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ABSTRACT. Spaces called Sν were introduced by Jaffard [16] as spaces of functions character-
ized by the number � 2ν(α)j of their wavelet coefficients having a size � 2−αj at scale j . They
are Polish vector spaces for a natural distance. In those spaces we show that multifractal functions
are prevalent (an infinite-dimensional “almost-every”). Their spectrum of singularities can be
computed from ν, which justifies a new multifractal formalism, not limited to concave spectra.

1. Introduction

1.1 Multifractal Formalisms

The goal of multifractal analysis is to compute the spectrum of singularities df of a locally
bounded function f , being defined as

df (h) := dimH

{
x, hf (x) = h

}
where dimH stands for the Hausdorff dimension and hf (x) for the pointwise Hölder expo-
nent of f at x (see [8] for definitions). Variants of this definition have been introduced, in
particular, replacing the Hölder exponent by some weaker notion, such as the T pu exponents
of [5] as in [17], but this one is the simplest and most fundamental. However, it is not
applicable for the practical computation of df given, say, a sampled version of f . Several
formulas called multifractal formalisms have been proposed to estimate df , most of them
based on the wavelet coefficients of f . They share the advantage of being easy to compute
and relatively stable from a numerical point of view, and the disadvantage of being limited to
uniform Hölder functions: This limitation is intrinsic to the theorems relating the pointwise
Hölder exponent to the size of the wavelet coefficients, see [18].

Math Subject Classifications. Primary: 60B11; secondary: 46A19, 28A80.
Keywords and Phrases. Prevalence, generic properties of functions, multifractal formalism, sequence
spaces.

© 2007 Birkhäuser Boston. All rights reserved
ISSN 1069-5869 DOI: 10.1007/s00041-006-6019-8



176 Jean-Marie Aubry, Françoise Bastin, and Sophie Dispa

The most widespread of these formulas is the so-called thermodynamic multifractal
formalism that we briefly recall. Let us suppose for simplicity that f is defined on T := R/Z

and let � := {
(j, k), j ∈ N, 0 ≤ k < 2j

}
. Let cj,k, (j, k) ∈ � be the wavelet coefficients

of f in a L∞-normalized, periodized wavelet basis (ψj,k(x) := ∑
l ψ(2

j (x − l) − k)).
Assuming the mother waveletψ to be sufficiently decreasing, localized, and having enough
zero moments, then one can compute for all p > 0

τf (p) := lim inf
j→∞

log2
(∑

k

∣∣cj,k∣∣p)
−j (1.1)

and, pc being the solution of τf (p) = 0,

d1(h) := min

(
inf
p≥pc

(
hp − τf (p)

)
, 1

)
. (1.2)

Remark. In the literature about multifractal formalism, the function ηf = 1 + τf is
sometimes used instead of τf .

We refer to [15] for the details and proofs of the following facts. It is known that for
any uniform Hölder function the inequality df (h) ≤ d1(h) holds for all h; this is the best
that can be expected in all generality; it is actually possible to construct uniform Hölder
functions f with quite arbitrary df and τf , as in [14].

It is worth recalling whence the above inequality comes, and the connection with
Besov spaces. From the characterization of those spaces in terms of wavelets coefficients
(see [4, 22, 7]), (1.1) is equivalent to:

τf (p) = sup

{
s, f ∈ B

s+1
p
,∞

p

}
.

So, given a concave function τ , the knowledge that τf (p) ≥ τ(p) for all p ≥ pc amounts

to saying that f ∈ Bτ := ⋂
p≥pc B

τ(p)+1
p

,∞
p . Using the same wavelet characterization of

the Besov spaces, it was then shown in [15] that when p ≥ pc, f ∈ B
τ(p)+1
p

,∞
p implies that

df (h) ≤ hp − τ(p). The upper bound df (h) ≤ d1(h) follows.

1.2 Prevalence

The statistical approach to multifractal formalism is not yet very developed, for the lack of
a suitable framework (see, for instance, [1] or [10]). Computing the wavelets coefficients of
a function gives an information on the largest space Bτ this function belongs to. If nothing
else is known, what is, in a statistical sense, the status of formula (1.2)?

