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ABSTRACT. Let G be a stratified Lie group and L be the sub-Laplacian on G. Let 0 �= f ∈
S(R+). We show that Lf (L)δ, the distribution kernel of the operator Lf (L), is an admissible
function on G. It is always in the Schwartz space; one can choose f so that it has all moments
vanishing, or has compact support with arbitrarily many moments vanishing. We also show that,
if ξf (ξ) satisfies Daubechies’ criterion, then Lf (L)δ generates a frame for any sufficiently fine
lattice subgroup of G. Moreover, we show that the ratio of the frame bounds approaches 1 nearly
quadratically as the dilation parameter approaches 1, so that the frame quickly becomes nearly
tight (again assuming that the lattice subgroup is sufficiently fine). In particular, if the dilation
parameter is 21/3, and the lattice subgroup is sufficiently fine, then the “Mexican hat” wavelet,
Le−L/2δ, generates a wavelet frame, for which the ratio of the optimal frame bounds is 1.0000 to
four significant digits.

1. Introduction

Let L denote the sub-Laplacian on a stratified group G [12] (for instance, the Heisenberg
group Hn). If φ ∈ S(G) and

∫
φ = 0, we say φ is admissible if for some c �= 0, Calderón’s

reproducing formula: ∫ ∞

0
φ̃a ∗ φa a−1 da = cδ ,

holds in the sense of tempered distributions, where φa(x) = a−Qφ(a−1x), Q is the ho-
mogeneous dimension of G, φ̃(x) = φ(x−1) and δ denotes the point mass at 0 ∈ G.
(In Section 5, we shall show that this definition of “admissible” is equivalent to the one
generally used in wavelet theory.) In Section 4, we shall show the following.
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Theorem 1. Let f be a nonzero element of S(R+). Then Lf (L)δ ∈ S(G) is admissible.

For example, Le−L
2 δ is admissible. (Here f (L)δ is the distribution kernel of f (L),

so that if F is a Schwartz function, f (L)F = F ∗ [f (L)δ].) Up to a constant, Le−L
2 δ is a

very natural generalization of the Mexican Hat Wavelet to G. In case G = Hn, Theorem 1
was shown for this function in Mayeli [29].

As a corollary of Theorem 1, we shall show in Sections 4 and 5.

Corollary 1.

(a) There exist admissible φ ∈ S(G) with all moments vanishing.

(b) There exist admissible φ ∈ C∞
c (G) with arbitrarily many moments vanishing.

In Corollary 1 (a) and (b), we will in fact show that φ can be chosen to have the form
φ = Lf (L)δ for some f ∈ S(R+). As we will explain at the end of Section 4, Corollary 1
improves on Lemmas 1.61 and 1.62 of Folland-Stein [12] for stratified groups.

Moreover, we shall show in Section 7.

Theorem 2. Let � be a lattice subgroup of G, and let f again be a nonzero element of
S(R+).

(a) If ξf (ξ) satisfies “Daubechies’ criterion” then for sufficiently small b > 0, the
admissible function Lf (L)δ generates a wavelet frame for the lattice b�.
(Note: Daubechies’ criterion holds here in particular if f (ξ) does not vanish for
any ξ > 0, or alternatively if the dilation parameter a is sufficiently close to 1.)

(b) As a → 1, the ratio of the optimal frame bounds in (a) is

1 +O
(
|a − 1|2 log |a − 1|

)
,

for sufficiently small b > 0. (Here a is again the dilation parameter.)

Theorem 2 (b) says, in essence, that if a is close to 1, then the frame is “nearly tight,”
and that the convergence of the ratio of the optimal frame bounds to 1 is nearly quadratic
in |a − 1|. (Again, b must be sufficiently small, and is chosen after a is chosen.)

In particular, we shall show that, if one uses the dilation parameter a = 2
1
3 , then

for all sufficiently small b > 0, the admissible function Le−L
2 δ generates a wavelet frame

for b� which is “nearly tight:” There are frame bounds Bb,Ab with Bb
Ab

= 1.0000 to four
significant digits. This example shows that a need not be all that close to 1 for a nearly tight

frame to be obtained in Theorem 2 (b); a = 2
1
3 is already very good.

Instead of using Le−L
2 δ as the admissible function, one could choose f ∈ S(R+)

so that φ = Lf (L)δ is as in Corollary 1 (a) or (b). One then obtains nearly tight frames
of Schwartz functions with all moments vanishing, or nearly tight frames of C∞

c functions
with arbitrarily many moments vanishing (for suitable a and b).

To clarify our terminology in Theorem 2:

• b� = {bγ : γ ∈ �}; here bγ , a dilate of γ , is defined in (3.1) below.

• For a fixed dilation parameter a > 0, if φ is a function on G, j ∈ Z, and γ ∈ �,
we set

φj,bγ (x) = a− jQ
2 φ

(
[bγ ]−1[a−j x

])
.
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• To say that an L2 function ψ generates a wavelet frame for the lattice b� is to say
that {φj,bγ (x) : j ∈ Z, γ ∈ �} is a frame.

• To say that a function g ∈ S(R+) satisfies Daubechies’ criterion is to say that

A = inf
λ>0

∞∑
j=−∞

∣∣g(a2j λ
)∣∣2 > 0 . (1.1)

In [6], p. 68, Daubechies observes that ifG = R and� = Z, then this is a necessary
condition in Theorem 2 (a). Here we have putg(λ) = λf (λ), forf ∈ S(R+). Then
it is easily seen that the series in (1.1) converges uniformly on compact subsets of
(0,∞). Let u(λ) denote the sum of that series; then clearly u(a2λ) = u(λ) for
all λ > 0. Consequently, A is the just the minimum of the series for λ ∈ [1, a2].
Thus, Daubechies’ criterion is equivalent to the nonexistence of a λ0 > 0 such
that g(a2j λ0) = 0 for all integers j .

In fact, in Theorem 2, one does not even need the full force of the assumption that �
is a lattice subgroup; all that one needs is that � is a discrete subset of G, and that there is
a bounded measurable set R, of positive measure, such that every g ∈ G may be written
uniquely in the form g = xγ with x ∈ R and γ ∈ �.

The authors would like to thank Günter Schlichting and Hartmut Führ for many
helpful discussions.

2. Earlier Work on Wavelets on Stratified Groups

Our results for stratified groups should be contrasted with those of Lemarié [25, 26]. He
restricted himself to the case where � was the set of points all of whose coordinates are
integers (to be sure, this is not always a lattice subgroup). He constructed an orthonormal
basis of spline wavelets which were CN (where N is arbitrary, but finite); which had
arbitrarily (but finitely) many derivatives decaying exponentially; and which had arbitrarily
(but finitely) many moments vanishing. His wavelets were definitely not smooth; they were
built out of splines, that is, functions ψ with LMψ a linear combination of Dirac measures
for some M .

In this article, we are not seeking orthonormality. This however enables us to build
in other features which may in certain circumstances be desirable. Specifically:

• As is well known, the redundancy of a frame is sometimes sought after;

• our continuous wavelets and frames are in the Schwartz space;

• in Corollary 1 (a), φ has all moments vanishing and is in the Schwartz space;

• in Corollary 1 (b), φ ∈ C∞
c (G);

• our prime example, the “stratified Mexican Hat wavelet” Le−L
2 δ, has the prop-

erty that it and all of its derivatives have “Gaussian” decay (by the work of
Jersion/Sanchez-Calle [23] and of Varopoulos [31]). (Here we say a function
F on G has “Gaussian” decay if for some C, c > 0,

|F(x)| ≤ Ce−c|x|2 .

Here |x| is the homogeneous norm of x; see Section 3 below for homoge-
neous norms.)
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There are other previous results in wavelet theory on stratified Lie groups,
but—except in the aforementioned results of Lemarié—high degrees of smoothness and
decay, for continuous wavelets or nearly tight frames, were not previously obtained. The
existence of admissible functions in L2 was proved by Liu-Peng [27] for the Heisenberg
group, and by Führ [14], (Corollary 5.28) for general homogeneous groups. (In contrast to
those works, this article uses no representation theory whatsoever.) Frames consisting of
L2 functions were produced for the Heisenberg group in Maggioni [28].

