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ABSTRACT. Toeplitz operators on the Bergman space of the unit disc can be written as integrals of
the symbol against an invariant operator field of rank-one projections. We consider a generalization
of the Toeplitz calculus obtained upon taking more general invariant operator fields, and also
allowing more general domains than the disc; such calculi were recently introduced and studied by
Arazy and Upmeier, but also turn up as localization operators in time-frequency analysis (witnessed
by recent articles by Wong and others) and in representation theory and mathematical physics.
In particular, we establish basic properties like boundedness or Schatten class membership of
the resulting operators. A further generalization to the setting when there is no group action
present is also discussed, and the various settings in which similar operator calculi appear are
briefly surveyed.

1. Introduction

Let D be the unit disc in the complex plane, dm the Lebesgue area measure normalized so
thatm(D) = 1, and L2

hol (D) the Bergman space on D, i.e., the subspace of all holomorphic
functions in L2(D). It is well known that the function

K(x, y) = 1(
1 − xy

)2
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is the reproducing kernel for L2
hol (D), that is

f (x) =
∫

D
f (y)K(x, y) dm(y) = 〈f,Kx〉 , Kx := K(·, x) ,

for any f ∈ L2
hol and x ∈ D. Let P be the orthogonal projection in L2(D) onto L2

hol (D).
For f ∈ L∞(D), the Toeplitz operator Tf with symbol f is the operator onL2

hol defined by

Tf u = P(f u) . (1.1)

Since for any u, v ∈ L2
hol (D),〈

Tf u, v
〉 = 〈f u, v〉 =

∫
D
f (x) 〈u,Kx〉 〈Kx, v〉 dm(x) ,

one can rewrite the definition (1.1) as

Tf =
∫

D
f (x) Tx dµ(x) , (1.2)

where

dµ(x) := dm(x)(
1 − |x|2)2

= K(x, x) dm(x)

is the invariant measure on D, and Tx are the rank-one operators

Tx := 〈·,Kx〉Kx
K(x, x)

= 〈·, kx〉 kx, kx := Kx

‖Kx‖ . (1.3)

(The unit vectors kx , the normalized reproducing kernels, are known as “coherent states”
in quantum optics.) Here the convergence in (1.2) is meant in the weak operator topology.

The formula (1.2) reveals a very nice feature of Toeplitz operators, namely, their
Möbius invariance. Recall that for any biholomorphic self-map g of the disc (Möbius
transformation), the associated change-of-variable mapping

Ug : f �→ (f ◦ g) · g′

is unitary on L2 and L2
hol ; further, Ug1Ug2 = Ug2g1 . Thus the operators Ug form a unitary

anti-representation of the group G of all Möbius maps (biholomorphic self-maps of D).
An easy calculation shows that the Bergman projection P , the Toeplitz operators Tf and
the operators Tx from (1.3) satisfy

UgPU
∗
g = P ,

UgTf U
∗
g = Tf ◦g ,

and

U∗
g TxUg = Tgx . (1.4)

Mappings x �→ Tx satisfying the last equality are called invariant operator fields on D.
The formulas above suggest the following generalization. LetK denote the stabilizer

of the origin in G, i.e.,
K := {g ∈ G : g0 = 0} .
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(Clearly, K consists precisely of the rotations around the origin.) Then (1.4) implies, first
of all, that any invariant operator field satisfies

U∗
k T0Uk = T0, or T0Uk = UkT0, ∀k ∈ K .

Further,
Tx = U∗

g T0Ug for any g ∈ G such that g0 = x .

Let now, conversely, A be any bounded linear operator on L2
hol (D) which satisfies

UkA = AUk ∀k ∈ K ; (1.5)

and set
Ax := U∗

gAUg for any g ∈ G such that g0 = x .

Note that the definition of Ax is consistent: If also g10 = x, then g1 = gk for some k ∈ K ,
so Ug1 = UkUg and

U∗
g1
AUg1 = U∗

gU
∗
k AUkUg = U∗

gAUg by (1.5) .

For a function f on D, we can then define the A-Toeplitz operator with symbol f by

Af :=
∫

D
f (x) Ax dµ(x) (1.6)

whenever the integral converges in the weak operator topology. The operators Af thus
reduce to the usual Toeplitz operators for A = T0 = 〈·, 1〉 1. It is a consequence of the
definitions that the field Ax is again invariant:

U∗
gAxUg = Agx , (1.7)

and that the operators Af again transform nicely under G:

UgAfU
∗
g = Af ◦g . (1.8)

Since the last construction uses only the fact that G acts on D transitively, it can be
carried out in situations much more general than we have just described — for instance,
for any group G of transformations acting transitively on a manifold � and any unitary
anti-representation Ug ofG on a Hilbert spaceH . Examples of the latter situations include
the Fock space on Cn (with the action of Cn � U(n)), or weighted Bergman spaces on
bounded symmetric domains in Cn (with G the group of all biholomorphic self-maps).
In this setting, the operators (1.6) have made appearance in some quantization procedures
for symplectic manifolds [1] and have recently been studied from the group-theoretic point
of view by Arazy and Upmeier [4] under the name of invariant symbolic calculi. Of course,
in the context of the Fock space (or, equivalently — via the Bargmann transform — of
L2(R2n)), a prime example of operators of the form (1.6) is the well-known Weyl calculus
of pseudodifferential operators (as well as other correspondences used in�DO theory, such
as the Kohn-Nirenberg or Unterberger calculi [25, 48]).

One can give one more twist to the above construction by lifting everything from the
disc to the group. More specifically, let dg stand for the Haar measure on G. Under the
quotient map g �→ g0 of G onto D, the Haar measure projects precisely to the invariant
measure dµ. That is, for any function f on the disc,∫

G

f (g0) dg =
∫

D
f (x) dµ(x) . (1.9)
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Since U∗
gAUg = Ag0 by definition, we can thus rewrite (1.6) as

Af =
∫
G

f (g0) U∗
gAUg dg .

Consequently, if we start with an arbitrary bounded linear operatorA on L2
hol (D) [this time

it even need not satisfy the commutation relation (1.5)], then we can define an invariant
operator field on G by

Ag := U∗
gAUg ,

and for a function f on G, the A-Toeplitz operator with symbol f by

Af :=
∫
G

f (g) Ag dg (1.10)

whenever the integral exists (as usual, in the weak operator topology). One again checks
that the resulting operator field on G is invariant:

U∗
gAg′Ug = Agg′ , (1.11)

and that the resulting A-Toeplitz operators transform nicely under G:

UgAfU
∗
g = Af (g·) . (1.12)

For operators A which satisfy (1.5) and functions f which are right invariant underK (i.e.,
f (gk) = f (g) ∀g ∈ G∀k ∈ K), we plainly recover the A-Toeplitz operators from (1.6);
in particular, for right K-invariant functions f and A = 〈·, 1〉 1 we recover the Toeplitz
operators we have started with.

