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ABSTRACT. The concept of local growth envelope (ELGA, u) of the quasi-normed function space
A is applied to the Triebel-Lizorkin spaces of generalized smoothness Fσ,Np,q (R

n). In order to
achieve this, a standardization result for these and corresponding Besov spaces is derived.

1. Introduction

In recent years there has been a lot of work on the determination of the local growth
envelopes of function spaces of the Besov and Triebel-Lizorkin type (see [17, 27, 5, 4, 2, 3]).
These results can be seen as refinements of the famous Sobolev embedding theorem, being
related also with the popular topic of searching for sharp embeddings between classes of
function spaces (see, for example, [12, 13, 23, 15, 11, 14, 16]). In any case, local growth
envelopes identify the greatest possible growth which functions from some given space can
stand locally, so they are useful in distinguishing between spaces and have even been used
(together with the related concept of continuity envelope) in the proof of the necessity of
conditions giving continuous embeddings between spaces.

As the scale of spaces of Besov and Triebel-Lizorkin type comprises nowadays gener-
alized versions, in various directions, which are proving useful in other areas of mathematics
(see, for example, [8, 7, 24]), the question naturally arises about how the corresponding
growth envelopes look like. For one of such generalizations, in the direction of the so-called
spaces of generalized smoothness, there is now, after the work [10], and its forerunner [9],
a common framework for several approaches to generalized smoothness scattered in the
literature (see the mentioned work for references, and also below for additional remarks).
Also, the techniques developed in [10] (and in [9]), namely atomic representations, made
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a broad class of such spaces to become suitable for the investigation of the corresponding
growth envelopes.

Accordingly, and by improving techniques used in the determination of the local
growth envelopes of spaces which partially generalize in the direction of generalized
smoothness, it was finally possible in [3] to solve the problem (apart some borderline
cases) for Besov spaces of generalized smoothness in the broad sense of [9] and whenever
atomic decompositions are available. Relying on the idea used in previous partial works,
Triebel-Lizorkin spaces should then be dealt with on the basis of a comparison with Besov
spaces. However, at the time the work [3] was written, such a comparison for such general
spaces was not available.

In the present work we start by developing a so-called standardization procedure,
which will allow the determination of tight embeddings between Besov and Triebel-Lizorkin
spaces of generalized smoothness and open the way to the determination (again, apart
borderline cases) of the local growth envelopes for the latter spaces, which we do next.

This standardization procedure might have independent interest, and this and the
related spaces of generalized smoothness have even a bit of history which we would like to
briefly recall to finish this introduction.

Function spaces of generalized smoothness were introduced and investigated, inde-
pendently, by M. L. Goldman and G. A. Kalyabin in the middle of the seventies of the
last century with the help of differences and general weight functions and on the basis of
expansions in series of entire functions, respectively. In both cases the defined function
spaces Bσ,Np,q (Rn) and Fσ,Np,q (R

n) are subspaces of Lp(Rn). For these spaces a standard-
ization was proved in [18]—see also [20]. In it, the weight sequence β = (2j )j∈N0 was
fixed and a suitable sequence (Mj )j∈N0 was defined with the help of (Nk)k∈N0 , (σk)k∈N0

and (2j )j∈N0 such that Bσ,Np,q = B
β,M
p,q , and analogously for F -spaces. This gave a standard

weight sequence (2j )j∈N0 and a general sequence (Mj )j∈N0 , and is restricted to function
spaces which are subspaces of Lp(Rn) and the Banach space case.

But a more powerful tool would be a standardization which fixed the sequenceM by
M = (2j )j∈N0 , because for this standard dyadic resolution of the R

n a lot of results are
meanwhile available. Under a natural restriction to the sequence (Nk)k∈N0 which excludes
the exponential growth of this sequence, such a result seems in some sense straightforward.
But it is also a bit technical to prove, and we found no reference of it in the literature, not
even in the Banach space case. For this reason, the first thing we prove in this article is
actually such a standardization theorem.

In [2] a connection between admissible sequences and special functions was con-
sidered. We define here also a class of suitable functions, corresponding to admissible
sequences, and describe the standardization result with the help of these functions, too.

2. Notations and Conventions

Definition 1. By an admissible sequence we will always mean a sequence γ = (γk)k∈N0

of positive numbers such that there are two positive constants κ0 and κ1 with

κ0 γk ≤ γk+1 ≤ κ1γk for any k ∈ N0 . (2.1)

We call κ0 and κ1 equivalence constants associated with γ .
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We shall need the following notation with respect to an admissible sequence:

γ
k

:= inf
j≥0

γj+k
γj

and γ k := sup
j≥0

γj+k
γj

, k ∈ N0 . (2.2)

Note that, in particular, γ
1

and γ 1 are the best constants κ0 and κ1 in (2.1), respec-
tively.

In [2] the upper and lower Boyd indices of the given sequence were introduced,
respectively, by

αγ := lim
k→∞

log2 γ k

k
and βγ := lim

k→∞
log2 γ k

k
.

Assumption. We will denote N = (Nk)k∈N0 a sequence of real positive numbers such
that there exist two numbers 1 < λ0 ≤ λ1 with

λ0Nk ≤ Nk+1 ≤ λ1Nk for any k ∈ N0 . (2.3)

In particular, N is admissible and is a so-called strongly increasing sequence (cf. [9, Defi-
nition 2.2.1]), which in particular guarantees that there exists a number l0 ∈N such that

2Nj ≤ Nk for any j, k such that j + l0 ≤ k . (2.4)

This is true, for instance, if we choose for l0 a natural number such that

λ
l0
0 ≥ 2 (2.5)

holds. We will fix such an l0 in the following.
Nevertheless, the assumption concerning λ0 is not restrictive with regard to the func-

tion spaces we are interested in—see [9, Remark 4.1.2].
For a fixed sequence N = (Nk)k∈N0 as in the Assumption we define the associated

covering �N = (�Nk )k∈N0 of R
n by

�Nk = {
ξ ∈ R

n : |ξ | ≤ Nk+l0
}
, k = 0, 1, · · · l0 − 1 , (2.6)

and

�Nk = {
ξ ∈ R

n : Nk−l0 ≤ |ξ | ≤ Nk+l0
}

if k ≥ l0 (2.7)

with l0 as defined in (2.5).