If there were for each τ a natural (probability) measure on Bτ such that almost surely
d1(h) = df (h) for all h, then (1.2) would be a consistent estimator for the non parametric
problem of recovering τ . Unfortunately no such measure exists because Bτ is not locally
compact. Nevertheless, the concept of prevalence [6, 12, 13], that we briefly recall below,
allows us to define a notion of “almost surely” that is translation invariant and does not
depend on any arbitrary measure.

Definition 1. Let X be a complete metric vector space. A Borel set A ⊂ X is called shy
(Haar-null in [6]) if there exists a Borel measure µ, strictly positive on some compact set
K ⊂ X, such that ∀x ∈ X,µ(A + x) = 0. Such a measure is called transverse to A. A
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subset A of E is shy if it is included in a shy Borel set. A set is prevalent if its complement
is shy.

Following the terminology used in this context, such a measure µ onX will be called
a probe measure for A.

In finite dimension, the Fubini-Tonelli Theorem shows that a set is prevalent if and
only if it has full Lebesgue measure. If X is metric, complete and separable, then the
requirement that µ(K) > 0 for some compact set K is automatically fulfilled because all
probability measures are tight (there exists a compact set of measure arbitrarily close to 1),
see [21], for instance. Other basic properties of prevalence include:

(1) If A is prevalent, then x + A is prevalent for every x in E.

(2) If A is prevalent, then λA is prevalent for every λ 	= 0.

(3) A prevalent set is dense.

(4) A countable intersection of prevalent sets is prevalent.

Fraysse and Jaffard proved indeed in [9] the following.

Theorem 1. For f in a prevalent subset of Bτ ,

df (h) =
{

infp≥pc (hp − τ(p)) if this inf is ≤ 1

∞ else
(1.3)

(so df (h) = d1(h) when df (h) 	= −∞).

We shall say that almost surely (in the sense of prevalence), (1.3) holds. Together
with the universal upper bound (df (h) ≤ d1(h)), this result justifies the validity of the
thermodynamic formalism.

1.3 Sν Spaces

However, by the nature of the Legendre transform in (1.2), d1 will always be a concave
function, increasing with slope ≥ pc when d1(h) < 1. A real spectrum of singularities has
no reason to satisfy either of these two features (concavity and increasingness), which are
indeed limitations to the range of validity of the thermodynamic formalism. The second
of these features can be taken care of using wavelet leaders instead of wavelet coefficients,
see [19]. The object of this article is to address the first one by proposing a new multifractal
formalism that can detect nonconcave spectra, and prove its validity in the same sense as
for the thermodynamic one. It is clear that the spaces Bτ do not contain more information
than the concave hull of the spectrum of singularities (since almost surely in them df is
given by a Fenchel-Legendre transform) and we are going to replace them by the spaces Sν

that were studied, mainly for that purpose, in [2]. Let us briefly recall their definition and
main properties.

As before, we work with a regular, L∞-normalized, periodized wavelet basis. In the
rest of this article, cj,k, (j, k) ∈ � are the wavelet coefficients of a distribution f on T. If
we set

Ej(C, α)(f ) := {
k : |cj,k| ≥ C2−αj}, j ≥ 0, α ∈ R, C ≥ 0 ,
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then the wavelet profile of f is defined as

νf (α) := lim
ε→0+

(
lim sup
j→+∞

(
log2(#Ej(1, α + ε)(f ))

j

))
, α ∈ R .

The wavelet profile νf is a nondecreasing, right-continuous function, nonnegative when
not equal to −∞. It is convenient to understand it in the following way: For all α ∈ R and
j ∈ N, the number of wavelet coefficients of f that are larger than � 2−αj is about 2νf (α)j .
We can also remark that since f is a distribution on a compact set, it has finite order, and
there exists αmin ∈ R such that

sup
j,k

2αminj |cj,k| < +∞ (1.4)

in other words, νf (α) = −∞ for every α < αmin.
Conversely, given a function ν : R → {−∞} ∪ [0, 1], nondecreasing and right-

continuous, such that ν(α) = −∞, ∀α < αmin and ν(α) ∈ [0, 1], ∀α ≥ αmin, we say that
a distribution f belongs to the space Sν = Sν(T) if its wavelet profile satisfies

∀α ∈ R, νf (α) ≤ ν(α) . (1.5)

Roughly speaking, f is in Sν if, for all α and j , it has less than � 2ν(α)j wavelet coefficients
at scale j that are larger than � 2−αj .