Again, the construction (1.10) makes sense in much more general settings than the
group of holomorphic automorphisms of the disc — in fact, it can be done for any locally
compact groupG and unitary anti-representationUg ofG on a Hilbert spaceH . Operators of
the form (1.10) have been around at least since Harish-Chandra’s work on the representations
of semisimple Lie groups (see e.g., the textbook [32] for a condensed overview). Also, for
rank-one selfadjoint operators A, i.e., of the form

A = 〈·, φ〉φ, φ ∈ H ,

they are known in wavelet theory as localization operators, see, for instance, [17]. Var-
ious boundedness and Schatten-class properties of these localization operators have been
established in a recent series of articles by Wong and coauthors [29, 52], who also studied
the case of the so-called “two-wavelets,” which are operator calculi of the form (1.10) for
A = 〈·, φ〉ψ (i.e., for A still rank-one but not necessarily self-adjoint) [12, 53].

Our main result in this article is the following generalization of Wong’s results to the
case of an arbitrary operator A.

Theorem 1. Let G be a unimodular locally compact group and Ug a strongly continu-
ous square-integrable irreducible unitary anti-representation of G in a separable Hilbert
space H .

(a) If A is bounded and f ∈ L1(G), then Af exists and is bounded:

‖Af ‖ ≤ ‖A‖ ‖f ‖1 .
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(b) If A is trace-class and f ∈ L1, then Af exists and is trace-class:

‖Af ‖tr ≤ ‖A‖tr ‖f ‖1 .

(c) If A is trace-class and f ∈ L∞, then Af exists and is bounded:

‖Af ‖ ≤ ‖A‖tr ‖f ‖∞ .

(d) If A belongs to the Schatten class p and f ∈ Lq , where 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞
and 1

p
+ 1

q
≥ 1, then Af exists and belongs to the Schatten class Sr where

1
r

= 1
p

+ 1
q

− 1, and
‖Af ‖r ≤ ‖A‖p ‖f ‖q .

All parts of the theorem are, in a sense, optimal — for instance, taking A = I

(the identity operator), we have Ag = U∗
gAUg = I ∀g, and thus

Af = I ·
( ∫

f dg

)
which evidently does not make sense unless f ∈ L1. Similarly for (b)-(d).

In particular, if A is trace-class, the theorem shows that the mapping

� : f �→ Af

maps each Lp into the corresponding Sp. In particular, this holds for the localization-
operator case A = 〈·, φ〉φ; this is the result of He and Wong [29]. It is worth stating
this explicitly for the case which was our point of departure, viz. the Toeplitz operators.
(Although the result is not entirely new, cf. the remark before Corollary 4.) We refer to
Section 2 below for the definitions of the various terms.

Corollary 1. For any bounded symmetric domain� and any one of the standard weighted
Bergman spaces on �, the mapping f �→ Tf is continuous from Lp (with respect to the
invariant measure) into Sp, for any 1 ≤ p ≤ ∞.

Unfortunately, the converse of this corollary is false — Tf can be in Sp even for
f �∈ Lp; cf. page 256 below. A necessary and sufficient condition for the membership of
Tf in the Schatten ideals seems to be unknown, though such criteria exist for nonnegative
symbols f (see Zhu [54, Sections 6.3-6.4], Gheorghe [26]).

Furthermore, as�mapsL2(G) into the Hilbert space S2 of Hilbert-Schmidt operators,
we can consider its adjoint �∗ : S2 → L2. A short computation reveals that

�∗T (g) = tr
(
TA∗

g

)
.

By duality, �∗ is continuous from Sp into Lp for any 1 < p ≤ ∞; it turns out that it
is also continuous from S1 into L1, and thus the composite mappings �∗� and ��∗ act
continuously onto eachLp and Sp, respectively, 1 ≤ p ≤ ∞. The mappings �∗� and ��∗
are called the Berezin (or link) and the operator-Berezin transform; in this generality, they
were first studied in [4]. Nontrivial examples of these are the recent m-Berezin transforms
of Suarez [44] and Nam, Zheng and Zhong [34], with applications to the structure theory
of Toeplitz algebras.

The article is organized as follows. Section 2 reviews some preliminaries from rep-
resentation theory and bounded symmetric domains. The proof of Theorem 1 appears in
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Section 3. Section 4 deals with the dual map �∗ and the Berezin and operator-Berezin
transforms. Section 5 discusses extensions to situations when there is no group action
present, i.e., to arbitrary weakly measurable operator fields on a domain. Here our results
are similar to those obtained recently by Arsu [7], but there is no inclusion between the two.
Finally, in the final Section 6 we very briefly survey the various contexts in which Toeplitz
operators (as well as the more general calculi studied here) naturally occur, and indicate
some open problems and possible directions for future research.

2. Preliminaries

Recall that a topological group is a groupG which is also a topological space and such that
the mapping (g1, g2) → g−1

1 g2 from G×G into G is continuous. It is known that if G is
locally compact, then there exists a unique (up to normalization) regular Borel measure dg
onG which is invariant under left translations, i.e., d(g1g) = dg ∀g1 ∈ G; dg is called the
(left) Haar measure. The measure d(g−1) is then invariant under right translations; if these
two measures coincide, then G is called unimodular.

A unitary representation ofG on a separable Hilbert spaceH is a mapping V : g �→
Vg from G into unitary operators on H which satisfies

Vg1g2 = Vg1Vg2 ∀g1, g2 ∈ G .

We will always assume that V is strongly continuous, i.e., g �→ Vgu is continuous from G

intoH for any u ∈ H . A unitary representation is called irreducible if it is not a direct sum
of another two representations; that is, if there is no closed subspace other than {0} and H
itself which would be invariant under all Vg , g ∈ G.

An irreducible unitary representation is called square-integrable if there exists ψ ∈
H \ {0} for which ∫

G

∣∣ 〈Vgψ,ψ 〉 ∣∣2
dg < ∞ . (2.1)

Such elements ψ are called admissible vectors. It turns out that if there is one admissible
vector, then the set of all admissible vectors is already dense in H ; and if G is unimodular,
then even anyψ ∈ H ,ψ �= 0, is admissible, and the so-called Schur orthogonality relations∫

G

∣∣ 〈Vgψ, φ〉 ∣∣2
dg = dG ‖φ‖2 ‖ψ‖2 (2.2)

hold for any φ,ψ ∈ H . Here dG is a constant depending on the normalization of the Haar
measure; without loss of generality, we may (and will) assume that the Haar measure has
been normalized so that dG = 1.

Passing from Vg toUg := V ∗
g , everything that has just been said remains in force also

for anti-representations in the place of representations (i.e., mappings g �→ Ug such that
Ug1g2 = Ug2Ug1 ).

We refer the reader to, for instance, [32] or [3] for the material above and further de-
tails.