Definition 2. For a fixed N = (Nk)k∈N0 as in the Assumption and for the associated
covering �N = (�Nk )k∈N0 of R

n, a system ϕN = (ϕNk )k∈N0 will be called a (generalized)
partition of unity subordinated to �N if:

(i) ϕNk ∈ C∞
0

(
R
n
)

and ϕNk (ξ) ≥ 0 if ξ ∈ R
n for any k ∈ N0 ; (2.8)

(ii) suppϕNk ⊂ �Nk for any k ∈ N0 ; (2.9)

(iii) for any γ ∈ N
n
0 there exists a constant cγ > 0 such that for any k ∈ N0∣∣DγϕNk (ξ)∣∣ ≤ cγ

(
1 + |ξ |2)−|γ |/2 for any ξ ∈ R

n ; (2.10)

(iv) there exists a constant cϕ > 0 such that

0 <
∞∑
k=0

ϕNk (ξ) = cϕ < ∞ for any ξ ∈ R
n . (2.11)



430 António M. Caetano and Hans-Gerd Leopold

Recalling that S stands for the Schwartz space of all complex-valued rapidly decreas-
ing infinitely differentiable functions on R

n equipped with the usual topology and S ′ denotes
its topological dual, the space of all tempered distributions on R

n, we have the following.

Definition 3. Let (σk)k∈N0 be an admissible sequence. Let (Nk)k∈N0 be an admissible
sequence satisfying the Assumption and let ϕN be a system of functions as in Definition 2.
Let 0 < p < ∞ and 0 < q ≤ ∞.

The Triebel-Lizorkin space Fσ,Np,q of generalized smoothness is defined as

{
f ∈ S ′ : ∥∥f |Fσ,Np,q

∥∥ :=
∥∥∥∥
( ∞∑
k=0

σ
q
k

∣∣F−1 (ϕNk Ff )(·) ∣∣q )1/q

|Lp
(
R
n
)∥∥∥∥ < ∞

}
.

(usual modification when q = ∞) where F and F−1 stand, respectively, for the Fourier
transformation and its inverse.

Note that if 0 < p ≤ ∞ and 0 < q ≤ ∞ then the Besov space of generalized
smoothness Bσ,Np,q is defined in an analogous way, by interchanging the roles of the quasi-
norms in Lp(Rn) and in 
q .

Note also that if Nk = 2k and σ = (2ks)k∈N0 with s real, then the spaces Fσ,Np,q

coincide with the usual Triebel-Lizorkin spaces F sp,q on R
n, and the spaces Bσ,Np,q coincide

with the usual Besov spacesBsp,q on R
n. We shall use the simpler notation F sp,q andBsp,q in

the more classical situation just mentioned. Even for general admissible σ , when Nk = 2k

we shall write simply Fσp,q and Bσp,q instead of Fσ,Np,q and Bσ,Np,q , respectively.
We use the equivalence “∼” in

ak ∼ bk or ϕ(x) ∼ ψ(x)

always to mean that there are two positive numbers c1 and c2 such that

c1 ak ≤ bk ≤ c2 ak or c1 ϕ(x) ≤ ψ(x) ≤ c2 ϕ(x)

for all admitted values of the discrete variable k or the continuous variable x, where (ak)k ,
(bk)k are nonnegative sequences and ϕ, ψ are nonnegative functions.

Definition 4. We say that the function ϕ : [1,∞) → (0,∞) belongs to V if ϕ is
measurable and satisfies

0 < ϕ(t) := inf
s∈[1,∞)

ϕ(ts)

ϕ(s)
for all t ∈ [1,∞)

and

ϕ(t) := sup
s∈[1,∞)

ϕ(ts)

ϕ(s)
< ∞ for all t ∈ [1,∞) ,

where we also assume that ϕ and ϕ are measurable functions.

Remark 1. Conditions of the above type have been used at several places, e.g., in
connection with real interpolation with a function parameter or in the theory of function
spaces with generalized smoothness. However, the related functions ϕ are usually defined
either on R or on (0,∞). The above definition was given first in connection with weighted
Besov spaces in [21]—see also there for details and further references.
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We can give Definition 3 of the space Fσ,Np,q and the corresponding one for Bσ,Np,q just
by starting considering appropriate functions � and N in V (note the abuse of notation in
the case of N ) and defining the sequences σ and N by σk = �(2k) and Nk = N(2k). A
similar, though mixed, approach was followed in [22, 6]: There on the side ofN a sequence
was considered—even the particular one (2k)k—and only on the side of the smoothness
a function was considered, and in a slightly different class defined on (0,∞). On the
other hand, with appropriate assumptions on the functions� andN involved—namely, that
�,N ∈ V , N is strictly increasing and λ0N(t) ≤ N(2t), for some λ0 > 1—the scales of
spaces thus defined are the same as the ones defined with the help of sequences, and, as
it was shown in [2] in a similar context, one can even choose functions and sequences in
such a way that the so-called Boyd indices of both coincide. For this dual way of defining
function spaces, we refer also to [1].

As to the relation between functions � and N and sequences σ and N defining the
same spaces, with the help of [21, Lemma 1] we can even state the following:

• For each admissible sequence σ = (σk)k∈N0 there exists a corresponding function
� ∈ V , that is, a function such that�(t) ∼ σk for all t ∈ [2k, 2k+1). For example,
we can define

�(t) = σk + (
2−kt − 1

)
(σk+1 − σk) for t ∈ [2k, 2k+1) .

