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ABSTRACT. Frames have applications in numerous fields of mathematics and engineering. The
fundamental property of frames which makes them so useful is their overcompleteness. In most
applications, it is this overcompleteness that is exploited to yield a decomposition that is more stable,
more robust, or more compact than is possible using nonredundant systems. This work presents
a quantitative framework for describing the overcompleteness of frames. It introduces notions of
localization and approximation between two frames F = {fi }i∈I and E = {ej }j∈G (G a discrete
abelian group), relating the decay of the expansion of the elements of F in terms of the elements
of E via a map a : I → G. A fundamental set of equalities are shown between three seemingly
unrelated quantities: The relative measure of F , the relative measure of E — both of which are
determined by certain averages of inner products of frame elements with their corresponding dual
frame elements — and the density of the set a(I ) in G. Fundamental new results are obtained on
the excess and overcompleteness of frames, on the relationship between frame bounds and density,
and on the structure of the dual frame of a localized frame. In a subsequent article, these results
are applied to the case of Gabor frames, producing an array of new results as well as clarifying
the meaning of existing results.

The notion of localization and related approximation properties introduced in this article are
a spectrum of ideas that quantify the degree to which elements of one frame can be approximated
by elements of another frame. A comprehensive examination of the interrelations among these
localization and approximation concepts is presented.
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1. Introduction

A sequence of vectors F = {fi}i∈I in a Hilbert space is a called a frame if there exist
constants A, B > 0 such that

∀ f ∈ H, A ‖f ‖2 ≤
∑
i∈I

|〈f, fi〉|2 ≤ B ‖f ‖2 .

Frames provide robust and stable representations of vectors. They have applications in
mathematics and engineering in a wide variety of areas, including sampling theory [1],
operator theory [36], harmonic analysis [45], nonlinear sparse approximation [23, 29],
pseudodifferential operators [34], wavelet theory [20], wireless communications [53, 54,
40], data transmission with erasures [27, 10], filter banks [11], signal processing [28, 9],
image processing [14], geophysics [47], and quantum computing [24].

The essential feature of a frame that is not Riesz bases is the overcompleteness of its
elements. In almost all applications, it is this overcompleteness that is exploited to yield
a decomposition that is more stable, more robust, or more compact than is possible using
nonredundant systems. To date, even partial understanding of this overcompleteness has
been restricted to limited examples, such as finite-dimensional frames, frames of windowed
exponentials, or frames of time-frequency shifts (Gabor systems). The ideas and results
presented here provide a quantitative framework for describing the overcompleteness of
frames. The consequences of these ideas are: (a) An array of fundamental new results
for frames that hold in a general setting, (b) significant new results for the case of Gabor
frames, as well as a new framing of existing results that clarifies their meaning, and (c) the
presentation of a novel and fruitful point of view for future research.

Due to the length of this work, it is natural to present it in two parts. The first part,
containing the theoretical and structural results that have driven the research, forms this
article. The second part, containing the applications to Gabor frames, will appear in the
article [5]. The importance and utility of Gabor frames has long been recognized due to
its fundamental time-frequency structure. We stress that the results presented here, when
applied to Gabor frames, not only produce new results for Gabor frames but also recover,
as corollaries, all the existing density results known to hold for Gabor frames. Thus, our
approach and results both unify and greatly extend the frame density results contained
in [20, 46, 48, 35, 19], and give new insight into the results in [49, 2, 42, 22, 43, 51, 12],
among others.

At the core of our main results is Theorem 5. The precise statement of the theorem
requires some detailed notation, but the essence of the result can be summarized as follows.
We begin with two frames F = {fi}i∈I and E = {ej }j∈G, where G is a discrete abelian
group, and introduce a notion of the localization of F with respect to E . The idea of
localization is that it describes the decay of the coefficients of the expansion of elements of
F in terms of the elements of E . To make this notion of decay meaningful, a map a from
the index set I into the index set G is introduced. With this setup, Theorem 5 establishes
a remarkable equality relating three seemingly unrelated quantities: Certain averages of
〈fi, f̃i〉 and 〈ej , ẽj 〉 of frame elements with corresponding canonical dual frame elements,
which we refer to as relative measures, and the density of the set a(I ) in G. This equality
between density and relative measure is striking since the relative measure is a function
of the frame elements, while the density is solely determined by the index set I and the
mapping a : I → G.

The impact of Theorem 5 comes in several forms. First, the result itself is new, and
its consequences along with related ideas discussed in more detail below represent a vast
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increase in the understanding of the structure of abstract frames. Second, as mentioned
above, the application of Theorem 5 and our other new theorems to the case of Gabor
frames yields new results, which will be presented in the sequel (hereafter referred to as
Part II). These recover as corollaries the existing density results known to hold for Gabor
frames, but in doing so, shows them in a new light, as the consequence of more general
considerations rather than of a particular rigid structure of the frames themselves. The
notions of localization, approximation, and measure are interesting and useful new ideas
which we feel will have impact beyond the results presented in this article. In particular, it
will be interesting to see to what degree wavelet frames fit into this framework, especially
given recent results on density theorems for affine frames [38, 55] and in light of the negative
stability result for wavelet Riesz bases proved in [3].

In addition to the fundamental equalities relating density and measures discussed
above, we obtain a set of additional significant results, as follows.

First, we provide a comprehensive theory of localization of frames. Localization is
not a single concept, but a suite of related ideas. We introduce a collection of definitions
and describe the implications among these various definitions. We also introduce a set of
approximation properties for frames, and analyze the interrelations between these properties
and the localization properties.

Second, we explore the implications of the connection between density and overcom-
pleteness. We show that in any overcomplete frame which possesses sufficient localization,
the overcompleteness must have a certain degree of uniformity. Specifically, we construct
an infinite subset of the frame with positive density which can be removed yet still leave a
frame. We obtain relations among the frame bounds, density of the index set I , and norms
of the frame elements, and prove in particular that if F is a tight localized frame whose
elements all have the same norm then the index set I must have uniform density.

Third, we explore the structure of the dual frame, showing that if a frame is suffi-
ciently localized then its dual frame is also. We also prove that any sufficiently localized
frame can be written as a finite union of Riesz sequences. This shows that the Feichtinger
conjecture (which has recently been shown to be equivalent to the famous Kadison-Singer
conjecture [17]) is true for the case of localized frames.

In Part II we apply our results to derive new implications for the case of Gabor frames
and more general systems of Gabor molecules, whose elements are not required to be
simple time-frequency shifts of each other, but instead need only share a common envelope
of concentration about points in the time-frequency plane. These include strong results on
the structure of the dual frame of an irregular Gabor frame, about which essentially nothing
has previously been known beyond the fact that it consists of a set of L2 functions. We
prove that if an irregular Gabor frame is generated by a function g which is sufficiently
concentrated in the time-frequency plane (specifically, g lies in the modulation space M1),
then the elements of the dual frame also lie in M1. We further prove that the dual frame
forms a set of Gabor molecules, and thus, while it need not form a Gabor frame, the elements
do share a common envelope of concentration in the time-frequency plane. Moreover, this
same result applies if the original frame was only itself a frame of Gabor molecules.

Our article is organized as follows. The next section will give a more detailed and
precise summary and outline of our results. Section 2 introduces the concepts of localization
and approximation properties and presents the interrelations among them. We also define
density and relative measure precisely in that section. The main results of this article for
abstract frames are presented in Section 3.

We believe that localization is a powerful and useful new concept. As evidence
of this fact, we note that Gröchenig has independently introduced a concept of localized
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frames, for a completely different purpose [32]. We learned of Gröchenig’s results shortly
after completion of our own major results. The definitions of localizations presented here
and in [32] differ, but the fact that this single concept has independently arisen for two
very distinct applications shows its utility. In his elegant article, Gröchenig has shown
that frames which are sufficiently localized in his sense provide frame expansions not only
for the Hilbert space H but for an entire family of associated Banach function spaces.
Gröchenig further showed that if a frame is sufficiently localized in his sense (a polynomial
or exponential localization) then the dual frame is similarly localized.

1.1 Outline

Density, Localization, HAP, and Relative Measure

The main body of our article begins in Section 2, where, following the definition of density
in Section 2.1, we define several types of localization and approximation properties for
abstract frames in Sections 2.2 and 2.3.

Localization is determined both by the frame F = {fi}i∈I and by a reference system
E = {ej }j∈G. We assume the reference system is indexed by a group of the form

G =
d∏

i=1

aiZ ×
e∏

j=1

Znj
, (1.1)

with a metric on G defined as follows. If mj ∈ Znj
, set δ(mj ) = 0 if mj = 0, otherwise

δ(mj ) = 1. Then given g = (a1n1, . . . , adnd, m1, . . . , me) ∈ G, set

|g| = sup
{|a1n1|, . . . , |adnd |, δ(m1), . . . , δ(me)

}
. (1.2)

The metric is then d(g, h) = |g − h| for g, h ∈ G. Our results can be generalized to
other groups; the main properties of the group defined by (1.1) that are used are that G is a
countably infinite abelian group which has a shift-invariant metric with respect to which it
is locally finite. The reader can simply take G = Zd without much loss of insight on a first
reading.

The additive structure of the index set G of the reference system does play a role
in certain of our results. However, the index set I of the frame F need not be structured.
For example, in our applications in Part II we will have an irregular Gabor system F =
G(g, �) = {e2πiηxg(x −u)}(u,η)∈�, which has as its index set an arbitrary countable subset
� ⊂ R2d , while our reference system will be a lattice Gabor system E = G(φ, αZd × βZd)

= {e2πiηxφ(x − u)}(u,η)∈αZd×βZd , indexed by G = αZd × βZd .
A set of approximation properties for abstract frames is introduced in Definition 4.

These are defined in terms of how well the elements of the reference system are approximated
by finite linear combinations of frame elements, or vice versa, and provide an abstraction
for general frames of the essential features of the Homogeneous Approximation Property
(HAP) that is known to hold for Gabor frames or windowed exponentials (see [48, 35, 19]).

We list in Theorem 1 the implications that hold among the localization and approxi-
mation properties. In particular, there is an equivalence between �2-column decay and the
HAP, and between �2-row decay and a dual HAP.

In Section 2.5 we introduce another type of localization. Instead of considering lo-
calization with respect to a fixed reference sequence, we consider localizations in which
the reference is the frame itself (“self-localization”) or its own canonical dual frame. The-
orem 2 states that every �1-self-localized frame is �1-localized with respect to its canonical
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dual frame. The proof of this result is an application of a type of noncommutative Wiener’s
Lemma, and is given in Appendix 4.

We define the density of an abstract frame F = {fi}i∈I in Section 2.1. We assume
there is some associated mapping a : I → G. For example, in the Gabor case, I = � is
an arbitrary countable sequence in R2d while G = αZd × βZd , and a maps elements of
I to elements of G by rounding off to a near element of G (note that a will often not be
injective). Then density is defined by considering the average number of points in a(I )

inside boxes of larger and larger radius. By taking the infimum or supremum over all
boxes of a given radius and then letting the radius increase, we obtain lower and upper
densities D±(I, a). By using limits with respect to an ultrafilter p and a particular choice
of centers c = {cN }N∈N for the boxes, we obtain an entire collection of densities D(p, c)

intermediate between the upper and lower densities (for background on ultrafilters, we refer
to [39, Chapter 3] or [5, Appendix A]).

The relative measure of an abstract frame sequence F = {fi}i∈I with respect to a
reference frame sequence E = {ej }j∈G is introduced in Section 2.6. For simplicity, in this
introduction we discuss only the case where both are frames for the entire space; in this
case, we speak of the measures of F and E instead of the relative measures. Furthermore
we will discuss here only the case where E is a Riesz basis, so that its measure is 1. Let
SN(j) denote the discrete “box” in G centered at j ∈ G and with “side lengths” N (see
Equation (1.5) for the precise definition). Let IN(j) = a−1(SN(j)) denote the preimage in
I of SN(j) under the map a : I → G. We declare the lower measure of the frame F to be

M−(F) = lim inf
N→∞ inf

j∈G

1

|IN(j)|
∑

i∈IN (j)

〈fi, f̃i〉 ,

and make a similar definition for the upper measure M+(F) (note that 0 ≤ 〈fi, f̃i〉 ≤ 1
for all i). We also define the measure M(F; p, c) with respect to an ultrafilter p and a
particular choice of box centers c = (cN)N∈N. Thus, as was the case with the densities, we
actually have a suite of definitions, a range of measures that are intermediate between the
lower and upper measures. Note that if F is a Riesz basis, then 〈fi, f̃i〉 = 1 for every i, so
a Riesz basis has upper and lower measure 1. The definition of relative measure becomes
more involved when the systems are only frame sequences, i.e., frames for their closed
linear spans. In this case, the relative measures are determined by averages of 〈PEfi, f̃i〉 or
〈PF ẽj , ej 〉, respectively, where PE and PF are the orthogonal projections onto the closed
spans of E and F . The precise definition is given in Definition 7.

