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ABSTRACT. We address the function space theory associated with the Schrödinger operator
H = −d2/dx2 + V . The discussion is featured with potential V (x) = −n(n+ 1) sech2x, which
is called in quantum physics Pöschl-Teller potential. Using a dyadic system, we introduce Triebel-
Lizorkin spaces and Besov spaces associated withH . We then use interpolation method to identify
these spaces with the classical ones for a certain range of p, q > 1. A physical implication is
that the corresponding wave function ψ(t, x) = e−itH f (x) admits appropriate time decay in the
Besov space scale.

1. Introduction

LetH = −d2/dx2 +V be a Schrödinger operator on R with real-valued potential function
V . In quantum physics,H is the energy operator of a particle having one degree of freedom
with potential V . If the potential has certain decay at ∞, then one may expect that asymp-
totically, as time tends to infinity, the motion of the associated perturbed quantum system
resembles the free evolution. Indeed, it is well-known that if

∫
R
(1 + |x|)|V (x)| dx < ∞,

then the absolute continuous spectrum of H is [0,∞), the singular continuous spectrum is
empty, and there is only finitely many negative eigenvalues. Moreover, the wave operators
W± = s − limt→±∞ eitH e−itH0 exists and are complete [5, 10, 26].

Recently, several authors have studied function spaces associated with Schrödinger
operators [19, 13, 14, 11, 12, 2]. One of the goals has been to develop the associated
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Littlewood-Paley theory, in order to give a unified approach. Motivated by the treatment
in [2, 13] for the barrier and Hermite cases, we consider H with the negative potential

Vn(x) = −n(n+ 1) sech2x, n ∈ N , (1.1)

which is called the Pöschl-Teller potential [4, 18]. The study of H with this potential
is related to linearization of nonlinear wave and Schrödinger equations. In this article,
we are mainly concerned with characterization and identification of the Triebel-Lizorkin
spaces and Besov spaces associated withH . Notice that in contrast to the potentials studied
in [2, 13, 11, 12], H = H0 + Vn is not a positive operator and it has a resonance at zero.

Suppose {ϕj }∞0 ⊂ C∞
0 (R) satisfy: (i) supp ϕ0 ⊂ {|x| ≤ 1}, supp ϕj ⊂ {2j−2 ≤

|x| ≤ 2j }, j ≥ 1; (ii) |ϕ(m)j (x)| ≤ cm2−mj , ∀j,m ∈ N0; and (iii)

∞∑
j=0

ϕj (x) = 1, ∀ x ∈ R . (1.2)

Let α ∈ R, 0 < p < ∞ and 0 < q ≤ ∞. The Triebel-Lizorkin space associated with H ,
denoted by Fα,qp (H), is defined to be the completion of the subspace L2

0 := {f ∈ L2(R) :
‖f ‖Fα,qp (H) < ∞}, where the quasi-norm ‖ · ‖Fα,qp (H) is initially defined for f ∈ L2(R) as

‖f ‖Fα,qp (H) =

∥∥∥∥∥∥∥
 ∞∑
j=0

2jαq |ϕj (H)f |q
1/q

∥∥∥∥∥∥∥
Lp

(1.3)

(with usual modification if q = ∞). Similarly, the Besov space associated withH , denoted
by Bα,qp (H), is defined by the quasi-norm

‖f ‖Bα,qp (H) =
 ∞∑
j=0

2jαq‖ϕj (H)f ‖qLp
1/q

. (1.4)

In Section 3 we give a maximal function characterization of Fα,qp (H). We show in
Theorem 2 that

‖f ‖Fα,qp (H) ≈

∥∥∥∥∥∥∥
 ∞∑
j=0

(
2jαϕ∗

j,sf
)q1/q

∥∥∥∥∥∥∥
p

, (1.5)

where ϕ∗
j,sf is the Peetre type maximal function with s > 1/min(p, q). Therefore the

definition of the Fα,qp (H)-norm is independent of the choice of {ϕ}j≥0.
The proof of (1.5) essentially depends on the decay estimates in Lemma 3 for the

kernel of ϕj (H), which can be expressed in terms of continuum and discrete eigenfunctions
of H . In Section 2 we solve the eigenfunction Equation (2.1) for k ∈ R ∪ {i, . . . , ni}
(i = √−1), based on a method suggested in [20]. In Section 4, using the explicit kernel
of ϕj (H) we give a proof of Lemma 3 for high and local energies. It turns out that for the
absolute continuous part ofH , the high and local energy analysis is simpler than the barrier
potential, although H has a nonempty pure point spectrum.

A natural question arises: What is the relation between the perturbed function spaces
and the ordinary ones, namely, Fα,qp (R) and Bα,qp (R) ? In this regard, we show in Section 5
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that F 0,2
p (H) is identically the Lp space, 1 < p < ∞. Furthermore, in Section 6 we obtain

the following result (Theorem 5) by means of complex interpolation: If α > 0, 1 < p < ∞
and 2p/(p + 1) < q < 2p, then

F
α,q
p (H) = F

2α,q
p (R) (1.6)

and if α > 0, 1 ≤ p < ∞, 1 ≤ q ≤ ∞, then

B
α,q
p (H) = B

2α,q
p (R) .

The method in proving F 0,2
p (H) = Lp is similar to the Hermite case [13]. However,

the identification (1.6) seems new for α > 0. It is not difficult to see that the analogue
of (1.6) does not hold for the Hermite case, where the potential is x2.

As an application of the function space method we obtain a global time decay result
(Theorem 6) for the solution to the Schrödinger Equation (6.1), namely,∥∥e−itH f ∥∥

Lp
′ � 〈t〉−( 1

p
− 1

2 )‖f ‖
B

4β,2
p (R)

for any f in the continuous subspace, 1 < p ≤ 2 and β = | 1
p

− 1
2 | being the critical

exponent, which is a consequence of the local and long time decay estimates from [19]
and [17]. Here the perturbed function spaces play an important role in the interpretation of
the mapping properties of operators between the abstract and classical spaces. It provides a
necessary tool in realizing the above inequality by means of embedding and interpolation.

Finally, we mention that the homogeneous F and B spaces seem to deserve special
attention. The crucial reason is that, to our surprise somehow, the decay estimates for the
low energy (−∞ < j < 0) that are required for the derivative of ϕj (H)Eac(x, y) does not
hold, which leaves open the question on obtaining the homogeneous version of Theorem 2.
In a sequel to this article we will consider the homogeneous case and study the spectral
multiplier problem on the F and B spaces.

2. The Eigenfunctions of H

Let Vn = −n(n + 1) sech2x and H0 = −d2/dx2. In this section we derive a simple
expression for the continuum eigenfunctions of H = H0 + Vn, which are the scattering
solutions to the Lippman-Schwinger Equation (2.3). We also show that the bound state
eigenfunctions are rapid decaying functions.