• Vice versa, for each function � ∈ V the sequence σ with σk := �(2k) is an
admissible sequence with κ0 = �(2) and κ1 = �(2) to which � corresponds.

• If in addition an admissible sequence (Nk)k∈N0 fulfills the Assumption, then there
exists a corresponding function N ∈ V , strictly increasing and with λ0N(t) ≤
N(2t) for all t ≥ 1.

• And again, vice versa. If N ∈ V is a function with the property described above,
then the sequence Nk := N(2k) is admissible, fulfills the Assumption and N
corresponds to it.

In what follows, all unimportant positive constants will be denoted by c, occasionally
with additional subscripts within the same formula.

3. A Standardization Result

The following Fourier-multiplier theorem—[26, Theorem 1.6.3]—will be the main tool in
the proof of the standardization theorem in the case of the F -spaces.

Proposition 1. Let 0 < p < ∞, 0 < q ≤ ∞. Let (�j )j∈N0 be a sequence of compact
subsets of R

n and dj > 0 be the diameter of �j .
If t > n/2 + n/min (p, q), then there exists a constant c > 0 such that∥∥(F−1(MjFfj )

)
j∈N0

|Lp(lq)
∥∥ ≤ c sup

j∈N0

∥∥Mj(dj · ) |Ht
2

∥∥ ‖(fj )j∈N0 |Lp(lq)‖

holds for all systems (fj )j∈N0 ∈ Lp(lq) with supp Ffj ⊂ �j for all j , and all se-
quences (Mj )j∈N0 ⊂ Ht

2 .

In the B-case we need a scalar version of Proposition 1, including now p = ∞,
see [26, 1.5.2, Remark 3].
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Proposition 2. Let 0 < p ≤ ∞ and let �d = {x ∈ R
n : |x| ≤ d} with d > 0.

If t > n/min (p, 1) − n/2, then there exists a constant c > 0, independent of d,
such that ∥∥F−1(MFf ) |Lp

∥∥ ≤ c
∥∥M(d · ) |Ht

2

∥∥ ‖f |Lp‖
holds for all f ∈ Lp with supp Ff ⊂ �d and all M ∈ Ht

2 .

Furthermore, an easy computation shows that for k ≥ l0 and integers M , we have

∥∥ϕNk (Nk+3l0 · ) |WM
2

∥∥ ≤ c
(
Nk+3l0 N

−1
k−l0

)M ≤ cλ
4l0M
1 (3.1)

where the right-hand side is uniformly bounded with respect to k if (Nk)k∈N0 satisfies
the Assumption.

For k = 0, · · · , l0 − 1 ∥∥ϕNk (N4l0 · ) |WM
2

∥∥ ≤ c NM
4l0 (3.2)

is obvious.

Theorem 1. Let N := (Nk)k∈N0 satisfy the Assumption and σ := (σk)k∈N0 be an
admissible sequence with equivalence constants κ0 and κ1. Define

βj := σk(j), with k(j) := min
{
k ∈ N0 : 2j−1 ≤ Nk+l0

}
,

if j ≥ 1 and with l0 defined in (2.5), and define β0 := σk(1) .
Then we have that

µ0βj ≤ βj+1 ≤ µ1βj , j ∈ N0 ,

with µ0 = min{1, κl00 }, µ1 = max{1, κl01 }.
Let, further, 0 < p, q ≤ ∞ (with p 
= ∞ in the F -case). Then

Fσ,Np,q = Fβp,q

and

Bσ,Np,q = Bβp,q ,

where β := (βj )j∈N0 .

Proof.
Step 1. We start with some preliminary observations. For simplicity we assume without
loss of generality that N0 = 1. Otherwise we would have to consider large enough values
for j and k in what follows.

Let � = (�j )j∈N0 be the standard dyadic covering of R
n, associated with the se-

quence (2j )j∈N0 , i.e.,

�0 = {
ξ ∈ R

n : |ξ | ≤ 2
}
,

and

�j = {
ξ ∈ R

n : 2j−1 ≤ |ξ | ≤ 2j+1} if j ≥ 1 .
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Specify k0 ≥ l0. Then �Nk0
∩�j can be nonempty only if we have

1

2
Nk0−l0 ≤ 2j ≤ 2Nk0+l0 .

Let

J (k0) = {
j ∈ N0 : Nk0−l0 ≤ 2j+1 ≤ 22Nk0+l0

}
. (3.3)

The set J (k0) is always nonempty—let ξ be an element of�Nk0
, then there exist at least one

j ′ with ξ ∈ �j ′ . But then holds Nk0−l0 ≤ |ξ | ≤ 2j
′+1 and 2j

′−1 ≤ |ξ | ≤ Nk0+l0 .
We will denote by j∗(k0) the smallest element of J (k0). Then it is easy to see, that

�Nk0
has a nonempty intersection with at most the sets �j∗(k0) , . . . , �j∗(k0)+L where

L = [2l0 log2 λ1] + 2 (3.4)

is independent of k0.
Moreover, we have

j∗(k0) < j∗(k0 + 4l0 + 1) . (3.5)

And vice versa, if we specify j0 ≥ 1 then�Nk ∩�j0 can be nonempty only if we have

2j0−1 ≤ Nk+l0 and Nk−l0 ≤ 2j0+1 .

Let now

K(j0) = {
k ∈ N0 : 2j0−1 ≤ Nk+l0 and Nk−l0 ≤ 2j0+1 } . (3.6)

The set K(j0) is again always nonempty and we denote by k∗(j0) the smallest element of it.
k∗(j0) coincides with k(j0) from the theorem—k(j0) ≤ k∗(j0) is obvious and the

opposite inequality follows by the monotonicity of the sequence (Nk)k∈N0 and l0 ≥ 1. We
have Nk(j0)−l0 ≤ Nk(j0)−1+l0 < 2j0−1 < 2j0+1, that means k(j0) belongs to K(j0).