In the latter article, Maggioni works on a space of homogeneous type which possesses
an involution, and appropriate “dilations” and “translations;” examples are the stratified
groups considered here (and hypergroups as well). He assumes that there is an admissible
function and creates a wavelet frame from it. In the Heisenberg group situation, in order to
get an admissible function, he cites the aforementioned result of Liu-Peng. If one instead
uses our Theorem 1 and Corollary 1, together with Maggioni’s results, one immediately
obtains wavelet frames, in the Schwartz space, on general stratified groups. One even
obtains frames with the properties stated in our Corollary 1 (a) or (b).

In this article, we prefer not to invoke the results of Maggioni, for the following reason.
Maggioni requires that both the translation parameter (b in our Theorem 2) be sufficiently
close to 0 and that the dilation parameter a be sufficiently close to 1. In Theorem 2 (a) we
do not need to require that a be close to 1; for frames, all that is needed is that Daubechies’
criterion be satisfied. This will then enable us to also demonstrate the nearly quadratic
convergence as a → 1 in Theorem 2 (b).

Let us clarify the similarities and differences between our methods and those of
Maggioni, as well as those of earlier authors. Our method of constructing frames will
be through discretizing a continuous problem. This idea goes back to the beginnings of
wavelet theory, for instance, [7] and [13]. In these and other early works, one obtained
various exact discretizations, where there was no error to be estimated in replacing an
integral by a sum. More recently, such errors have been estimated, specifically in the work
of Feichtinger and Gröchenig [10, 11, 19], Gilbert-Han-Hogan-Lakey-Weiland-Weiss [18],
and Maggioni [28]. In the latter two references, the error is proved to have small norm on
L2, by use of the T (1) theorem. In all of these references, the authors require that both the
translation parameter (b in our Theorem 2) be sufficiently close to 0 and that the dilation
parameter a be sufficiently close to 1.

We also will use the T (1) theorem. The reason that we do not have to demand that
a be close to 1, in order to get a frame, is because we shall discretize, not a continuous
wavelet transform (as in the earlier works just cited), but rather the operator Rψ which is
the operator of convolution with

∑
j∈Z

ψ̃aj ∗ψaj (here ψ = Lf (L)δ). We use the spectral
theorem to show that Rψ is bounded below if ξf (ξ) satisfies Daubechies’ criterion.

In Section 8 we shall examine wavelet frame expansions in other Banach spaces
(besides L2). Again such questions have been discussed in the earlier works we have
cited [10, 11, 19, 18], and [28] where again one requires a to be close to 1. (In particular,
in [28], Maggioni addresses such questions on stratified groups.) Here however we shall
again require only that the Daubechies criterion be satisfied (so that a need not be close to
1). The novel feature here will be the use of spectral multiplier theory (as in [12]) to invert
Rψ on appropriate Banach spaces (such as Lp (1 < p < ∞) and the Hardy space H 1).

We also call attention to the important work of Han [20], on general spaces of homo-
geneous type. In Theorem 3.35 of that article, Han obtains frames by discretizing a discrete
version of the Calderón reproducing formula in this general setting. He also uses a version
of the T (1) theorem to estimate errors. He also studies expansions in Lp (1 < p < ∞).
However, one cannot expect to obtain nearly tight frames by the methods in that article.
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Since we hope this article will be of interest to both the “wavelet community” and
the “stratified group community,” we have supplied more details and introductory material
than would be customary had we been writing for only one of these communities.

In future articles, we will study decay and regularity of dual frames, characteriza-
tions of various Banach spaces through wavelet frame expansion, and analogues of time-
frequency localization for frames.

3. Notation

Following [12] (which we refer to for further details), we call a Lie group G stratified if it
is nilpotent, connected and simply connected, and its Lie algebra g admits a vector space
decomposition g = V1⊕· · ·⊕Vm such that [V1, Vk] = Vk+1 for 1 ≤ k < m and [V1, Vm] =
{0}.

If G is stratified, its Lie algebra admits a canonical family of dilations, namely

δr (X1 +X2 + · · · +Xm) = rX1 + r2X2 + · · · + rmXm (Xj ∈ Vj ) .
We identifyG with g through the exponential map. G is a Lie group with underlying

manifold Rn, for some n. G inherits dilations from g: If x ∈ G and r > 0 we write

rx = (
rd1x1, · · · , rdnxn

)
. (3.1)

(Here d1 ≤ · · · ≤ dn are those numbers for with 1 ≤ k ≤ m for which Vk �= 0). The map
x → rx is an automorphism of G.

The (element of) left (or right) Haar measure onG is simply dx1 . . . dxn. The inverse
of any x ∈ G is simply −x. The group law must have the form

xy = (p1(x, y), . . . , pn(x, y)) (3.2)

for certain polynomials p1, . . . , pn in x1, . . . , xn, y1, . . . , yn.
We let S(G) denote the space of Schwartz functions on G. By definition S(G) =

S(Rn).
The numberQ = ∑m

1 j (dim Vj ) will be called the homogeneous dimension ofG. If
φ is a function on G and r > 0, we define φr by

φr(x) = r−Qφ
(
r−1x

)
.

We fix a homogeneous norm function | | on G which is smooth away from 0. Thus, [12]
|rx| = r|x| for all x ∈ G, r ≥ 0, |x−1| = |x| for all x ∈ G, and |x| > 0 if x �= 0.
Moreover, for any a > 0, there is a finite Ca > 0 such that

∫
|x|>R |x|−Q−a = CaR

−a for
all R > 0.

Let X1, · · · , Xk be a basis for V1 (viewed as left-invariant vector fields on G), let
L = −∑k

1X
2
i be the sub-Laplacian. This operator (which is hypoelliptic by Hörmander’s

theorem [21]) is well known to play onGmuch the same fundamental role onG as (minus)
the ordinary Laplacian

∑N
1 (∂Xj )

2 does on RN .
The operator L, restricted to C∞

c , is formally self-adjoint (see Proposition 3 below).
Its closure has domain D = {f ∈ L2(G) : Lf ∈ L2(G)}, where here we take Lf in the
sense of distributions. (This is easily seen through use of subelliptic estimates.) From this
fact it quickly follows that this closure is self-adjoint and is in fact the unique self-adjoint
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extension of L|C∞
c

. We now let L denote this self-adjoint operator. Suppose that L has
spectral resolution

L =
∫ ∞

0
λ dPλ .

One then has that P{0}H = 0. To see this, say f ∈ L2(G) and Lf = 0; we need to show
that f = 0. Since L is the self-adjoint extension of L|C∞

c
, and Lf = 0, clearly Lf = 0 in

the sense of distributions. But by [16], if f ∈ S′ and Lf = 0, then f is a polynomial. If
f ∈ L2(G), then surely f = 0, as claimed.

As usual, if f is a bounded Borel function on [0,∞), we define the operator f (L) by

f (L) =
∫ ∞

0
f (λ) dPλ ;

this is well defined and bounded on L2(G) by the spectral theorem. We denote by f (L)δ
the corresponding distribution kernel of the bounded operator f (L). Thus,

f (L)η = η ∗ f (L)δ ∀ η ∈ S(G) .

Notation. We adopt the f (L)δ notation, because formally

f (L)η = f (L) [η ∗ δ] = η ∗ f (L)δ
since L is left-invariant.

Let R+ = [0,∞) and set

S(R+)={f ∈ C∞(R+) : ∀l, f (l) decays rapidly at infinity and lim
λ→0+ f

(l)(λ) exists
}
.

Then by Borel’s theorem on the existence of smooth functions with arbitrary Maclaurin
series we have S(R+) = S(R)|R+ .

By [22] (or [15] if G is the Heisenberg group), one has the following.

Theorem 3. Let f ∈ S(R+). Then the distribution kernel of the operator f (L) =∫∞
0 f (λ) dPλ which we shall denote by f (L)δ, is a Schwartz function on G.

We have the following elementary lemma on distribution kernels.

Lemma 1. Say f, g ∈ S(R+). The

(1) f̄ (L)δ = f̃ (L)δ

(2) [fg] (L)δ = f (L)δ ∗ g(L)δ.
(3) For t > 0 if the function f t is given by f t (λ) = f (tλ) ∀ λ ∈ [0,∞), then[

f t (L)δ
] = [f (L)δ]√t .