2.1 Scattering Equation

Consider the eigenvalue problem for (1 + |x|)V ∈ L1,

He(x, k) = k2e(x, k), k ∈ R , (2.1)

with asymptotics

e±(x, k) ∼
{
T±(k)eikx if x → ±∞
eikx + R±(k)e−ikx if x → ∓∞ ,

(2.2)
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where ± indicate the sign of k. We will use the notation

e(x, k) =
{
e+(x, k) if k > 0
e−(x, k) if k < 0 .

The coefficients T±(k) and R±(k) in (2.2) are called the transmission coefficients and
reflection coefficients, resp. They satisfy the conservation law |T±(k)|2 + |R±(k)|2 = 1. It
is easy to see that (2.1) together with (2.2) is equivalent to the Lippman-Schwinger equation

e±(x, k) = eikx + 1

2i|k|
∫
ei|k| |x−y|V (y)e±(y, k) dy . (2.3)

2.2 Inductive Construction of the Solution

Let yn be the general solution of

y′′
n + n(n+ 1) sech2x yn = −k2yn .

If n = 0, y0 = Aeikx + Be−ikx . If n ≥ 1, according to [20, Section 2.6] we have
by induction

yn(x) = A(k)Dn · · ·D1
(
eikx

)+ B(k)Dn · · ·D1
(
e−ikx

)
,

where Dn denotes the differential operator

Dn = d

dx
− n tanh x, n ∈ N . (2.4)

Here we observe that since d
dx
(tanh x) = 1 − tanh2 x,

Dn · · ·D1
(
eikx

) = pn(tanh x, ik)eikx , (2.5)

Dn · · ·D1
(
e−ikx

) = qn(tanh x, ik)e−ikx ,

where pn(x, k) and qn(x, k) are polynomials of degree n in x, k and have real coefficients.
Let en(x, k) denote the particular solution of (2.3) with V = Vn. Using the asymp-

totics (2.2) we solve en(x, k) as in the following lemma.

Lemma 1. Let n ∈ N. There exists a polynomial pn(x, k) of degree n in x, k such that

en,±(x, k) = A±
n (k)pn(tanh x, ik)eikx .

Furthermore the following hold.

(a) The constants A±
n (k) are given by

A+
n (k) =

n∏
j=1

1

j + ik
and A−

n (k) = (−1)n
n∏
j=1

1

j − ik
.

(b) The transmission coefficients Tn,±(k) are

Tn,+(k) = (−1)n
n∏
j=1

j − ik

j + ik
and Tn,−(k) = (−1)n

n∏
j=1

j + ik

j − ik
.
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(c) The reflection coefficients Rn,±(k) are all zero.

Proof. In light of the above discussion we write

en,±(x, k) = A±
n (k)pn(tanh x, ik)eikx + B±

n (k)qn(tanh x, ik)e−ikx . (2.6)

First we assume k > 0. Substituting (2.6) into the (2.2), we obtain that B+
n (k) = 0 =

Rn,+(k),

A+
n (k)pn(−1, ik) = 1 (2.7)

and

Tn,+(k) = A+
n (k)pn(1, ik) = pn(1, ik)

pn(−1, ik)
. (2.8)

Thus, (2.6) becomes

en,+(x, k) = A+
n (k)pn(tanh x, ik)eikx .

From (2.5) we easily derive the recurrence formula

pn(tanh x, ik) = sech2x p′
n−1(tanh x, ik)+ (ik − n tanh x)pn−1(tanh x, ik) . (2.9)

Since p′
n−1(x, k) is a polynomial in x, it follows that

lim
x→±∞p

′
n−1(tanh x, ik) = p′

n−1(±1, ik)

is bounded. Taking the limit in (2.9) as x → ±∞ we find

pn(±1, ik) = (ik ∓ n)pn−1(±1, ik) .

Since e0(x, k) = eikx , i.e., p0 = 1, A+
0 = 1, we obtain

pn(1, ik) = (−1)n
n∏
j=1

(j − ik)

and

pn(−1, ik) =
n∏
j=1

(j + ik) = (−1)npn(1, k) .

Now for k > 0, (a), (b) in the lemma follow from (2.7), (2.8).
For k negative, similarly it holds that B−

n (k) = 0 = Rn,−(k) and instead of (2.7),
(2.8), we have

A−
n (k)pn(1, ik) = 1

and

Tn,−(k) = A−
n (k)pn(−1, ik) .

Then the results for A−
n , Tn,− and en,−(x, k) follow.
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From (2.5) we can also see

pn(tanh x,−ik) = (−1)npn(− tanh x, ik) (2.10)

by simple induction. Thus, we obtain the following formula for the continuum eigenfunc-
tions.

Theorem 1. Assume k ∈ R \ {0}. Then

en(x, k) = (sign(k))n

 n∏
j=1

1

j + i|k|

 Pn(x, k)e
ikx ,

where Pn(x, k) = pn(tanh x, ik) is defined by the recursion formula

pn(tanh x, ik) = d

dx

(
pn−1(tanh x, ik)

)+ (ik − n tanh x)pn−1(tanh x, ik) .

In particular, the function

R × (R \ {0}) � (x, k) �→ en(x, k) ∈ C

is analytic with en(x,−k) = en(−x, k). Moreover, the function

(x, y, k) �→ en(x, k)en(y, k) =
 n∏
j=1

1

j2 + k2

 Pn(x, k)Pn(y,−k)eik(x−y)

is real analytic on R
3.

2.3 The Point Spectrum

For (1 + |x|)V ∈ L1, we know that the point spectrum of H0 + V is given by the simple
eigenvalues −µ2 such that T+(k) has a (simple) pole at iµ; see e.g., [10, p. 146]. Therefore
we have the following.

Lemma 2. The point spectrum of H = H0 + Vn consists of

σpp = {− 1,−4, . . . ,−n2} .
The corresponding eigenfunctions are Schwartz functions that are linear combinations of
sechmx tanhk x, m ∈ N, k ∈ N0.

Proof. The statement about σpp follows from the fact that k = ij , j = 1, . . . , n, are
the poles of Tn,+(k) = (−1)n

∏n
j=1(j − ik)(j + ik)−1. For k2 = −j2, let yn,j be the

corresponding eigenfunction. By induction we find that

yj,j = sechj x

yj+1,j = Dj+1sechj x

yj+m,j = Dj+myj+m−1,j , m ∈ N .

Hence, the bound states are given by

yn,j (x) = Dn · · ·Dj+1sechj x, j = 1, . . . , n− 1 ,
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and

yn,n(x) = sechnx .