Density and Overcompleteness for Localized Frames

Section 3.1 presents two necessary conditions on the density of a frame. In Theorem 3, we
show that a frame which satisfies only a weak version of the HAP will satisfy a Nyquist-
type condition, specifically, it must have a lower density which satisfies D−(I, a) ≥ 1. In
Theorem 4, we show that under a stronger localization assumption, the upper density must
be finite.

The connection between density and overcompleteness, which is among the most
fundamental of our main results, is presented in Section 3.2. We establish a set of equalities
between the relative measures and the reciprocals of the density. Specifically, we prove in
Theorem 5 that for frame F that is appropriately localized with respect to a Riesz basis E ,
we have the following equalities for the lower and upper measures and for every measure
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defined with respect to an ultrafilter p and sequence of centers c = (cN)N∈N in G:

M−(F) = 1

D+(I, a)
, M(F; p, c) = 1

D(p, c)
, M+(F) = 1

D−(I, a)
. (1.3)

Moreover, we actually obtain much finer versions of the equalities above which hold for
the case of a frame sequence compared to a reference system that is also a frame sequence.
The left-hand side of each equality is a function of the frame elements, while the right-hand
side is determined by the index set alone. As immediate consequences of these equalities
we obtain inequalities relating density, frame bounds, and norms of the frame elements. In
particular, we show that if F and E are both localized tight frames whose frame elements
all have identical norms, then the index set I must have uniform density, i.e., the upper and
lower densities of I must be equal. Thus, tightness necessarily requires a certain uniformity
of the index set.

The equalities in (1.3) suggest that relative measure is a quantification of overcom-
pleteness for localized frames. To illustrate this connection, let us recall the definition of
the excess of a frame, which is a crude measure of overcompleteness. The excess of a
frame {fi}i∈I is the cardinality of the largest set J such that {fi}i∈I\J is complete (but not
necessarily still a frame). An earlier article [4] showed that there is an infinite J ⊂ I such
that {fi}i∈I\J is still a frame if and only if there exists an infinite set J0 ⊂ I such that

sup
i∈J0

〈fi, f̃i〉 < 1 . (1.4)

The set J to be removed will be a subset of J0, but, in general, the technique of [4] will
construct only an extremely sparse set J (typically zero density in the terminology of this
article). If M−(F) < 1, then (1.4) will be satisfied for some J0 (see Proposition 1), and so
some infinite set can be removed from the frame. We prove in Section 3.4 that if a frame is
localized and M+(F) < 1, then not merely can some infinite set be removed, but this set
can be chosen to have positive density. We believe, although we cannot yet prove, that the
reciprocal of the relative measure is in fact quantifying the redundancy of an abstract frame,
in the sense that it should be the case that if F is appropriately localized and M+(F) < 1,
then there should be a subset of F with density 1

M+(F)
− 1 − ε which can be removed

leaving a subset of F with density 1 + ε which is still a frame for H .
The last of our results deals with the conjecture of Feichtinger that every frame that

is norm-bounded below (inf i ‖fi‖ > 0) can be written as a union of a finite number of
Riesz sequences (systems that are Riesz bases for their closed linear spans). It is shown
in [16, 17] that Feichtinger’s conjecture equivalent to the celebrated Kadison-Singer (paving)
conjecture. In Section 3.5, we prove that this conjecture is true for the case of �1-self-
localized frames which are norm-bounded below. This result is inspired by a similar result
of Gröchenig’s from [31] for frames which are sufficiently localized in his sense, although
our result is distinct. Another related recent result appears in [13].

1.2 General Notation

The following notation will be employed throughout this article. H will refer to a separable
Hilbert space, I will be a countable index set, and G will be the group given by (1.1) with the
metric defined in (1.2). We implicitly assume that there exists a map a : I → G associated
with I and G. The map a induces a semi-metric d(i, j) = |a(i) − a(j)| on I . This is only
a semi-metric since d(i, j) = 0 need not imply i = j .
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The finite linear span of a subset S ⊂ H is denoted span(S), and the closure of this
set is span(S). The cardinality of a finite set E is denoted by |E|.

For each integer N > 0 we let

SN(j) =
{
k ∈ G : |k − j | ≤ N

2

}
(1.5)

denote a discrete “cube” or “box” in G centered at j ∈ G. The cardinality of SN(j) is
independent of j . For example, if G = Zd then |S2N(j)| = |S2N+1(j)| = (2N + 1)d . In
general, there will exist a constant C and integer d > 0 such that

lim
N→∞

|SN(j)|
Nd

= C . (1.6)

We let IN(j) denote the inverse image of SN(j) under a, i.e.,

IN(j) = a−1(SN(j)) = {i ∈ I : a(i) ∈ SN(j)} .

1.3 Notation for Frames and Riesz Bases

We use standard notations for frames and Riesz bases as found in the texts [18, 21, 30, 56]
or the research-tutorials [15, 37]. Some particular notation and results that we will need are
as follows.

A sequence F = {fi}i∈I is a frame for H if there exist constants A, B > 0, called
frame bounds, such that

∀ f ∈ H, A ‖f ‖2 ≤
∑
i∈I

|〈f, fi〉|2 ≤ B ‖f ‖2 . (1.7)

The analysis operator T : H → �2(I ) is Tf = {〈f, fi〉}i∈I , and its adjoint T ∗c =∑
i∈I ci fi is the synthesis operator. The Gram matrix is T T ∗ = [〈fi, fj 〉]i,j∈I . The frame

operator Sf = T ∗Tf = ∑
i∈I 〈f, fi〉 fi is a bounded, positive, and invertible mapping of

H onto itself. The canonical dual frame is F̃ = S−1(F) = {f̃i}i∈I where f̃i = S−1fi . For
each f ∈ H we have the frame expansions f = ∑

i∈I 〈f, fi〉 f̃i = ∑
i∈I 〈f, f̃i〉 fi . We call

F a tight frame if we can take A = B, and a Parseval frame if we can take A = B = 1. If
F is any frame, then S−1/2(F) is the canonical Parseval frame associated to F . We call F
a uniform norm frame if all the frame elements have identical norms, i.e., if ‖fi‖ = const.
for all i ∈ I .

A sequence which satisfies the upper frame bound estimate in (1.7), but not necessarily
the lower estimate, is called a Bessel sequence and B is a Bessel bound. In this case,
‖ ∑

cifi‖2 ≤ B
∑ |ci |2 for any (ci)i∈I ∈ �2(I ). In particular, ‖fi‖2 ≤ B for every i ∈ I ,

i.e., all Bessel sequences are norm-bounded above. If we also have inf i ‖fi‖ > 0, then we
say the sequence is norm-bounded below.

We will also consider sequences that are frames for their closed linear spans instead
of for all of H . We refer to such a sequence as a frame sequence. If F = {fi}i∈I is a
frame sequence, then F̃ = {f̃i}i∈I will denote its canonical dual frame within span(F ).
The orthogonal projection PF of H onto span(F) is given by

PFf =
∑
i∈I

〈f, fi〉 f̃i , f ∈ H . (1.8)
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A frame is a basis if and only if it is a Riesz basis, i.e., the image of an orthonormal
basis for H under a continuous, invertible linear mapping. We say F = {fi}i∈I is a Riesz
sequence if it is a Riesz basis for its closed linear span in H . In this case, the canonical
dual frame F̃ = {f̃i}i∈I is the unique sequence in span(F) that is biorthogonal to F̃ , i.e.,
〈fi, f̃j 〉 = δij .

2. Density, Localization, HAP, and Relative Measure

2.1 Density

Given an index set I and a map a : I → G, we define the density of I by computing the
analogue of Beurling density of its image a(I ) as a subset of G. Note that we regard I as
a sequence, and hence repetitions of images count in determining the density. The precise
definition is as follows.

Definition 1 (Density). The lower and upper densities of I with respect to a are

D−(I, a) = lim inf
N→∞ inf

j∈G

|IN(j)|
|SN(j)| , D+(I, a) = lim sup

N→∞
sup
j∈G

|IN(j)|
|SN(j)| , (2.1)

respectively. Note that these quantities could be zero or infinite, i.e., we have 0 ≤
D−(I, a) ≤ D+(I, a) ≤ ∞. When D−(I, a) = D+(I, a) = D we say I has uniform
density D.

These lower and upper densities are only the extremes of the possible densities that
we could naturally assign to I with respect to a. In particular, instead of taking the infimum
or supremum over all possible centers in (2.1) we could choose one specific sequence of
centers, and instead of computing the liminf or limsup we could consider the limit with
respect to some ultrafilter. The different possible choices of ultrafilters and sequences of
centers gives us a natural collection of definitions of density, made precise in the following
definition.

Definition 2. Let p be a free ultrafilter, and let c = (cN)N∈N be any sequence of centers
cN ∈ G. Then the density of I with respect to a, p, and c is

D(p, c) = D(p, c; I, a) = p-lim
N∈N

|IN(cN)|
|SN(cN)| .

Example 1. If I = G and a is the identity map, then IN(j) = SN(j) for every N and j ,
and hence D(p, c) = D−(I, a) = D+(I, a) = 1 for every choice of free ultrafilter p and
sequence of centers c.

The following example shows how the density we have defined relates to the standard
Beurling density of the index set of a Gabor system.

Example 2 (Gabor Systems). Consider a Gabor system F = G(g, �) and a reference
Gabor system E = G(φ, αZd × βZd). The index set I = � is a countable sequence of
points in R2d , and the reference group is G = αZd × βZd . A natural map a : � → G is a
simple roundoff to a near element of G, i.e.,

a(x, ω) = (
α Int

(
x
α

)
, β Int

(
ω
β

))
, (x, ω) ∈ � ,
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where Int(x) = (�x1, . . . , �xd). With this setup, SN(j) is the intersection of αZd × βZd

with the cube QN(j) in R2d centered at j with side lengths N . Such a cube contains
approximately N2d/(αβ)d points of αZd × βZd ; precisely,

lim
N→∞

|SN(j)|
N2d

= 1

(αβ)d
.

Also, because a is a bounded perturbation of the identity map, the number of points in IN(j)

is asymptotically the cardinality of � ∩ QN(j). Consequently, the standard definition of
the upper Beurling density D+

B (�) of � is related to our definition of the upper density of
� with respect to a as follows:

D+
B (�) = lim sup

N→∞
sup

j∈R2d

|� ∩ QN(j)|
N2d

= 1

(αβ)d
lim sup
N→∞

sup
j∈αZd×βZd

|IN(j)|
|SN(j)| = 1

(αβ)d
D+(�, a) .

Similarly the lower Beurling density of � is D−
B (�) = (αβ)−d D−(�, a). In particular,

when αβ = 1 (the “critical density” case), our definition coincides with Beurling density,
but in general the extra factor of (αβ)d must be taken into account.

The following two lemmas will be useful later for our density calculations. The first
lemma is similar to [39, Lemma 20.11].

Lemma 1. Let a : I → G be given.

(a) For every free ultrafilter p and sequence of centers c = (cN)N∈N in G, we have
D−(I, a) ≤ D(p, c) ≤ D+(I, a).

(b) There exist free ultrafilters p−, p+ and sequence of centers c− = (c−
N)N∈N, c+ =

(c+
N)N∈N in G such that D−(I, a) = D(p−, c−) and D+(I, a) = D(p+, c+).

Proof.
(a) Follows immediately from the properties of ultrafilters.

(b) For each N > 0, we can choose a point cN so that

inf
j∈G

|IN(j)|
|SN(j)| ≤ |IN(cN)|

|SN(cN)| ≤
(

inf
j∈G

|IN(j)|
|SN(j)|

)
+ 1

N
.

Then we can choose a free ultrafilter p such that

p-lim
N∈N

|IN(cN)|
|SN(cN)| = lim inf

N→∞
|IN(cN)|
|SN(cN)| .

For these choices, we have

D−(I, a) ≤ D(p, c) = p-lim
N∈N

|IN(cN)|
|SN(cN)|

≤ lim inf
N→∞

[(
inf
j∈G

|IN(j)|
|SN(j)|

)
+ 1

N

]
≤

(
lim inf
N→∞ inf

j∈G

|IN(j)|
|SN(j)|

)
+

(
lim sup
N→∞

1

N

)
= D−(I, a) .
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Thus, we can take p− = p and c− = (cN)N∈N. The construction of p+ and c+ is similar.