Proof. For (1), using the spectral theorem we have f̄ (L) = f (L)∗, hence for any
φ,ψ ∈ S(G) we obtain〈

φ ∗ f̄ (L)δ, ψ 〉 = 〈
f̄ (L)φ,ψ

〉 = 〈φ, f (L)ψ〉
= 〈φ,ψ ∗ f (L)δ〉 =

〈
φ ∗ f̃ (L)δ, ψ

〉
(3.3)
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which implies the assertion.
For (2), say φ ∈ S(G). By the spectral theorem,

[(fg)(L)]φ = g(L)f (L)φ = [φ ∗ f (L)δ] ∗ g(L)δ ,
yielding (2). For the proof of (3) see Lemma 6.29 of [12].

C will always denote a constant, which may change from one occurrence to the next.

4. Proof of Theorem 1 and Corollary 1

To prove Theorem 1, we need the following lemma.

Lemma 2. For any f ∈ S(R+) with
∫∞

0 f (s) ds �= 0 we have

K =
∫ ∞

0
(Lf (L)δ)t

dt

t
= 1

2
cδ ,

where c = ∫∞
0 f (s) ds is a nonzero constant.

Note that Theorem 1 follows immediately from this lemma, since(
L̃f (L)δ

)
t
∗ (Lf (L)δ)t =

[
L̃f (L)δ ∗ (Lf (L)δ)

]
t
,

and by Lemma 1 L̃f (L)δ ∗ (Lf (L)δ) = Lg(L)δ, where g(λ) = λ | f (λ) |2.

Proof. Let h(λ) = λf (λ). Writeψ = h(L)δ = Lf (L)δ; by Lemma 1,ψt = ht
2
(L)δ for

any t > 0. DefineKε,A = ∫ A
ε
ψt

dt
t

. Since
∫
G
ψ = ∫

G
Lf (L)δ = 0, by Theorem 1.65 [12],∫ A

ε
ψt

dt
t

converges in S′ as ε → 0 andA → ∞ to the tempered distributionK = ∫∞
0 ψt

dt
t

,
which isC∞ away from 0. Suppose φ1 ∈ S(G). Then φ1∗Kε,A ∈ S and for any φ2 ∈ S(G)
we have

〈φ1 ∗Kε,A, φ2〉 = 〈
Kε,A, φ̃1 ∗ φ2

〉 = ∫ A

ε

〈
ψt , φ̃1 ∗ φ2

〉dt
t

=
∫ A

ε

〈φ1 ∗ ψt , φ2〉dt
t

=
∫ A

ε

〈[
ht

2
(L)
]
φ1, φ2

〉dt
t

=
∫ A

ε

∫ ∞

0
t2λf

(
t2λ
)
d〈Pλφ1, φ2〉dt

t

=
∫ ∞

0

∫ A

ε

t2λf
(
t2λ
)dt
t
d〈Pλφ1, φ2〉

= 1

2

∫ ∞

0

∫ λA2

λε2
f (t) dt d〈Pλφ1, φ2〉 .

Letting F(x) = − ∫∞
x
f (s) ds (so that F ′ = f ) we see that this double integral equals∫ ∞

0

∫ λA2

λε2
f (t) dt d〈Pλφ1, φ2〉 =

∫ ∞

0

(
F
(
λA2)− F

(
λε2))d〈Pλφ1, φ2〉 .
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Since the function F is bounded, and the measure 〈Pλφ1, φ2〉 is supported on (0,∞) (in
that P{0} = 0), we see that

lim
ε→0 A→∞

∫ ∞

0

(
F
(
λA2)− F

(
λε2))d〈Pλφ1, φ2〉 =

∫ ∞

0

∫ ∞

0
f (s) ds d〈Pλφ1, φ2〉

=
∫ ∞

0
f (s)ds〈φ1, φ2〉 .

This proves the lemma. Thus, Theorem 1 is established as well.

To begin the proof of Corollary 1, if α = (α1, . . . , αn) is a multi-index, we let
|α| = ∑

k dkαk . Note that |α| is the homogeneous degree of the monomial xα , since
(rx)α = r |α|xα for r > 0. For any positive integer k, Lkxα is a polynomial which is
homogeneous of degree |α| − 2k; it must therefore be identically zero if |α| − 2k < 0.
Integration by parts now at once shows the following proposition.

Proposition 1. If F ∈ S(G), and if |α| < 2k, then
∫
G
xαLkF = 0.

Proof of Corollary 1. For (a), select any nonzero g ∈ S(R+)which vanishes identically
in a neighborhood of 0. For any positive integer k, define gk(x) = g(x)

xk
; then gk ∈ S(R+),

and g(L)δ = Lkgk(L)δ. By Theorem 1 and Proposition 1, g(L)δ is admissible and has all
moments vanishing.

For (b), we note that if g ∈ C∞
c (R) is real-valued and even, and if m(λ) = ĝ(

√
λ),

then m(L)δ ∈ C∞
c (G). (This is proved in the Appendix to [17]; the argument is there

attributed to J. Dziubanski, but he says the result was well-known; it appears to be based on
ideas of Michael Taylor.) Thus, if g �= 0, then for any positive integer k, φk = Lkm(L)δ =
L(Lk−1m(L)δ) is admissible and in C∞

c (G), and
∫
xαφk = 0 whenever |α| < 2k. (Note

that φk cannot be identically zero, for then λkm(λ) would be identically zero, so g would
be zero.) This completes the proof.

Remark. Corollary 1 (b) improves on Theorems 1.61 and 1.62 of Folland-Stein [12], at
least for stratifiedG. There it was shown that there existφ1, . . . , φM,ψ1, . . . , ψM ∈ S(G)
with arbitrarily many moments vanishing, with the ψj having compact support, and with∑M

1

∫∞
0 φ

j
t ∗ ψjt dtt = δ; here M depended on the number of moments one wanted to

vanish. Now we see that we can always take M = 1 and ψ1 = φ̃1, so that both have
compact support.

5. Continuous Wavelet Transform

In this section we study the continuous wavelet transform with respect to the quasiregular
representation of the groupM := G� (0,∞), whereG is a stratified group with homoge-
neous degree Q and with Haar measure db. M is a locally compact group with left Haar
measure dµ(M) = a−(Q+1) da db.

The positive number a defines an automorphism of the group G, which acts by
dilation. The quasi-regular representation π of M acts on L2(G) as follows.

Let φ ∈ L2(G), then

(π(x, a)φ)(y) = (TxDaφ)(y) = a−Q
2 φ
(
a−1(x−1y

)) ∀x, y ∈ G , ∀a > 0 . (5.1)
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Thus, Tx acts by left translation by x−1, while Da denotes a unitary dilation operator with
respect to a.

The following definition and more details can be found for example in [14].

Definition 1. Let φ and ψ be any fixed functions in L2(G). Define the coefficient
function Vφ,ψ on G by

Vφ,ψ : (x, a) �→ 〈ψ, TxDaφ〉 . (5.2)

The coefficient function Vφ,ψ is not necessarily square integrable onM . The function
φ is called admissible when for any ψ the associated coefficient function Vφ,ψ is square
integrable, and the operator

Vφ : L2(G) −→ L2(M) ,

given by [Vφ(ψ)](x, a) = Vφ,ψ(x, a), is an isometry. Then, for the admissible vector φ,
the bounded operator Vφ is called a continuous wavelet transform of L2(G).

We shall soon show (in Proposition 2 below) that this (accepted) definition of admis-
sible is consistent with our usage of the word admissible in Theorem 1.

The existence of admissible vectors in L2(G) for π was proved by Führ [14], (Corol-
lary 5.28) for homogeneous groups. We recall this in the next theorem.

Theorem 4. Let M = G � H , where G is a homogeneous Lie group and H is a one-
parameter group of dilations. Then the quasi-regular representation π is contained in the
left regular representation λM . Hence, there exists a continuous wavelet transform on G
arising from the action of G by left translations and the action of the dilations.

We now show (without use of Theorem 4) that there exist admissible φ ∈ S(G). We
claim the following.