Remark 1. There is a continuous extension of Vn when n is replaced by a continuous
parameter in R. We can find the scattering solutions of (2.3) by using the two real funda-
mental solutions given in [15]. However, we do not intend to include them here since the
expression (which involves hypergeometric functions) seems quite complicated.

2.4 Projection of the Spectral Operator φ(H)

Given V ∈ L1 ∩ L2, it is known that H = H0 + V is selfadjoint on the domain D(H) =
D(H0) = W 2

2 (R), the usual Sobolev space of order 2 in L2. We decompose L2 = Hac ⊕
Hpp, where Hac denotes the absolute continuous subspace and Hpp the pure point subspace.
Let Eac, Epp be the corresponding orthogonal projections, respectively. For a measurable
function φ we define φ(H) by functional calculus as usual. Then it follows that

φ(H)f = φ(H)Eacf + φ(H)Eppf = φ(H)
∣∣Hac

f + φ(H)
∣∣Hpp

f .

Let e(x, k) be the scattering solution of (2.3) and ej (x) the eigenfunction of H with (neg-
ative) eigenvalue λj . If φ is continuous and compactly supported, we have the following
expression [26]

φ(H)f (x) =
∫
Kac(x, y)f (y) dy +

∑
λj∈σpp

φ(λj )(f, ej )ej , f ∈ L1 ∩ L2 , (2.11)

where

Kac(x, y) = (2π)−1
∫
φ
(
k2)e(x, k)ē(y, k) dk (2.12)

is the kernel of φ(H)Eac. Note that if e(x, k) is smooth in x, then Kac(x, y) is smooth
in x, y. If letting Kpp(x, y) = ∑

j φ(λj )ej (x)ej (y), we can write (2.11) in a more com-
pact form

φ(H)f (x) =
∫
K(x, y)f (y) dy , (2.13)

where K = Kac + Kpp. We mention that in the case (1 + |x|)V ∈ L1 the kernel for-
mula (2.12) agrees with the usual one using the Jost functions [17, 10].

3. Maximal Function Characterization

LetH = H0 +Vn. This section is mainly to give a quasi-norm characterization of Fα,qp (H)

and Bα,qp (H) using Peetre type maximal function. Consequently, the F(H) and B(H)
spaces are well-defined in the sense that different dyadic systems give rise to equivalent
quasi-norms.

Let {ϕj }∞0 be a system satisfying conditions (i), (ii) as in Section 1, i.e.,

(i) supp ϕ0 ⊂ [−1, 1], supp ϕj ⊂ [−2j ,−2j−2] ∪ [2j−2, 2j ], j ≥ 1;
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(ii) |ϕ(m)j (x)| ≤ cm2−mj , ∀j,m ∈ N0.

Denote Kj(x, y) = ϕj (H)(x, y) the kernel of ϕj (H) as given by the formula (2.13). To
simplify notation we let

wj(x) := 1 + 2j/2|x| . (3.1)

Lemma 3. Let j ≥ 0. Then for eachm ∈ N0 there exist constants Cm,C′
m > 0 such that

(a) |Kj(x, y)| ≤ Cm2j/2wj(x − y)−m

(b) | ∂
∂x
Kj (x, y)| ≤ C′

m2jwj (x − y)−m .

We postpone the proof till Section 4.
For s > 0 define the analogue of Peetre maximal function:

ϕ∗
j,sf (x) = sup

t∈R

|ϕj (H)f (t)|
wj(x − t)s

(3.2)

and

ϕ∗∗
j,sf (x) = sup

t∈R

∣∣(ϕj (H)f )′(t)∣∣
wj(x − t)s

.

Lemma 4. Let s > 0 and j ∈ N0. Then there exists a constant C = Cs > 0 such that

ϕ∗∗
j,sf (x) ≤ C2j/2ϕ∗

j,sf (x) .

Before the proof we note the following identity that will be used often later on.
Suppose {ψj } be a dyadic system as in Section 1. Then

ϕj (H)f =
1∑

ν=−1

ψj+ν(H)ϕj (H)f, f ∈ L2 , (3.3)

with the convention ψ−1 ≡ 0, which follows from the equality ϕj (x) =∑1
ν=−1 ψj+ν(x)ϕj (x) for all x.

Proof. By (3.3) we have

d

dt
(ϕj (H)f )(t) =

1∑
ν=−1

∫
R

∂

∂t
(ψj+ν(H)(t, y))ϕj (H)f (y) dy .

Apply Lemma 3 to obtain∣∣ d
dt
(ϕj (H)f )(t)

∣∣
wj(x − t)s

≤ Cm

1∑
ν=−1

2j+ν
∫

R

|ϕj (H)f (y)|
wj+ν(t − y)mwj (x − t)s

dy .

It follows from the definition of ϕ∗
j,sf that∣∣ d

dt
(ϕj (H)f )(t)

∣∣
wj(x − t)s

≤ Cm

1∑
ν=−1

2j+νϕ∗
j,sf (x)

∫
R

wj(t − y)s

wj+ν(t − y)m
dy

≤ Cs2
j/2ϕ∗

j,sf (x) ,
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provided m− s > 1. This proves Lemma 4.

The next lemma (Peetre maximal inequality) follows from Lemma 4 by a standard
argument; see [21, p. 16] or [2]. Let M be the Hardy-Littlewood maximal function

Mf (x) := sup
I

1

|I |
∫
I

|f (x + y)| dy ,

where the supremum runs over all intervals in (−∞,∞).

Lemma 5. Let s > 0 and j ∈ N0. There exists a constant Cs > 0 such that

ϕ∗
j,sf (x) ≤ Cs

[
M
(|ϕj (H)f |1/s)]s(x) .

Remark 2. It is well known that M is bounded on Lp, 1 < p < ∞, i.e.,

‖Mf ‖p ≤ C‖f ‖p . (3.4)

Moreover, if 1 < p < ∞, 1 < q ≤ ∞ and {fj } is a sequence of functions, then∥∥∥∥∥∥∥
∑

j

|Mfj |q
1/q

∥∥∥∥∥∥∥
Lp

≤ Cp,q

∥∥∥∥∥∥∥
∑

j

|fj |q
1/q

∥∥∥∥∥∥∥
Lp

, (3.5)

(usual modification if q = ∞) by the Fefferman-Stein vector-valued maximal inequality.

We now state the following theorem on maximal function characterization
of Fα,qp (H).

Theorem 2. Let α ∈ R, 0 < p < ∞ and 0 < q ≤ ∞. Let {ϕj }j≥0 be a system
satisfying (i), (ii), and (iii) as given in Section 1. If s > 1/min(p, q), then we have
for f ∈ L2

‖f ‖Fα,qp (H) ≈

∥∥∥∥∥∥∥
 ∞∑
j=0

(
2jαϕ∗

j,sf
)q1/q

∥∥∥∥∥∥∥
p

. (3.6)

Furthermore, Fα,qp (H) is a quasi-Banach space (Banach space if p ≥ 1, q ≥ 1) and it is
independent of the choice of {ϕj }j≥0.