Lemma 2. Assume D+(I, a) < ∞. Then K = supj∈G |a−1(j)| is finite, and for any set
E ⊂ G we have ∣∣a−1(E)

∣∣ ≤ K |E| . (2.2)

2.2 The Localization Properties

We now introduce a collection of definitions of localization, given in terms of the decay
of the inner products of the elements of one sequence F with respect to the elements
of a reference sequence E . In Section 2.3, we define several approximation properties,
which are determined by how well the elements of one sequence are approximated by finite
linear combinations of the elements of the other sequence. The relationships among these
properties is stated in Theorem 1.

The words “column” and “row” in the following definition refer to the I × G cross-
Grammian matrix [〈fi, ej 〉]i∈I,j∈G. We think of the elements in locations (i, a(i)) as
corresponding to the main diagonal of this matrix.

Definition 3 (Localization). Let F = {fi}i∈I and E = {ej }j∈G be sequences in H and
a : I → G an associated map.

(a) We say F is �p-localized with respect to the reference sequence E and the map a,
or simply that (F, a, E) is �p-localized, if∑

j∈G

sup
i∈I

|〈fi, ej+a(i)〉|p < ∞ .

Equivalently, there must exist an r ∈ �p(G) such that

∀ i ∈ I, ∀ j ∈ G, |〈fi, ej 〉| ≤ ra(i)−j .

(b) We say that (F, a, E) has �p-column decay if for every ε > 0 there is an integer
Nε > 0 so that

∀ j ∈ G,
∑

i∈I\INε (j)

|〈fi, ej 〉|p < ε . (2.3)

(c) We say (F, a, E) has �p-row decay if for every ε > 0 there is an integer Nε > 0
so that

∀ i ∈ I,
∑

j∈G\SNε (a(i))

|〈fi, ej 〉|p < ε . (2.4)

Note that given a sequence F , the definition of localization is dependent upon both
the choice of reference sequence E and the map a.

Remark 1. For comparison, we give Gröchenig’s notion of localization from [32]. Let
I and J be countable index sets in Rd that are separated, i.e., inf i �=j∈I |i − j | > 0 and
similarly for J . Then F = {fi}i∈I is s-polynomially localized with respect to a Riesz basis
E = {ej }j∈J if for every i ∈ I and j ∈ J we have

|〈fi, ej 〉| ≤ C (1 + |i − j |)−s and
∣∣〈fi, ẽj 〉

∣∣ ≤ C (1 + |i − j |)−s ,
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where {ẽj }j∈J is the dual basis to {ej }j∈J . Likewise F = {fi}i∈I is exponentially localized
with respect to a Riesz basis E = {ej }j∈J if for some α > 0 we have for every i ∈ I and
j ∈ J that

|〈fi, ej 〉| ≤ C e−α|i−j | and
∣∣〈fi, ẽj 〉

∣∣ ≤ C e−α|i−j | .

2.3 The Approximation Properties

In this section we introduce a collection of definitions which we call approximation proper-
ties. These definitions extract the essence of the Homogeneous Approximation Property that
is satisfied by Gabor frames, but without reference to the exact structure of Gabor frames.
A weak HAP for Gabor frames was introduced in [48] and developed further in [35, 19].
In those articles, the HAP was stated in a form that is specific to the particular structure
of Gabor frames or windowed exponentials, whereas the following definition applies to
arbitrary frames.

Definition 4 (Homogeneous Approximation Properties). Let F = {fi}i∈I be a frame
for H with canonical dual F̃ = {f̃i}i∈I , and let E = {ej }j∈G be a sequence in H . Let
a : I → G be an associated map.

(a) We say (F, a, E) has the weak HAP if for every ε > 0, there is an integer Nε > 0
so that for every j ∈ G we have

dist
(
ej , span

{
f̃i : i ∈ INε (j)

})
< ε .

Equivalently, there must exist scalars ci,j , with only finitely many nonzero, such
that ∥∥∥∥ej −

∑
i∈INε (j)

ci,j f̃i

∥∥∥∥ < ε . (2.5)

(b) We say (F, a, E) has the strong HAP if for every ε > 0, there is an integer Nε > 0
so that for every j ∈ G we have∥∥∥∥ej −

∑
i∈INε (j)

〈ej , fi〉 f̃i

∥∥∥∥ < ε . (2.6)

We could also define the weak and strong HAPs for frame sequences. If F is a frame
sequence, then a necessary condition for (2.5) or (2.6) to hold is that span(E) ⊂ span(F).
Thus, the HAPs for frame sequences are the same as the HAPs for a frame if we set
H = span(F).

We also introduce the following symmetric version of the HAPs.

Definition 5 (Dual Homogeneous Approximation Properties). Let F = {fi}i∈I be a
sequence in H , and let E = {ej }j∈G be a frame for H with canonical dual Ẽ = {ẽj }j∈G.
Let a : I → G be an associated map.

(a) We say (F, a, E) has the weak dual HAP if for every ε > 0, there is an integer
Nε > 0 so that for every i ∈ I we have

dist
(
fi, span

{
ẽj : j ∈ SNε (a(i))

})
< ε .
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(b) We say (F, a, E) has the strong dual HAP if for every ε > 0, there is an integer
Nε > 0 so that for every i ∈ I we have

∥∥∥∥fi −
∑

j∈SNε (a(i))

〈fi, ej 〉 ẽj

∥∥∥∥ < ε .

2.4 Relations Among the Localization and Approximation
Properties

The following theorem summarizes the relationships that hold among the localization and
approximation properties. This result is proved in Part II.

Theorem 1. Let F = {fi}i∈I and E = {ej }j∈G be sequences in H , and let a : I → G

be an associated map. Then the following statements hold.

(a) If F is a frame for H , then �2-column decay implies the strong HAP.

(b) If F is a frame for H and supj ‖ej‖ < ∞, then the strong HAP implies �2-column
decay.

(c) If E is a frame for H , then �2-row decay implies the strong dual HAP.

(d) If E is a frame for H and supi ‖fi‖ < ∞, then the strong dual HAP implies �2-row
decay.

(e) If F is a frame for H , then the strong HAP implies the weak HAP. If F is a Riesz
basis for H , then the weak HAP implies the strong HAP.

(f) If E is a frame for H , then the strong dual HAP implies the weak dual HAP. If E
is a Riesz basis for H , then the weak dual HAP implies the strong dual HAP.

(g) If D+(I, a) < ∞ and 1 ≤ p < ∞, then �p-localization implies both �p-column
and �p-row decay.

For the case that F and E are both frames for H and the upper density D+(I, a) is
finite, these relations can be summarized in the diagram in Figure 1.

FIGURE 1 Relations among the localization and approximation properties for p = 2, under the assumptions
that F , E are frames and D+(I, a) < ∞.
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Part II exhibits counterexamples to most of the converse implications of Theorem 1.
These are summarized below.

(a) There exist orthonormal bases E , F such that (F, a, E) does not have �2-column
decay, and hence does not satisfy the strong HAP.

(b) There exists a frame F and orthonormal basis E such that (F, a, E) satisfies the
weak HAP but not the strong HAP.

(c) There exists a frame F and orthonormal basis E such that D+(I, a) < ∞, (F, a, E)

has both �2-column decay and �2-row decay, but fails to have �2-localization.

(d) There exists a Riesz basis F and orthonormal basis E such that (F, a, E) has
�2-column decay but not �2-row decay.

2.5 Self-Localization

In this section we introduce a type of localization in which the system F = {fi}i∈I is
compared to itself or to its canonical dual frame instead of to a reference system E . An
analogous polynomial or exponential “intrinsic localization” was independently introduced
by Gröchenig in [31]; see also [25, 33]. Although, there is no reference system, we still
require a mapping a : I → G associating I with a group G.

Definition 6 (Self-Localization). Let F = {fi}i∈I be a sequence in H , and let a : I → G

be an associated map.

(a) We say that (F, a) is �p-self-localized if there exists r ∈ �p(G) such that

∀ i, j ∈ I, |〈fi, fj 〉| ≤ ra(i)−a(j) .

(b) If F is a frame sequence, then we say that (F, a) is �p-localized with respect to
its canonical dual frame sequence F̃ = {f̃i}i∈I if there exists r ∈ �p(G) such that

∀ i, j ∈ I,
∣∣〈fi, f̃j 〉

∣∣ ≤ ra(i)−a(j) .

Remark 2.
(a) If I = G and a is the identity map, then (F, a) is �1-self-localized if and only if (F, a, F)

is �1-localized. However, if a is not the identity map, then this need not be the case. For
example, every orthonormal basis is �1-self-localized regardless of which map a is chosen,
but in Part II we construct an orthonormal basis F = {fi}i∈Z and a map a : Z → Z such that
(F, a, E) is not �1-localized for any Riesz basis E ; in fact, (F, a, E) cannot even possess
both �2-column decay and �2-row decay for any Riesz basis E .

(b) Let F be a frame, F̃ its canonical dual frame, and S−1/2(F) its canonical Parseval frame.
Since 〈fi, f̃j 〉 = 〈S−1/2fi, S

−1/2fj 〉, we have that (F, a) is �p-localized with respect to
its canonical dual frame if and only if (S−1/2(F), a) is �p-self-localized.

We show in Part II that �1-localization with respect to the dual frame does not imply
�1-self-localization. However, the following result states that the converse is true. The
proof of this result requires us to develop some results on the Banach algebra of matrices
with �1-type decay, and is presented in Appendix 4. In particular, the proof requires an
application of a type of noncommutative Wiener’s Lemma (Theorem 10).

Theorem 2. Let F = {fi}i∈I be a frame for H , and let a : I → G be an associated map
such that D+(I, a) < ∞. Let F̃ be the canonical dual frame and S−1/2(F) the canonical
Parseval frame. If (F, a) is �1-self-localized, then:
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(a) (F, a) is �1-localized with respect to its canonical dual frame F̃ = {f̃i}i∈I ,

(b) (F̃, a) is �1-self-localized, and

(c) (S−1/2(F), a) is �1-self-localized.

The following is a useful lemma on the relation between self-localization and local-
ization with respect to a reference sequence.

Lemma 3. Let F = {fi}i∈I be a sequence in H . Let E = {ej }j∈G be a frame for H with
canonical dual frame Ẽ . Let a : I → G be an associated map. If (F, a, E) and (F, a, Ẽ)

are both �1-localized, then (F, a) is �1-self-localized. In particular, if E is a tight frame
and (F, a, E) is �1-localized, then (F, a) is �1-self-localized.

Proof. By definition, there exists r ∈ �1(G) such that both |〈fi, ej 〉| ≤ ra(i)−j and
|〈fi, ẽj 〉| ≤ ra(i)−j hold for all i ∈ I and j ∈ G. Let r̃(k) = r(−k). Then

|〈fi, fj 〉| =
∣∣∣∣∑
k∈G

〈fi, ek〉 〈ẽk, fj 〉
∣∣∣∣ ≤

∑
k∈G

ra(i)−k ra(j)−k = (r ∗ r̃)a(i)−a(j) .

Since r ∗ r̃ ∈ �1(G), we conclude that (F, a) is �1-self-localized.

2.6 Relative Measure

We now define the relative measure of frame sequences.

Definition 7. Let F = {fi}i∈I and E = {ej }j∈G be frame sequences in H , and let
a : I → G be an associated map. Let PF , PE denote the orthogonal projections of H onto
span(F) and span(E), respectively. Then given a free ultrafilter p and a sequence of centers
c = (cN)N∈N in G, we define the relative measure of F with respect to E , p, and c to be

ME (F; p, c) = p-lim
N∈N

1

|IN(cN)|
∑

i∈IN (cN )

〈PEfi, f̃i〉 .

The relative measure of E with respect to F is

MF (E; p, c) = p-lim
N∈N

1

|SN(cN)|
∑

j∈SN (cN )

〈PF ẽj , ej 〉 .

Let A, B be frame bounds for F , and let E, F be frame bounds for E . Then we have
the estimates |〈PEfi, f̃i〉| ≤ ‖fi‖ ‖f̃i‖ ≤ √

B/A and |〈PFej , ẽj 〉| ≤ ‖ej‖ ‖ẽj‖ ≤ √
F/E.

Thus, |ME (F; p, c)| ≤ √
B/A and |MF (E; p, c)| ≤ √

F/A. Unfortunately, in general
neither ME (F; p, c) nor MF (E; p, c) need be real. However, if the closed span of F
is included in the closed span of E then, as noted in the following definition, the relative
measure of E with respect to F will be real and furthermore we can give tighter bounds on
its value, as pointed out in the following definition.