These spaces are robust, meaning that their definition does not depend on the choice of
the wavelet basis, see [16]. To study them, it is convenient to introduce the ancillary spaces

Em,n :=
{
f, ∃C, #Ej(C, αn) ≤ C2(ν(αn)+εm)j∀j

}
(1.6)

where αn is any (fixed) dense sequence in R and εm is a decreasing sequence converging to
0. For f ∈ Em,n, the infimum of the constants C satisfying the inequality in (1.6) is noted
δm,n(f, 0) and then the distance δm,n(f, g) := δm,n(f − g, 0) makes Em,n a metric space.

It is proved in [2] that Sν = ⋂
m,n Em,n (this intersection not depending on the choice

of the sequences above) and that with the distance

δ(f, g) :=
∑
m,n≥0

2−(m+n) δm,n(f, g)

1 + δm,n(f, g)
,

Sν is a metric, complete and separable space. The distance δ may depend on the sequences
αn, εm, but the induced topology does not. The Borel σ -algebra relative to this topology will
be noted B(Sν). Also note that whenever ν(αn) = −∞ and αn′ ≤ αn, then Em,n ⊂ Em′,n′
and δm,n ≥ δm′,n′ , so the sequence αn can be taken dense in [αz,+∞) for an arbitrary
αz < αmin without changing the intersection above nor the topology on Sν .

In this article, we shall require furthermore that αmin > 0 in (1.4) and, to avoid trivial
cases, that there exists α ≥ α0 such that ν(α) > 0. Let us recall a classical result [20].

Proposition 1. When α > 0, the distribution f belongs to the uniform Hölder-Zygmund
space Cα = Cα(T) if and only if there exists C < +∞ such that for all (j, k) ∈ �,∣∣cj,k∣∣ ≤ C2−αj .

In other words, if αn > 0 and ν(αn) = −∞, then Em,n = Cαn . It follows that
Sν ⊂ ⋂

α<αmin
Cα; in particular, its elements are uniform Hölder and their pointwise
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regularity can be related to the moduli of their wavelet coefficients (see [18]). Then the
results obtained on wavelet series in [3] apply, notably.

Proposition 2. Let hmax := infh≥αmin
h
ν(h)

. For all f ∈ Sν and h ∈ R,

df (h) ≤ dν(h) :=

h suph′∈(0,h]

ν(h′)
h′ if h ≤ hmax

1 else .

Since νf can easily be computed from the wavelet coefficients of f , and considering
the definition of Sν , the formalism that we propose to replace or complement (1.2) is simply

d2(h) :=

h suph′∈(0,h]

νf (h′)
h′ if h ≤ hmax

1 else .
(1.7)

By Proposition 2, this formalism is already guaranteed to yield an upper bound to df (h).
The almost sure (prevalent in Sν) equality is now naturally our goal and the following
theorem, which is our main result, will be proved in Section 3.

Theorem 2. The following three sets are prevalent in Sν:

(1) {g ∈ Sν : νg(α) = ν(α), ∀α ∈ R},
(2) {g ∈ Sν : dg(h) = dν(h), ∀h ≤ hmax and dg(h) = −∞, ∀h > hmax},
(3) the set of g whose pointwise regularity is almost everywhere hmax.

Assertion number (2) is the counterpart of Theorem 1, and justifies the validity of (1.7)
as a multifractal formalism.

Connection with Bτ . It was proved in [2] that if τ(p) = infh≤hmax (hp − ν(h)), then Bτ

is the smallest intersection of Besov spaces that contains Sν . Furthermore, Sν = Bτ if and
only if ν is concave. Theorem 1 can thus be viewed as a particular case of our Theorem 2.

See Figure 1 for an illustration of a typical case.

2. A Probe Measure on Sν

In order to prove the prevalence of the sets introduced in Theorem 2, we need a Borel
probe measure on Sν . In this section we identify f ∈ Sν to the sequence of its wavelet
coefficients cj,k, (j, k) ∈ �.