Proof. Because ϕ∗
j,sf (x) ≥ |ϕj (H)f (x)|, we only need to show∥∥∥∥∥∥∥
 ∞∑
j=0

(
2jαϕ∗

j,sf
)q1/q

∥∥∥∥∥∥∥
p

≤ C‖f ‖Fα,qp (H) , (3.7)

but this follows from Lemma 5 and (3.5). Indeed, choosing 0 < r = 1/s < min(p, q),
we have ∥∥{2jαϕ∗

j,sf
}∥∥
Lp(�q)

≤ Cs
∥∥{2jα[M(|ϕj (H)f |r)]1/r}∥∥

Lp(�q)

= Cs

∥∥∥∥∥∥
( ∞∑

0

[
M
(
2jαr |ϕj (H)f |r)]q/r)r/q

∥∥∥∥∥∥
1/r

Lp/r

≤ Cs,p,q
∥∥{2jαϕj (H)f }∥∥Lp(�q)

= Cs,p,q‖f ‖Fα,qp (H) ,
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which proves (3.7).
To show the second statement let ψ = {ψj } be another system satisfying the same

conditions as ϕ = {ϕj }. We use (3.3) and Lemma 3 (a) to estimate

|ϕj (H)f (x)| ≤ C2j/2
1∑

ν=−1

∫
R

|ψj+ν(H)f (y)|
wj(x − y)m

dy

≤ C

1∑
ν=−1

2j/2ψ∗
j+ν,sf (x)

∫
R

wj+ν(x − y)s

wj (x − y)m
dy

≤ C

1∑
ν=−1

ψ∗
j+ν,sf (x) ,

provided m− s > 1. Thus, for f ∈ L2

‖f ‖ϕ
F
α,q
p (H)

≤ Cs,p,q
∥∥{2jαψ∗

j,sf
}∥∥
Lp(�q)

≈ ‖f ‖ψ
F
α,q
p (H)

. (3.8)

This concludes the proof.

Remark 3. Note that the statement in Theorem 2 is true for the more general system
ρ = {ρj }∞0 satisfying conditions (i), (ii), and (iii)∑

j

ρj (x) ≈ c > 0 .

In fact, let us fix a system {ϕj }∞0 as given in Theorem 2. Then the same argument in the
proof of (3.8) shows

‖f ‖ρ
F
α,q
p (H)

≤ C‖f ‖ϕ
F
α,q
p (H)

.

To show the other direction, we define

ϕ̃j (x) = ϕj (x)/

∑
j

ρj (x)

 .

Then it is easy to verify that {ϕ̃j } satisfies (i), (ii), and so, ϕ̃j (H)(x, y) satisfies the nice
decay in Lemma 3. Now the identity

ϕj (x) =
1∑

ν=−1

ϕ̃j (x)ρj+ν(x)

and the proof of (3.8) yield

‖f ‖ϕ
F
α,q
p (H)

≤ C‖f ‖ρ
F
α,q
p (H)

.

3.1 Besov Spaces for H

Let α ∈ R, 0 < p < ∞, 0 < q ≤ ∞. We define Bα,qp (H), the Besov space associated with
H to be the completion of the subspace {f ∈ L2 : ‖f ‖Bα,qp (H) < ∞} with respect to the
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norm ‖ · ‖Bα,qp (H), which is given by (1.4). Then Bα,qp (H) is a quasi-Banach space (Banach
space if p, q ≥ 1).

Theorem 3. Let α ∈ R, 0 < p < ∞, 0 < q ≤ ∞. If s > 1/p, then for f ∈ L2

‖f ‖Bα,qp (H) ≈
 ∞∑
j=0

2jαq
∥∥ϕ∗

j,sf
∥∥q
Lp

1/q

.

Furthermore, Bα,qp (H) is well defined and independent of the choice of {ϕj }j≥0.

The proof of Theorem 3 is analogous to that of Theorem 2 but we use (3.4) instead
of (3.5).

There is an embedding relation between theF(H) andB(H) spaces that can be shown
directly from the definitions, namely,

B
s,min(p,q)
p (H) ↪→ F

s,q
p (H) ↪→ B

s,max(p,q)
p (H) , (3.9)

0 < p < ∞, 0 < q ≤ ∞, where X ↪→ Y means, as usual, continuous embedding in the
sense that X ⊂ Y and ‖f ‖Y ≤ C‖f ‖X, ∀f ∈ X. The proof of (3.9) is the same as in the
Fourier case; see [23, 2.3.2].

3.2 Lifting Properties of F(H) and B(H) Spaces

Let cn > − inf σ(H) = − inf σpp(H) = n2. We need the following lemma in Section 6.

Lemma 6. Let s ∈ R, 0 < p < ∞ and 0 < q ≤ ∞. Then (H + cn)
s maps Fα,qp (H)

isomorphically and continuously onto Fα−s,q
p (H). Moreover, ‖(H + cn)

sf ‖
F
α−s,q
p (H)

≈
‖f ‖Fα,qp (H). The analogous statement holds for Bα,qp (H).

Proof. We only give the proof for F(H). The proof for B(H) is similar.∥∥(H + cn)
sf
∥∥
F
α−s,q
p (H)

= ∥∥2(α−s)j (H + cn)
sϕj (H)f

∥∥
Lp(�q)

= ∥∥2jαψj (H)f
∥∥
Lp(�q)

,

whereψj (x) = 2−sj (x+cn)sϕj (x). Sinceψj satisfies condition (i), (ii), and (iii), according
to Remark 3 we have ∥∥(H + cn)

sf
∥∥
F
α−s,q
p (H)

≈ ‖f ‖Fα,qp (H) .

Also, it is easy to see that the inverse of (H + cn)
s is (H + cn)

−s . This proves that the
mapping (H + cn)

s : Fα,qp (H) → F
α−s,q
p (H) is surjective.