Definition 8. If span(E) ⊃ span(F) then PE is the identity map and E plays no role in
determining the value of ME (F; p, e). Therefore, in this case, we define the measure of
F with respect to p and c to be

M(F; p, c) = p-lim
N∈N

1

|IN(cN)|
∑

i∈IN (cN )

〈fi, f̃i〉 .
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Since 〈fi, f̃i〉 = ‖S−1/2fi‖2, we have that M(F; p, c) is real. Additionally, since
S−1/2(F) is a Parseval frame, we have 0 ≤ 〈fi, f̃i〉 ≤ 1 for all i, and therefore

0 ≤ M(F; p, c) ≤ 1 .

We further define the lower and upper measures of F to be, respectively,

M−(F) = lim inf
N→∞ inf

j∈G

1

|IN(j)|
∑

i∈IN (j)

〈fi, f̃i〉 , (2.7)

M+(F) = lim sup
N→∞

sup
j∈G

1

|IN(j)|
∑

i∈IN (j)

〈fi, f̃i〉 . (2.8)

As in Lemma 1, there will exist free ultrafilters p−, p+ and sequence of centers c−, c+
such that M−(F) = M(F; p−, c−) and M+(F) = M(E; p+, c+).

When span(F) ⊃ span(E), we define M(E; p, c) and M±(E) in an analogous man-
ner.

Example 3. The following special cases show that the measure of a Riesz basis is 1.

(a) If span(E) ⊃ span(F) and F is a Riesz sequence then 〈fi, f̃i〉 = 1 for every i ∈ I ,
so M(F; p, c) = M+(F) = M−(F) = 1.

(b) If span(F) ⊃ span(E) and E is a Riesz sequence then 〈ẽj , ej 〉 = 1 for every
j ∈ G, so M(E; p, c) = M+(E) = M−(E) = 1.

Example 4. For each k = 1, . . . , M , let {fjk}j∈Z be an orthogonal basis for H such that
‖fjk‖2 = Ak for every j ∈ Z. Let I = Z × {1, . . . , M}. Then F = {fjk}(j,k)∈I is a tight
frame for H and its canonical dual frame is F̃ = {f̃jk}(j,k)∈I where f̃jk = ( 1

A1+···+AM
) fjk .

Define a : I → Z by a(j, k) = j . Then for each N ,

1

|IN(cN)|
∑

(j,k)∈IN (cN )

〈fjk, f̃jk〉 = 1

MN

M∑
k=1

∑
j∈[cN− N

2 ,cN+ N
2 )

Ak

A1 + · · · + AM

= 1

M
.

Consequently, for any choice of free ultrafilter p and sequence of centers c we have
M(F; p, c) = M−(F) = M+(F) = 1

M
.

Example 5 (Lattice Gabor Systems). Consider a lattice Gabor frame, i.e., a frame
of the form G(g, αZd × βZd). The canonical dual frame is a lattice Gabor frame of
the form G(g̃, αZd × βZd) for some g̃ ∈ L2(Rd). By the Wexler-Raz relations, we
have 〈g, g̃〉 = (αβ)d (we also derive this fact directly from our results in Part II). Since
〈MβnTαkg, MβnTαkg̃〉 = 〈g, g̃〉, we therefore have for any free ultrafilter p and sequence
of centers c = (cN)N∈N in αZd × βZd that

M(G(
g, αZd × βZd

); p, c
) = M±(G(

g, αZd × βZd
)) = 〈g, g̃〉 = (αβ)d .

Since we also have D±
B (αZd × βZd) = (αβ)−d , we conclude that

M±(G(
g, αZd × βZd

)) = 1

D∓
B

(
αZd × βZd

) .



120 Radu Balan, Peter G. Casazza, Christopher Heil, and Zeph Landau

We prove a similar but much more general relationship for abstract localized frames in
Theorems 5 and 6.

The following proposition gives a connection between measure and excess [excess
was defined just prior to Equation (1.4)]. By imposing localization hypotheses, stronger
results will be derived in Section 3.4.

Proposition 1 (Infinite Excess). Let F = {fi}i∈I be a frame sequence and a : I → G an
associated map. If M−(F) < 1, then F has infinite excess, and furthermore, there exists
an infinite subset J ⊂ I such that {fi}i∈I\J is still a frame for span(F).

Proof. Fix s with M−(F) < s < 1. Then, considering the definition of M−(F)

in (2.7), there exists a subsequence Nk → ∞ and points jk such that

1

|INk
(jk)|

∑
i∈INk

(jk)

〈fi, f̃i〉 ≤ s < 1

for each k. It follows that there exists an infinite subset J ⊂ I such that supi∈J 〈fi, f̃i〉 < 1,
which by [4, Corollary 5.7] completes the proof.

In general, the set J constructed in the preceding proposition may have zero density.
The following result provides a necessary condition under which a set of positive density
can be removed yet leave a frame (a sufficient condition will be obtained in Theorem 8
below). For simplicity of notation, if J ⊂ I then we will write D(p, c; J, a) to mean
D(p, c; J, a|J ).

Proposition 2. Let F = {fi}i∈I be a frame sequence and a : I → G an associated map
such that 0 < D−(I, a) ≤ D+(I, a) < ∞. For each 0 ≤ α ≤ 1, define

Jα = {i ∈ I : 〈fi, f̃i〉 ≤ α} . (2.9)

Then the following statements hold.

(a) For each free ultrafilter p and sequence of centers c = (cN)N∈N in G, we have
for each 0 < α < 1 that

α − M(F; p, c)

α
D(p, c; I, a) ≤ D(p, c; Jα, a) (2.10)

≤ 1 − M(F; p, c)

1 − α
D(p, c; I, a) . (2.11)

(b) If there exists a free ultrafilter p and sequence of centers c = (cN)N∈N in G such
that D(p, c; Jα, a) > 0, then M(F; p, c) < 1. Consequently, M−(F) < 1 and
there exists an infinite set J ⊂ I such that {fi}i∈I\J is a frame for span(F).

(c) If there exists a subset J ⊂ I , a free ultrafilter p, and a sequence of centers
c = (cN)N∈N in G such that D(p, c; J, a) > 0 and {fi}i∈I\J is a frame for
span(F), then M(F; p, c) < 1. In particular, we have M−(F) < 1.

Proof.
(a) Consider any 0 < α < 1. If M(F; p, c) ≥ α then inequality (2.10) is trivially satisfied,
so assume that M(F; p, c) < α. Fix ε > 0 so that M(F; p, c) + ε < α. Then by
definition of ultrafilter, there exists an infinite set A ∈ p such that

∀ N ∈ A,

∣∣∣∣M(F; p, c) − 1

|IN(cN)|
∑

i∈IN (cN )

〈fi, f̃i〉
∣∣∣∣ < ε . (2.12)
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Hence, for N ∈ A we have

M(F; p, c) + ε ≥ 1

|IN(cN)|
∑

i∈IN (cN )

〈fi, f̃i〉

= 1

|IN(cN)|
( ∑

i∈IN (cN )∩Jα

〈fi, f̃i〉 +
∑

i∈IN (cN )∩J C
α

〈fi, f̃i〉
)

≥ 0 · |IN(cN) ∩ Jα| + α · ∣∣IN(cN) ∩ J C
α

∣∣
|IN(cN)|

= α
|IN(cN)| − |IN(cN) ∩ Jα|

|IN(cN)| .

Multiplying both sides of this inequality by |IN (cN )|
|SN (cN )| and rearranging, we find that

∀ N ∈ A,
|IN(cN) ∩ Jα|

|SN(cN)| ≥
(

1 − M(F; p, c) + ε

α

) |IN(cN)|
|SN(cN)| .

Taking the limit with respect to the ultrafilter p we obtain

D(p, c; Jα, a) ≥
(

1 − M(F; p, c) + ε

α

)
D(p, c; I, a) .

Since ε was arbitrary, we obtain the inequality (2.10).
The inequality (2.11) is similar, arguing from an infinite set A ∈ p such that (2.12)

holds true that

M(F; p, e) − ε ≤ 1

|IN(cN)|
∑

i∈IN (cN )

〈fi, f̃i〉

= 1

|IN(cN)|
( ∑

i∈IN (cN )∩Jα

〈fi, f̃i〉 +
∑

i∈IN (cN )∩J C
α

〈fi, f̃i〉
)

≤ α · |IN(cN) ∩ Jα| + 1 · ∣∣IN(cN) ∩ J C
α

∣∣
|IN(cN)|

= |IN(cN)| − (1 − α) · |IN(cN) ∩ Jα|
|IN(cN)| ,

and then multiplying both sides of this inequality by |IN (cN )|
|SN (cN )| , rearranging, and taking the

limit.

(b) Follows immediately from (a) and Proposition 1.

(c) Suppose that such a J exists. If fi = 0 for every i ∈ J then the result is trivial, so
suppose this is not the case. Let S be the frame operator for F . Then {S−1/2fi}i∈I\J is
a frame, and in particular is a subset of the Parseval frame S−1/2(F). For a given j ∈ J ,
the optimal lower frame bound for the frame {S−1/2fi}i �=j with a single element deleted is
1 − ‖S−1/2fj‖2 = 1 − 〈fj , f̃j 〉. Hence, if A is a lower frame bound for {S−1/2fi}i∈I\J ,
then A ≤ 1 − 〈fj , f̃j 〉 for all j ∈ J . Thus, J ⊂ Jα where α = 1 − A, and consequently,
for any p and c we have D(p, c; Jα, a) ≥ D(p, c; J, a) > 0. Therefore, (2.11) implies
that M(F; p, c) < 1.
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Choosing in the preceding proposition the ultrafilters p and centers c that achieve
upper or lower density or measure yields the following corollary.

Corollary 1. Let F = {fi}i∈I be a frame sequence and a : I → G an associated map
such that 0 < D−(I, a) ≤ D+(I, a) < ∞. Let Jα be defined by (2.9). Then the following
statements hold.

(a) M+(F) < 1 if and only if there exists some 0 < α < 1 such that D−(Jα, a) > 0.
In fact, D−(Jα, a) > 0 for all M+(F) < α < 1.

(b) If there exists J ⊂ I such that D−(J, a) > 0 and {fi}i∈I\J is a frame for span(F),
then M+(F) < 1.

(c) M−(F) < 1 if and only if there exists some 0 < α < 1 such that D+(Jα, a) > 0.
In fact, D+(Jα, a) > 0 for all M−(F) < α < 1.

(d) If there exists J ⊂ I such that D+(J, a) > 0 and {fi}i∈I\J is a frame for span(F),
then M−(F) < 1.

Proof. Suppose that M+(F) < 1, and fix M+(F) < α < 1. Let p and c be
the free ultrafilter and sequence of centers given by Lemma 1 (b) such that D−(Jα, a) =
D(p, c; Jα, a). Then by Proposition 2,

D−(Jα, a) = D(p, c; Jα, a) ≥ α − M(F ; p, c)

α
D(p, c; I, a)

≥ α − M+(F )

α
D−(I, a) > 0 .

The other statements are similar.

3. Density and Overcompleteness

3.1 Necessary Density Conditions

In this section we prove two necessary conditions on the density of localized frames.
First we require the following standard lemma.

Lemma 4. Let HN be an N -dimensional Hilbert space. Then the following statements
hold.

(a) If f1, . . . , fM ∈ HN are nonzero and m = min{‖f1‖, . . . , ‖fM‖}, then the Bessel
bound B for {f1, . . . , fM} satisfies B ≥ mM/N .

(b) If {fi}i∈J is a Bessel sequence in HN that is norm-bounded below, i.e., inf i ‖fi‖ >

0, then J is finite.

Proof.
(a) We may assume that HN = span{f1, . . . , fM}. In this case, {f1, . . . , fM} is a frame for
HN , and so has a positive definite frame operator S. Let λ1 ≥ · · · ≥ λN be the eigenvalues
of S. Letting {f̃1, . . . , f̃M} be the dual frame, we have then that

N∑
j=1

λj = trace(S) =
M∑
i=1

〈Sfi, f̃i〉 =
M∑
i=1

‖fi‖2 ≥ mM .

Hence, mM/N ≤ λ1 = ‖S‖ ≤ B.
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(b) From part (a), |J | ≤ BN/m < ∞.

Our first main result shows that the weak HAP implies a lower bound for the density
of a frame. The proof is inspired by the double projection techniques of [48], although,
those results relied on the structure of Gabor frames and, in particular, a version of the HAP
that is satisfied by Gabor frames.

Theorem 3 (Necessary Density Bounds).