There is an important class of representations acting on the standard weighted Berg-
man spaces on bounded symmetric domains. Recall that a domain � in Cn is called
symmetric if for any z ∈ � there exists a biholomorphic self-map sz of � which is involu-
tive (sz ◦ sz = id) and has z as an isolated fixed-point. It turns out that for any two points
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x, y ∈ �, one can then find z ∈ � such that sz interchanges x and y. In particular, the
groupG of all biholomorphic self-maps of� acts transitively on� (so� is homogeneous).
Let K(x, y) be the Bergman kernel of �. For α ≥ 0, the measure

dµα(z) := K(z, z)−α dm(z)

(where dm stands for the Lebesgue measure) is finite, and we have the weighted Bergman
space L2

hol (�, dµα) — the subspace of holomorphic functions in L2(�, dµα).
From the familiar transformation property of the Bergman kernel

K(x, y) = K(gx, gy) · Jg(x) · Jg(y), ∀x, y ∈ �, ∀g ∈ G , (2.3)

where Jg denotes the complex Jacobian of g, it follows that

dµα(gz) = |Jg(z)|2α+2 dµα(z) . (2.4)

Consequently, for any g ∈ G, the map

U(α)g : f �→ (f ◦ g) · (Jg)1+α (2.5)

(with some choice of the branch for the power if α /∈ Z) is a unitary operator onL2(�, dµα)

andL2
hol (�, dµα). Finally, from the chain rule for the Jacobians Jg1g2(z) = Jg1(g2z)Jg2(z)

it transpires that, at least for integer α,

U(α)g1
U(α)g2

= U(α)g2g1
, (2.6)

i.e.,U(α) is a unitary anti-representation ofG onL2(dµα) andL2
hol (dµα). Forα noninteger,

(2.6) still holds but only up to a unimodular constant factor [arising from the arbitrariness
of the choice of the power in (2.5)], so that U(α) is only a projective anti-representation.

The notable fact about U(α) is that on L2
hol (�, dµα) these representations are irre-

ducible and square-integrable. Further, the group G is always unimodular. Thus, in par-
ticular, every nonzero element in L2

hol (�, dµα) is an admissible vector, and the Schur
orthogonality relations (2.2) hold.

Let K(α)(x, y) be the reproducing kernel of the space L2
hol (�, dµα). It can be

shown that K(α)(x, y) coincides, up to a constant factor, with a power of the unweighted
Bergman kernel:

K(α)(x, y) = cαK(x, y)
1+α . (2.7)

Denote K(α)
x := K(α)(·, x) and k(α)x := K

(α)
x /‖K(α)

x ‖. Consider the operator field

T (α)x := cα

〈
·, k(α)x

〉
k(α)x .

We claim that this field is invariant with respect to the representation U(α). Indeed, for any
function f ∈ L2

hol (�, dµα), we have from the reproducing property of the kernel and by
the definition of U(α),〈

f,U
(α)

g−1K
(α)
x

〉
=

〈
U(α)g f,K(α)

x

〉
= (

U(α)g f
)
(x)

= Jg(x)1+αf (gx) = Jg(x)1+α 〈
f,K(α)

gx

〉
,
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so U(α)
g−1K

(α)
x = Jg(x)1+αK(α)

gx . Hence, U(α)
g−1k

(α)
x = εx,gk

(α)
gx for a complex number εx,g .

As both k(α)x and k(α)gx are unit vectors and U(α)
g−1 is unitary, necessarily |εx,g| = 1. Conse-

quently,

U(α)g
∗T (α)x U(α)g = cαU

(α)

g−1

〈
·, k(α)x

〉
k(α)x U

(α)

g−1
∗ = cα

〈
·, U(α)

g−1k
(α)
x

〉
U
(α)

g−1k
(α)
x

= cα

〈
·, k(α)gx

〉
k(α)gx = T (α)gx ,

proving the invariance of the field T (α)x .
Finally, from (2.4), (2.7), and (2.3) it follows that the measure

dµ(z) := K(z, z) dm(z) = c−1
α K(α)(z, z) dµα(z)

on � is invariant under G. Thus the resulting operator calculus, defined for functions
on � by

T
(α)
f :=

∫
�

f (x) T (α)x dµ(x) ,

again transforms nicely under G:

U(α)g T
(α)
f U(α)g

∗ = T
(α)
f ◦g ,

and, as in the case of the disc, in fact coincides with the Toeplitz operators:〈
T
(α)
f u, v

〉
= cα

∫
�

f (x)
〈
u, k(α)x

〉 〈
k(α)x , v

〉
dµ(x)

=
∫
�

f (x)

〈
u,K

(α)
x

〉 〈
K
(α)
x , v

〉
K(α)(x, x)

K(α)(x, x) dµα(x)

=
∫
�

f (x) u(x) v(x) dµα(x)

= 〈f u, v〉 =
〈
T
(α)
f u, v

〉
.

3. Proof of Theorem 1

Part (a). Assume that A ∈ B and f ∈ L1(G). For any u, v ∈ H , we have∣∣∣∣ ∫
G

f (g)
〈
Agu, v

〉
dg

∣∣∣∣ ≤ ‖f ‖1 · sup
g∈G

∣∣ 〈AUgu,Ugv〉 ∣∣
≤ ‖f ‖1 sup

g
‖A‖ ‖Ugu‖ ‖Ugv‖

= ‖f ‖1 ‖A‖ ‖u‖ ‖v‖ .
Thus the integral (1.10) exists in the weak operator topology, and

‖Af ‖ ≤ ‖f ‖1 ‖A‖
as claimed.
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Part (b). Assume now that A ∈ S1 and f ∈ L1(G). By part (a), we already know that Af
exists and is a bounded linear operator; we need to show that it is even trace-class. Recall
that for any bounded linear operator X,

‖X‖tr = sup
{uj },{vj }

∑
j

∣∣ 〈Xuj , vj 〉 ∣∣ , (3.1)

the supremum being taken over all orthonormal bases {uj } and {vj } ofH ; here the equality
also means that ifX is not trace-class then the right-hand side is infinite. Apply this to Af :

‖Af ‖tr = sup
{uj },{vj }

∑
j

∣∣∣∣ ∫
G

f (g)
〈
AUguj , Ugvj

〉
dg

∣∣∣∣
≤ sup

{uj },{vj }

∫
G

|f (g)|
∑
j

∣∣ 〈AUguj , Ugvj 〉 ∣∣ dg
≤ sup

{uj },{vj }

[
‖f ‖1 · sup

g

∑
j

∣∣ 〈AUguj , Ugvj 〉 ∣∣] .
However, since {Uguj }, {Ugvj } are also orthonormal bases (as Ug is unitary), the last sum
does not exceed ‖A‖tr by (3.1); thus

‖Af ‖tr ≤ ‖f ‖1 ‖A‖tr

as asserted.