4. Proof of Lemma 3

From Section 2 we know Kj = Kj,ac + Kj,pp . We need to show that Kj,ac ,Kj,pp
both satisfy the decay estimates (a), (b) in the lemma. For the pure point kernel, since
σpp = {−1,−4, . . . ,−n2} is finite, it amounts to showing for 0 ≤ j ≤ 2 + 2 log2 n∣∣∂αx Kj,pp(x, y)∣∣ ≤ Cm,α(1 + |x − y|)−m, ∀m ∈ N0, α = 0, 1 . (4.1)

For other j ′s, the p.p. kernel vanish because suppϕj are disjoint from the set σpp. But (4.1)
follows from the fact that the eigenfunctions ej (x) are all Schwartz functions according to
Lemma 2. So the nontrivial part will be to prove the decay for the a.c. kernel.
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4.1 The Kernel of ϕj(H)Eac

Recall from Theorem 1 that

en(x, k) = An(k) Pn(x, k)e
ikx ,

whereAn(k) = (sign(k))n
∏n
j=1(j+i|k|)−1 andPn(x, k) = pn(tanh x, ik) is a polynomial

of real coefficients and of order n in tanh x and ik.

High Energy Estimates (j > 0)

Let ϕj ∈ C∞
0 (R) be given as in the beginning of Section 3. By (2.12) the kernel of

ϕj (H)Eac is given by

Kj,ac(x, y) = 1

2π

∫
ϕj (k

2)en(x, k)en(y, k) dk

=
∫ ∞

0
+
∫ 0

−∞
ϕj (k

2)R(x, y, k) eik(x−y) dk := K+(x, y)+K−(x, y) ,

where

R(x, y, k) = P(x, k)P (y,−k)/
n∏
j=1

(
j2 + k2) . (4.2)

We only need to deal with K+(x, y) because K−(x, y) = K+(−x,−y) in light of
the relation en(x,−k) = en(−x, k). Let λ = 2−j/2 throughout this section. We have by
integration by parts

2π
∣∣K+(x, y)

∣∣ = ∣∣∣∣ (−1)m

im(x − y)m

∫ 2j/2

2j/2−1

dm

dkm

[
ϕj
(
k2)R(x, y, k)]eik(x−y) dk∣∣∣∣

≤ Cmλ
m−1/|x − y|m, m ≥ 0 ,

where we used for k ∼ λ−1 → ∞ as j → ∞,
di

dki

[
ϕj
(
k2
)] = O

(
λi
)

∂j

∂kj
R(x, y, k) = O

(
λj
)

uniformly in x, y .
(4.3)

The same estimate also holds for K−(x, y). Hence, we obtain

|Kj,ac(x, y)| ≤ Cmλ
−1/
(
1 + λ−1|x − y|)m . (4.4)

Low Energy Estimates (−∞ < j < 0)

If we allow j < 0 with ϕj satisfying conditions (i), (ii) in Section 3, then (4.4) also holds for
j < 0 by the same proof above, except that instead of (4.3) we use the following estimates:
If k ∼ λ−1 → 0 as j → −∞,

di

dki

[
ϕj
(
k2
)] = O

(
λi
) ≤ O

(
λm
)

if 0 ≤ i ≤ m

∂j

∂kj
R(x, y, k) = O(1) uniformly in x, y .

However, the low energy case will be needed only in the discussion of homogeneous
spaces Ḟ α,qp (H), Ḃα,qp (H).
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Local Energy Estimates

Fix � := ϕ0 ∈ C∞
0 (R) with support ⊂ [−1, 1].

2π�(H)Eac(x, y) =
∫ 1

−1
�
(
k2)R(x, y, k)eik(x−y) dk .

Using for k → 0, 
di

dki

[
�(k2)

] = O(1)

∂j

∂kj
R(x, y, k) = O(1) uniformly in x, y

and integrating by parts on [−1, 1], where we note that k �→ R(x, y, k) is analytic at zero,
we obtain for each m

|�(H)Eac(x, y)| ≤ Cm(1 + |x − y|)−m .

4.2 The Derivative of the Kernel

Using the notation in Section 4.1, we proceed

2π
∂

∂x
Kj,ac(x, y) = ∂

∂x

∫
ϕj
(
k2)R(x, y, k)eik(x−y) dk

=
∫
ϕj
(
k2) ∂

∂x

[
R(x, y, k)eik(x−y)

]
dk

=
∫
ϕj
(
k2)|A(k)|2[ikP (x, k)+ ∂

∂x
P (x, k)

]
P(y,−k)eik(x−y) dk .

The function ∂
∂x
P (x, k) is a polynomial of tanh x and ik having degrees n+ 1 and n− 1,

resp. Note that if |k| ∼ λ−1 = 2j/2, j > 0,∣∣∣ di
dki

(
kϕj
(
k2))∣∣∣ = O

(
λi−1) ,

and if |k| ≤ 1, ∣∣∣ di
dki

(
k�
(
k2))∣∣∣ = O(1) .

We obtain, by similar arguments as in Section 4.1, for each m ≥ 0∣∣∣ ∂
∂x
Kj,ac(x, y)

∣∣∣ ≤ Cmλ
−2(1 + λ−1|x − y|)−m, j > 0

and ∣∣∣ ∂
∂x
�(H)Eac(x, y)

∣∣∣ ≤ Cm(1 + |x − y|)−m .

This completes the proof of Lemma 3.

Remark 4. For −∞ < j < 0, the best estimate is, for each m ≥ 0∣∣∣ ∂
∂x
Kj,ac(x, y)

∣∣∣ � λ−1sech2x tanh y
(
1+λ−1|x−y|)−m + λ−2(1+λ−1|x−y|)−m . (4.5)
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We observe that the first term has only a factor of λ−1 = O(2j/2) as j → −∞, which
makes unavailable the Bernstein inequality and Peetre maximal inequality, namely low
energy cases of Lemma 4 and Lemma 5, resp. Nevertheless, if we work a little harder,
using (4.4) and (4.5) we can obtain a weaker form of Peetre maximal inequality and prove
the following: If 1 ≤ p < ∞, 0 < q < ∞, α ∈ R,

‖f ‖Ḃα,qp (H) ≈ ∥∥{2jαϕ∗
j (H)f

}
j∈Z

∥∥
�q (Lp)

and if 1 < p < ∞, 1 < q < ∞, α ∈ R,

‖f ‖Ḟ α,qp (H) ≈ ∥∥{2jαϕ∗
j (H)f

}
j∈Z

∥∥
Lp(�q)

.

5. Identification of F 0,2
p (H) = Lp, 1 < p < ∞

Let {ϕj }∞0 be as in Section 1. Then there exists {ψj }∞0 satisfying the same conditions (i),
(ii) therein such that

∞∑
j=0

ϕj (x)ψj (x) = 1

by taking ψj (x) = ϕj (x)/
∑ |ϕj (x)|2. We may assume that ‖ϕj‖∞, ‖ψj‖∞ are all ≤ 1.

Let Qj = ϕj (H) and Rj = ψj (H). Define the operators Q : L2 → L2(�2) and R :
L2(�2) → L2 as follows.

Q : f �→ {Qj(H)f }∞0
and

R : {gj }∞0 �→
∞∑
j=0

Rjgj .