(a) Assume F = {fi}i∈I is a frame for H and E = {ej }j∈G is a Riesz sequence in H .
Let a : I → G be an associated map. If (F, a, E) has the weak HAP, then

1 ≤ D−(I, a) ≤ D+(I, a) ≤ ∞ .

(b) Assume F = {fi}i∈I is a Riesz sequence in H and E = {ej }j∈G is a frame for H .
Let a : I → G be an associated map. If (F, a, E) has the weak dual HAP, then

0 ≤ D−(I, a) ≤ D+(I, a) ≤ 1 .

Proof.
(a) Let F̃ = {f̃i}i∈I be the canonical dual frame to F , and let Ẽ = {ẽj }j∈G be the Riesz
sequence in span(E) that is biorthogonal to E . Fix ε > 0, and let Nε be the number given
in the definition of the weak HAP. Fix an arbitrary point j0 ∈ G and a box size N > 0.
Define

V = span{ej : j ∈ SN(j0)} and W = span{f̃i : i ∈ IN+Nε(j0)} .

Note that V is finite-dimensional, with dim(V ) = |SN(j0)|. On the other hand, W may be
finite or infinite-dimensional, but in any case we have dim(W) ≤ |IN+Nε(j0)| in the sense
of the extended reals.

Let PV and PW denote the orthogonal projections of H onto V and W , respectively.
Define a map T : V → V by T = PV PW . Note that since the domain of T is V , we have
T = PV PWPV , so T is self-adjoint.

Let us estimate the trace of T . First note that every eigenvalue λ of T satisfies
|λ| ≤ ‖T ‖ ≤ ‖PV ‖ ‖PW‖ = 1. This provides us with an upper bound for the trace of T ,
since the trace is the sum of the eigenvalues, and hence

trace(T ) ≤ rank(T ) ≤ dim(W) ≤ |IN+Nε(j0)| . (3.1)

For a lower estimate, note that {ej : j ∈ SN(j0)} is a Riesz basis for V . The dual
Riesz basis in V is {PV ẽj : j ∈ SN(j0)}. Therefore,

trace(T ) =
∑

j∈SN (j0)

〈T ej , PV ẽj 〉

=
∑

j∈SN (j0)

〈PV T ej , ẽj 〉

=
∑

j∈SN (j0)

〈ej , ẽj 〉 +
∑

j∈SN (j0)

〈(PV PW − 1)ej , ẽj 〉

≥ |SN(j0)| −
∑

j∈SN (j0)

∣∣〈(PV PW − 1)ej , ẽj 〉
∣∣ , (3.2)
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where in the last line we have used the fact that 〈ej , ẽj 〉 = 1.
The elements of any Riesz sequence are uniformly bounded in norm, so C =

supj ‖ẽj‖ < ∞. Hence,∣∣〈(PV PW − 1)ej , ẽj 〉
∣∣ ≤ ‖(PV PW − 1)ej‖ ‖ẽj‖ ≤ C ‖(PV PW − 1)ej‖ . (3.3)

Since (PV PW −1)ej ∈ V while (1−PV )PWej ⊥ V , we have by the Pythagorean Theorem
that

‖(PW − 1)ej‖2 = ‖(PV PW − 1)ej + (1 − PV )PWej‖2

= ‖(PV PW − 1)ej‖2 + ‖(1 − PV )PWej‖2 .

Thus,

‖(PV PW − 1)ej‖2 = ‖(PW − 1)ej‖2 − ‖(1 − PV )PWej‖2

≤ ‖(PW − 1)ej‖2

= dist(ej , W)2 . (3.4)

However, for j ∈ SN(j0), we have INε(j) ⊂ IN+Nε(j0), so for such j ,

dist(ej , W) = dist
(
ej , span{f̃i : i ∈ IN+Nε(j0)}

)
≤ dist

(
ej , span{f̃i : i ∈ INε (j)}) < ε , (3.5)

the last inequality following from the weak HAP. By combining Equations (3.2)–(3.5), we
find that

trace(T ) ≥ |SN(j0)| −
∑

j∈SN (j0)

Cε = (1 − Cε) |SN(j0)| . (3.6)

Finally, combining the upper estimate for trace(T ) from (3.1) with the lower estimate
from (3.6), we obtain

|IN+Nε(j0)|
|SN+Nε(j0)| ≥ (1 − Cε) |SN(j0)|

|SN+Nε(j0)| ,

where the left-hand side could be infinite. In any case, taking the infimum over all j0 ∈ G

and then the liminf as N → ∞ yields

D−(I, a) = lim inf
N→∞ inf

j0∈G

|IN+Nε(j0)|
|SN+Nε(j0)|

≥ (1 − Cε) lim inf
N→∞

|SN(j0)|
|SN+Nε(j0)| = 1 − Cε ,

the last equality following from the asymptotics in (1.6). Since ε was arbitrary, we obtain
D−(I, a) ≥ 1.

(b) Let F̃ = {f̃i}i∈I be the Riesz sequence in span(F) that is biorthogonal to F , and let
Ẽ = {ẽj }j∈G be the canonical dual frame to E . Fix ε > 0, and let Nε be the number given
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in the definition of the weak dual HAP. Fix an arbitrary point j0 ∈ G and a box size N > 0.
Define

V = span{fi : i ∈ IN(j0)} and W = span{ẽj : j ∈ SN+Nε(j0)} .

Note that W is finite-dimensional, with dim(W) ≤ |SN+Nε(j0)|. We will show next that V

is also finite-dimensional.
Because F is a Riesz sequence, it is norm-bounded below. In fact, ‖fi‖ ≥ A1/2

where A, B are frame bounds for F . Now for i ∈ IN(j0) we have SNε (a(i)) ⊂ SN+Nε(j0),
so

dist(fi, W) = dist
(
fi, span{ẽj : j ∈ SN+Nε(j0)}

)
≤ dist

(
fi, span{ẽj : j ∈ SNε (a(i))}) < ε ,

the last inequality following from the weak dual HAP. Hence,

∀ i ∈ IN(j0), ‖PWfi‖ ≥ ‖fi‖ − ε ≥ A1/2 − ε . (3.7)

Thus, {PWfi}i∈IN (j0) is a Bessel sequence in the finite-dimensional space W , and further-
more this sequence is norm-bounded below by (3.7). Lemma 4 therefore implies that IN(j0)

is finite. Thus, V is finite-dimensional, as dim(V ) = |IN(j0)| < ∞.
Let PV and PW denote the orthogonal projections of H onto V and W , respectively,

and define a map T : V → V by T = PV PW . An argument very similar to the one used
in part (a) then shows that (1 − Cε) |IN(j0)| ≤ |SN+Nε(j0)|, where C = supi ‖f̃i‖ < ∞.
Taking the supremum over all j0 ∈ G and then the limsup as N → ∞ then yields the result.

The conclusion of Theorem 3 (a) allows the possibility that the density might be
infinite. Our next main result will show that �2-row decay implies, at least for Bessel
sequences compared to frames, that the upper density is finite.

Theorem 4 (Necessary Finite Density Condition). Let F = {fi}i∈I be a Bessel sequence
in H , and suppose inf i∈I ‖fi‖ > 0. Assume E = {ej }j∈G is a frame for H , and let
a : I → G be an associated map. If (F, a, E) has �2-row decay, then D+(I, a) < ∞.

Proof. If we let S be the frame operator for E then S−1/2(E) is a Parseval frame for H .
Further, 〈fi, ej 〉 = 〈S1/2fi, S

−1/2ej 〉 and S1/2(F) is still a Bessel sequence in H that is
norm-bounded below. Thus, it suffices to show the result when E is a Parseval frame for H .

Let B be the Bessel bound for F , and let m = inf i ‖fi‖2. Fix 0 < ε < m. Since
(F, a, E) has �2-row decay, there exists an Nε such that

∀ i ∈ I,
∑

j∈G\SNε (a(i))

|〈fi, ej 〉|2 < ε .

Let j0 ∈ G and N > 0 be given. Define

V = span{ej : j ∈ SN+Nε(j0)} ,

and note that dim(V ) ≤ |SN+Nε(j0)|. Define LV : H → V by

LV f =
∑

j∈SN+Nε (j0)

〈f, ej 〉 ej , f ∈ H ,



126 Radu Balan, Peter G. Casazza, Christopher Heil, and Zeph Landau

and set hi = LV fi for i ∈ I . Since ‖LV ‖ ≤ 1, it follows that {hi}i∈I is a Bessel sequence
in H with the same Bessel bound B as F .

Now, if i ∈ IN(j0) then a(i) ∈ SN(j0), so SNε (a(i)) ⊂ SN+Nε(j0). Therefore,∑
j∈G\SN+Nε (j0)

|〈fi, ej 〉|2 ≤
∑

j∈G\SNε (a(i))

|〈fi, ej 〉|2 < ε .

Hence, ∑
j∈SN+Nε (j0)

|〈fi, ej 〉|2 ≥
∑
j∈G

|〈fi, ej 〉|2 − ε = ‖fi‖2 − ε ≥ m − ε .

On the other hand,∑
j∈SN+Nε (j0)

|〈fi, ej 〉|2 = 〈hi, fi〉 ≤ ‖hi‖ ‖fi‖ ≤ B1/2 ‖hi‖ .

Thus,

‖hi‖ ≥ m − ε

B1/2
, i ∈ IN(j0) .

Applying Lemma 4 (a) to {hi}i∈IN (j0), we conclude that

B ≥ m − ε

B1/2

|IN(j0)|
dim(V )

≥ m − ε

B1/2

|IN(j0)|
|SN+Nε(j0)|

.

Consequently, applying the asymptotics in (1.6), we conclude that

D+(I, a) = lim sup
N→∞

sup
j0∈G

|IN(j0)|
|SN(j0)|

≤ lim sup
N→∞

sup
j0∈G

B3/2

m − ε

|SN+Nε(j0)|
|SN(j0)| = B3/2

m − ε
< ∞ .

3.2 The Connection Between Density and Relative Measure

We now derive the fundamental relationship between density and relative measure for
localized frames.

Theorem 5 (Density-Relative Measure). Let F = {fi}i∈I and E = {ej }j∈G be frame
sequences in H , and let a : I → G be an associated map. If D+(I, a) < ∞ and (F, a, E)

has both �2-column decay and �2-row decay, then the following statements hold.

(a) For every sequence of centers c = (cN)N∈N in G,

lim
N→∞

[(
1

|SN(cN)|
∑

j∈SN (cN )

〈PF ẽj , ej 〉
)

−
( |IN(cN)|

|SN(cN)|
) (

1

|IN(cN)|
∑

i∈IN (cN )

〈PEfi, f̃i〉
)]

= 0 .

(b) For every sequence of centers c = (cN)N∈N in G and any free ultrafilter p,

MF (E; p, c) = D(p, c) · ME (F; p, c) .
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Proof.
(a) Fix any sequence of centers c = (cN)N∈N in G. Define

dN = |IN(cN)|
|SN(cN)| ,

rN = 1

|IN(cN)|
∑

i∈IN (cN )

〈PEfi, f̃i〉 ,

sN = 1

|SN(cN)|
∑

j∈SN (cN )

〈PF ẽj , ej 〉 .

We must show that |sN − dNrN | → 0.
First, we make some preliminary observations and introduce some notation. Let A, B

denote frame bounds for F , and let E, F denote frame bounds for E . Then the canonical dual
frame sequences F̃ and Ẽ have frame bounds 1

B
, 1

A
, and 1

F
, 1

E
, respectively. Consequently,

for all i ∈ I and j ∈ G,

‖fi‖2 ≤ B, ‖f̃i‖2 ≤ 1

A
, ‖ej‖2 ≤ F, ‖ẽj‖2 ≤ 1

E
.

Fix any ε > 0. Since (F, a, E) has both �2-column decay and �2-row decay, there
exists an integer Nε > 0 such that both Equations (2.3) and (2.4) hold. Additionally, since
D+(I, a) < ∞, there exists an K > 0 such that (2.2) holds.