Proposition 2. Say φ ∈ S(G) and
∫
φ = 0, so that by Theorem 1.65 of [12], if

Kε,A =
∫ A

ε

φ̃t ∗ φt dt
t

then K = limε→0,A→∞Kε,A exists in S′(G), C∞ away from 0 and is homogeneous of
degree −Q. Then φ is admissible (in the sense of Definition 1) if and only if K = δ up to
a constant multiple. In particular if 0 �= f ∈ S(R+), then φ = Lf (L)δ is admissible.

Proof. For ψ ∈ L2(G) we have:∫
M

∣∣Vφψ∣∣2 =
∫
G

∫ ∞

0

∣∣∣〈ψ, TbDaφ̃〉∣∣∣2 dµ(M)
=
∫
G

∫ ∞

0

∣∣∣(ψ ∗Daφ̃
)
(b)

∣∣∣2a−(Q+1) da db so ,∫
M

∣∣Vφψ∣∣2 =
∫ ∞

0

∥∥ψ ∗ (Daφ̃)∥∥2
a−(Q+1) da . (5.3)

But for any a > 0,∥∥ψ ∗Daφ̃
∥∥2
a−Q = 〈

ψ,ψ ∗Daφ̃ ∗Daφ
〉
a−Q = 〈

ψ,ψ ∗ φ̃a ∗ φa
〉
. (5.4)
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Since Kε,A → K in S′, if g ∈ S, then g ∗Kε,A → g ∗K pointwise and for some N,C∣∣(g ∗Kε,A)(x)
∣∣ ≤ C(1+ | x |)N for all x, ε, A .

Using the dominated convergence theorem in (5.3) and (5.4), if ψ ∈ S(G), then

‖ Vφψ ‖2
L2= 〈ψ,ψ ∗K〉 ≤ C ‖ ψ ‖2

L2 (5.5)

since the map ψ → ψ ∗K is bounded on L2(G). Vφ thus maps S(G) to L2(M) and has a
unique bounded extension to a map fromL2(G) toL2(M). But ifψk → ψ inL2(G), surely
Vφψk → Vφψ pointwise , so this extension can be none other than Vφ . Accordingly (5.5)
holds for all ψ ∈ L2(G). We thus have

‖ Vφψ ‖L2(M)=‖ ψ ‖L2 ∀ψ ∈ L2 ⇐⇒ 〈ψ,ψ ∗K〉 = 〈ψ,ψ〉 ∀ψ ∈ L2

⇐⇒ ψ ∗K = ψ ∀ψ ∈ L2

⇐⇒ K = δ up to a constant ,

as desired. (In the second implication, we have used polarization.) This completes
the proof.

6. Lemmas on Vector Fields

In this section we gather a number of facts which will be needed in our discussion of frames.
These facts are analogues for G of very standard facts on Rn (such as the fundamental
theorem of calculus—see Lemma 3 below).

The right-invariant vector fields Yl (1 ≤ l ≤ n) may be defined by

Ylg = −X̃l g̃
for g ∈ C1(G).

We note the following.

Proposition 3. Suppose φ ∈ S(G). Then, for all l,
∫
G
Xlφ = 0 and

∫
G
Ylφ = 0.

Proof. Note that each Xl is homogeneous of degree al . This forces Xl to have the form

Xl = ∂

∂xl
+
∑
k>l

pk(x)
∂

∂xk
,

wherepk is a homogeneous polynomial of degree ak−al < ak . (See [12] for a detailed proof
of this.) Accordingly pk(x) must actually be a polynomial in x1, . . . , xl , so multiplication
by it commutes with ∂/∂xk for k > l.

Accordingly
∫
G
Xlφ = 0. By using ˜ we see that

∫
G
Ylφ = 0 as well.

If x = (x1, . . . , xn) ∈ G, and t > 0, for want of a better notation, let us define

[t]x = (tx1, . . . , txn)

[recall that tx means something else, see (3.1)].
Recall that we are identifyingGwith g through the exponential map. Then, if x ∈ G,

we say that the point exp(x ·X)(0) has coordinates x.
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Lemma 3.

(a) Suppose that x ∈ G and that U is an open neighborhood of the line segment
{[t]x : 0 ≤ t ≤ 1}. If g ∈ C1(U), then

g(x)− g(0) =
∫ 1

0
[(x ·X)g]([t]x) dt (6.1)

and

g(x)− g(0) =
∫ 1

0
[(x · Y )g]([t]x) dt . (6.2)

(b) Suppose that x, u ∈ G and that U is an open neighborhood of the set {u([t]x) :
0 ≤ t ≤ 1}. If h ∈ C1(U), then

h(ux)− h(u) =
∫ 1

0
[(x ·X)h](u([t]x)) dt .

(c) Suppose that x, u ∈ G and that U is an open neighborhood of the set {([t]x)u :
0 ≤ t ≤ 1}. If h ∈ C1(U), then

h(xu)− h(u) =
∫ 1

0
[(x · Y )h](([t]x)u) dt .

Proof. For (a), we note that

g(x)− g(0) = g(exp(x ·X)(0))− g(0)

=
∫ 1

0

d

dt
g(exp(t[x ·X])(0)) dt

=
∫ 1

0
[(x ·X)g]([t]x) dt ,

proving (6.1). Applying ˜ to (6.1), we find (6.2) as well. For (b), we apply (6.1) to the
function g = hu where hu(x) = h(ux). For (c) we apply (6.2) to the function g = hu
where hu(x) = h(xu). This completes the proof.

We will be needing two applications of Lemma 3, Propositions 4 and 7 below. First,
however, some remarks on homogeneous norms.

A homogeneous norm function satisfies a type of triangle inequality [12], Equa-
tion (1.8): For some C > 0, |xy| ≤ C(|x|+ |y|) for all x, y ∈ G. We shall need three other
facts about homogeneous norms.

Proposition 4. There exists c > 0 such that for all R > 0, if |u−1x| ≥ 2R, then

min
|u−1y|≤R

∣∣x−1y
∣∣ ≥ c

∣∣u−1x
∣∣ .

Proof. Since x−1y = (x−1u)(u−1y) = (u−1x)−1(u−1y), we may after a translation
assume u = 0. It is enough to show that, for some c > 0, if |y| ≤ |x|

2 , then |x−1y| > c|x|.
After a dilation we may assume |x| = 2 and |y| ≤ 1. By the triangle inequality, for some
C > 0, |x−1y| ≥ |x|

C
− |y|, so we may assume also that |x| ≤ 2C. But |x−1y| does not

vanish for (x, y) in the compact set

{x : 2 ≤ |x| ≤ 2C} × {y : |y| ≤ 1} ,
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so it has a positive minimum there, as desired.

Sometimes we use the “standard homogeneous norm function” on G, defined by

|x| =
(

n∑
k=1

|xk|2bk
) 1

2A

,

where A = a1 . . . an, and each bk = A
ak

. We shall clearly indicate when we do this
the following.

Proposition 5. There is a constant C > 0 such that for all x = (x1, . . . , xn) ∈ G,
|xm| ≤ C|x|am for 1 ≤ m ≤ n.

Proposition 6. There is a constantC > 0 such that for all x ∈ G and all t with 0 ≤ t ≤ 1,
we have |[t]x| ≤ C|x|. If | | is the standard homogeneous norm function, we can takeC = 1.

Proof of Propositions 5 and 6. Since any two homogeneous norms are equivalent,
we may assume that | | is the standard homogeneous norm function. But in that case the
propositions are evident (and we can take C = 1 in both).

We now turn to the applications of Lemma 3. We define a normalized bump function
to be a C1 function with support in the unit ball B(0, 1) = {x : |x| < 1} with C1 norm
less than or equal to 1. For any function f : G → C, if R > 0 and u ∈ G, we let
f R,u(x) = f (R−1(u−1x)). We claim the following.

Lemma 4. There exists a constant C > 0 such that for all normalized bump functions f ,
all R > 0, and all u, x, y ∈ G we have

∣∣∣f R,u(xy)− f R,u(x)

∣∣∣ ≤ C

n∑
k=1

|yk|
Rak

.

Proof. We have

f R,u(xy)− f R,u(x) = f
(
R−1(u−1xy

))− f
(
R−1(u−1x

)) = f
(
x′y′)− f

(
x′) ,

where x′ = R−1(u−1x) and

y′ = R−1y =
( y1

Ra1
, . . . ,

yn

Ran

)
.