Part (c). Assume now thatA ∈ S1 and f ∈ L∞(G). SinceA is trace-class, it has a spectral
decomposition

A =
∑
j

λj
〈·, uj 〉 vj ,

with some orthonormal bases {uj }, {vj } and numbers λj ≥ 0 satisfying
∑
j λj = ‖A‖tr <

∞. For any u, v ∈ H , consider the function Au,v on G given by

Au,v(g) := 〈
Agu, v

〉
. (3.2)

Note that

∣∣ 〈Af u, v〉 ∣∣ =
∣∣∣∣ ∫
G

f (g) Au,v(g) dg

∣∣∣∣ ≤ ‖f ‖∞ ‖Au,v‖1 . (3.3)

Thus it suffices to show that Au,v ∈ L1 with

‖Au,v‖1 ≤ ‖A‖tr ‖u‖ ‖v‖ (3.4)

and the desired conclusion ‖Af ‖ ≤ ‖f ‖∞‖A‖tr will follow.
Now

Au,v(g) = 〈
AUgu,Ugv

〉 =
∑
j

λj
〈
Ugu, uj

〉 〈
vj , Ugv

〉
.



252 Miroslav Engliš

Hence,

‖Au,v‖1 ≤
∑
j

λj

∫
G

∣∣ 〈Ugu, uj 〉 〈vj , Ugv〉 ∣∣ dg
≤ ‖A‖tr sup

j

∫
G

∣∣ 〈Ugu, uj 〉 〈vj , Ugv〉 ∣∣ dg
≤ ‖A‖tr sup

j

√∫
G

∣∣ 〈Uguj , u〉 ∣∣2
dg

√∫
G

∣∣ 〈Ugvj , v〉 ∣∣2
dg .

However, by the Schur orthogonality relations (2.2), the last two integrals are equal to
‖uj‖2‖u‖2 = ‖u‖2 and ‖vj‖2‖v‖2 = ‖v‖2, respectively. Consequently,

‖Au,v‖1 ≤ ‖A‖tr‖u‖ ‖v‖ ,
proving (3.4). This completes the proof of part (c).

Part (d). For fixed u, v ∈ H , consider again the function Au,v from (3.2). By the Cauchy-
Schwarz inequality, ‖Au,v‖∞ ≤ ‖A‖ ‖u‖ ‖v‖, while in the proof of part (c) we have seen
that ‖Au,v‖1 ≤ ‖A‖tr ‖u‖ ‖v‖. Thus the map A �→ Au,v is a contraction from B into L∞
as well as from S1 into L1. By interpolation, it follows that for any 1 ≤ q ′ ≤ ∞, A ∈ Sq ′

implies that Au,v ∈ Lq ′
and

‖Au,v‖q ′ ≤ ‖A‖q ′ ‖u‖ ‖v‖ .
(Here and below S∞ := B.) As in (3.3), it therefore follows that if A ∈ Sq ′

and f ∈ Lq ,
where 1

q
+ 1

q ′ = 1, then Af exists and

‖Af ‖ ≤ ‖f ‖q ‖A‖q ′ . (3.5)

On the other hand, from parts (b) and (c), respectively, we know that if A is trace-class,
then the map f �→ Af is a contraction from L1 into S1 as well as from L∞ into B;
by interpolation, it therefore follows that if A is trace-class and f ∈ Lq , then Af ∈ Sq and

‖Af ‖q ≤ ‖f ‖q ‖A‖1 . (3.6)

Combining (3.5) and (3.6) and appealing to interpolation for one more time, we conclude
that if f ∈ Lq and A ∈ Sp, where 1

p
= θ

q ′ + 1−θ
1 , 0 ≤ θ ≤ 1, then Af is in Sr where

1
r

= θ
∞ + 1−θ

q
, and

‖Af ‖r ≤ ‖f ‖q ‖A‖p .
Eliminating θ gives θ = (1 − 1

p
)q, so that 0 ≤ θ ≤ 1 means p ≥ 1 and 1

p
+ 1

q
≥ 1, and

1
r

= 1
q

+ 1
p

− 1, thus completing the proof of part (d).

Corollary 2. Let G be a unimodular locally compact group of transformations acting
transitively on a manifold � and Ug a strongly continuous square-integrable irreducible
unitary anti-representation of G in a separable Hilbert space H . Denote by dµ the image
of the Haar measure ofG under the quotient map g �→ gx0 ofG onto� (where x0 is some
fixed basepoint in �); consequently, dµ is a G-invariant measure on �.

(a) If A is bounded and f ∈ L1(�, dµ), then Af exists and is bounded:

‖Af ‖ ≤ ‖A‖ ‖f ‖1 .
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(b) If A is trace-class and f ∈ L1(�, dµ), then Af exists and is trace-class:

‖Af ‖tr ≤ ‖A‖tr ‖f ‖1 .

(c) If A is trace-class and f ∈ L∞(�, dµ), then Af exists and is bounded:

‖Af ‖ ≤ ‖A‖tr ‖f ‖∞ .

(d) If A ∈ Sp and f ∈ Lq(�, dµ), where 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and 1
p

+ 1
q

≥ 1,

then Af exists and belongs to the Schatten class Sr where 1
r

= 1
p

+ 1
q

− 1, and

‖Af ‖r ≤ ‖A‖p ‖f ‖q .
Proof. Denote, for a moment, by πf the function on G defined, for a given function f
on �, by πf (g) := f (gx0). In view of (1.9), the mapping f �→ πf is an isometry from
Lp(�, dµ) intoLp(G), for anyp. Further, as we have already observed in the introduction,
the operator Af defined by (1.6) coincides with the operator Aπf defined by (1.10). The
corollary is therefore immediate from Theorem 1.

Proof of Corollary 1. As we have seen at the end of Section 2, Toeplitz operators
correspond to the calculus f �→ Af for the choice A = cα〈·, k(α)x0 〉k(α)x0 (with some fixed
basepoint x0 ∈ �). Since this is manifestly a trace-class operator (even rank-one), the
desired assertion is immediate from part (d) of Corollary 2 (with p = 1) or from parts (b),
(c) and interpolation.

4. Berezin Transforms

Throughout this section, we assume that the operator A is trace-class. By Theorem 1,
we then know that the map

� : f �→ Af

maps Lp continuously into Sp, for any 1 ≤ p ≤ ∞. In particular, it makes sense to
consider the adjoint �∗ : Sp → Lp, 1 < p ≤ ∞.

Since we know a priori that �∗ is continuous, it is enough to find its values on the
rank-one operators 〈·, u〉 v, since the span of these is dense in any Sp, 1 ≤ p < ∞, as well
as w∗-dense in S∞ = (S1)∗. But for any u, v ∈ H , and T = 〈·, u〉 v,∫

G

�∗T · f dg = 〈
�∗T , f

〉 = 〈T , �f 〉 = tr
(
TA∗

f

) = 〈
v,Af u

〉
=

∫
G

f (g)
〈
v,Agu

〉
dg

=
∫
G

f (g) tr
(
TA∗

g

)
dg .

Thus
�∗T (g) = tr

(
TA∗

g

)
.