Let PF and PE denote the orthogonal projections of H onto span(F) and span(E),
respectively, and recall that these projections can be realized as in Equation (1.8). Then for
N > Nε we have the following.

|SN(cN)| (sN − dNrN)

=
∑

j∈SN (cN )

〈ẽj , PFej 〉 −
∑

i∈IN (cN )

〈PEfi, f̃i〉

=
∑

j∈SN (cN )

∑
i∈I

〈fi, ej 〉 〈ẽj , f̃i〉 −
∑

i∈IN (cN )

∑
j∈J

〈fi, ej 〉 〈ẽj , f̃i〉

= T1 + T2 − T3 − T4 , (3.8)

where

T1 =
∑

j∈SN (cN )

∑
i∈I\IN+Nε (cN )

〈fi, ej 〉 〈ẽj , f̃i〉 ,

T2 =
∑

j∈SN (cN )

∑
i∈IN+Nε (cN )\IN (cN )

〈fi, ej 〉 〈ẽj , f̃i〉 ,

T3 =
∑

i∈IN−Nε (cN )

∑
j∈G\SN (cN )

〈fi, ej 〉 〈ẽj , f̃i〉 ,

T4 =
∑

i∈IN (cN )\IN−Nε (cN )

∑
j∈G\SN (cN )

〈fi, ej 〉 〈ẽj , f̃i〉 .
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We will estimate each of these quantities in turn.

Estimate T1. If j ∈ SN(cN), then INε (j) ⊂ IN+Nε(cN), so by �2-column decay we
have ∑

i∈I\IN+Nε (cN )

|〈fi, ej 〉|2 ≤
∑

i∈I\INε (j)

|〈fi, ej 〉|2 < ε .

Using this and the fact that {f̃i}i∈I is a frame sequence, we estimate that

|T1| ≤
∑

j∈SN (cN )

( ∑
i∈I\IN+Nε (cN )

|〈fi, ej 〉|2
)1/2 ( ∑

i∈I\IN+Nε (cN )

∣∣〈ẽj , f̃i〉
∣∣2

)1/2

≤
∑

j∈SN (cN )

ε1/2
(

1

A
‖ẽj‖2

)1/2

≤ |SN(cN)|
(

ε

AE

)1/2

.

Estimate T2. By (2.2), we have

|IN+Nε(cN) \ IN(cN)| ≤ K
(|SN+Nε(cN)| − |SN(cN)|) .

Since {ej }j∈G and {ẽj }j∈G are frame sequences, we therefore have

|T2| ≤
∑

i∈IN+Nε (cN )\IN (cN )

( ∑
j∈G

|〈fi, ej 〉|2
)1/2 ( ∑

j∈G

∣∣〈ẽj , f̃i〉
∣∣2

)1/2

≤
∑

i∈IN+Nε (cN )\IN (cN )

(
E ‖fi‖2

)1/2 ( 1

F
‖f̃i‖2

)1/2

≤ K
(|SN+Nε(cN)| − |SN(cN)|) (

EB

FA

)1/2

.

Estimate T3. This estimate is similar to the one for T1. If i ∈ IN−Nε(cN) then
a(i) ∈ SN−Nε(cN), so SNε (a(i)) ⊂ SN(cN). Hence, by �2-row decay,

∑
j∈G\SN (cN )

|〈fi, ej 〉|2 ≤
∑

j∈G\SNε (a(i))

|〈fi, ej 〉|2 < ε .

Since {ẽj }j∈G is a frame sequence, we therefore have

|T3| ≤
∑

i∈IN−Nε (cN )

( ∑
j∈G\SN (cN )

|〈fi, ej 〉|2
)1/2 ( ∑

j∈G

∣∣〈ẽj , f̃i〉
∣∣2

)1/2

≤
∑

i∈IN−Nε (cN )

ε1/2
(

1

E
‖f̃i‖2

)1/2

≤ K |SN−Nε(cN)|
(

ε

AE

)1/2

.
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Estimate T4. This estimate is similar to the one for T2. Since {ej }j∈G and {ẽj }j∈G

are frame sequences, we have for N > Nε that

|T4| ≤
∑

i∈IN (cN )\IN−Nε (cN )

( ∑
j∈G

|〈fi, ej 〉|2
)1/2 (∑

j∈G

∣∣〈ẽj , f̃i〉
∣∣2

)1/2

≤ K
(|SN(cN)| − |SN−Nε(cN)|) (

EB

FA

)1/2

.

Final Estimate. Applying the above estimates to (3.8), we find that if N > Nε, then

|sN − dNrN | ≤ |T1| + |T2| + |T3| + |T4|
|SN(cN)|

≤
(

ε

AE

)1/2

+ K

(
EB

FA

)1/2 |SN+Nε(cN)| − |SN(cN)|
|SN(cN)|

+ K

(
ε

AE

)1/2 |SN−Nε(cN)|
|SN(cN)|

+ K

(
EB

FA

)1/2 |SN(cN)| − |SN−Nε(cN)|
|SN(cN)| .

Consequently, applying the asymptotics in (1.6), we conclude that

lim sup
N→∞

|sN − dNrN | ≤
(

ε

AE

)1/2

+ 0 + K

(
ε

AE

)1/2

+ 0 .

Since ε was arbitrary, this implies limN→∞(sN − dNrN) = 0, as desired.

(b) Since ultrafilter limits exist for any bounded sequence and furthermore are linear and
respect products, we have

0 = p-lim
N∈N

(sN − dNrN) =
(
p-lim
N∈N

sN

)
−

(
p-lim
N∈N

dN

) (
p-lim
N∈N

rN

)
= MF (E; p, c) − D(p, c) · ME (F; p, c) .

3.3 Applications of the Density-Relative Measure Theorem

In this section we will derive some consequences of Theorem 5.
Our first result specializes Theorem 5 to the case where F and E are both frames

for H , including the important special cases where E is actually a Riesz basis for H . It also
connects the infinite excess result of Proposition 1.

Theorem 6 (Abstract Density Theorem). Let F = {fi}i∈I and E = {ej }j∈G be frames
for H , and let a : I → G be an associated map such that D+(I, a) < ∞. If (F, a, E) has
both �2-column decay and �2-row decay, then the following statements hold.

(a) For each free ultrafilter p and sequence of centers c = (cN)N∈N in G, we have

M(E; p, c) = D(p, c) · M(F; p, c) . (3.9)
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Consequently,

M−(E) ≤ D+(I, a) · M−(F) ≤ M+(E) , (3.10)

M−(E) ≤ D−(I, a) · M+(F) ≤ M+(E) . (3.11)

(b) If D+(I, a) > M+(E), then there exists an infinite set J ⊂ I such that {fi}i∈I\J
is still a frame for H .

If E is a Riesz basis for H then the following additional statements hold.

(c) For each free ultrafilter p and sequence of centers c = (cN)N∈N in G,

M(F; p, c) = 1

D(p, c)
.

Further,

M−(F) = 1

D+(I, a)
, M+(F) = 1

D−(I, a)
.

(d) D−(I, a) ≥ 1.

(e) If D+(I, a) > 1, then there exists an infinite subset J ⊂ I such that {fi}i∈I\J is
still a frame for H .

(f) If F is also a Riesz basis for H , then for each free ultrafilter p and sequence of
centers c = (cN)N∈N in G, we have

D−(I, a) = D(p, c) = D+(I, a) = 1 ,

M−(F) = M(F; p, c) = M+(F) = 1 .

Proof.
(a) Since the closed span of F and E is all of H , the equality in (3.9) is a restatement of
Theorem 5 (a). For the first inequality in (3.10), choose a free ultrafilter p and sequence of
centers c such that M−(F) = M(F; p, c). Then we have

M−(E) ≤ M(E; p, c) = D(p, c) · M(F; p, c) ≤ D+(p, c) · M−(F) .

The other inequalities in (3.10) and (3.11) are similar.

(b) In this case, by (3.10) we have M−(F) ≤ M+(E)/D+(I, a) < 1. Hence, the result
follows from Proposition 1.

(c) If E is a Riesz basis then M(E; p, c) = M±(E) = 1, so the result follows from part (a).

(d) Follows from part (c) and the fact that 0 ≤ M+(F) ≤ 1.

(e) Follows from part (b) and the fact that M+(E) = 1.

(f) If F is a Riesz basis then we have that M±(F) = 1, so this follows from part (c).

Note that the conclusion D−(I, a) ≥ 1 of Theorem 6 (d) is shown under a weaker
hypothesis in Theorem 3. Specifically, Theorem 3 requires only the hypothesis that the weak
HAP be satisfied. However, the stronger localization hypotheses of Theorem 6 (�2-column
and row decay) yields the significantly stronger conclusions of Theorem 6.

Next we derive relationships among the density, frame bounds, and norms of the frame
elements for localized frames. In particular, part (a) provides an estimate of the relations
between frame bounds, density, and limits of averages of the norms of frame elements.
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Many of the frames that are important in applications, such as Gabor frames, are uniform
norm frames, i.e., all the frame elements have identical norms, and for these frames these
averages are a constant. As a consequence, we show that if F and E are both tight uniform
norm frames, then the index set I must have uniform density.

Theorem 7 (Density-Frame Bounds). Let F = {fi}i∈I be a frame for H with frame
bounds A, B, and let E = {ej }j∈G be a frame for H with frame bounds E, F . Let a : I → G

be an associated map such that D+(I, a) < ∞. If (F, a, E) has both �2-column decay and
�2-row decay, then the following statements hold.

(a) For each free ultrafilter p and sequence of centers c = (cN)N∈N in G,

1

F
p-lim
N∈N

1

|SN(cN)|
∑

j∈SN (cN )

‖ej‖2

≤ D(p, c)

A
p-lim
N∈N

1

|IN(cN)|
∑

i∈IN (cN )

‖fi‖2, (3.12)

1

E
p-lim
N∈N

1

|SN(cN)|
∑

j∈SN (cN )

‖ej‖2

≥ D(p, c)

B
p-lim
N∈N

1

|IN(cN)|
∑

i∈IN (cN )

‖fi‖2 . (3.13)

(b) We have

A

F

lim infj ‖ej‖2

lim supi ‖fi‖2
≤ D−(I, a) ≤ D+(I, a) ≤ B

E

lim supj ‖ej‖2

lim inf i ‖fi‖2
.

(c) If F and E are both uniform norm frames, with ‖fi‖2 = NF for i ∈ I and
‖ej‖2 = NE for j ∈ G, then

A NE
F NF

≤ D−(I, a) ≤ D+(I, a) ≤ B NE
E NF

.

Consequently, if F and E are both tight uniform norm frames, then I has uniform
density, with D−(I, a) = D+(I, a) = (A NE )/(E NF ).

Proof.
(a) Let S be the frame operator for F . Then A1 ≤ S ≤ B1, so we have 〈fi, f̃i〉 =
〈fi, S

−1(fi)〉 ≤ 1
A

〈fi, fi〉 = 1
A

‖fi‖2, and hence

M(F; p, c) = p-lim
N∈N

1

|IN(cN)|
∑

i∈IN (cN )

〈fi, f̃i〉

≤ 1

A
p-lim
N∈N

1

|IN(cN)|
∑

i∈IN (cN )

‖fi‖2 .
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Similarly 〈ẽj , ej 〉 ≥ 1
F

‖ej‖2, so

M(E; p, c) = p-lim
N∈N

1

|SN(cN)|
∑

j∈SN (cN )

〈ẽj , ej 〉

≥ 1

F
p-lim
N∈N

1

|SN(cN)|
∑

j∈SN (cN )

‖ej‖2 .

By combining these two inequalities with the equality M(E; p, c) = D(p, c) ·M(F; p, c)

given by Theorem 6 (a), we obtain (3.12). Inequality (3.13) is similar, using 〈fi, f̃i〉 ≥
1
B

‖fi‖2 and 〈ẽj , ej 〉 ≤ 1
E

‖ej‖2.

(b) Observe that

lim inf
i∈I

‖fi‖2 ≤ p-lim
N∈N

1

|IN(cN)|
∑

i∈IN (cN )

‖fi‖2 ≤ lim sup
i∈I

‖fi‖2 ,

and combine this and a similar inequality for E with (3.12).

(c) This is an immediate consequence of part (b).

A similar result can be formulated in terms of the norms ‖f̃i‖ of the canonical dual
frame elements, by using the inequality A ‖f̃i‖2 ≤ 〈fi, f̃i〉 ≤ B ‖f̃i‖.

3.4 Removing Sets of Positive Measure

In this section, we will show that by imposing a stronger form of localization than we used
in Theorem 6, a subset of positive measure may be removed yet still leave a frame. This
is a stronger conclusion than the infinite excess statements of Proposition 1 or Theorem 6,
which only state that an infinite set may be removed, without any conclusion about the
density of that set.

In the remainder of this section we will use the results of Appendix 4, as well as the
following notations. If F = {fi}i∈I is a frame then the orthogonal projection of �2(I ) onto
the range of the analysis operator T is P = T S−1T ∗. Given J ⊂ I , we define truncated
analysis and frame operators TJ f = {〈f, fi〉}i∈J and SJ f = ∑

i∈J 〈f, fi〉 fi . We let
RJ : �2(I ) → �2(I ) be the projection operator given by (RJ c)k = ck for k ∈ J , and 0
otherwise. Written as matrices,

P = T S−1T ∗ = [〈fi, f̃j 〉
]
i,j∈I

and TJ S−1T ∗
J = [〈fi, f̃j 〉

]
i,j∈J

.