Again it is easy to see, that �j0 has a nonempty intersection with at most the sets
�Nk∗(j0)

, . . . , �Nk∗(j0)+4l0
and we have

k∗(j0) ≤ k∗(j0 + 1) ≤ k∗(j0)+ l0 but k∗(j0) < k∗(j0 + L+ 1) (3.7)

with L from (3.4).

Step 2. Let σ := (σk)k∈N0 be an admissible sequence with equivalence constants κ0 and
κ1, and define βj = σk∗(j). Then there exist positive constants, independent of j ≥ 1 and
k such that

min
(
1, κ4l0

0

) ≤ σk

βj
= σk

σk∗(j)
≤ max

(
1, κ4l0

1

)
for all k ∈ K(j) . (3.8)

The cardinality of K(j) is not larger than 4l0 + 1 and so (3.8) follows immediately. In case
of κ0 < 1 we have to choose the minimum on the left-hand side, and if κ1 < 1 we have to
choose the maximum on the right-hand side.

The estimation of the counterpart—there exist positive constants c0 and c1, indepen-
dent of j and k ≥ l0, such that

c0 ≤ βj

σk
= σk∗(j)

σk
≤ c1 for all j ∈ J (k) (3.9)
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holds—is more delicate.
First notice that (3.5) gives

j∗(k)+ l ≤ j∗(k + (4l0 + 1)l) , l ∈ N0 .

By the construction in Step 1 we have also

k − 4l0 ≤ k∗(j∗(k)
) ≤ k

at least for k > 2l0; otherwise j∗(k) might be zero, but we can temporarily extend the
definition of K(j0) in (3.6) to j0 = 0 and see that this remains true for all k ≥ l0.

Both together gives for l = 0, · · · , L
k − 4l0 ≤ k∗(j∗(k)+ l

) ≤ k∗(j∗(k + (4l0 + 1)l)
) ≤ k + (4l0 + 1)L . (3.10)

Now we can determine c0 and c1 from (3.9) by

c0 = min
(
1, κ−4l0

1 , κ
(4l0+1)L
0

)
and c1 = max

(
1, κ−4l0

0 , κ
(4l0+1)L
1

)
.

Moreover, similar to (3.8), we obtain by (3.7) that (βj )j∈N0 is an admissible
sequence and

min
(
1, κl00

) ≤ βj+1

βj
≤ max

(
1, κl01

)
for all j ∈ N0 . (3.11)

Step 3. Denote by (ϕj )j∈N0 a function system, related to the dyadic decomposition
(�j )j∈N0 , and let cϕ = 1 for this system.

Then we have

F−1(ϕNk Ff ) =
∞∑
j=0

F−1(ϕjϕNk Ff ) =
∑

j∈J (k)
F−1(ϕjϕNk Ff ) .

We put in Proposition 1

Mk = ϕNk

and

fk = σk
∑

j∈J (k)
F−1(ϕjFf ) if k ≥ l0 ,

fk = σk

(
j∗(l0)−1∑
j=0

+
∑

j∈J (l0)

)
F−1(ϕjFf ) if k = 0, · · · , l0 − 1 .

Then of course
F−1(MkFfk) = σkF−1(ϕNk Ff ) ,

and

supp Ffk ⊂
⋃

j∈J (k)
suppϕj ⊂ {ξ : |ξ | ≤ Nk+3l0} if k ≥ l0 ,

supp Ffk ⊂ {ξ : |ξ | ≤ N4l0} if k = 0, · · · , l0 − 1 .
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Now Proposition 1 and (3.1), (3.2) give∥∥(σkF−1(ϕNk Ff ))
k∈N0

|Lp(lq)
∥∥ ≤ c ‖(fk)k∈N0 |Lp(lq)‖ . (3.12)

For the rest of the proof, assume, for simplicity, that q 
= ∞; otherwise usual changes
have to be made in what follows.

Let k ≥ l0; then (the cardinality of J (k) is not larger than L+ 1)

σ
q
k

∣∣∣∣ ∑
j∈J (k)

F−1(ϕjFf )(·)
∣∣∣∣
q

≤ c
q
q,L

(
max
j∈J (k)

σk

βj

)q ∑
j∈J (k)

β
q
j

∣∣∣F−1(ϕjFf )(·)
∣∣∣q .

We take c0 from (3.9) and get

∞∑
k=l0

σ
q
k

∣∣∣∣ ∑
j∈J (k)

F−1(ϕjFf )(·)
∣∣∣∣
q

≤ c
q
q,Lc

−q
0

∞∑
k=l0

∑
j∈J (k)

β
q
j

∣∣∣F−1(ϕjFf )(·)
∣∣∣q .

But because of (3.5) each ϕj can occur in the double sum not more than (L + 1)(4l0+
1) times.

A similar estimate can be given for the first l0 summands and each ϕj with 0 ≤ j ≤
j∗(l0) + L can occur only l0 times. The counterpart to (3.9) is obvious because of the
limited number of βj , 0 ≤ j ≤ j∗(l0)+ L and σk , 0 ≤ k ≤ l0 − 1, which are involved.
Together with the key estimate (3.12) this gives∥∥f |Fσ,Np,q

∥∥ ≤ c
∥∥f |Fβp,q

∥∥ .
We obtain the opposite inequality by changing the roles of ϕNk and ϕj .

Step 4. In the case of B-spaces we use the scalar multiplier theorem. Again we have

F−1(ϕNk Ff ) = F−1
(
ϕNk

∑
j∈J (k)

ϕjFf
)
.

Now we use Proposition 2 withM = ϕNk and the role of f over there being played now by∑
j∈J (k)

F−1(ϕjFf ) if k ≥ l0 .

