �→ Rj,u be a representation
of G in Lrj (σ ) such that

sup
{∥∥Rj,u

∥∥
B(Lrj (σ )) : u ∈ G

}
< ∞ .

Suppose also that

R1,uf = R2,uf , for u ∈ G and f ∈ Lr1 (σ )
⋂
Lr2 (σ ) .

Then the representation u �→ R1,u is strongly continuous if and only if the representation
u �→ R2,u is strongly continuous.
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For 0 < p < ∞, we shall, as a convenient abbreviation, denote by R(p) : u �→ R
(p)
u

the representation u �→ Ru|Lp (µ) of G. A bonus stemming from (6.10) and (6.11) is that
for f ∈ L2 (µ) and g ∈ L2 (µ), the pointwise product

(
R
(2)
u f

)(
R
(2)
−ug

)
moves continuously

in L1 (µ) (as a function of u ∈ G) with respect to the norm topology of L1 (µ), and is
bounded in L1 (µ)-norm. Consequently we can use L1 (µ)-valued Bochner integration to
formulate the following transference analogue of Definition 6.

Definition 7. For K ∈ L1 (G), we shall denote by TK the bilinear mapping of L2 (µ)×
L2 (µ) into L1 (µ) specified by L1 (µ)-valued Bochner integration as follows.

TK (f, g) =
∫
G

(
R(2)u f

) (
R
(2)
−ug

)
K (u) dλ (u) ,

for all f ∈ L2 (µ) and all g ∈ L2 (µ) .

Given a sequence
{
Kj
}∞
j=1 ⊆ L1 (G), we define the corresponding transferred bisublinear

maximal operator T �{
Kj

} by writing for all f ∈ L2 (µ), all g ∈ L2 (µ), and almost all

x ∈ �, (
T
�{
Kj

} (f, g)
)
(x) = sup

j∈N

∣∣∣(TKj
(f, g)

)
(x)

∣∣∣ .
We shall also require an auxiliary representation of G by bijective linear mappings of

A (µ) onto A (µ) that is designed to furnish suitable multiplicativity properties in analogy
with (3.17). This is accomplished analogously as follows.

Lemma 4. For each u ∈ G, let Wu be the linear mapping of A (µ) into A (µ) defined by
writing pointwise µ-a.e. on �,

Wuf = huRuf = h2
u
u (f ) , for all f ∈ A (µ) .

Then the mapping W : u ∈ G �→Wu is a homomorphism of G into the group (under
composition) of all linear bijections of A (µ) onto A (µ). For 0 < p < ∞, Lp (µ) is
invariant under {Wu : u ∈ G}, and the mappingu ∈ G �→ (Wu|Lp (µ)) is a homomorphism
of G into the group of invertible separation-preserving operators belonging to B (Lp (µ))

such that

�p ≡ sup
{∥∥Wu|Lp (µ)

∥∥
B(Lp(µ))

: u ∈ G
}
< ∞ . (6.12)

For all u ∈ G, v ∈ G, w ∈ G, all f ∈ A (µ), and all g ∈ A (µ), we have, pointwise
µ-a.e. on �,

Wu ((Rvf ) (Rwg)) = (Ru+vf ) (Ru+wg) . (6.13)

Proof. All the assertions follow directly from the corresponding properties ofR and (6.8)
in conjunction with (6.6) and (6.7).

Before taking up the transference theorem for (6.3), there is one remaining matter
that needs to be addressed. This concerns the measure-theoretic technicalities connected
with the use of Fubini’s theorem that inevitably arise in such transference environments.
Specifically, for a given f ∈ Lp (µ) there is no a priori way to represent an expression such
as
(
R
(p)
u f

)
(x) as a λ × µ measurable function of (u, x) ∈ G× �. A general approach to



Discretization and Transference of Bisublinear Maximal Operators 477

surmounting such difficulties is furnished by Lemma (2.5) of [5], whose proof supplies the
following specialized tool for our present situation. (Here and henceforth, given subsets A
and B of G, we shall denote by A− B the group -theoretic difference set consisting of all
differences a − b such that a ∈ A and b ∈ B.)

Proposition 9. Let C be a compact subset of G, let V be an open subset of G having
compact closure, and let f ∈ L2 (µ). Then there exists a complex-valued λ×µmeasurable
function F on G ×� such that:

(a) F vanishes off (V − C)×�;

(b) for λ-almost all u ∈ V − C, F (u, ·) is a representing function for the equivalence
class (modulo equality µ-a.e. on �) of R(2)u f .