Theorem 2. Under the hypothesis of Theorem 1, the map �∗ satisfies: If A ∈ Sp,
1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, 1

p
+ 1

q
≥ 1, then �∗ : Sr ′ → Lq

′
contractively, where

1
q ′ = 1 − 1

q
and 1

r ′ = 1 − 1
r

where 1
r

= 1
p

+ 1
q

− 1 (i.e., 1
r ′ = 1

q ′ + 1
p′ where 1

p′ = 1 − 1
p
).
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Proof. For 1 < q ′ ≤ ∞ and 1 < r ′ ≤ ∞ the claim follows from part (d) of Theorem 1
and the dualities (Sr )∗ = Sr ′ , (Lq)∗ = Lq

′
. Thus we only need to deal with the cases

r ′ = 1, i.e., �∗ : S1 → Lp if A ∈ Sp; and q ′ = 1, i.e., �∗ : S1 → L1 if A ∈ S1.
We start with the latter, so assume that A and T are trace-class. Let A =∑

j λj 〈·, uj 〉vj andT = ∑
k tk 〈·, φk〉ψk be the spectral decompositions ofA andT , respec-

tively, with {uj }, {vj }, {φk}, {ψk} orthonormal bases in H and λj , tk ≥ 0,
∑
j λj = ‖A‖tr ,∑

k tk = ‖T ‖tr . Then

�∗T (g) = tr
(
T U∗

gA
∗Ug

) =
∑
j,k

λj tk
〈
uj , Ugφk

〉 〈
Ugψk, vj

〉
.

Thus∥∥�∗T
∥∥

1 ≤
∑
j,k

λj tk

∫
G

∣∣ 〈uj , Ugφk 〉 〈Ugψk, vj 〉 ∣∣ dg
≤

( ∑
j,k

λj tk

)
sup
j,k

∫
G

∣∣ 〈uj , Ugφk 〉 〈Ugψk, vj 〉 ∣∣ dg
≤ ‖A‖tr ‖T ‖tr sup

j,k

( ∫
G

∣∣ 〈uj , Ugφk 〉 ∣∣2
dg

)1/2( ∫
G

∣∣ 〈Ugψk, vj 〉 ∣∣2
dg

)1/2

.

But by the Schur orthogonality relations (2.2), the last two integrals are equal to ‖uj‖2‖φk‖2

and ‖ψk‖2‖vj‖2, respectively, i.e., to 1. Consequently,∥∥�∗T
∥∥

1 ≤ ‖A‖tr ‖T ‖tr ,

which is the desired claim.
For the remaining part, i.e., �∗ : S1 → Lp if A ∈ Sp, observe first of all that it is

enough to settle the cases p = 1 and p = ∞: Indeed, for a fixed T ∈ S1, we will then have
that A �→ �∗

AT is a contraction from S1 into L1 and from S∞ into L∞; by interpolation,
it will therefore follow that it is a contraction from Sp into Lp for all 1 ≤ p ≤ ∞, and
we will be done. However, the claim for p = 1 has been just settled in the previous
paragraph; while the claim for p = ∞ is straightforward from the inequality∣∣�∗T (g)

∣∣ = ∣∣tr(TA∗
g

)∣∣ ≤ ‖T ‖tr ‖Ag‖ = ‖T ‖tr‖A‖
(since ‖Ag‖ = ‖U∗

gAUg‖ = ‖A‖). This completes the proof.

Remark 1. Note that the case q = 1 of the last theorem follows trivially from the “Hölder
inequality” ∣∣tr(TA∗

g

)∣∣ ≤ ‖T ‖p′ ‖A‖p, 1 ≤ p ≤ ∞ .

By duality, this can likewise be used to get an alternative proof of the case q = 1, 1 <
p ≤ ∞ of Theorem 1 (otherwise obtainable by interpolation from parts (a) and (b) thereof).
However, it does not seem to simplify the proofs of the remaining cases of Theorems 1
and 2 in any way.

Of course, as with Theorem 1 and Corollary 2, we again have also a completely anal-
ogous statement concerning operator fields and calculi on� [i.e., based on (1.6) not (1.10)],
whose statement and proof can safely be left to the reader.

Combining the last theorem with Theorem 1 yields the following.
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Corollary 3. If A is trace-class, then �∗� is a contraction Lp → Lp, and ��∗ is a
contraction Sp → Sp, for any 1 ≤ p ≤ ∞.

The mapping �∗�,

�∗�f (g) =
∫
G

f
(
g′) tr

(
Ag′A∗

g

)
dg′ ,

is known as the (generalized) Berezin transform on G; similarly, the mapping ��∗,

��∗T =
∫
G

tr
(
TA∗

g

)
Ag dg ,

is called the (generalized) operator Berezin transform. One also has, of course, the anal-
ogous objects for operator fields on � instead of G. In the traditional case of Toeplitz
operators on the Bergman space of the disc, these formulas become

�∗�f (x) =
∫

D
f (y)

|K(x, y)|2
K(x, x)

dy ,

��∗T = TT̃ , T̃ (x) := 〈T kx, kx〉 .
A nontrivial example of the operator Berezin transform on the disc is the m-Berezin trans-
form on D of Suarez [44], corresponding to

A = (m+ 1)
m∑
j=0

(
m

j

)
(−1)j

〈·, zj 〉zj (m = 0, 1, 2, . . . ) .

For m = 0, this reduces to the ordinary Berezin transform above; while as m → ∞, the
transforms �m�∗

m turn out to be a sort of “approximate identity,” in that �m�∗
mT → T in

the weak or strong operator topology for many T ∈ B; this fact is utilized for studying the
structure of Toeplitz algebras on the Bergman space of the disc. All this has subsequently
been generalized also to the unit ball, see Nam, Zheng, and Zhong [34].

Observe that in view of the G-invariance properties (1.11) and (1.12) [or (1.7)
and (1.8)], both transforms �∗� and ��∗ are invariant:

�∗�(f ◦ g) = (
�∗�f

) ◦ g, ��∗(UgT U∗
g

) = Ug
(
��∗T

)
U∗
g , ∀g ∈ G .

In particular, in the context of bounded symmetric domains (cf. the end of Section 2), this
means that �∗� is a Fourier multiplier with respect to the Helgason-Fourier transform on
symmetric spaces. Namely, there is a family of conical functions eλ,b, indexed by λ ∈ Rr

and b ∈ K/M , where r is the rank of the symmetric domain � and K/M is the quotient
of the stabilizer K in G of a chosen basepoint x0 ∈ � by the normalizer M in K of the
maximal Abelian subgroup A of G; and for f ∈ L2(�, dµ), one defines the Helgason-
Fourier transform f̃ of f as

f̃ (λ, b) =
∫
�

f (x) eλ,b(x) dµ(x) .