Similar to Step 3 we get

∥∥F−1(ϕNk Ff ) |Lp
∥∥ ≤ c

∥∥∥∥ ∑
j∈J (k)

F−1(ϕjFf ) |Lp
∥∥∥∥

with a constant c > 0 and independent of k. Again, by the considerations of Step 1 and
Step 2, we obtain

∞∑
k=l0

σ
q
k

∥∥F−1(ϕNk Ff ) |Lp∥∥q ≤ c
∗q
p,Lc

−q
0 c

∞∑
j=0

β
q
j

∥∥F−1(ϕjFf ) |Lp
∥∥q .

Together with a similar estimate of the first l0 summands this gives∥∥f |Bσ,Np,q
∥∥ ≤ c

∥∥f |Bβp,q
∥∥ .
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Again we obtain the opposite inequality by changing the roles of ϕNk and ϕj .

Remark 2. Let � and N be corresponding functions to the sequences (σk)k∈N0 and
(Nk)k∈N0 , respectively, with N moreover strictly increasing and continuous. By N−1 we
denote the inverse function, defined on [N(1),∞). Define

β̂j := �
(
N−1(2j )) j ∈ N0, large enough .

Then (β̂j )j is an admissible sequence, β̂j ∼ βj and consequently Bβ̂p,q = B
β
p,q = B

σ,N
p,q

and F β̂p,q = F
β
p,q = F

σ,N
p,q , respectively.

4. Local Growth Envelopes for Fσ,N
p,q

We start with a result which will be crucial, allowing to reduce the study of the local growth
envelopes for F -spaces to the corresponding problem for B-spaces.

Lemma 1. Let 0 < p1 < p < p2 ≤ ∞, 0 < q ≤ ∞, N := (Nk)k∈N0 according to
the Assumption and σ := (σk)k∈N0 an admissible sequence. Let σ ′ and σ ′′ be the (clearly
admissible) sequences defined, respectively, by

σ ′
k = N

n( 1
p1

− 1
p
)

k σk, σ ′′
k = N

n( 1
p2

− 1
p
)

k σk, k ∈ N0 .

Then

Bσ
′,N

p1,u
↪→ Fσ,Np,q ↪→ Bσ

′′,N
p2,v

if, and only if, 0 < u ≤ p ≤ v ≤ ∞.

Proof. Note that, by the standardization result (Theorem 1)

Fσ,Np,q = Fβp,q, with βj := σk(j) ,

where k(j) := min{k ∈ N0 : 2j−1 ≤ Nk+l0}, j ∈ N. We can also state that

Bσ
′,N

p1,u
= Bβ

′
p1,u

and Bσ
′′,N

p2,v
= Bβ

′′
p2,v

,

with β ′
j = 2

n( 1
p1

− 1
p
)j
βj and β ′′

j = 2
n( 1
p2

− 1
p
)j
βj , j ∈ N. In fact, the standardization

result allows us to write

Bσ
′,N

p1,u
= Bα

′
p1,u

, where α′
j = σ ′

k(j) ,

that is,

α′
j = N

n( 1
p1

− 1
p
)

k(j) σk(j) ∼ 2
n( 1
p1

− 1
p
)j
σk(j) = 2

n( 1
p1

− 1
p
)j
βj = β ′

j .

Therefore,

Bσ
′,N

p1,u
= Bα

′
p1,u

= Bβ
′

p1,u
.

The proof of Bσ
′′,N

p2,v = B
β ′′
p2,v is similar.
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So, our lemma will be proved if we can show that

Bβ
′

p1,u
↪→ Fβp,q ↪→ Bβ

′′
p2,v

holds if, and only if, 0 < u ≤ p ≤ v ≤ ∞.
However, this follows immediately from [2, Proposition 4.7], due to the fact that β is

also an admissible sequence (cf. statement of Theorem 1).

The definition of the local growth envelope function requires that we are dealing with
regular distributions. Therefore it is reasonable to get first some idea about the spaces of
Triebel-Lizorkin type for which it makes sense to estimate such function. The following
result goes in that direction.

Proposition 3. Let 0 < p < ∞, 0 < q ≤ ∞. Let σ and N be as in the preceding
lemma. If 


(
σ−1
k Nδ

k

)
k∈N0

∈ 
p′ , for some δ > 0, if 1 ≤ p < ∞(
σ−1
k N

n( 1
p

−1)

k

)
k∈N0

∈ 
∞, if 0 < p < 1 ,
(4.1)

then

Fσ,Np,q ⊂ Lloc
1 .

Proof. We take advantage of the preceding lemma (for u = p = v) in order to state that

Fσ,Np,q ↪→ Bσ
′′,N

p2,p
,

for any p2 > p. So, we just have to prove that, for some suitable such p2, Bσ
′′,N

p2,p is in Lloc
1 .

From [3, Remark 3.20], this will be the case if (σ ′′
k

−1
N
n( 1
p2

−1)+
k )k∈N0 ∈ 
p′ . When

0 < p < 1, this follows from (4.1) by choosing 1 ≥ p2 > p; when 1 ≤ p < ∞, again it
follows from (4.1), now by choosing p2 > p such that 1

p
− 1

p2
≤ δ.

Remark 3. The hypothesis (4.1) will not be enough for what we want to prove later, so
we would like to remark that the condition(

σ−1
l N

n( 1
p

−1)++δ
l

)
l∈N0

∈ 
min{1,p}, for some δ > 0 , (4.2)

also implies that Fσ,Np,q ⊂ Lloc
1 . Actually, (4.2) implies (4.1), as follows easily from the facts

σ−1
l ≤ σ−1

0 σ−1
l , Nl ≤ N0Nl , l ∈ N0, and min{1, p} ≤ p′.