The stage is now set for the transference of the maximal estimate in (6.3). This takes
the following form.

Theorem 13. Let p1, p2, p3, G, and λ be as just described above. Suppose that we
are given a sequence of compactly supported functions

{
Kj
}∞
j=1 ⊆ L1 (G) such that for

some constant ρ, (6.3) holds. If (�,µ) is a sigma-finite measure space, and u �→ Ru is a
mapping of G having the properties (1), (2), and (3) listed above, then, in the notation of
Definition 7, we have:∥∥∥T �{Kj } (f, g)

∥∥∥
Lp3 (µ)

≤ ρs1s2�p3 ‖f ‖Lp1 (µ) ‖g‖Lp2 (µ) , (6.14)

for all f ∈ Lp1 (µ)
⋂
L2 (µ) , and all g ∈ Lp2 (µ)

⋂
L2 (µ) ,

where �p3 is defined by (6.12), and s1, and s2 are the constants given by (6.4).

Proof. Let N ∈ N, and define the truncated maximal operator T (N) by writing for all
f ∈ L2 (µ), g ∈ L2 (µ),

T (N) (f, g) = sup
1≤j≤N

∣∣TKj (f, g)∣∣ .

By the monotone convergence theorem it clearly suffices to show that for all f ∈
Lp1 (µ)

⋂
L2 (µ) and all g ∈ Lp2 (µ)

⋂
L2 (µ),∥∥∥T (N) (f, g)∥∥∥

Lp3 (µ)
≤ ρs1s2�p3 ‖f ‖Lp1 (µ) ‖g‖Lp2 (µ) . (6.15)

To this end, fix f ∈ Lp1 (µ)
⋂
L2 (µ), g ∈ Lp2 (µ)

⋂
L2 (µ), and let C be a symmetric

compact subset of G that contains the support of Kj for 1 ≤ j ≤ N . Let ε be a positive
real number. By Lemma (31.36) of [22] (a form of Leptin’s condition), we can choose a
nonvoid symmetric open set V in G such that the closure of V is compact, and

λ (V − C)
λ (V )

< 1 + ε . (6.16)

Let v ∈ V . We now apply (3.3) to T (N) (f, g) and to the separation-preserving operator
Wv|L1 (µ) ∈ B

(
L1 (µ)

)
, which is described by Lemma 4. This gives∣∣∣(Wv|L1 (µ)

) (
T (N) (f, g)

)∣∣∣ = sup
1≤j≤N

∣∣∣(Wv|L1 (µ)
) (
TKj (f, g)

)∣∣∣ . (6.17)



478 Earl Berkson, Oscar Blasco, María J. Carro, and T. A. Gillespie

For 1 ≤ j ≤ N , we see by (6.13) that, in terms of L1 (µ)-valued Bochner integration,

(
Wv|L1 (µ)

) (
TKj (f, g)

) =
∫
C

(
R
(2)
v+uf

) (
R
(2)
v−ug

)
Kj (u) dλ (u) . (6.18)

At this juncture, we observe that by virtue of Proposition 9, we can and shall arrange matters
so that, without loss of generality, we can regard each of the expressions

(
R
(2)
u f

)
(x) and(

R
(2)
−ug

)
(x) as if it were a jointly measurable function of (u, x) on (V − C)×�. Moreover,

we can treat each of the expressions
(
R
(2)
s+uf

)
(x) and

(
R
(2)
s−ug

)
(x) as if it were a jointly

measurable function of (s, u, x) on V × C×�, whence for v ∈ V , and 1 ≤ j ≤ N ,

((
Wv|L1 (µ)

)(
TKj (f, g)

))
(x)=

∫
C

(
R
(2)
v+uf

)
(x)
(
R
(2)
v−ug

)
(x)Kj (u) dλ (u) , (6.19)

for µ-almost all x ∈ � .

Although, we do not yet know that T (N) (f, g) ∈ Lp3 (µ), it is clear from the invariance
provision of Lemma 4 that for any h ∈ A (µ), and any g ∈ G, we have Wgh ∈ Lp3 (µ)

if and only if h ∈ Lp3 (µ). Keeping this in mind, we will now consider expressions
such as

∥∥T (N) (f, g)∥∥p3

Lp3 (µ)
(which, as far as we know at this juncture, might be infinite).