In proving the lemma we may therefore assume that R = 1 and u = 0, so that f R,u = f .
In that case we use Lemma 3 (b) to find that

|f (xy)− f (x)| =
∫ 1

0
[(y ·X)f ] (x ([t]y)) dt ≤ C

n∑
k=1

|yk|

as claimed, since the functions Xkf are bounded (uniformly for all normalized bump
functions f ).

We now turn to our second application of Lemma 3. First we define a Calderon-
Zygmund kernel to be a complex-valued function K(x, y), defined for all x, y ∈ G with
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x �= y, which is continuous (off the diagonal), and which, for some C, c > 0, satisfies the
following three estimates (for all x, y ∈ G with x �= y):

|K(x, y)| ≤ C∣∣y−1x
∣∣Q ; (6.3)

If
∣∣x−1x′∣∣ ≤ c

∣∣y−1x
∣∣, then

∣∣K(x′, y
)−K(x, y)

∣∣ ≤ C

∣∣x−1x′∣∣∣∣y−1x
∣∣Q+1

; (6.4)

If
∣∣y−1y′∣∣ ≤ c

∣∣y−1x
∣∣, then

∣∣K(x, y′)−K(x, y)
∣∣ ≤ C

∣∣y−1y′∣∣∣∣y−1x
∣∣Q+1

. (6.5)

We then claim the following.

Proposition 7. Suppose K(x, y) is defined and C1 away from the diagonal in G × G,
and that for some A > 0,

∣∣XαxXβyK(x, y)∣∣ ≤ A
∣∣y−1x

∣∣−(Q+|α|+|β|)
, (6.6)

whenever 0 ≤ α1 + . . . + αn + β1 + . . . + βn ≤ 1, and whenever x, y ∈ G with x �= y.
Then K is a Calderon-Zygmund kernel. (Here Xαx = X

α1
1 . . . X

αn
n , where the Xk are taken

in the x variable.)

Proof. By taking α = β = 0 in (6.6), we have (6.3). To prove (6.4), we may assume
we are using the standard homogeneous norm function; we will then show that (6.4) holds
with c = 1

2 .

In this proof, it will be convenient let Xk,1K(x, y) denote the result of applying Xk
to K in the x variables.

Suppose x �= y and

∣∣x−1x′∣∣ ≤
∣∣y−1x

∣∣
2

=
∣∣x−1y

∣∣
2

.

If 0 ≤ t ≤ 1, then by Proposition 6,

∣∣[t](x−1x′)∣∣ ≤ ∣∣x−1x′∣∣ ≤
∣∣x−1y

∣∣
2

as well. In particular, [t] (x−1x′) �= x−1y, so x
([t] (x−1x′)) �= y. Moreover, by Proposi-

tion 4, there exists a c1 > 0 (independent of the specific values of x, y, x′, t) such that

∣∣y−1x
([t](x−1x′))∣∣ ≥ c1

∣∣y−1x
∣∣ .

We write x′ = x(x−1x′). Using Lemma 3 and Proposition 5, we find that for some
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C1, C2, C3 > 0,

∣∣K(x′, y
)−K(x, y)

∣∣ =
∣∣∣∣ ∫ 1

0

n∑
k=1

(
x−1x′)

k

(
Xk,1K

(
x
([t](x−1x′)), y) dt∣∣∣∣

≤ C1A

n∑
k=1

∣∣(x−1x′)
k

∣∣∣∣y−1x
∣∣Q+ak

≤ C2A

n∑
k=1

∣∣x−1x′∣∣ak∣∣y−1x
∣∣Q+ak

≤ C3A

∣∣x−1x′∣∣∣∣y−1x
∣∣Q+1

so that (6.4) holds. (Note for later purposes thatC1, C2, C3 depend only on the groupG and
not in any way onK .) The proof of (6.5) is exactly analogous. This proves the proposition.

We will be using Lemma 4 and Proposition 7 in conjunction with the T (1) theorem
for stratified groups. We review this theorem in a moment.

First, however, some definitions. Suppose that a linear operatorT : C1
c (G) → L2(G).

One says that T is restrictedly bounded if there is a C > 0 such that ‖T (f R,u)‖2 ≤ CRQ/2

for all normalized bump functions f , all R and all u.
If T : C1

c → L2(G) is linear, we say that a linear operator T ∗ : C1
c → L2(G) is its

formal adjoint if for all f, g ∈ C1
c we have

〈Tf, g〉 = 〈
f, T ∗g

〉
.

T ∗ is evidently unique if it exists.
We will be using the “easier case” of the David-Journé T (1) theorem [8] for stratified

groups ([24] or [30], pp. 293–300). (The latter reference is only for G = Rn, but the proof
for general G requires only minor changes—see the Appendix to this article.) We may
formulate this theorem as follows.

Theorem 5. Suppose that T : C1
c (G) → L2(G) has a formal adjoint T ∗ : C1

c (G) →
L2(G). Suppose further:

(i) T and T ∗ are restrictedly bounded;

(ii) there is a Calderon-Zygmund kernelK such that if f ∈ C1
c , then for x outside the

support of f , (Tf )(x) = ∫
K(x, y)f (y) dy; and

(iii) T (1) = T ∗(1) = 0.

Then T extends to a bounded operator on L2.

Condition (iii) means precisely ([30], pp. 300–301) that whenever f ∈ C∞
c (G) and∫

G
f = 0, we have that

∫
G
Tf = ∫

G
T ∗f = 0. In fact we shall show that this is true for

all f ∈ C1
c (G) with

∫
G
f = 0. (Even without condition (iii), conditions (i) and (ii) imply

that for all such f , Tf , and T ∗f are in L1(G).)
In fact we shall need a quantitative version of Theorem 5.

Theorem 6. There exist C0, N > 0, such that for any A > 0, we have the following.
Whenever T : C1

c (G) → L2(G) has a formal adjoint T ∗ : C1
c (G) → L2(G), and whenever

T , T ∗ satisfy:
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(i) ‖Tf R,u‖2 ≤ AR
Q
2 and ‖T ∗f R,u‖2 ≤ AR

Q
2 for all normalized bump functions f ;

(ii) there is a kernel K(x, y), C1 off the diagonal, such that if f ∈ C1
c , then for x

outside the support of f , (Tf )(x) = ∫
K(x, y)f (y) dy; and whenever at most

one of α1, . . . , αn, β1, . . . , βn is not zero, and whenever x, y ∈ G with x �= y,
we have ∣∣∣XαxXβyK(x, y)∣∣∣ ≤ A

∣∣y−1x
∣∣−(Q+|α|+|β|) ;

(iii) and T (1) = T ∗(1) = 0,

then T extends to a bounded operator on L2, and ‖T ‖ ≤ C0A.

Proof. This follows at once from an examination of the proofs of Theorem 5 (in [24]
or [30]) and of Proposition 7 above.

7. Frames

Suppose now that one has a discrete subset � of G, and a bounded measurable set R ⊆ G

of positive measure, such that every g ∈ G may be written uniquely in the form g = xγ

with x ∈ R and γ ∈ �.
For example, one could choose � to be any lattice subgroup ofG, if one is available.

Thus, � is a discrete subgroup of G, such that G/� is compact. (Note: by [5], p. 197,
Equation (2), it is equivalent to assume that � is a discrete subgroup of G, such that G/�
has finite volume with respect to the induced invariant measure. If the coefficients of all
the polynomials appearing in (3.2) are integers, as is the case for the Heisenberg group, one
could take � to be the integer lattice, namely the set of points all of whose coordinates are
integers.) We then let R be a fundamental region for G/�. (By this we mean a bounded
measurable subset of G, of positive measure, consisting of precisely one representative of
each right coset of �.) Thus, every g ∈ G may be written uniquely in the form g = γ x

with x ∈ R, γ ∈ �.

Definition 2. A countable subset {en}n∈I of a Hilbert space H is said to be a frame if
there exist two positive numbers A ≤ B such that, for any f ∈ H,

A ‖ f ‖2≤
∑
n∈I

| 〈f, en〉 |2≤ B ‖ f ‖2 ,

the positive numbers A and B are called frame bounds.