Just to get a feeling of how much of the cases where Fσ,Np,q ⊂ Lloc
1 we are ignoring

when assuming (4.1) or (4.2), let us compare with the classical situation: When Nk = 2k ,
σk = 2ks , s ∈ R, k ∈ N0, (4.1) is equivalent to{

s > 0, if 1 ≤ p < ∞
s ≥ n

( 1
p

− 1
)
+, if 0 < p < 1

, (4.3)

while (4.2) is equivalent to

s > n
( 1

p
− 1

)
+ . (4.4)
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In this classical setting, both (4.3) and (4.4) are “pretty close” to optimal, as it is well-known
that for s < n( 1

p
− 1)+ one never has Fσ,Np,q ⊂ Lloc

1 .
We also would like to point out that, as artificial as the role of δ may seem, something

stronger than the condition (σ−1
k )k∈N0 ∈ 
∞ must in general be assumed in order to have

F
σ,N
1,q ⊂ Lloc

1 : In the classical setting, [25, Theorem 3.3.2 (i)] tells us that F s1,q is in Lloc
1 if,

and only if, {
s ≥ 0, when 0 < q ≤ 2

s > 0, when 2 < q ≤ ∞ ;

note that the condition (2−ks)k∈N0 ∈ 
∞ is not strong enough to yield the second case above
(that is, when 2 < q ≤ ∞).

The estimation of the growth envelope function is of interest only when there are
unbounded functions around. So it makes sense to obtain beforehand some information
about the spaces of Triebel-Lizorkin type which possess unbounded functions. The next
proposition and the following remark go in that direction.

Proposition 4. Let 0 < p < ∞, 0 < q ≤ ∞, N := (Nk)k∈N0 according to the
Assumption and σ := (σk)k∈N0 an admissible sequence. Then(

σ−1
k N

n
p

k

)
k∈N0

∈ 
p′ if, and only if, Fσ,Np,q ↪→ C ,

where C is the space of (complex-valued) bounded and uniformly continuous functions (on
R
n) endowed with the sup-norm.

Proof. We rely again on Lemma 1 and on a result for B-spaces corresponding to the
assertion to be proved now.

(i) Assume that (σ−1
k N

n
p

k )k∈N0 ∈ 
p′ . Then also (σ ′′
k

−1
N

n
p2
k )k∈N0 ∈ 
p′ , for any p2 with

p < p2 ≤ ∞, and therefore Fσ,Np,q ↪→ B
σ ′′,N
p2,p ↪→ C, see [3, Corollary 3.10].

(ii) Assume now that Fσ,Np,q ↪→ C. Since Bσ
′,N

p1,p ↪→ F
σ,N
p,q , for any 0 < p1 < p, then

B
σ ′,N
p1,p ↪→ C for all such p1. By [3, Corollary 4.9], we can then state that (σ−1

k N
n
p

k )k∈N0 =
(σ ′
k
−1
N

n
p1
k )k∈N0 ∈ 
p′ .

Remark 4.
(i) Such type of results was proved first by Kalyabin [19] with the restrictions 1 < p, q < ∞.

(ii) It’s easy to see that we can write L∞ instead of C in the proposition above.

We recall now the main result forB-spaces which we want to “translate” forF -spaces
here, concerning the behavior of the local growth envelope function

ELG|Bσ,Np,q (t) := sup
{
f ∗(t) : ∥∥f |Bσ,Np,q

∥∥ ≤ 1
}

(4.5)

near 0, where f ∗ stands for the decreasing rearrangement of f . In particular, the hypotheses
guarantee that, for the parameters involved, (4.5) makes sense.

Proposition 5 ([3, Theorem 4.10]). Let 0 < p, q ≤ ∞,N := (Nk)k∈N0 according to the
Assumption and σ := (σk)k∈N0 an admissible sequence. Assume further that


(
σ−1
l

)
l∈N0

∈ 
min{q,1} if p > 1(
σ−1
l N

n( 1
p

−1)+δ
l

)
l∈N0

∈ 
min{q,1}, for some δ > 0, if 0 < p ≤ 1 ,
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and (
σ−1
k N

n
p

k

)
k∈N0

/∈ 
q ′ .

Let � be any admissible function such that �(z) ∼ σk , z ∈ [Nk,Nk+1], k ∈ N0, with
equivalence constants independent of k, and let �u be defined in (0, N−n

J0
] by

�u(t) :=
(∫ 1

t1/n
y

− n
p
u
�
(
y−1)−u dy

y

)1/u

if 0 < u < ∞ , (4.6)

and

�u(t) := sup
t1/n≤y≤1

y
− n
p �
(
y−1)−1

if u = ∞ , (4.7)

where J0 ∈ N is chosen such that NJ0 > 1.
Then there exists ε ∈ (0, 1) such that

ELG|Bσ,Np,q (t) ∼ �q ′(t), t ∈ (0, ε] , (4.8)

and, considering the range 0 < v ≤ ∞, we have that

(∫ ε

0

( f ∗(t)
�q ′(t)

)v
µq ′(dt)

)1/v

≤ c
∥∥f |Bσ,Np,q

∥∥ (4.9)

(with the understanding

sup
t∈(0,ε]

f ∗(t)
�q ′(t)

≤ c
∥∥f |Bσ,Np,q

∥∥ (4.10)

when v = ∞) holds for some ε ∈ (0, 1), c > 0 and all f ∈ Bσ,Np,q if, and only if, q ≤ v ≤ ∞.
In (4.9), µq ′ means the Borel measure associated with − log2�q ′ in (0, ε].

We recall the meaning of admissible function, used in the preceding assertion.

Definition 5. A function � : (0,∞) → (0,∞) is called admissible if it is continuous
and if for any b > 0 satisfies

�(bz) ∼ �(z) for any z > 0

(where the equivalence constants may depend on b).

Remark 5. There is at least one admissible function related with the sequences σ andN
as required in Proposition 5. This follows from [3, Example 2.3].