It follows from the definition that

‖f ‖
F

0,2
p (H)

= ‖Qf ‖Lp(�2) (5.1)

and it is easy to see that RQ = I : L2 → L2 and QR ≤ 3I : L2(�2) → L2(�2). We will
use Q and R to identify F 0,2

p (H) with Lp.

Theorem 4. Let 1 < p < ∞. Then F 0,2
p (H) andLp are isomorphic and have equivalent

norms.

To prove the theorem, we will show that Q : Lp → Lp(�2) and R : Lp(�2) → Lp,
1 < p < ∞, that is,

‖Qf ‖Lp(�2) � ‖f ‖p and ‖Rg‖p � ‖g‖Lp(�2) (5.2)

for f ∈ L2 ∩ Lp and g ∈ L2(�2) ∩ Lp(�2), resp. This means that, by a density argument,

‖f ‖
F

0,2
p (H)

� ‖f ‖p (5.3)
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and

‖f ‖p � ‖f ‖
F

0,2
p (H)

. (5.4)

Here in view of (5.2), (5.3) follows from (5.1) and (5.4) follows, with g = Qf , from the
identity RQ = I , i.e.,

∑
ϕj (H)ψj (H) = I . Thus, (5.3) and (5.4) prove Theorem 4.

The remaining part of this section is devoted to showing the boundedness of Q and
R in (5.2). In the following, Lemma 7 and Lemma 9 imply that Q is bounded from Lp

to Lp(�2), and, Lemma 7 and Lemma 10 imply that R is bounded from Lp(�2) to Lp by
interpolation and duality.

Lemma 7. Q : L2 → L2(�2) andR : L2(�2) → L2 are well-defined bounded operators.

Proof. Let {gj } ∈ L2(�2). Note that Rj is bounded on L2: ‖Rjg‖2 ≤ ‖ψj‖∞‖g‖2 ≤
‖g‖2. Thus,  ∞∑

j=0

Rjgj ,

∞∑
j=0

Rjgj

 =
1∑

ν=−1

∞∑
j=0

(Rjgj , Rj+νgj+ν)

≤
1∑

ν=−1

∑
j

‖Rjgj‖2‖Rj+νgj+ν‖2

≤ 3
∑
j

‖gj‖2
2 = 3‖gj‖2

L2(�2)
.

Similarly, we have ‖Qf ‖L2(�2) ≤ √
2‖f ‖2 because

∑
j |ϕj (x)|2 ≤ 2 for all x.

We now derive some necessary estimates for the kernel of Qj = ϕj (H), which is
denoted by Qj(x, y). Define

Q̃j (x, y) =
{
Qj(x, y) if 2j/2|I | ≥ 1

Qj(x, y)−Qj

(
x, ȳ

)
if 2j/2|I | < 1 .

Lemma 8. Let I = (ȳ − t
2 , ȳ + t

2 ), t = |I | and I ∗ = (ȳ − t, ȳ + t). Then there exists a
constant C independent of I such that

(a) if 2j/2|I | ≥ 1,

sup
y∈I

∫
R\I∗

|Qj(x, y)| dx ≤ C
(
2j/2|I |)−1

.

(b) If 2j/2|I | < 1,

sup
y∈I

∫
R\I∗

∣∣Qj(x, y)−Qj

(
x, ȳ

)∣∣ dx ≤ C2j/2|I | .

In particular, we have ∑
j

∫
R\I∗

∣∣Q̃j (x, y)
∣∣ dx ≤ (2 + √

2
)
C . (5.5)
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Proof. For (a), we let 2j/2|I | ≥ 1 and y ∈ I . Then it follows from Lemma 3 (a) that∫
R\I∗

|Qj(x, y)| dx ≤ Cm

∫
|x−y|>t/2

2j/2(
1 + 2j/2|x − y|)m dx

≤ C
(
2j/2|I |)−1

, (m = 2) .

For (b) we let 2j/2|I | < 1, y ∈ I (ȳ being the center of I ) and apply Lemma 3 (b)
to obtain∫

R\I∗

∣∣Qj(x, y)−Qj

(
x, ȳ

)∣∣ dx =
∫

R\I∗

∣∣∣∣∫ y

ȳ

∂

∂z
Qj (x, z) dz

∣∣∣∣ dx
≤ Cm

∣∣y − ȳ
∣∣ ∫

|x−ȳ|>t
2j(

1 + 2j/2−1
∣∣x − ȳ

∣∣)m dx
≤ C2j/2|I |, (m = 2) .

Lemma 9. Q is bounded from L1 to weak-L1(�2), i.e.,∣∣∣∣∣∣
x :

( ∞∑
0

|Qjf (x)|2
)1/2

> λ


∣∣∣∣∣∣ ≤ Cλ−1‖f ‖1, ∀λ > 0 .

Proof. Let f ∈ L1. By the Calderón-Zygmund decomposition, there exists a sequence
of disjoint intervals {Ik} and functions {bk} with supp bk ⊂ Ik such that f = g + b with
g ∈ L2 and b =∑k bk ∈ L1. Furthermore, for each λ > 0 the following properties hold

(i) |g(x)| ≤ Cλ a.e.

(ii) bk(x) = f (x)− |Ik|−1
∫
Ik
f dx, x ∈ Ik

(iii) λ ≤ |Ik|−1
∫
Ik

|f | dx ≤ 2λ

(iv)
∑
k |Ik| ≤ λ−1‖f ‖1.

From Lemma 7 we know that Q : L2 → L2(�2) is bounded, i.e.,∫ ∞∑
0

|Qjg(x)|2 dx ≤ C‖g‖2
2 .

By Chebyshev inequality we have∣∣∣∣∣∣
x :

( ∞∑
0

|Qjg(x)|2
)1/2

> λ/2


∣∣∣∣∣∣ ≤ Cλ−2‖g‖2

2 ≤ Cλ−1‖f ‖1 .

Now we only need to show∣∣∣∣∣∣∣
x /∈ ∪I ∗

k :
∑

j

|Qjb(x)|2
1/2

> λ/2


∣∣∣∣∣∣∣ ≤ Cλ−1‖f ‖1 ,

where I ∗
k = 2Ik means the interval of length 2|Ik| with the same center as Ik . Note that the

left-hand side of the above inequality is bounded by

2

λ

∑
k

∫
R\∪I∗

k

∑
j

|Qjbk(x)|2
1/2

dx ≤ 2

λ

∑
k

∫
R\∪I∗

k

∑
j

|Qjbk(x)| dx . (5.6)
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For each k, since
∫
bk = 0, we apply Lemma 8 with I = Ik and estimate above the r.h.s.

of (5.6) by

2

λ

∑
k

∫
R\∪I∗

k

∑
j

∫ ∣∣Q̃j (x, y)
∣∣|bk(y)| dy dx

≤ 2

λ

∑
k

∫
y∈Ik

|bk(y)| dy
∫

R\I∗
k

∑
j

∣∣Q̃j (x, y)
∣∣ dx

≤ C

λ

∑
k

∫
Ik

|bk(y)| dy ≤ Cλ−1‖f ‖1 .