Note that the frame bounds are not unique. The a lower frame bound is the supremum
over all lower frame bounds, and the optimal upper frame bound is the infimum over all
upper frame bounds. The optimal frame bounds are of course frame bounds. The frame is
called a tight frame when we can takeA = B. (Informally, we also say the frame is “nearly
tight” if B

A
is close to 1.) Frames were introduced in [9]. (For more information on frames,

see [6] or [2].)
We consider φ ∈ S(G) with

∫
φ = 0. For a, b > 0, we define

φj,bγ (x) = [Daj Tbγ φ](x) = a− jQ
2 φ
([bγ ]−1[a−j x

])
,

(a will usually be fixed.) The set {φj,bγ } is called the wavelet system generated by φ. We
seek conditions on φ and the numbers a, b > 0 which guarantee that this wavelet system is
a frame (in which case it is called a wavelet frame).
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In order to do this we study the operator

Sφ,b : f →
∑

γ∈�,j∈Z

〈f, φj,bγ 〉φj,bγ .

It is not hard to see [6] that {φj,bγ } is a frame if and only if: For any f ∈ L2(G),
the series defining Sφ,bf converges unconditionally to f in L2(G); and Sφ,b is bounded on
L2(G); and Sφ,b ≥ AI for some strictly positive number A. (If the frame is “nearly tight,”
that is if, for certain frame bounds A,B one knows that B

A
− 1 = ε is small, then ( 1

A
)Sφ,bf

is a good approximation to f . Indeed, for any f ∈ L2,

A‖f ‖2 ≤ 〈Sφ,bf, f 〉 ≤ B‖f ‖2

implies that, as operators, 0 ≤ ( 1
A
)Sφ,b − I ≤ εI , whence ‖( 1

A
)Sφ,b − I‖ ≤ ε. For this

reason, one generally prefers “nearly tight” frames.)
More generally we shall need to consider φ,ψ ∈ S(G) with

∫
φ = ∫

ψ = 0 and
look at operators of the form

Sφ,ψ,b : f →
∑

γ∈�,j∈Z

〈f, φj,bγ 〉ψj,bγ .

Theorem 7. Fix a > 0. In parts (a), (b), (c), and (d) we also fix φ,ψ ∈ S(G) with∫
φ = ∫

ψ = 0.

(a) For any 0 < b < 1 and f ∈ C1
c (G), the series defining Sφ,ψ,bf converges

absolutely, uniformly on G.

(b) For any 0 < b < 1 and f ∈ C1
c (G), Sφ,ψ,bf ∈ L2(G).

(c) For some C > 0, ‖Sφ,ψ,bf ‖2 ≤ Cb−Q‖f ‖2 for all 0 < b < 1 and f ∈ C1
c (G).

Consequently, Sφ,ψ,b extends to be a bounded operator on L2(G). (In fact, if we
put T = Sφ,ψ,b, then T satisfies the hypotheses of Theorem 5.)

(d) If f, g ∈ L2(G), then

〈Sφ,ψ,bf, g〉 =
∑

γ∈�,j∈Z

〈f, φj,bγ 〉〈ψj,bγ , g〉 ; (7.1)

here the series converges absolutely.

(e) Say B0 is a bounded subset of S(G), f ∈ C1
c (G) and b > 0. Then the series

defining [Sφ,ψ,bf ](x) converges absolutely, uniformly for x ∈ G and φ,ψ ∈ B0
with

∫
ψ = ∫

φ = 0.

(f) If B0 is a bounded subset of S(G), then there exists a constant C such that
‖Sφ,ψ,b‖ ≤ Cb−Q for all 0 < b < 1 and all ψ, φ ∈ B0 with

∫
ψ = ∫

φ = 0.

Remark. For the boundedness of Sφ,ψ,b on L2, one may also consult Section 6 of Mag-
gioni [28]. If G = Rn, the fact that T = Sφ,ψ,b satisfies the conclusions of Theorem 5
has a long history. For instance, in Lemma 9.1.5 of [6], condition (ii) of Theorem 5 (b) is
verified for this T , ifG = R. IfG = Rn, Theorem 5 is verified for this T , and more general
operators T , in [18], Sections 2.1–2.3.

To prove the theorem, we shall need the following technical lemma.
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Lemma 5. For N > 0 define the function gN on G by

gN(x) = (1 + |x|)−N .
Then:

(a) Let B0 be a bounded subset of G. Then for some C > 0,

gN(x) ≤ CgN
(
y−1x

)
for all x ∈ G and y ∈ B0.

(b) SayM,N >
Q
2 , and suppose 0 < L < min(M− Q

2 , N− Q
2 ). Then for someC >

0,

(gM ∗ gN)(x) ≤ CgL(x)

for all x ∈ G.

Proof. For (a), we use the triangle inequality for G: For some C > 0,∣∣y−1x
∣∣ ≤ C(|y| + |x|)

for all x, y ∈ G. From this we find at once that(
1 + ∣∣y−1x

∣∣)N ≤ CN(1 + |y|)N(1 + |x|)N ,
and (a) now follows.

For (b), we similarly observe that

(1 + |x|)L ≤ CL(1 + |y|)L(1 + ∣∣y−1x
∣∣)L .

Accordingly

(1 + |x|)L(gM ∗ gN)(x) =
∫
(1 + |x|)LgM(y)gN

(
y−1x

)
dy

≤ CL
∫
gM−L(y)gN−L

(
y−1x

)
dy

≤ CL‖gM−L‖2‖gN−L‖2

which is finite, since M − L,N − L >
Q
2 . This completes the proof.

Note that Lemma 5 (a) implies that for any measurable subset E ⊆ B0 of positive
measure, we have that

gN(x) ≤ C

m(E)

∫
E

gN
(
y−1x

)
dy ,

for all x ∈ G. Such facts will be used without further comment in the proof which follows.

Proof of Theorem 7. We first prove (a). Since we shall be using Theorem 6 in our
proof of (c), we shall actually need a stronger conclusion than (a).

We shall in fact show that:

(*) For all normalized bump functions f and all R > 0 and u ∈ G, there exists C >
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0 such that the series defining Sφ,ψ,bf R,u converges absolutely, uniformly on G, and
‖Sφ,ψ,bf R,u‖∞ ≤ Cb−Q.

We begin by noting that there existsC > 0 such that for any f,R, u as above we have:∣∣〈f R,u, φj,bγ 〉∣∣ ≤ ∥∥f R,u∥∥1‖φj,bγ ‖∞ ≤ CRQa− jQ
2 .

We let

Cj,R = sup
∣∣〈f R,u, φj,bγ 〉∣∣ ,

the sup being taken over all normalized bump functions f , all u ∈ G, and all γ ∈ �. Thus,

Cj,R ≤ CRQa− jQ
2 . (7.2)

Note also that if R ≥ aj , then

Cj,R ≤ CR−1aj (
Q
2 +1) . (7.3)

Indeed, say f,R, u, γ are as above. Since
∫
φ = 0, putting v = bγ we have by

Lemma 4 that∣∣〈f R,u, φj,bγ 〉∣∣ = a− jQ
2

∣∣∣∣∫
G

f R,u(y)φ
(
a−j [(ajv−1

)
y
]])

dy

∣∣∣∣
= a− jQ

2

∣∣∣∣∫
G

f R,u
((
ajv

)
y
)
φ
(
a−j y

)
dy

∣∣∣∣
= a− jQ

2

∣∣∣∣∫
G

[
f R,u

((
ajv

)
y
)

− f R,u
(
ajv

)]
φ
(
a−j y

)
dy

∣∣∣∣
≤ Ca− jQ

2

∫
G

(
n∑
k=1

|yk|
Rak

) ∣∣∣φ (a−j y
)∣∣∣ dy

= Ca
jQ
2

n∑
k=1

[
aj

R

]ak (∫
G

|ykφ(y)| dy
)

≤ C
aj(

Q
2 +1)

R
,

since we are here assuming that a
j

R
≤ 1.