The following lemma characterizes those subsets of a frame which can be removed
yet still leave a frame.

Lemma 5. Let F = {fi}i∈I be a frame for H , with frame bounds A, B. Let J ⊂ I be
given, and define

ρ = ∥∥TJ S−1T ∗
J

∥∥ = ∥∥S−1/2SJ S−1/2
∥∥ = ‖RJ PRJ ‖ . (3.14)

Then FI\J = {fi}i∈I\J is a frame for H if and only if ρ < 1. In this case, A(1 − ρ), B are
frame bounds for FI\J .

Proof. First, the fact that equality holds in (3.14) is a consequence of the fact that
‖L∗L‖ = ‖LL∗‖ for any operator L. Specifically,∥∥S−1/2SJ S−1/2

∥∥ = ∥∥(
S−1/2T ∗

J

)(
S−1/2T ∗

J

)∗∥∥ = ∥∥(
S−1/2T ∗

J

)∗(
S−1/2T ∗

J

)∥∥
= ∥∥TJ S−1T ∗

J

∥∥ = ∥∥RJ T S−1T ∗RJ

∥∥ = ‖RJ PRJ ‖ .
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Second, since FI\J is a subset of F , it is clearly a Bessel sequence with Bessel bound B.
Further, SI\J is a bounded operator on H , satisfying 0 ≤ SI\J ≤ S ≤ BI . Therefore, FI\J
is a frame for H with frame bounds A′, B if and only if A′1 ≤ SI\J .

Suppose now that ρ = ‖S−1/2SJ S−1/2‖ < 1. Then

SI\J = S − SJ = S1/2(1 − S−1/2SJ S−1/2)S1/2

is invertible. Further,〈
S−1/2SJ S−1/2f , f

〉 ≤ ∥∥S−1/2SJ S−1/2
∥∥ ‖f ‖2 ≤ ρ ‖f ‖2 = 〈ρ1f, f 〉 ,

so

SI\J = S1/2(1 − S−1/2SJ S−1/2)S1/2

≥ S1/2(1 − ρ1)S1/2 = (1 − ρ)S ≥ (1 − ρ)A1 .

Thus, FI\J is a frame for H with frame bounds (1 − ρ)A, B.
Conversely, if FI\J is a frame with frame bounds A′, B then SI\J ≥ A′1, so

1 − S−1/2SJ S−1/2 = S−1/2SI\J S−1/2 ≥ S−1/2A′1S−1/2

= A′S−1

≥ A′

B
1 .

Hence, ρ = ‖S−1/2SJ S−1/2‖ ≤ ‖(1 − A′
B

)1‖ = 1 − A′
B

< 1.

Now we can give the first main result of this section, that if M(F+) < 1 and we have
�1-localization with respect to the dual frame, then a set of positive uniform density can
be removed yet still leave a frame. Note, by Theorem 2 the hypothesis of �1-localization
with respect to the canonical dual is implied by �1-self-localization. Although, we omit it,
it is possible to give a direct proof of the following result under the hypothesis of �1-self-
localization that does not appeal to Theorem 2.

Theorem 8 (Positive Uniform Density Removal). Let F = {fi}i∈I be a frame sequence
with frame bounds A, B and with associated map a : I → G, and assume that the following
statements hold:

(a) 0 < D−(I, a) ≤ D+(I, a) < ∞,

(b) (F, a) is �1-localized with respect to its canonical dual frame, and

(c) M+(F) < 1.

Then there exists a subset J ⊂ I such that D+(J, a) = D−(J, a) > 0 and FI\J =
{fi}i∈I\J is a frame for span(F).

Moreover, if M+(F) < α < 1 and Jα is defined by (2.9), i.e.,

Jα = {i ∈ I : 〈fi, f̃i〉 ≤ α} ,

then for each 0 < ε < 1−α there exists a subset J ⊂ Jα such that D+(J, a) = D−(J, a) >

0 and FI\J = {fi}i∈I\J is a frame for span(F) with frame bounds A(1 − α − ε), B.

Proof. Note first that by Corollary 1 (a), if M+(F) < α < 1 then we have that
D−(Jα, a) > 0. Also, since (F, a) is �1-localized with respect to its dual frame, there
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exists r ∈ �1(G) such that |〈fi, f̃j 〉| ≤ ra(i)−a(j) for all i, j ∈ I . Given 0 < ε < 1 − α, let
Nε be large enough that ∑

k∈G\SNε (0)

rk < ε .

Since D−(Jα, a) > 0, there exists N0 > 0 such that |IN0(j) ∩ Jα| > 0 for every j ∈ G.
Let N = max{Nε, N0}, and define

Q = {SN(2Nk) : k ∈ G} .

Each preimage IN(2Nk) = a−1(SN(2Nk)) of the boxes in Q contains at least one point
of Jα . For each k, select one such point, say ik ∈ IN(2Nk) ∩ Jα , and set J = {ik : k ∈ G}.
Then J has positive density, with D+(J, a) = D−(J, a) = 1

|S2N(0)| .
Consider now the matrix TJ S−1T ∗

J = [〈fi, f̃j 〉]i,j∈J . Write TJ S−1T ∗
J = D + V ,

where D is the diagonal part of TJ S−1T ∗
J and V = [vij ]i,j∈J . By the definition of Jα , we

have ‖D‖ = supi∈J 〈fi, f̃i〉 ≤ α. Define

sk =
{

rk, k /∈ SNε (0) ,

0, k ∈ SNε (0) .

If i, j ∈ J and i �= j , then a(i) − a(j) /∈ SNε (0), and therefore |vij | = |〈fi, f̃j 〉| ≤
ra(i)−a(j) = sa(i)−a(j). On the other hand, |vii | = 0 = sa(i)−a(i). Applying Proposition 3 (a)
to V and the index set J therefore yields

‖V ‖ ≤
∑
k∈G

sk =
∑

k∈G\SNε (0)

rk < ε .

Therefore, ‖TJ S−1T ∗
J ‖ ≤ ‖D‖ + ‖V ‖ ≤ α + ε < 1. Lemma 5 therefore implies that

{fi}i∈I\J is a frame for H with frame bounds A(1 − α − ε), B.

If we impose �2-column decay and �2-row decay, then we can reformulate Theorem 8
in terms of density instead of relative measure.

Corollary 2. Let F = {fi}i∈I and E = {ej }j∈G be frames for H , and let A, B be
frame bounds for F . Let a : I → G be an associated map, and assume that the following
statements hold:

(a) 0 < D−(I, a) ≤ D+(I, a) < ∞,

(b) (F, a) is �1-localized with respect to its canonical dual frame,

(c) (F, a, E) has both �2-column decay and �2-row decay, and

(d) M+(E) < D−(I, a); in particular, D−(I, a) > 1 if E is a Riesz basis.

Then M+(F) < 1, and then there exists a subset J ⊂ I such that D+(J, a) = D−(J, a) >

0 and FI\J = {fi}i∈I\J is a frame for span(F).
Moreover, if M+(F) < α < 1 and Jα is defined by (2.9), then for each 0 < ε < 1−

α there exists a subset J ⊂ Jα such that D+(J, a) = D−(J, a) > 0 and FI\J = {fi}i∈I\J
is a frame for span(F) with frame bounds A(1 − α − ε), B.

Proof. By Theorem 6 we have M+(F) ≤ M+(E)
D−(I,a)

< 1, so the result follows by applying

Theorem 8.
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Theorem 8 and Corollary 2 are evidence that the reciprocal of the relative measure
should in fact be a quantification of the redundancy of an abstract frame. Concentrating for
purposes of discussion on the case where E is a Riesz basis (and hence M+(E) = 1), this
quantification would be precise if it was the case that if F = {fi}i∈I is an appropriately
localized frame and if M+(F) < 1, then there exists a subset I ′ of I with density 1 + ε

such that F ′ = {fi}i∈I ′ is still a frame for H (and not merely, as implied by Theorem 8 or
Corollary 2, that there is some set J with positive density such that {fi}i∈I\J is a frame).
To try to prove such a result, we could attempt to iteratively apply Corollary 2, repeatedly
removing sets of positive measure until we are left with a subset of density 1 + ε that
is still a frame. However, there are several obstructions to this approach. One is that
with each iteration, the lower frame bound is reduced and may approach zero in the limit.
A second problem is that the lower density of I ′ may eventually approach 1. Because
Corollary 2 removes sets of uniform density, we would then have D+(I ′, a) approaching
1 + D+(I, a) − D−(I, a), which for a frame with nonuniform density would not be of the
form 1 + ε with ε small. Due to the length and breadth of this work, we have chosen to
omit some results dealing with this second obstruction.

3.5 Localized Frames and ε-Riesz Sequences

Feichtinger has conjectured that every frame that is norm-bounded below can be written
as a union of a finite number of Riesz sequences (systems that are Riesz bases for their
closed linear spans). It is shown in [16, 17] that Feichtinger’s conjecture equivalent to the
celebrated Kadison-Singer (paving) conjecture. and that both of these are equivalent to a
conjectured generalization of the Bourgain-Tzafriri restricted invertibility theorem.

In this section we will show that every �1-self-localized frame that is norm-bounded
below is a finite union of ε-Riesz sequences, and every frame that is norm-bounded below
and �1-localized with respect to its dual frame is a finite union of Riesz sequences.

Definition 9. If 0 < ε < 1 and fi ∈ H , then {fi}i∈I is an ε-Riesz sequence if there
exists a constant A > 0 such that for every sequence (ci)i∈I ∈ �2(I ) we have

(1 − ε)A
∑
i∈I

|ci |2 ≤
∥∥∥∥∑

i∈I

cifi

∥∥∥∥2

≤ (1 + ε)A
∑
i∈I

|ci |2 .

Every ε-Riesz sequence is a Riesz sequence, i.e., a Riesz basis for its closed linear
span.

Theorem 9. Let F = {fi}i∈I be a sequence in H and let a : I → G be an associated
map. If

(a) (F, a) is �1-self-localized,

(b) D+(I, a) < ∞, and

(c) inf i ‖fi‖ > 0,

then for each 0 < ε < inf i ‖fi‖, F can be written as a finite union of ε-Riesz sequences.

Proof. Recall that G has the form G = ∏d
i=1 aiZ × ∏e

j=1 Znj
. For simplicity of

notation, we will treat the case where ai = 1 for all i, so G = Zd ×H with H = ∏e
j=1 Znj

.
The general case is similar.



136 Radu Balan, Peter G. Casazza, Christopher Heil, and Zeph Landau

For this proof we will use boxes in G of the form

BN(j) = j +
([

−N

2
,
N

2

)d

× H

)
, j ∈ G, N > 0 .

Set m = inf i ‖fi‖2 and M = supi ‖fi‖2. Fix 0 < ε < m, set δ = εm, and choose
K so that M−m

K
< δ

2 . Partition I into subsequences {Jk}Kk=1 so that

∀ i ∈ Jk, m + M − m

K
(k − 1) ≤ ‖fi‖2 ≤ m + M − m

K
k .

Since (F, a) is �1-self-localized, there exists an r ∈ �1(G) such that |〈fi, fj 〉| ≤
ra(i)−a(j) for all i, j ∈ I . Let Nδ be large enough that∑

n∈G\BNδ
(0)

rn <
δ

2
.

Let {uν}2d

ν=1 be a list of the vertices of the unit cube [0, 1]d . For ν = 1, . . . , 2d , define

Qν = {BNδ (2Nδn + Nδuν)}n∈Zd .

Each Qν is a set of disjoint boxes in G, each of which is separated by a distance of at least Nδ

from the other boxes. Furthermore, the union of the boxes in Qν for ν = 1, . . . , 2d forms
a disjoint cover of G.

Since D+(I, a) < ∞, we have L = supn∈G |INδ (n)| < ∞. Therefore, each box in
Qν contains at most L points of a(I ). By choosing, for each fixed k and ν, at most a single
element of Jk out of each box in Qν , we can divide each subsequence Jk into 2dL or fewer
subsequences {Jk�}Kk

�=1 in such a way that

∀ i, j ∈ Jk�, i �= j �⇒ a(i) − a(j) /∈ BNδ (0) .

Fix k, �, let Gk� = [〈fi, fj 〉]i,j∈Jk�
, and write Gk� = Dk� + Vk�, where Dk� is the

diagonal part of Gk�. Set

sn =
{

rn, n /∈ BNδ (0) ,

0, n ∈ BNδ (0) .