This completes the proof.

Lemma 10. Let Rj = ψj (H). Then R = {Rj } is bounded from L1(�2) to weak-L1.

Proof. It suffices to show that there exists a constant C such that∣∣∣∣∣
{
x :
∣∣∣∣∣
N∑
0

Rjfj (x)

∣∣∣∣∣ > λ

}∣∣∣∣∣ ≤ Cλ−1‖{fj }‖L1(�2) (5.7)

for all N ∈ N, {fj } ∈ L1(�2) and λ > 0. By passing to the limit we see that (5.7) also
holds for N = ∞ and all {fj } ∈ L1(�2) ∩ L2(�2). Then the lemma follows from the fact
that L1(�2) ∩ L2(�2) is dense in L1(�2).

Let F(x) = (
∑∞
j=0 |fj (x)|2)1/2 ∈ L1. By the Calderón-Zygmund decomposition

there exists a sequence of disjoint open intervals {Ik} such that

(i) |F(x)| ≤ Cλ, a.e. x ∈ R\ ∪k Ik
(ii) λ ≤ |Ik|−1

∫
Ik

|F(x)| dx ≤ 2λ, ∀k.

Define

gj (x) =
{

|Ik|−1
∫
Ik
fj dy, x ∈ Ik

fj (x) otherwise ,
bj (x) =

{
fj − gj , x ∈ Ik
0 otherwise .

Then, if x ∈ R \ ∪kIk , (∑∞
j=0 |gj (x)|2)1/2 = (

∑∞
j=0 |fj (x)|2)1/2, and, if x ∈ Ik ∞∑

j=0

|gj (x)|2
1/2

=
 ∞∑
j=0

|Ik|−2
∣∣∣∣∫
Ik

fj (y) dy

∣∣∣∣2
1/2

≤ |Ik|−1
∫
Ik

 ∞∑
j=0

|fj (y)|2
1/2

dy ≤ 2λ

by Minkowski inequality. It follows that

‖{gj (x)}‖2
L2(�2)

=
∑
k

∫
Ik

∑
j

|gj (x)|2
 dx +

∫
R\∪Ik

∑
j

|gj (x)|2
 dx

≤ (2λ)2
∑
k

|Ik| + 2λ
∫

R\∪Ik

∑
j

|fj |2
1/2

dx

≤ Cλ‖F‖1 .
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Now by Lemma 7 we obtain∣∣∣∣∣
{
x :
∣∣∣∣∣
N∑
0

Rjgj (x)

∣∣∣∣∣ > λ/2

}∣∣∣∣∣ ≤ Cλ−2

∥∥∥∥∥
N∑
0

Rjgj

∥∥∥∥∥
2

2

≤ C′λ−2‖{gj }‖2
L2(�2)

≤ Cλ−1‖F‖1 .

It remains to show∣∣∣∣∣
{
x /∈ ∪I ∗

k :
∣∣∣∣∣
N∑
0

Rjbj (x)

∣∣∣∣∣ > λ/2

}∣∣∣∣∣ ≤ Cλ−1‖F‖1 .

The left-hand side is not exceeding 2
λ

∑
k

∫
R\∪I∗

k
|∑N

j=0 Rjbj,k(x)| dx, where bj,k =
bjχIk , χIk the characteristic function of Ik . For each k, define

R̃kj (x, y) =
{
Rj (x, y) if 2j/2|Ik| ≥ 1
Rj (x, y)− Rj

(
x, ȳk

)
if 2j/2|Ik| < 1 ,

where ȳk is the center of Ik . Then it follows from Lemma 8 with I = Ik and Qj replaced
by Rj that

∫
R\I∗

k

 N∑
j=0

∣∣R̃kj (x, y)∣∣2
1/2

dx ≤
∫

R\I∗
k

N∑
j=0

∣∣R̃kj (x, y)∣∣ dx ≤ C, ∀y ∈ Ik, N .

Thus, we obtain, using
∫
bj,k = 0,∫

R\I∗
k

∣∣∣∣∣∣
N∑
j=0

Rjbj,k(x)

∣∣∣∣∣∣ dx =
∫

R\I∗
k

∣∣∣∣∣∣
N∑
j=0

∫
Ik

R̃kj (x, y)bj,k(y) dy

∣∣∣∣∣∣ dx
≤
∫
Ik

 N∑
j=0

|bj,k|2(y)
1/2

dy

∫
R\I∗

k

 N∑
j=0

∣∣R̃kj (x, y)∣∣2
1/2

dx

≤ C

∫
Ik

 N∑
j=0

|bj,k|2
1/2

dy

≤ 2C
∫
Ik

 ∞∑
j=0

|fj |2
1/2

dy .

Hence, ∣∣∣∣∣
{
x /∈ ∪I ∗

k :
∣∣∣∣∣
N∑
0

Rjbj (x)

∣∣∣∣∣> λ/2

}∣∣∣∣∣ ≤ 4C

λ

∑
k

∫
Ik

∑
j

|fj |2
1/2

dy

≤ 4C

λ

∥∥∥∥∥∥∥
∑

j

|fj |2
1/2

∥∥∥∥∥∥∥
1

,

as desired. This completes the proof.
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6. Remarks on Boundedness of the Wave Function

We conclude the article with a boundedness result on the wave function ψ(t, x) = e−itH f
which is the solution to the Schrödinger equation

i ∂tψ = Hψ, ψ(0, x) = f (x) . (6.1)

We will see that using the B(H) and F(H) space one can obtain a global time decay for
ψ(t, x) (Theorem 6). The perturbed Besov space method has been considered in [19, 24,
6, 7] and more recently, [2, 9, 8] involving Schrödinger and wave equations.

By [2, Theorem 7.1] or [19, Theorem 5.1] we know that if V is in the Kato class Kd

and if D(Hm) = W 2m
p (Rd) for some m ∈ N, 1 ≤ p < ∞, then for 1 ≤ q ≤ ∞, 0 < α <

m,B
α,q
p (H) = B

2α,q
p (Rd). It is easy to see that if V is C∞ with all derivatives bounded,

then the domain condition on H is verified for all m ∈ N.
In the following we assume H = −d2/dx2 + Vn and restrict our discussion to the

P-T potential, although results here have extensions to general potentials on R
d .