Now select any N > Q+ 1, and note that |ψ | ≤ CgN for some C. Fixing j ∈ Z, we
now see that∑

γ∈�

∣∣〈f R,u, φj,bγ 〉ψj,bγ (x)∣∣ ≤ Cj,RC
∑
γ∈�

Daj Tbγ gN(x)

= Ca− jQ
2 Cj,R

∑
γ∈�

gN

(
[bγ ]−1[a−j x

])

≤ C
a− jQ

2 Cj,R

bQ

∑
γ∈�

∫
bR

gN

(
y−1[bγ ]−1[a−j x

])
dy

= C
a− jQ

2 Cj,R

bQ

∫
G

gN(z) dz

= C
a− jQ

2 Cj,R

bQ
.
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GivenR > 0, we now select j0 ∈ Z with aj0 ≤ R ≤ aj0+1. Recalling (7.2) and (7.3),
we now obtain

∑
γ∈�,j∈Z

∣∣〈f R,u, φj,bγ 〉ψj,bγ (x)∣∣ ≤ C

bQ

∑
j≤j0

Cj,Ra
− jQ

2 +
∑
j>j0

Cj,Ra
− jQ

2


≤ C

bQ

∑
j≤j0

aj

R
+
∑
j>j0

RQa−jQ


≤ C

bQ

∑
j≤j0

aj−j0 +
∑
j>j0

a(j0−j+1)Q


≤ C

bQ
,

proving (*) and hence (a).
We next prove (b). Again, we shall prove a stronger conclusion, which will be needed

in our proof of (c).
For x, y ∈ G, x �= y, we wish to define

Kφ,ψ,b(x, y) =
∑

γ∈�,j∈Z

ψj,bγ (x)φj,bγ (y) ; (7.4)

we will soon show that the sum converges absolutely. The reason for this definition is
that formally

[
Sφ,ψ,bf

]
(x) =

∫
G

Kφ,ψ,b(x, y)f (y) dy ;

we will soon show that this is true if f ∈ C1
c , for x outside the support of f . These facts

are immediate consequences of the following assertion (with J = 0, ψ = � and φ = �:)

(**) Say �,� ∈ S(G), and J > 0. Then for some C > 0,∑
γ∈�,j∈Z

a−jJ
∣∣∣�j,bγ (x)�j,bγ (y)∣∣∣ ≤ C

bQ

∣∣y−1x
∣∣−Q−J (7.5)

for all x, y ∈ G, x �= y. Moreover, the series converges uniformly on compact subsets
of (G \ {0})× (G \ {0}).

To prove (7.5), define

KI (x, y) =
∑

γ∈�,j∈Z

a−jJ ∣∣y−1x
∣∣Q+J ∣∣∣�j,bγ (x)�j,bγ (y)∣∣∣

=
∑

γ∈�,j∈Z

a−j (Q+J )∣∣y−1x
∣∣Q+J ∣∣∣� ((bγ )−1 [a−j x

])
�
(
(bγ )−1 [a−j y

]) ∣∣∣ .
We need to show that KI is bounded for x �= y. Observe that for any x, y ∈ G

we have that KI (ax, ay) = KI (x, y). Therefore we need only consider those x, y with
|y−1x| ∈ [1, a]. Choose L > Q+ J andN >

Q
2 +L. For some C0,�,� ≤ C0gN . Thus,
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for fixed j ,∑
γ∈�

∣∣∣� ((bγ )−1 [a−j x
])
�
(
(bγ )−1 [a−j y

])∣∣∣
≤ C

∑
γ∈�

gN

(
(bγ )−1 [a−j x

])
gN

(
(bγ )−1 [a−j y

])
≤ C

bQ

∑
γ∈�

[∫
bR

gN

(
z−1(bγ )−1[a−j x

])
gN

(
z−1(bγ )−1[a−j y

])
dw

]

= C

bQ

∫
G

gN

(
w−1[a−j x

])
gN

(
w−1[a−j y

])
dw

= C

bQ
(gN ∗ gN)

(
a−j [y−1x

])
≤ C

bQ
gL

(
a−j [y−1x

])
.

Consequently, for |y−1x| ∈ [1, a], we have that

|KI (x, y)| ≤ CaQ+J

bQ

∑
j∈Z

a−j (Q+J )gL
(
a−j [y−1x

])

≤ C

bQ

∑
j≥0

a−j (Q+J ) +
∑
j<0

a−j (Q+J )
∣∣∣a−j [y−1x

]∣∣∣−L


= C

bQ

∑
j≥0

a−j (Q+J ) +
∑
j<0

aj (L−Q−J )


≤ C

bQ
,

proving (7.5). The uniform convergence asserted in (**) follows from an examination of
the proof of (7.5). This proves (**).

(**) now implies at once that the series in (7.4) converges absolutely for x �= y, and
we define its sum to be Kφ,ψ,b(x, y).

We can now easily prove (b). Actually, in order to also later prove (c), we will note
the following stronger statement:

(***) Kφ,ψ,b is smooth away from the diagonal; moreover for all multiindices α, β there
exists Cα,β > 0 such that for all x, y ∈ G with x �= y and for all 0 < b < 1 we have∣∣∣XαxXβyKφ,ψ,b(x, y)∣∣∣ ≤ Cα,β

bQ

∣∣y−1x
∣∣−(Q+|α|+|β|)

. (7.6)

(***) follows at once from (**). Indeed, we claim that, if x �= y, then

XαxX
β
yKI (x, y) =

∑
γ∈�,j∈Z

a−j (|α|+|β|)(Xαψ)
j,bγ

(x)
(
Xβφ

)
j,bγ

(y) . (7.7)

To see this, note that by (**), the series in (7.7) converges uniformly on compact
subsets of (G \ {0})× (G \ {0}). On such a compact set, any (usual) differential monomial
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∂
ρ
x ∂

τ
y is a linear combination, with polynomial coefficients, of the XαxX

β
y . Thus, the series

in (7.4) converges in the topology of C∞((G \ {0}) × (G \ {0})). This implies that K is
smooth off the diagonal, and also that, when we differentiate K , we can bring derivatives
past the summation sign. This proves (***).

We now show that (***) implies (b). In fact it implies the following stronger statement,
which we shall also need in the proof of (c):

(****) For all normalized bump functions f and all R > 0 and u ∈ G, there exists C > 0
such that ∥∥Sφ,ψ,bf R,u∥∥2 ≤ C

bQ
R

Q
2 .

To see this, we observe that if |x−1u| ≥ 2R, then∣∣∣ [Sφ,ψ,bf R,u] (x)∣∣∣ ≤
∫
G

∣∣∣Kφ,ψ,b(x, y)f R,u(y)∣∣∣ dy
≤ Cb−Q

∫
|u−1y|≤R

∣∣x−1y
∣∣−Q dy

≤ CRQb−Q max
|u−1y|≤R

∣∣x−1y
∣∣−Q

≤ CRQb−Q∣∣x−1u
∣∣−Q . (7.8)

(The last inequality follows from Proposition 4.) Finally, if g = Sφ,ψ,bf
R,u, recalling (*),

we have that

‖g‖2
2 =

∫
|x−1u|<2R

|g(x)|2 dx +
∫

|x−1u|>2R
|g(x)|2 dx

≤ Cb−2Q
[
(2R)Q + R2Q

∫
|x−1u|>2R

∣∣x−1u
∣∣−2Q

dx

]
≤ Cb−2Q

[
(2R)Q + R2Q

∫
|y|>2R

|y|−2Q dy

]
≤ Cb−2Q

[
(2R)Q + R2Q(2R)−Q

]
= CRQb−2Q .

This proves (****), and hence (b).
We now claim that (c) follows directly from (***), (****), and Theorem 6. In order

to apply Theorem 6, we make the following two additional observations.

(1) The formal adjoint of Sφ,ψ,b is Sψ,φ,b. What we are claiming is that for all f, g ∈
C1
c , we have

〈Sφ,ψ,bf, g〉 = 〈f, Sψ,φ,bg〉 . (7.9)

Indeed, by (*), the left side of (7.9) clearly equals∑
γ∈�,j∈Z

〈f, φj,bγ 〉〈ψj,bγ , g〉 .