It turns out that there is an inversion formula

f (x) =
∫

Rr

∫
K/M

f̃ (λ, b) e−λ,b(x) |c(λ)|2 db dλ
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with some function c on Rr (the Harish-Chandra c-function) and db the Haar measure
on K/M; and a Plancherel isometry∫

�

|f (x)|2 dµ(x) =
∫

Rr

∫
K/M

|f (λ, b)|2 |c(λ)|2 db dλ ,

which establishes a unitary isomorphism between L2(�, dµ) and a subspace M of all
functions inL2(Rr ×K/M, |c(λ)|2 db dλ) satisfying a certain symmetry condition. Under
this isomorphism, an operator on L2(�, dµ) commuting with the action of G corresponds
to the operator on M of multiplication by a certain function depending only on λ. See e.g.,
Helgason [30] for the details. All this also makes sense, of course, for the complex n-space
Cn in the place of the bounded symmetric domains — then the Helgason-Fourier transform
becomes the ordinary Fourier transform and �∗�, an operator on L2(Cn) commuting with
all translations and rotations, will be an ordinary Fourier multiplier (or, in other words,
a convolution operator).

In the case of the disc, for instance, the conical functions are given by

eλ,b(x) =
(

1 − |x|2
|b − x|2

) 1
2 +iλ

, x ∈ D, λ ∈ R, b ∈ T ;

and the ordinary Berezin transform B = �∗� on D (corresponding to the Toeplitz calculus
�f = Tf on the Bergman space L2

hol (D)) satisfies (̃Bf )(λ, b) = β(λ)f̃ (λ, b), where

β(λ) =
(

1
4 + λ2

)
π

cosh πλ
. (4.1)

(See [9, 50].)
The reason why we have stated the last formula is that it shows that the condition in

our Corollary 1 for the membership of the Toeplitz operators in Sp is only sufficient, but
not necessary — i.e., there exist f /∈ Lp(dµ) for which Tf ∈ Sp. To see this, note that
e.g., for p = 2,

‖Tf ‖2
S2 = 〈

Tf , Tf
〉
S2 = 〈

�∗�f, f
〉
L2 = ∥∥(

�∗�
)1/2

f
∥∥2
L2 .

Thus if we had f ∈ L2 ⇐⇒ Tf ∈ S2, it would follow that f ∈ L2 ⇐⇒ (�∗�)1/2f ∈
L2, or upon using the Plancherel isomorphism above,

f̃ ∈ L2 ⇐⇒ β1/2f̃ ∈ L2 .

(Here the two occurrences of L2 stand for L2(R × T, |c(λ)|2 db dλ).) The last condition
is clearly equivalent to β and β−1 being bounded; however, in view of (4.1), for β−1 this
is not the case. Up to the author’s knowledge, a necessary and sufficient condition for the
membership of Tf in Sp is unknown.

Similarly, although there are examples easy to construct showing that the various
assertions in Theorem 1 cannot be improved in general, in some instances one gets better
results due to various “cancellations” in the integral defining Af (in the proof of The-
orem 1, we have always been looking just at the “size” of the integrand, with respect
to various norms). A prime instance of this phenomenon is the classical Weyl calculus
of operators on L2(R2n) or, upon employing the Bargmann isometry, on the Fock space
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F := L2
hol (C

n, e−|z|2π−n dm(z)): It corresponds to taking for A the elementary symme-
try operator

Wu(z) := u(−z), f ∈ F .

SinceW does not belong to Sp for any finite p, our Theorem 1 yields only the implication

f ∈ L1(Cn, dm
) �⇒ Wf ∈ B, ‖Wf ‖ ≤ ‖f ‖1 .

However, in reality things are much better, since by the old result of Pool [41],

f ∈ L2(Cn, dm
) �⇒ Wf ∈ S2, ‖Wf ‖S2 = ‖f ‖L2 .

By interpolation, f �→ Wf is bounded from Lp → Sp′
, 1
p

+ 1
p′ = 1, for any 1 ≤ p ≤ 2.

It was shown by Simon and Wong that one cannot do better: For any 2 < p ≤ ∞ there exists
f ∈ Lp for whichWf /∈ B. On the other hand, there are results by Cordes, Folland, Howe,
Meyer, Hwang, Boulkhemair, and others [13], showing that Wf ∈ B if f ∈ BCn+2(Cn)
(the space of function with bounded derivatives of orders up to n+ 2). It would be nice to
know whether our Theorem 1 can be improved in some way in this respect, i.e., whether any
better estimates can possibly be established for Af even if A is only bounded but subject
to some additional hypothesis.

5. General Operator Fields

The notion of the operator field makes perfect sense, of course, also in situations when there
is no group action present: That is, we can consider a mapping

x �→ Ax (5.1)

from a completely arbitrary domain � ⊂ Cn into operators on some Hilbert space H , and
define the A-Toeplitz operators by

Af :=
∫
�

f (x) Ax dx

for some measure dx on �, provided the integral exists in the weak operator topology.
Naturally, there is little hope to prove anything without some additional hypothesis on the
map (5.1). For operator fields of the form

Ax = U(x)∗AU(x)

withA fixed and x �→ U(x) a weakly-measurable function from� into B(H), it was proved
by Arsu ([7, Lemma 4.3]) that if A is trace-class, then

sup
y

‖U(y)‖2 ≤ C < ∞, f ∈ L1 �⇒ Af ∈ S1 and ‖Af ‖tr ≤ C ‖f ‖1 ‖A‖tr

and

sup
y

sup
‖u‖,‖v‖≤1

∫
�

| 〈U(x)u, v〉 |2 dx ≤ C < ∞, f ∈ L∞

�⇒ Af ∈ B and ‖Af ‖ ≤ C‖f ‖∞‖A‖tr .
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The proofs proceed along very similar lines as for parts (b) and (c) of our Theorem 1.
We present another result in this direction, which seems neither to include nor to be

included in the results of Arsu.

Theorem 3. Assume that (5.1) is measurable in the weak operator topology.

(a) If supx ‖Ax‖ ≤ C < ∞ and f ∈ L1(dx), then Af is bounded and

‖Af ‖ ≤ C ‖f ‖1 .

(b) If supx ‖Ax‖tr ≤ C < ∞ and f ∈ L1(dx), then Af is trace-class and

‖Af ‖tr ≤ C ‖f ‖1 .

(c) If f ∈ L∞(dx) and ∫
�

〈(
A∗
xAx

)1/2
u, u

〉
dx ≤ C ‖u‖2 ,∫

�

〈(
AxA

∗
x

)1/2
u, u

〉
dx ≤ C ‖u‖2 ,

(5.2)

for all u ∈ H , then Af is bounded and

‖Af ‖ ≤ C ‖f ‖∞ .

(d) If 1 < p < ∞, f ∈ Lp′
(dx), 1

p
+ 1

p′ = 1, and∫
�

〈(
A∗
xAx

)1/2
u, u

〉p
dx ≤ Cp ‖u‖2p ,∫

�

〈(
AxA

∗
x

)1/2
u, u

〉p
dx ≤ Cp ‖u‖2p ,

(5.3)

for all u ∈ H , then Af is bounded and

‖Af ‖ ≤ C ‖f ‖p′ .