Lemma 2. Let � be an admissible function. Let n ∈ N and 0 < p1, p, p2 ≤ ∞. Then
�′ and �′′ given by

�′(z) = z
n( 1
p1

− 1
p
)
�(z), z ∈ (0,∞) , (4.11)

�′′(z) = z
n( 1
p2

− 1
p
)
�(z), z ∈ (0,∞) , (4.12)

are both admissible. If moreover,

�(z) ∼ σk, z ∈ [Nk,Nk+1], k ∈ N0 ,
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with equivalence constants independent of k, for given admissible sequences σ and N ,
then also

�′(z) ∼ σ ′
k, z ∈ [Nk,Nk+1], k ∈ N0 ,

�′′(z) ∼ σ ′′
k , z ∈ [Nk,Nk+1], k ∈ N0 ,

in both cases with equivalence constants independent of k, where σ ′ and σ ′′ are related to
σ as in Lemma 1.

The proof is straightforward.

Remark 6. Recall now the definition (4.6) and (4.7) of�u, which, in particular, depend
on the p and� given. If we use, instead, p1 and�′, then we would write�′

u instead of�u,
and similarly if we use p2 and �′′, in which case we would write �′′

u. Note, however, that

�′
u = �u = �′′

u ,

as can easily be seen.
As a consequence, though we would define µ′

u and µ′′
u as the Borel measures, respec-

tively associated with − log2�
′
u and − log2�

′′
u in (0, ε], we see that, in fact,

µ′
u = µu = µ′′

u .

We recall that the Borel measure µu is the only measure defined on the Borel sets (of
(0, ε]) such that µu([a, b]) = − log2�u(b)+ log2�u(a) = log2

�u(a)
�u(b)

, ∀[a, b] ⊂ (0, ε].
We are now ready to prove our main result for F -spaces, concerning the behavior of

the local growth envelope function

ELG|Fσ,Np,q (t) := sup
{
f ∗(t) : ∥∥f |Fσ,Np,q

∥∥ ≤ 1
}

(4.13)

near 0, where—we recall—f ∗ stands for the decreasing rearrangement of f . We can, in
particular, see that the hypotheses we are going to take guarantee—due to Remark 3—that
(4.13) makes sense. We note also that the condition(

σ−1
k N

n
p

k

)
k∈N0

/∈ 
p′ (4.14)

will be assumed because—due to Proposition 4—otherwise (4.13) is bounded, and there-
fore the outcome has no interest.

Theorem 2. Let 0 < p < ∞, 0 < q ≤ ∞, N := (Nk)k∈N0 according to the Assumption
and σ := (σk)k∈N0 an admissible sequence. Assume further that (4.2) and (4.14) hold
true. Let � be any admissible function such that �(z) ∼ σk , z ∈ [Nk,Nk+1], k ∈ N0,
with equivalence constants independent of k, and let �u be defined by (4.6) and (4.7) in
(0, N−n

J0
], where J0 ∈ N is chosen such that NJ0 > 1.

Then there exists ε ∈ (0, 1) such that

ELG|Fσ,Np,q (t) ∼ �p′(t), t ∈ (0, ε] , (4.15)

and, considering the range 0 < v ≤ ∞, we have that

(∫ ε

0

( f ∗(t)
�p′(t)

)v
µp′(dt)

)1/v

≤ c
∥∥f |Fσ,Np,q

∥∥ (4.16)
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(with the understanding

sup
t∈(0,ε]

f ∗(t)
�p′(t)

≤ c
∥∥f |Fσ,Np,q

∥∥ (4.17)

when v = ∞) holds for some ε ∈ (0, 1), c > 0 and all f ∈ Fσ,Np,q if, and only if, p ≤ v ≤ ∞.
As before, in (4.16) µp′ stands for the Borel measure associated with − log2�p′ in (0, ε].
Proof. We take advantage of Lemma 1. In particular, in what follows we adhere to the
notation σ ′ and σ ′′ as considered there

Step 1. Note that the hypothesis (4.14) guarantee that

(
σ ′′
k

−1
N

n
p2
k

)
k∈N0

/∈ 
p′ , (4.18)

for any p2 with p < p2 ≤ ∞, and that the hypothesis (4.2) guarantees that


(
σ ′′
l
−1
)
l∈N0

∈ 
1 if p ≥ 1(
σ ′′
l
−1
N
n( 1
p2

−1)+δ
l

)
l∈N0

∈ 
p, for some δ > 0, if 0 < p < 1 ,
(4.19)

for any p2 ∈ (p,∞] close enough to p.
Since (4.18) is clear, we just prove (4.19).
Start by observing that

σ ′′
l ≥ σ lN

n( 1
p2

− 1
p
)

l , l ∈ N0 .

Take p ≥ 1. Then
∑∞
l=0 σ

′′
l
−1 ≤ ∑∞

l=0 σ l
−1N

n( 1
p

− 1
p2
)

l < ∞, if p2 > p is chosen
such that n( 1

p
− 1

p2
) ≤ δ, with δ given in (4.2).

Take now 0 < p < 1. Then

∞∑
l=0

(
σ ′′
l
−1
N
n( 1
p2

−1)+δ
l

)p ≤
∞∑
l=0

(
σ l

−1N
n( 1
p

−1)+δ
l

)p
< ∞ ,

using the same δ as in (4.2).
Note that from (4.19) it also follows that, for p ≥ 1, we can choose p2 > p close

enough to p such that we have both

(
σ ′′
l
−1)

l∈N0
∈ 
min{p,1} and p2 > 1 ,

while for 0 < p < 1 we can choose p2 > p close enough to p such that we have both

(
σ ′′
l
−1
N
n( 1
p2

−1)+δ
l

)
l∈N0

∈ 
min{p,1} and 0 < p2 ≤ 1 .