Since Vn ∼ sech2 x is in the Schwartz class, we have

B
α,q
p (H) = B

2α,q
p (R)

for all α > 0. In particular, Fα,pp (H) = F
2α,p
p (R) since it always holds that Fα,pp = B

α,p
p

by the definitions [see (1.3), (1.4)]. On the other hand, by Theorem 4, F 0,2
p (H) = Lp =

F
0,2
p (R). Thus, we obtain the following theorem using complex interpolation method;

consult [23, 21] or [3] for details.

Theorem 5. If α > 0, 1 < p < ∞ and 2p/(p + 1) < q < 2p, then

F
α,q
p (H) = F

2α,q
p (R) .

If α > 0, 1 ≤ p < ∞ and 1 ≤ q ≤ ∞, then

B
α,q
p (H) = B

2α,q
p (R) .

From Theorem 5 and [19, Theorem 4.6, Remark 4.7] we obtain the boundedness of
ψ(t, x) on ordinary Besov spaces. Let 〈t〉 = (1 + t2)1/2 and let β = β(p) = | 1

2 − 1
p
| be

the critical exponent.

Proposition 1. Let α > 0, 1 ≤ p < ∞, 1 ≤ q ≤ ∞. Then∥∥e−itH f ∥∥
B
α,q
p (R)

� 〈t〉| 1
p

− 1
2 |‖f ‖

B
α+2β,q
p (R)

. (6.2)

Moreover, if 2 ≤ p < ∞, ∥∥e−itH f ∥∥
Lp

� 〈t〉| 1
p

− 1
2 |‖f ‖

B
2β,2
p (R)

and if 1 ≤ p < 2, ∥∥e−itH f ∥∥
Lp

� 〈t〉| 1
p

− 1
2 |‖f ‖

B
2β,1
p (R)

. (6.3)

Proof. Let {ϕj }∞0 be a smooth dyadic system. From the proof of [19, Theorem 4.6] we
see that ∥∥e−itH ϕj (H)f ∥∥p � 2jβ〈t〉| 1

2 − 1
p

|‖ϕj (H)f ‖p, j ≥ 0 .
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This implies (6.2) by Theorem 5 and∥∥e−itH f ∥∥
B

0,q
p (H)

� 〈t〉| 1
2 − 1

p
|‖f ‖

B
β,q
p (H)

. (6.4)

Now if p ≥ 2, then B0,2
p (H) ↪→ F

0,2
p (H) according to (3.9). We have∥∥e−itH f ∥∥

Lp
≈ ∥∥e−itH f ∥∥

F
0,2
p (H)

� 〈t〉| 1
2 − 1

p
|‖f ‖

B
β,2
p (H)

.

For 1 ≤ p < 2, because

‖f ‖p ≤
∞∑
j=0

‖ϕj (H)f ‖p = ‖f ‖
B

0,1
p (H)

,

we see B0,1
p (H) ↪→ Lp, which implies (6.3) in light of (6.4).

One is also interested in understanding the long time behavior of ψ(t, x). From [17]
and [8] we know that if (1 + x2)V ∈ L1(R), then∥∥e−itHEacf ∥∥Lp′ � t

−( 1
p

− 1
2 )‖f ‖Lp , ∀t > 0, 1 ≤ p ≤ 2 , (6.5)

where 1
p

+ 1
p′ = 1. So Proposition 1 and (6.5) yield

∥∥e−itHEacf ∥∥Lp′ � 〈t〉−( 1
p

− 1
2 )‖f ‖

B
2β,2
p′ (R)∩Lp , 1 < p ≤ 2 , (6.6)

where we note that Eac is bounded on Lp because Epp, which has the kernel∑n
j=1 ej (x)ej (y), is bounded on Lp (see the discussion at the beginning of Section 4).

Theorem 6. Let 1 < p ≤ 2. Then∥∥e−itHEacf ∥∥Lp′ � 〈t〉−( 1
p

− 1
2 )‖f ‖

B
4β,2
p (R)

. (6.7)∥∥e−itHEacf ∥∥Lp′ � 〈t〉−( 1
p

− 1
2 )‖f ‖

F
4β,2
p (R)

. (6.8)

Proof. Since B4β,2
p (R) ↪→ B

2β,2
p′ (R) (Besov embedding; see e.g., [21, 2.7.1]) and

B
ε,2
p (R) ↪→ Lp if ε > 0, it follows from (6.6) that∥∥e−itHEacf ∥∥Lp′ � 〈t〉−( 1

p
− 1

2 )‖f ‖
B

4β,2
p (R)

provided 1 < p ≤ 2. The second inequality follows from (6.7) and the embedding
F
s,2
p (R) ↪→ B

s,2
p (R) in light of (3.9).

Remark 5. For (6.8), if alternatively starting with (6.6) [rather than (6.7)] and using
an embedding of Jawerth [21, 2.7.1], we can obtain an improved result: If 1 < p < 2,
0 < q ≤ ∞, then ∥∥e−itHEacf ∥∥Lp′ � 〈t〉−( 1

p
− 1

2 )‖f ‖
F

4β,q
p (R)

.

As a consequence we also obtain the following regularity result by the identification
in Theorem 5.
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Corollary 1. Let α > 0. If 1 < p ≤ 2, 1 ≤ q ≤ ∞, then∥∥e−itHEacf ∥∥Bα,q
p′ (R)

� 〈t〉−( 1
p

− 1
2 )‖f ‖

B
α+4β,q
p (R)

. (6.9)

If 1 < p ≤ 2, p ≤ q ≤ 2, then∥∥e−itHEacf ∥∥Fα,q
p′ (R)

� 〈t〉−( 1
p

− 1
2 )‖f ‖

F
α+4β,q
p (R)

. (6.10)

Proof. Since B2β,2
p (H) = B

4β,2
p (R) by Theorem 5, we can write (6.7) as∥∥e−itHEacf ∥∥Lp′ � 〈t〉−( 1

p
− 1

2 )‖f ‖
B

2β,2
p (H) .

(6.11)

Replace f with ϕj (H)f in (6.11). Then the B-inequality (6.9) follows from the simple
observation that ∑

j

2jαq‖ϕj (H)f ‖q
B
γ,2
p (H)

1/q

≈ ‖f ‖
B
α+γ,q
p (H)

.

To show the F -inequality, substitute f = (H + cn)
−αf into (6.8) but use the

F
2β,2
p (H)-norm instead. Then by the lifting property in Lemma 6 and Theorem 5, we have∥∥e−itHEacf ∥∥Fα,2

p′ (R)
� 〈t〉−( 1

p
− 1

2 )‖f ‖
F
α+4β,2
p (R)

. (6.12)

Now (6.10) follows from the interpolation between (6.12) and (6.9) with p = q, where we
note that Bα,pp (R) = F

α,p
p (R).
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