We start by constructing a probability measure µ on the sequence space (C�,F),
where F is the σ -algebra generated by the cylinders. Then it remains to show that µ is
actually supported in Sν and is Borel relatively to the metric topology of Sν .

2.1 Measure on the Sequence Space

As before, ν : R → {−∞} ∪ [0, 1] is nondecreasing and right-continuous, and there exists
αmin > 0 such that ν(α) = −∞, ∀α < αmin and ν(α) ∈ [0, 1], ∀α ≥ αmin.

For each j ≥ 0 let

Fj (α) :=
{

0 if α < αmin

2−j sup
{
j2, 2jν(α)

}
if α ≥ αmin .

(2.1)
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FIGURE 1 A wavelet profile ν, Sν -prevalent spectrum dν , and thermodynamic formalism spectrum d1.

Because of the conditions imposed on ν, Fj is the repartition function of some probability
distribution ρj supported on [αmin,+∞] (where ρj ({+∞}) := 1 − limα→+∞ Fj (α) may
be > 0). Let U[0,2π ] denote the uniform measure on [0, 2π ].

For each index (j, k) ∈ � we define the measure µj,k on (C,B(C)) to be the image
of ρj ⊗ U[0,2π ] by the transform (x, θ) �→ eiθ2−jx . Then

µ :=
⊗

(j,k)∈�
µj,k

is a probability measure on (C�,F), where F := B(C)⊗� is also the Borel σ -algebra for
the topology of pointwise convergence in the sequence space.

This amounts to drawing random numbers cj,k with independent phases and moduli,
such that their phases are uniformly distributed, ρj is the law of −log2(|cj,k|)/j , and it is
understood that ρj ({+∞}) is simply the probability that cj,k = 0. Note that for all α ∈ R,

lim sup
j→+∞

log2
(
2j ρj ((−∞, α]))

j
= ν(α) , (2.2)

and also that

ν(α) ≥ 0 ⇒ 2j ρj ((−∞, α]) ≥ j2 . (2.3)

2.2 Random Wavelet Series

Although for the particular choice (2.1) of Fj and ρj , the lim sup above is actually a limit,
we can from now on suppose only that, along with the hypotheses on ν, (2.2) and (2.3) are
satisfied. In that case, ν(αmin

2 ) = −∞ implies that, with probability 1, there is only a finite
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number of
∣∣cj,k∣∣ ≥ 2− αmin

2 j . The series

f :=
∑

(j,k)∈�
cj,kψj,k

is thus uniformly convergent, and its sum is uniform Hölder.

Definition 2. If the wavelet coefficients of f are independent random variables such that
the law ρj −log2(|cj,k|)/j satisfy (2.2) and (2.3), then f is called a random wavelet series
associated to ν.

The hypothesis on the uniform independent phases, not included in the above defini-
tion, will play a role only in Theorem 5.

Let us now recall the main result of [3].

Theorem 3. If f is a random wavelet series associated to ν, almost surely,

(1) f ∈ Sν
(2) for all α ∈ R, νf (α) = ν(α)

(3) for all h ∈ R, df (h) = dν(h) if h ≤ hmax,−∞ else

(4) hf (x) = hmax almost everywhere.

Indeed, this result looks very much like Theorem 2 that we are going to prove, except
that here “almost surely” refers to the probability, hereafter notedµ, induced by this process.
From now on, µ will be restricted to Sν .

Remark. The technical condition (2.3) could be weakened into ν(α) ≥ 0 ⇒ ∑
j 2j ρj

((−∞, α]) = +∞ without changing the conclusion of the theorem, but in its present form
it conveniently simplifies the proof of Theorem 5. See [3] for details.

2.3 Borel Measurability

So farµ has been defined on (Sν,F|Sν ). The metric topology on Sν presented in Section 1.3
makes it a Polish space, which is the good framework for prevalence; it remains to show that
µ is Borel relatively to this topology. This amounts to show that B(Sν) ⊂ F|Sν . Actually,
these σ -algebras are the same.

Theorem 4. With the notation above, B(Sν) = F|Sν .