From (6.12) and (6.17) we see that for v ∈ V ,∥∥∥T (N) (f, g)∥∥∥p3

Lp3 (µ)
≤ �

p3
p3

∥∥∥(Wv|L1 (µ)
) (
T (N) (f, g)

)∥∥∥p3

Lp3 (µ)

= �
p3
p3

∥∥∥∥∥ sup
1≤j≤N

∣∣∣(Wv|L1 (µ)
) (
TKj (f, g)

)∣∣∣
∥∥∥∥∥
p3

Lp3 (µ)

.

Substituting (6.19) in the last member, we get∥∥∥T (N) (f, g)∥∥∥p3

Lp3 (µ)

≤ �
p3
p3

∫
�

sup
1≤j≤N

∣∣∣∣
∫
C

(
R
(2)
v+uf

)
(x)
(
R
(2)
v−ug

)
(x)Kj (u) dλ (u)

∣∣∣∣
p3

dµ (x) .

Averaging this estimate over V with respect to dλ (v), and using Fubini’s theorem to inter-
change the order of integration, we find that∥∥∥T (N) (f, g)∥∥∥p3

Lp3 (µ)
(6.20)

≤ �
p3
p3

λ (V )

∫
�

∫
V

sup
1≤j≤N

∣∣∣∣
∫
C

(
R
(2)
v+uf

)
(x)
(
R
(2)
v−ug

)
(x)Kj (u) dλ (u)

∣∣∣∣
p3

dλ (v)dµ (x) .

Let χ denote the characteristic function, defined on G, of V − C =V + C. In terms of χ we
have the following pointwise estimate on � for the integrand with respect to dµ (x).

∫
V

sup
1≤j≤N

∣∣∣∣
∫
C

(
R
(2)
v+uf

)
(x)
(
R
(2)
v−ug

)
(x)Kj (u) dλ (u)

∣∣∣∣
p3

dλ (v) (6.21)

≤
∫
V

sup
1≤j≤N

∣∣∣∣
∫
G
χ (v+u)

(
R
(2)
v+uf

)
(x) χ (v−u)

(
R
(2)
v−ug

)
(x)Kj (u) dλ (u)

∣∣∣∣
p3

dλ (v).
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Applying the hypothesis (6.3) to the majorant in (6.21), we infer that forµ-almost all x ∈ �,∫
V

sup
1≤j≤N

∣∣∣∣
∫
C

(
R
(2)
v+uf

)
(x)
(
R
(2)
v−ug

)
(x)Kj (u) dλ (u)

∣∣∣∣
p3

dλ (v)

≤ ρp3

(∫
V−C

|(Ruf ) (x)|p1 dλ (u)

)p3/p1
(∫

V−C
|(Rug) (x)|p2 dλ (u)

)p3/p2

.

Using this estimate in (6.20) gives∥∥∥T (N) (f, g)∥∥∥p3

Lp3 (µ)

≤ �
p3
p3ρ

p3

λ (V )

∫
�

(∫
V−C

|(Ruf ) (x)|p1 dλ (u)

)p3/p1
(∫

V−C
|(Rug) (x)|p2 dλ (u)

)p3/p2

dµ (x) .

Applying Hölder’s inequality for the pair of conjugate exponents
p1

p3
and

p2

p3
, we see that∥∥T (N) (f, g)∥∥p3

Lp3 (µ)
does not exceed the product of

�
p3
p3ρ

p3

λ (V )

(∫
�

∫
V−C

|(Ruf ) (x)|p1 dλ (u) dµ (x)

)p3/p1

with (∫
�

∫
V−C

|(Rug) (x)|p2 dλ (u) dµ (x)

)p3/p2

.

Hence, ∥∥∥T (N) (f, g)∥∥∥p3

Lp3 (µ)

≤ ρp3s
p3
1 s

p3
2 �

p3
p3

λ (V − C)
λ (V )

‖f ‖p3
Lp1 (µ)

‖g‖p3
Lp2 (µ)

≤ ρp3s
p3
1 s

p3
2 �

p3
p3 (1 + ε) ‖f ‖p3

Lp1 (µ)
‖g‖p3

Lp2 (µ)
.

Letting ε → 0 yields (6.15) and completes the proof of Theorem 13.
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