(e) Part (d) also holds if (5.3) is replaced by∫
�

〈(
A∗
xAx

)p/2
u, u

〉
dx ≤ Cp ‖u‖2 ,∫

�

〈(
AxA

∗
x

)p/2
u, u

〉
dx ≤ Cp ‖u‖2 .

(5.4)

Note that the conditions in (c)-(e) cannot be weakened to supx ‖Ax‖tr < ∞: For instance,
if Ax = 〈·, a〉 a ∀x for some fixed a ∈ H , then Af = (

∫
f ) · 〈·, a〉 a which makes sense

only for f ∈ L1.

Proof. Part (a) is just a simple consequence of the Schwarz inequality:∣∣ 〈Af u, v〉 ∣∣ ≤ ‖f ‖1 · sup
x

| 〈Axu, v〉 | ≤ ‖f ‖1 C ‖u‖ ‖v‖ .
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For part (b), we again use the criterion (3.1):

‖Af ‖tr = sup
{uj },{vj }

∑
j

∣∣∣∣ ∫
�

f (x)
〈
Axuj , vj

〉
dx

∣∣∣∣
≤ sup

{uj },{vj }

∫
�

|f (x)|
∑
j

∣∣ 〈Axuj , vj 〉 ∣∣ dx
≤ sup

{uj },{vj }

∫
�

|f (x)| ‖Ax‖tr dx

≤ ‖f ‖1 sup
x

‖Ax‖tr .

For part (c), we recall first of all that for any bounded operator X,

| 〈Xu, v〉 |2 ≤ 〈|X|u, u〉 〈∣∣X∗∣∣v, v〉 , (5.5)

where |X| := (X∗X)1/2. Indeed, letX = W |X| be the polar decomposition ofX, so thatW
is a partial isometry with initial space RanX∗ = Ran |X| and final space RanX; in particular,
W ∗W is identity of Ran |X|. It follows that |X∗| = (W |X|2W ∗)1/2 = W |X|W ∗. Since
|X| and |X∗| are nonnegative operators, by the Schwarz inequality

| 〈Xu, v〉 |2 = | 〈W |X|u, v〉 |2 = ∣∣ 〈|X|u,W ∗v
〉 ∣∣2

≤ 〈|X|u, u〉 〈|X|W ∗v,W ∗v
〉 = 〈|X|u, u〉 〈∣∣X∗∣∣v, v〉 ,

as claimed. Applying now (5.5) to the operators Ax , it follows that

∣∣ 〈Af u, v〉 ∣∣ ≤
∫
�

|f (x)| | 〈Axu, v〉 | dx

≤
∫
�

|f (x)| 〈|Ax |u, u〉1/2 〈∣∣A∗
x

∣∣v, v〉1/2 dx
≤ ‖f ‖∞

( ∫
�

〈|Ax |u, u〉 dx
)1/2( ∫

�

〈∣∣A∗
x

∣∣v, v〉 dx)1/2

≤ ‖f ‖∞ C ‖u‖ ‖v‖
by (5.2). This establishes the claim.

For part (d), consider again the functions

Au,v(x) := 〈Axu, v〉 .
By (5.5),

‖Au,v‖pp =
∫
�

| 〈Axu, v〉 |p dx

≤
∫
�

〈|Ax |u, u〉p/2
〈∣∣A∗

x

∣∣v, v〉p/2 dx
≤

( ∫
�

〈|Ax |u, u〉p dx
)1/2( ∫

�

〈∣∣A∗
x

∣∣v, v〉p dx)1/2

.
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By (5.3), this does not exceed Cp‖u‖p‖v‖p. Thus Au,v ∈ Lp and ‖Au,v‖p ≤
C‖u‖ ‖v‖. Since 〈

Af u, v
〉 =

∫
�

f (x) Au,v(x) dx ,

the desired assertion follows.
Finally, for part (e), observe that for any nonnegative operator X and p > 1,

〈Xu, u〉 ≤ 〈
Xpu, u

〉1/p ‖u‖2−2/p . (5.6)

Indeed, let Et , 0 ≤ t < ∞, be the spectral measure of X; then by the Spectral Theorem
and Hölder’s inequality,

〈Xu, u〉 =
∫ ∞

0
t d(Etu, u)

≤
( ∫ ∞

0
tp d(Etu, u)

)1/p( ∫ ∞

0
d(Etu, u)

)1/p′

= 〈
Xpu, u

〉1/p ‖u‖2/p′
,

which is (5.6). Taking now X = |Ax |, we see that

〈|Ax |u, u〉p ≤ 〈|Ax |pu, u〉 ‖u‖2p−2 ,

and similarly for 〈|A∗
x |u, u〉; thus (5.4) implies (5.3). This completes the proof of Theorem 3.

Note that the inequality (5.2) is easily seen to be fulfilled in the situation as in The-
orem 1, i.e., for Ag = U∗

gAUg on a group G with A trace-class; this follows by the Schur
orthogonality relations much in the same way as in the proof of part (c) of Theorem 1.
Similarly, (5.4) is easily seen to hold in that case if A ∈ Sp; using interpolation, we thus
see that the last theorem completely includes Theorem 1.

Likewise, both (5.2) and (5.4) are straightforward to verify for the operator field
corresponding to Toeplitz operators,

Tx := 〈·, kx〉 kx, where kx := Kx

‖Kx‖ ,

with Kx := K(·, x) the reproducing kernel of the weighted Bergman space with respect to
any weight (or even measure) dν on � such that ‖Kx‖ > 0 ∀x, and

dx = K(x, x) dν(x) .

Indeed, since Tx are rank-one selfadjoint projections, we have |Tx | = |T ∗
x | = |Tx |p =

|T ∗
x |p = Tx for any p > 0, and∫

�

〈Txu, u〉 dx =
∫
�

| 〈u, kx〉 |2 K(x, x) dν(x) =
∫
�

|u(x)|2 dν(x) = ‖u‖2

by the reproducing property of the kernel. Thus both (5.2) and (5.4) hold with C = 1.
In particular, the following analogue of Corollary 1 remains in force. (We warn the reader,
however, that this is hardly a new result — even though the author is not aware of any
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explicit reference for it in the literature — because the proof for the disc given e.g., in [54,
Lemma 6.3.4] extends without changes also to the present situation.)

Corollary 4. Let � be an arbitrary domain in Cn and consider the Bergman space
L2

hol (�, dν) with respect to any measure ν such that this space has a reproducing ker-
nel K(x, y) and K(x, x) > 0 ∀x ∈ �. Then the Toeplitz operator Tf on L2

hol (�, dν)

belongs to Sp whenever f ∈ Lp(K(z, z) dν(z)), and the map f �→ Tf from this Lp into
Sp is continuous (even a contraction).