Proof. Recall that F|Sν is the Borel σ -algebra for the topology induced on Sν by the
pointwise convergence of sequences. As a consequence of Proposition 3.5 and Theorem 5.7
of [2], any open set for this topology is an open set in the metric topology of Sν , so F|Sν ⊂
B(Sν).

Now we just need to prove that there exists a topological basis of Sν whose elements
are in F|Sν ; since Sν is separable, it is Lindelöf, that is, any topological basis contains a
countable subbasis. Any open set of Sν , being a union of finite intersections of elements of
this subbasis, will thus belong to F|Sν , from which we shall deduce that B(Sν) ⊂ F|Sν .

By Proposition 5.3 of [2], a topological basis of Sν is given by countable intersections
of balls of the ancillary spacesEm,n defined by (1.6), endowed with the distance δm,n. So the
proof boils down to studying those balls. Letm, n ∈ N, g ∈ Sν whose wavelet coefficients
will be noted dj,k , and r > 0 be fixed. The ball of Em,n with radius r and centered on g is
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the set

Bm,n(g, r) :=
⋂
j≥0

{
f : #

{
k : |cj,k − dj,k| ≥ r2−αnj} ≤ r2(ν(αn)+εm)j

}
.

If ν(αn) = −∞, then

Bm,n(g, r) =
⋂

(j,k)∈�

{
f,
∣∣cj,k∣∣ ≤ 2−jαn

}

which belongs to F|Sν .
If ν(αn) ∈ R, let λ∗ = ⌊

r2j (ν(αn)+εm)
⌋

and denote by Kj(λ) (1 ≤ λ ≤ λ∗) the set of
the Cλ

2jd
parts of {0, . . . , 2j − 1} which contain λ coefficients k. For such a Z ∈ Kj(λ),

let Cj (Z) be the set of f such that k ∈ Z ⇔ ∣∣cj,k − dj,k
∣∣ > r2−αnj . Now each Cj (Z)

belongs to F|Sν , and so does

Bm,n(g, r) =
⋂
j≥0

⋃
0≤λ≤λ∗

⋃
Z∈Kj (λ)

Cj (Z) .

3. Proof of Theorem 2

The key of the proof consists in showing that if f is the random process previously con-
structed, and if g ∈ Sν is fixed, then with probability one, νf−g = ν. This is done in
Theorem 5 below. Because the wavelet coefficients of f − g are independent, this pro-
cess is also a random wavelet series, and Theorem 3 implies that it is indeed associated to
the same ν. In particular, it will have the same almost-sure spectrum of singularities and
almost-everywhere regularity (Corollary 1). Then we can conclude about the prevalence of
these properties.

The wavelet coefficients of f satisfy a concentration lemma that we recall for further
use. See [3] again and Lemma 2.4 in [23] for a proof.

Lemma 1. There exist C1, C2 > 0 such that, if −∞ ≤ a < b and j ≥ 0 are such that
2j ρj ((a, b]) ≥ j2, then

µ

({
f,

1

2
≤ #

{
k, 2−bj ≤ |cj,k| < 2−aj}

2j ρj ((a, b]) ≤ 2

})
≥ 1 − C2

2j

j2
e−C1j

2
.

Since we supposed (2.3), 2j ρj ((−∞, α]) ≥ j2 as soon as α ≥ αmin.

Theorem 5. Let f be a random wavelet series associated to ν, with uniform independent
phases, such as in Section 2.1, and let g ∈ Sν . Then

µ
({
f, νf−g(α) = ν(α),∀α}) = 1 .

Note that the hypothesis that the phases of cj,k are uniformly distributed, though it
could be weakened (any bounded density would do), cannot be completely omitted, as the
example of a determinist f and g = f shows (nothing in (2.2) prevents the

∣∣cj,k∣∣ from
being determinist).
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Proof. Let g ∈ Sν (as before, we shall call dj,k its wavelet coefficients). Almost surely
f ∈ Sν , which is a vector space, so f − g ∈ Sν . But by the definition (1.5), this is exactly
saying that for all α, νf−g(α) ≤ ν(α). When α < αmin, νf−g(α) = ν(α) = −∞.

It remains to prove that

µ
({
f, νf−g(α) ≥ ν(α),∀α ≥ αmin

}) = 1 .