Using this, (4.18), Lemma 2, and Remark 6, from Proposition 5 we immediately get
that there exists ε ∈ (0, 1), c > 0 such that

ELG|Bσ
′′,N

p2,p
(t) ≤ c �p′(t), t ∈ (0, ε] , (4.20)
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and also that for any v ∈ [p,∞] there is ε ∈ (0, 1), c > 0 such that

(∫ ε

0

( f ∗(t)
�p′(t)

)v
µp′(dt)

)1/v

≤ c
∥∥f |Bσ ′′,N

p2,p

∥∥ (4.21)

(modification if v = ∞) for all f ∈ Bσ ′′,N
p2,p .

Using the embedding Fσ,Np,q ↪→ B
σ ′′,N
p2,p given by Lemma 1, it is easily seen that (4.20)

and (4.21) also hold true with Fσ,Np,q instead of Bσ
′′,N

p2,p .

Step 2. Instead of Proposition 5, we will use now more precise partial results contained
in [3].

Recall that, by Remark 3, the hypothesis (4.2) guarantees that Fσ,Np,q ⊂ Lloc
1 . Thus,

using Lemma 1, we can also assert thatBσ
′,N

p1,p ⊂ Lloc
1 , for any 0 < p1 < p, and therefore [3,

Proposition 4.8] assures us that there exists ε ∈ (0, 1), c > 0 such that

ELG|Bσ
′,N

p1,p
(t) ≥ c �′

p′(t), t ∈ (0, ε] .
Hence, Lemmas 1, 2, and Remark 6 allow us to write also

ELG|Fσ,Np,q (t) ≥ c �p′(t), t ∈ (0, ε] ,
for some ε ∈ (0, 1), c > 0.

To see that (4.16) cannot hold for 0 < v < p, assume, on the contrary, that, for such
v, there existed ε ∈ (0, 1), c > 0 such that

(∫ ε

0

( f ∗(t)
�p′(t)

)v
µp′(dt)

)1/v

≤ c
∥∥f |Fσ,Np,q

∥∥
for allf ∈ Fσ,Np,q . Then, using Lemmas 1, 2, and Remark 6, there would also exist ε ∈ (0, 1),
c > 0 such that (∫ ε

0

( f ∗(t)
�′
p′(t)

)v
µ′
p′(dt)

)1/v

≤ c
∥∥f |Bσ ′,N

p1,p

∥∥ . (4.22)

for all f ∈ B
σ ′,N
p1,p . But since, as we have already seen above, Bσ

′,N
p1,p ⊂ Lloc

1 and (4.14)

trivially implies that (σ ′
k
−1
N

n
p1
k )k∈N0 /∈ 
p′ , then this would contradict [3, Remark 4.11]

[(4.22) can only hold for v ≥ p].

Remark 7.
(1) It is possible to choose ε independent of v in (4.16). In fact, the ε taken for v = p can
also be taken for all v ≥ p—see [27, Proposition 12.2 (i)].

(2) As noted in [3, Remark 4.15], when 1 < p < ∞, the measure µp′(dt) in (4.16) can be
replaced by

dt

�p′(t)p′
tp

′
�
(
t−1/n

)p′ .

In the particular case whenNk = 2k andσk = 2ks�(2−k), k ∈ N0, withn( 1
p
−1)+ < s < n

p
and� a “log-type” function (cf. also comments after this remark)—the so-called subcritical
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case in the setting of [4]—when, again, 1 < p < ∞, µp′(dt) can be further simplified to
dt
t

—cf. [4, Remark 4.8]. Actually, in that subcritical case, and independently of the value

of p, �p′(t) itself can be simplified to t
s
n
− 1
p �(t)−1.

For other cases where simpler expressions, both for �p′ and for µp′ , can be taken
instead of our general ones, see the work of Bricchi and Moura [2].

We would like to point out that Theorem 2 covers and extends the results previously
obtained by Caetano and Moura [5, 4], which already covered the general statements of
Haroske [17] and Triebel [27], as far as growth envelopes for Triebel-Lizorkin-type spaces
are concerned. To see this, one just has to note that the spaces considered in [4, Corollary 4.5]
are included in our main theorem. It is, in fact, an easy exercise to show that the spaces
F
σ,N
p,q considered there, namely with Nk = 2k and σk = 2ks�(2−k), k ∈ N0, where
n( 1
p

− 1)+ < s ≤ n
p

and � a so-called admissible function (in the context of that article)

satisfying (�(2−k)−1)k∈N0 /∈ 
p′ when s = n
p

, are such that (σk)k∈N0 and (Nk)k∈N0 are
admissible (in our sense), with the latter satisfying also the Assumption and, moreover,
(4.2) and (4.14) hold.

Our Theorem 2 also covers and extends Theorem 6.3 (ii) of [2]: It is again an easy
exercise to see that the spaces Fσ,Np,q considered there, namely with Nk = 2k , k ∈ N0, and

σ an admissible sequence satisfying n( 1
p

− 1)+ < liml→∞ log2 σ l
l

≤ liml→∞ log2 σ l
l

< n
p

,
verify all the requirements of our Theorem 2.

We finish with a corollary of Theorem 2 which gives more precise information about
the sharpness of our results. This is similar to what happens with Besov-type spaces. A
proof can be obtained with the help of [27, Proposition 12.2].

Corollary 1. Consider the same hypothesis of Theorem 2 and 0 < ε ≤ N−n
J0

. Let κ be a
positive monotonically decreasing function on (0, ε] and let 0 < u ≤ ∞. Then

(∫ ε

0

(
κ(t)

f ∗(t)
�p′(t)

)u
µp′(dt)

)1/u

≤ c
∥∥f |Fσ,Np,q

∥∥ ,
for some c > 0 and all f ∈ F

σ,N
p,q if, and only if, κ is bounded and p ≤ u ≤ ∞,

with the modification

sup
t∈(0,ε]

κ(t)
f ∗(t)
�p′(t)

≤ c
∥∥f |Fσ,Np,q

∥∥ (4.23)

if u = ∞. Moreover, if κ is an arbitrary nonnegative function on (0, ε], then (4.23) above
holds if, and only if, κ is bounded.
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