6. Other Directions

We cannot resist concluding this article by a brief (and, necessarily, selective and incom-
plete) survey of the various other contexts in which Toeplitz operators, or, more generally,
operator calculi of the form (1.6) or (1.10), appear naturally and have been studied by other
authors. As has already been remarked, (1.10) probably appeared first in the theory of rep-
resentations of locally compact groups, where it is in fact nowadays a standard device for
extending the action of a groupG to its group algebraL1(G), see, for instance, the book [32];
and in mathematical physics, in the context of quantization of symplectic manifolds, where
in addition to the article of Ali and Doebner [1] already cited before we should mention the
“quantizers” (=our operator fields) of Gracia-Bondia [27] — see e.g., the recent survey [2]
for further information on the various aspects. In the context of bounded symmetric do-
mains, operator calculi were first systematically treated by Arazy and Upmeier [4], who in
fact have in the meantime taken the whole program a good deal further by treating also
the real symmetric domains [6], where fundamentally new phenomena arise (the “operator
calculi” then act not from functions on the domain into operators on some Hilbert space
of holomorphic functions on it, but from functions on the real bounded symmetric domain
into holomorphic functions on its complexification).

However, the area where Toeplitz operators and related operator calculi have fea-
tured most prominently in various guises is probably the time-frequency analysis. His-
torically, the first appearance was in the context of the Segal-Bargmann (or Fock) spaces,
where Toeplitz operators are traditionally known as “anti-Wick” operators, and the most
time-honored symbol-operator correspondence is of course the classical Weyl calculus.
(An excellent treatment can be found in Folland’s book [25], which also provides ample
historical and bibliographic references.) Here the group G is generated by the transla-
tions f (x) �→ f (x − y) and modulations f (x) �→ eπiω·xf (x), y, ω ∈ Rn, and, if one
wants not only projective but honest representation, one also adds the multiplications
f (x) �→ eπitf (x), t ∈ R, thus getting the Heisenberg group. The resulting calculi,
most often known as various kinds of “localization operators,” were extensively studied by
many authors (see e.g., Boggiatto, Gröchenig, and Cordero [11], Boggiatto [10], Cordero,
Pilipovic, Rodino, and Teofanov [15], Cordero and Rodino [16], Toft [47], to mention just
a few recent ones, and the book by Gröchenig [28]), who also considered these calculi for
symbols in various modulation spaces [23], a direction which we have not tackled at all
in this article. Another kind of “Toeplitz operators” which falls under our Ansatzs (1.6)
or (1.10) arises in multiresolution analysis, cf. Jiang and Peng [31] (who also obtain some
necessary-and-sufficient criteria for Sp-membership of the resulting operators (involving
Wiener amalgam spaces), but again only for symbols which are either holomorphic or non-
negative; some sufficient (but not necessary) criteria are likewise given in [11] and [47]).
Connections between localization operators and the ordinary Toeplitz operators on the



262 Miroslav Engliš

Segal-Bargmann space were studied by Coburn [14] and Lo [33]. (These can in fact be
handled rather efficiently by the “Berezin transforms” �∗� from this article, see [22]).
Of a different flavor are the so-called Calderon-Toeplitz operators on L2(Rn) studied by
Rochberg and Nowak in [42] and [37].

Most of these developments make, in principle, perfect sense also when the Segal-
Bargmann-Fock space is replaced by the standard weighted Bergman spaces on bounded
symmetric domains. Toeplitz operators on these spaces have been studied extensively and
are by now well understood. The situation is a bit more tricky with the Weyl calculus,
of which there exist several versions. One is obtained upon taking for A0 the reflection
operator f (z) �→ f (−z), as on the Fock space; this was studied by Unterberger and Unter-
berger [49], Upmeier [51], and Arazy and Upmeier [5]. From the point of view of quantiza-
tion, this corresponds to the case when the bounded symmetric domain is the phase space of
the quantized system. A different Weyl calculus, for which the domain is not the phase but
the configuration space, was considered by Tate [45]. Still another point of view, leading
to a third variant of the Weyl calculus, consists in identifying it with the partial-isometric
part W of the polar decomposition of the Berezin transform � = W|�| : L2(dµ) → S2

associated to the Toeplitz calculus; this was studied by Orsted and Zhang [38]. (On the
unit disc or, equivalently, the upper half-plane, yet another Weyl calculus, leading ulti-
mately to the appearance of Bessel functions, can be found in Chapter III of the book of
Terras [46].) However, many things which are well understood in the Fock space setting
become much more complicated on bounded symmetric domains, so there is quite a lot of
unexplored territory; for instance, though there is a very good counterpart of Fourier trans-
form on symmetric domains [30], no one seems to have investigated modulation spaces in
that context.

Another topic we have not even touched is the spectrum of the generalized
Toeplitz/localization operators (1.6), (1.10), and its behavior. For instance, for f the char-
acteristic function of some open set, one would naively expect Af to be some kind of
“projection operator,” hence with spectrum concentrated at 0 and 1 and having some sort
of “plunge region” in between. The extent to which this is true has been studied, again
in the context of Toeplitz, or localization, operators (sometimes also called “concentration
operators” in this setting), on the Fock space and bounded symmetric domains by several
authors (De Mari, Feichtinger, and Nowak [18, 24, 19]), and is of interest from the point of
view of practical applications.

One more topic not addressed in this article is the question of compactness of the
operators Af from Theorem 1. Typically, Af is compact if f is compactly supported,
but this condition is far from necessary. For Toeplitz operators on bounded symmetric
domains, a known necessary and sufficient condition is that the Berezin transform �∗�f
vanish at the boundary [8, 21]. Once again, generalizations to other operator calculi are
open to investigation.

Finally, we have excluded completely from our discussion the Toeplitz operators on
Hardy and Dirichlet spaces, since they are not of the form (1.6) or (1.10). The reason is
that for the Hardy space e.g., on the unit circle T, there exists no measure on T invariant
under G (= SU(1, 1)); while for the Dirichlet spaces, there is even no good action Ug of
G on the space. As a result, the theory of Toeplitz and similar calculi has a very different
flavor in these settings — for instance, there are no compact Toeplitz operators on the
Hardy space except the zero operator (hence the analogue of our Theorem 1 concerning
the membership of Tf in Schatten ideals becomes trivial). Similarly, our theory does not
apply to Hankel operators on Bergman (and, even more so, on Hardy and Dirichlet) spaces:
While in principle one can modify the proofs to work for operators from one space into
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another, the problem is that the action of Ug on the target space of Hankel operators —
the orthogonal complement L2 � L2

hol — is no longer irreducible [40]. The reader is
referred e.g., to Rochberg and Wu [43] and Duistermaat and Lee [20] for Toeplitz operators
on the Dirichlet space, while excellent sources for the Hardy space are the recent book by
Peller [39] for Hankel operators, and those by Nikolskii [35, 36] for Hankel and Toeplitz
operators alike.
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