Because of the uniform phase hypothesis on cj,k , for any given (j, k), one has with
probability ≥ 1

2 that �(cj,kdj,k) ≤ 0 (cj,k is in the complex half-plane opposite to dj,k), so

µ
({
f, |cj,k − dj,k| ≥ |cj,k|

}) ≥ 1

2
.

Let j ≥ 1 and 1 ≤ N ≤ 2j . Let KN ⊂ {0, . . . , 2j − 1} be of cardinal N and B(j,KN) :={
f, #

{
k ∈ KN, |cj,k − dj,k| ≥ |cj,k|

} ≥ N
3

}
. If we note

Xj,k :=
{

1 if |cj,k − dj,k| ≥ |cj,k|
0 else

and SN =
∑
k∈KN

Xj,k

then E(SN) ≥ N
2 and

µ(B(j,KN)) = µ

({
f, SN ≥ N

3

})

≥ 1 − µ

({
f,E(SN)− SN >

N

6

})

≥ 1 − e−
N
18 (3.1)

by the Hoeffding inequality [11].
Let α ≥ αmin be fixed and

A(j, α) :=
{
f, #

{
k, |cj,k| ≥ 2−αj} ≥ 1

2
sup

{
j2, 2jν(α)

}}
.

By Lemma 1, there exists C1, C2 > 0 such that, if j ≥ 1,

µ(A(j, α)) ≥ 1 − C2
2j

j2
e−C1j

2
.

Conditionally to f ∈ A(j, α), we apply (3.1) to the N := 1
2 max

(
j2, 2jν(α)

)
first wavelet

coefficients of f satisfying |cj,k| ≥ 2−αj . Now remark that the set B(j,KN) in (3.1),
depending only on the phases of the wavelet coefficients of f , is independent fromA(j, α),
which depends only on their moduli. So we have

µ

({
f, #

{
k, |cj,k − dj,k| ≥ 2−αj} ≥ N

3

})
≥ µ(A(j, α))µ(B(j,KN))

≥ 1 − C2
2j

j2
e−C1j

2 − e−
N
18

hence

µ

({
f, #

{
k, |cj,k − dj,k| ≥ 2−αj} ≥ 2jν(α)

6

})
≥ 1 − C2

2j

j2
e−C1j

2 − e−
j2

36 . (3.2)
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For n ≥ 1, let ζ(n) be the unique natural number such that 2ζ(n)(ζ(n)−2) < n−2 ≤
2ζ(n)+1(ζ(n)− 1). The j2j points αn such that j = ζ(n) are then chosen to be equispaced
in [0, j − 2−j ]. This sequence is dense in [0,+∞). Furthermore, by construction, it is
fully recurrent (meaning that for every n ≥ 1, there exists n′ such that ζ(n′) = ζ(n) + 1
and αn′ = αn).

We apply (3.2) to the (at most) j2j numbers αn ≥ αmin such that n ∈ ζ−1({j}). The

series
∑
j j2j

(
C2

2j

j2 e
−C1j

2 + e−
j2

36

)
converges, so by the Borel-Cantelli Lemma, with

probability one there exists J ′ such that for each j ≥ J ′, ∀n ∈ ζ−1({j}),

#
{
k, |cj,k − dj,k| ≥ 2−αj} ≥ 2jν(α)

6
.

With the full recurrence property stated above, this implies that with probability one,
for all n such that αn ≥ αmin, νf−g(αn) ≥ ν(αn), and then by density of this sequence,
νf−g(α) ≥ ν(α) for all α ≥ αmin.

Corollary 1. Let g and f be as above. Then with probability one

(1) df−g(h) =
{
dν(h) if h ≤ hmax

−∞ if h > hmax

(2) for almost every x, hf−g(x) = hmax.

Proof. We have established that f − g is indeed a random wavelet series associated to
ν. The announced properties all follow from Theorem 3.

Proof of Theorem 2. If A ⊂ Sν is the set of functions h whose νh does not coincide
with ν, then given any g ∈ Sν , µ(g + A) = µ(f − g ∈ A) = 0 by Theorem 5, so µ is
transverse to A. The same reasoning with Corollary 1 provides the other assertions.
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