If we write the entries of Vk� as Vk� = [vij ]i,j∈J then we have |vij | ≤ sa(i)−a(j) for all i,
j ∈ J . Applying Proposition 3 to the matrix Vk� and the index set J therefore implies

‖Vk�‖ ≤
∑
n∈G

sn =
∑

n∈G\BNδ
(0)

rn <
δ

2
.

Hence, given any sequence c = (ci)i∈Jk�
∈ �2(Jk�), we have∥∥∥∥ ∑

i∈Jk�

cifi

∥∥∥∥2

=
〈 ∑

i∈Jk�

cifi,
∑
j∈Jk�

cj fj

〉

=
∑
i∈Jk�

|ci |2 ‖fi‖2 +
∑

i,j∈Jk�, i �=j

ci c̄j 〈fi, fj 〉
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≤
(
m + M − m

K
k
) ∑

i∈Jk�

|ci |2 + 〈Vk�c, c〉

≤
(
m + M − m

K
k + δ

2

)
‖c‖2

�2

≤
(
m + M − m

K
k + εm

)
‖c‖2

�2

≤ (1 + ε)
(
m + M − m

K

)
‖c‖2

�2 .

Similarly, ∥∥∥∥ ∑
i∈Jk�

cifi

∥∥∥∥2

≥
(
m + M − m

K
(k − 1)

) ∑
i∈Jk�

|ci |2 − 〈Vk�c, c〉

≥
(
m + M − m

K
k − M − m

K
− δ

2

)
‖c‖2

�2

≥
(
m + M − m

K
k − δ

)
‖c‖2

�2

≥
(
m + M − m

K
k − εm

)
‖c‖2

�2

≥ (1 − ε)
(
m + M − m

K
k
)

‖c‖2
�2 .

Thus, each {fi}i∈Jk�
is an ε-Riesz sequence.

Corollary 3. Let F = {fi}i∈I be a sequence in H and let a : I → G be an associated
map. If

(a) (F, a) is �1-localized with respect to its canonical dual frame,

(b) D+(I, a) < ∞, and

(c) inf i ‖fi‖ > 0,

then F can be written as a finite union of Riesz sequences.

Proof. Let S be the frame operator for F . Then (S−1/2(F), a) is �1-self-localized
by Remark 2 (b), and we have inf i ‖S−1/2fi‖ > 0 since S−1/2 is a continuous bijection.
Therefore, if we fix 0 < ε < inf i ‖S−1/2(fi)‖2, then Theorem 9 implies that S−1/2(F) is
a finite union of ε-Riesz sequences, and hence F is a finite union of Riesz sequences.

Appendix

4. The Algebra of �1-Localized Operators

Our goal in this Appendix is to prove Theorem 2. However, we first develop some machinery
about the algebra of matrices which are bounded by Toeplitz-like matrices which have an
�1-decay on the diagonal.

Definition 10. Let I be a countable index set and a : I → G an associated map. We
say that an I × I matrix V = [vij ]i,j∈J has �1-decay if there exists r ∈ �1(G) such that
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|vij | ≤ ra(i)−a(j). We call r an associated sequence. We define

B1(I, a) = {
V : V has �1-decay

}
,

and set B1(G) = B1(G, Id), where Id is the identity map.

Remark 3. Let F = {fi}i∈I be a frame for H . Let T be the analysis operator and
S = T ∗T the frame operator, and F̃ = {f̃i}i∈I the canonical dual frame.

(a) (F, a) is �1-self-localized if and only if its Gram operator V = T T ∗ = [〈fi, fj 〉]i,j∈I

lies in B1(I, a).

(b) The Gram operator of F̃ is Ṽ = [〈f̃i , f̃j 〉]i,j∈I = T S−2T ∗. Since V Ṽ = T S−1T ∗ =
PV , the orthogonal projection onto the range of V , we have that Ṽ = V † is the pseudo-
inverse of V .

(c) (F, a) is �1-localized with respect to its canonical dual frame F̃ if and only if the
cross-Grammian matrix PV = T S−1T ∗ = [〈fi, f̃j 〉]i,j∈I lies in B1(I, a). Further, by
Remark 2 (b), this occurs if and only if (S−1/2(F), a) is �1-self-localized, where S−1/2(F)

is the canonical Parseval frame.

Proposition 3. Let I be a countable index set and a : I → G an associated map such
that D+(I, a) < ∞, and let K = supn∈G |a−1(n)|. Then the following statements hold.

(a) If V has �1-decay and r is an associated sequence, then V maps �2(I ) boundedly
into itself, with operator norm ‖V ‖ ≤ K ‖r‖�1 .

(b) The following statements hold:

(i) B1(I, a) is closed under addition and multiplication,

(ii) the following is a norm on B1(I, a):

‖V ‖B1 = inf{‖r‖�1 : r is a sequence associated to V } ,

(iii) B1(I, a) is complete with respect to this norm, and

(iv) we have

‖V W‖B1 ≤ K ‖V ‖B1 ‖W‖B1 . (4.1)

In particular, if K = 1 then B1(I, a) is a Banach algebra.

(c) If V ∈ B1(I, a) and r is an associated sequence, then for any polynomial p(x) =
c0 + c1x + · · · + cnx

N we have p(V ) ∈ B1(I, a), and an associated sequence is

|c0| δ + |c1| r + K|c2| (r ∗ r) + · · · + Kn−1|cn| (r ∗ · · · ∗ r) ,

where δ = (δ0k)k∈G.

Proof.
(a) Given a sequence c = (ci)i∈I ∈ �2(I ), define d ∈ �2(G) by

dn =
∑

j∈a−1(n)

|cj | ,
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where we define the sum to be zero if a−1(n) = ∅. Note that ‖d‖�2 ≤ K1/2 ‖c‖�2 . Given
i ∈ I , we have

|(V c)i | ≤
∑
j∈I

|vij | |cj | ≤
∑
j∈I

ra(i)−a(j) |cj |

=
∑
n∈G

∑
j∈a−1(n)

ra(i)−n |cj |

=
∑
n∈G

ra(i)−n dn

= (r ∗ d)a(i) .

Therefore,

‖V c‖2
�2 ≤

∑
i∈I

|(r ∗ d)a(i)|2 ≤ K ‖r ∗ d‖2
�2

≤ K ‖r‖2
�1 ‖d‖2

�2

≤ K2 ‖r‖2
�1 ‖c‖2

�2 .

(b) Let {δi}i∈I be the standard basis for �2(I ). Suppose V , W ∈ B1(I, a) with associated
sequences r , s, and let c ∈ C. Then∣∣〈(cV + W)δi, δj

〉∣∣ ≤ |c| ra(i)−a(j) + sa(i)−a(j) = (|c| r + s)a(i)−a(j)

and

|〈WV δi, δj 〉| = ∣∣〈V δi, W
∗δj 〉

∣∣ =
∣∣∣∣∑
k∈I

〈V δi, δk〉 〈δk, W
∗δj 〉

∣∣∣∣
≤

∑
k∈I

|〈V δi, δk〉| |〈Wδk, δj 〉|

≤
∑
k∈I

ra(i)−a(k) sa(k)−a(j)

≤ K
∑
n∈G

ra(i)−n sn−a(j)

= K (r ∗ s)a(i)−a(j) .

These facts show that B1(I, a) is an algebra and establish the norm inequality in (4.1). It is
easy to see that ‖ ·‖B1 is indeed a norm on B1(I, a), so it only remains to show that B1(I, a)

is complete with respect to this norm.
Assume that Vn = [vn

ij ]i,j∈I for n ∈ N forms a Cauchy sequence of matrices in
B1(I, a). Then, for every ε > 0 there is Nε > 0 so that for every m, n ≥ Nε there is a
sequence rm,n ∈ �1(G) such that∣∣vn

ij − vm
ij

∣∣ ≤ r
m,n
a(i)−a(j) and ‖rm,n‖�1 < ε .

Then for each fixed i, j , the sequence of entries (vn
ij )n∈N is Cauchy, and hence converges

to some finite scalar vij . Set V = [vij ]i,j∈I .
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Consider now εk = 1
2k for k > 0, and let Nk = Nεk

be as above. Set N0 = 0 and

V 0 = 0. Define r = ∑
k rNk+1,Nk . Then r ∈ �1(G), and

|vij | = lim
k→∞

∣∣vNk

ij

∣∣ ≤
∞∑

k=0

∣∣vNk+1
ij − v

Nk

ij

∣∣ ≤ ra(i)−a(j) .

Hence, V ∈ B1(I, a), and it similarly follows that V n → V in B1(I, a).

(c) Follows by part (b) and induction.

The key to proving Theorem 2 is the following fundamental extension of Wiener’s
Lemma. This theorem was proved by Gohberg, Kaashoek, and Woerdeman [26], Baskakov
[7], and Sjöstrand [52] (see also [44, 8]).

Theorem 10. If V ∈ B1(G) is an invertible mapping of �2(G) onto itself then V −1 ∈
B1(G).

Remark 4.
(a) Sjöstrand proves this result for the case G = Zd , but the same technique can be easily
applied to the more general groups we consider in this article. Also, Kurbatov proves a
more general result for bounded operators on �p(Zd).

(b) Theorem 10 is similar to Jaffard’s Lemma [41], which states that if V is invertible on
�2(G) and satisfies |Vij | ≤ C (1 + |i − j |)−s for some C, s > 0, then V −1 has the same
decay, i.e., |V −1

ij | ≤ C′ (1 + |m − n|)−s for some C′ > 0. Jaffard’s Lemma was used by
Gröchenig in his development of localized frames in [32].

Next we define an embedding of the set F(I ) of all frames for H indexed by I into
the set F(G × ZK) of all frames indexed by G × ZK .

Notation. Let I be a countable index set and a : I → G an associated map such that
D+(I, a) < ∞. Let K = supn∈G |a−1(n)| < ∞. For each n ∈ G let Kn = |a−1(n)|,
and write a−1(n) = {ink}Kn−1

k=0 (it may be the case that a−1(n) is the empty set). Given a
sequence F = {fi}i∈I , for each n ∈ G we set

f ′
nk =

{
fink

, k = 0, . . . , Kn − 1 ,

0, k = Kn, . . . , K − 1 ,

and define F ′ = {f ′
nk}n∈G,k∈ZK

. Define a′ : G × ZK → G by a′(i, j) = i.

The following properties are immediate.

Lemma 6. Let I be a countable index set and a : I → G an associated map such that
D+(I, a) < ∞. Let F = {fi}i∈I be a frame for H . Then the following statements hold.

(a) F ′ is a frame for H .

(b) (F, a) is �1-self-localized if and only if (F ′, a′) is �1-self-localized.

(c) (F, a) is �1-localized with respect to its canonical dual frame if and only if (F ′, a′)
is �1-localized with respect to its canonical dual frame.

(d) If F̃ and F̃ ′ denote the canonical duals of F and F ′, respectively, then F̃ ′ = (F̃)′.
Now we can prove Theorem 2.

Proof of Theorem 2. By Lemma 6, it suffices to consider the case where I is a group
of the form given in (1.1), i.e., we can without loss of generality take I = G. Assume that
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F is a frame for H such that (F, a) is �1-self-localized. Let V = [〈fi, fj 〉]i,j∈G denote its
Gram matrix. With respect to the algebra B(�2(G)) of bounded operators mapping �2(G)

into itself, the spectrum SpB(�2(G))(V ) of V is a closed set contained in {0}∪ [A, B], where
A, B are the frame bounds of F . On the other hand, V belongs to the algebra B1(G), and
since B1(G) ⊂ B(�2(G)), we have the inclusion of spectra

SpB(�2(G))(V ) ⊂ SpB1(G)(V ) .

Theorem 10 implies that the converse inclusion holds true as well, for if z /∈ SpB(�2(G))(V )

then z Id −V is an invertible mapping of �2(G) into itself, and therefore (z Id −V )−1 ∈
B1(G) by Theorem 10. Thus, SpB1(G)(V ) = SpB(�2(G))(V ) ⊂ {0} ∪ [A, B]. Let � denote
the circle of radius B/2 centered at (A + B)/2 in the complex plane. Then by standard
holomorphic calculus [50], the operator

V † = 1

2πi

∫
�

1

z
(z Id −V )−1 dz

belongs to B1(G). However, the same formula in B(�2(G)) defines the pseudoinverse of V .
Hence, V † ∈ B1(G), so (F̃, a) is �1-self-localized. Additionally, PV = V V † ∈ B1(G), so
(F, a) is �1-localized with respect to its canonical dual and the associated Parseval frame
is �1-self-localized.
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