Evidently this equals the right side of (7.9), as claimed. Note, for later purposes,
that this observation also proves (d) if f, g ∈ C1

c .
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(2) Sφ,ψ,b(1) = Sψ,φ,b(1) = 0. We need to show that whenever f ∈ C1
c (G) and∫

f = 0, we have that ∫
Sφ,ψ,bf = 0

(and similarly
∫
Sψ,φ,bf = 0.) To see this, for any finite subset F of Z×�, define

the operator

SF
φ,ψ,b : f →

∑
(j,γ )∈F

〈f, φj,bγ 〉ψj,bγ .

We regard this as an operator on C1
c (G), and it maps this space into C∞(G), since

it has smooth kernel

KF
φ,ψ,b(x, y) =

∑
(j,γ )∈F

ψj,bγ (x)φj,bγ (y) .

For any integer N > 0 we also let SNφ,ψ,b = S
FN

φ,ψ,b and KN
φ,ψ,b = K

FN

φ,ψ,b, where

FN = {(j, γ ) : |j | ≤ N, |γ | ≤ N} .

Since ψ ∈ S has integral zero, it is evident that for all f ∈ C1
c (G), we have∫

SF
φ,ψ,bf = 0

for all F. Fix f with
∫
f = 0, and fix b > 0; we need to deduce that

∫
Sφ,ψ,b = 0.

This will follow at once from the dominated convergence theorem if we can show:

(i) SNφ,ψ,bf → Sφ,ψ,bf pointwise as N → ∞; and

(ii) for some C > 0, |SF
φ,ψ,bf | ≤ CgQ+1 for all F.

(Here gQ+1 is as in Lemma 5.) Since (i) follows at once from the absolute con-
vergence proved in (*), we need only establish (ii). (*) similarly shows that, for
some C > 0, |[SF

φ,ψ,bf ](x)| ≤ C for all F and all x ∈ G. Suppose then that the
support of f is contained in {x : |x| < R}; we need only show that for some C,A
(independent of F), ∣∣∣ [SF

φ,ψ,bf
]
(x)

∣∣∣ ≤ C|x|−Q−1 (7.10)

whenever |x| > AR. But by (**), for any multiindices α, β, there is a Cα,β > 0
(independent of F) such that for all x, y ∈ G with x �= y,∣∣∣XαxXβyKF

φ,ψ,b(x, y)

∣∣∣ ≤ Cα,β
∣∣y−1x

∣∣−(Q+|α|+|β|)
.

By Proposition 7 (and its proof), the KF
φ,ψ,b satisfy the Calderon-Zygmund in-

equalities (6.3), (6.4), and (6.5) with constants c, C independent of F. By the
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triangle inequality, there is a number A > 0 such that whenever |x| > AR and
|y| < R, we have |y−1x| > cR. Thus, if |x| > AR, we have that∣∣∣ [SF

φ,ψ,bf
]
(x)

∣∣∣ =
∣∣∣∣ ∫|y|<R

[
KF
φ,ψ,b(x, y)−KF

φ,ψ,b(x, 0)
]
f (y) dy

∣∣∣∣
≤ C|x|−(Q+1)

∫
|y|<R

|y||f (y)| dy

as claimed.

These observations now prove (c) at once.
We next prove (d). We fix b > 0. In observation (1) above, we have already seen

that (d) holds for f, g ∈ C1
c . To prove it in general, we let SF

φ,ψ,b, K
F
φ,ψ,b, S

N
φ,ψ,b, and

KN
φ,ψ,b be as in observation (2). We observe that, for any f, g ∈ L2, we have〈

SNφ,ψ,bf, g
〉 = ∑

γ∈�,j∈Z,|γ |≤N,|j |≤N
〈f, φj,bγ 〉〈ψj,bγ , g〉 , (7.11)

and we claim that 〈
SNφ,ψ,bf, g

〉 → 〈Sφ,ψ,bf, g〉 . (7.12)

Since (d) holds for f, g ∈ C1
c , which is dense in L2, it is enough to show that the norms

‖SF
φ,ψ,b‖ are uniformly bounded in F. But this follows from Theorem 6, together with a

repetition of the proofs of (*), (***), and (****) with SF
φ,ψ,b, K

F
φ,ψ,b in place of Sφ,ψ,b,

Kφ,ψ,b; here one must note that all bounds are independent of F.
Now in (7.12), take the special case ψ = φ and g = f . All the terms in the series

in (7.11) are then nonnegative, so the series in (7.1) converges absolutely to the left side
of that equation—in that special case. But in the general case, Cauchy-Schwarz as applied
to the series in (7.12) now shows that this series always converges absolutely. Moreover,
by (7.12), this series converges to the left side of (7.1). This proves (d).

(e) follows from an examination of the proofs of (a). (f) follows from an examination
of the proofs of (a), (b), and (c). (In particular, note for later purposes that the constantsCα,β
in (7.6) may be taken independent of φ,ψ ∈ B0 with

∫
ψ = ∫

φ = 0.) This completes the
proof of Theorem 7.

The main idea in our proof of Theorem 2 (a) is to show that, for b sufficiently
small, V bQSψ,ψ,b is “well approximated” by the operator Rψ = ∑

j∈Z
Rj , where if f ∈

L2(G) we put

Rjf = f ∗ ψ̃aj ∗ ψaj ,
then to use the spectral theorem to show that Rψ is bounded below if ψ = g(L)δ and
g satisfies Daubechies’ criterion. We begin to make these ideas rigorous, by noting the
following proposition. (In this proposition, R is, once again, a bounded measurable subset
of G, of positive measure, such that every g ∈ G may be written uniquely in the form
g = xγ with x ∈ R and γ ∈ �.)

Proposition 8. Suppose ψ ∈ S(G) and
∫
ψ = 0. Suppose f ∈ C1

c (G). Then∑
j∈Z

(Rjf )(x) =
∫
bR

[
STzψ,Tzψ,bf

]
(x) dz (7.13)
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where the series on the left side converges absolutely, uniformly for x on G. Consequently,∑
Rjf converges to anL2 function, and the mapRψ : C1

c → L2 given byRψf = ∑
Rjf

extends to a bounded positive operator on L2.

Proof. Fix j for now and put η = ψaj . Then

(Rjf )(x) =
∫
G

f (y)
[
η̃ ∗ η] (y−1x

)
dy .

But[
η̃ ∗ η] (y−1x

)
dy =

∫
G

η̃
(
y−1z

)
η
(
z−1x

)
dz

=
∫
G

η
(
z−1y

)
η
(
z−1x

)
dz

= a−2jQ
∫
G

ψ
(
a−j [z−1y

])
ψ
(
a−j [z−1x

])
dz

= a−jQ
∫
G

ψ
(
z−1[a−j y

])
ψ
(
z−1[a−j x

])
dz

= a−jQ∑
γ∈�

∫
bR

ψ
(
z−1[bγ ]−1[a−j y

])
ψ
(
z−1[bγ ]−1[a−j x

])
dz

=
∑
γ∈�

∫
bR

(Tzψ)j,bγ (y) (Tzψ)j,bγ (x) dz .

(In the fourth line, we have made the change of variables z → aj z.) By Theorem 7 (e),
the series ∑

j∈Z,γ∈�
〈f, (Tzψ)j,bγ 〉(Tzψ)j,bγ (x)

converges absolutely, uniformly for x ∈ G and z ∈ bR. This would therefore also surely
be true if we fixed a j and summed only over γ . Thus,

(Rjf )(x) =
∫
bR

∑
γ∈�

〈f, (Tzψ)j,bγ 〉 (Tzψ)j,bγ (x) dz

and finally, summing over j , we find (7.13) as well, the sum on the left side converging
absolutely, uniformly for x ∈ G. The remaining conclusions of the proposition now follow
at once from Theorem 7 (f) and Minkowski’s inequality. (Note: To show that Rψ is
positive, it is enough to show that 〈Rψf, f 〉 ≥ 0 for all f ∈ C1

c , and for this it is enough
to show that 〈Rjf, f 〉 ≥ 0 for all f ∈ C1

c and all j . But this is clear, since for such f ,
〈Rjf, f 〉 = ‖f ∗ ψaj ‖2

2.) This completes the proof.

We can now reach an understanding of why V bQSψ,ψ,b is well approximated by Rψ
for b small.

Theorem 8. Suppose ψ ∈ S(G), and
∫
G
ψ = 0. Let V be the measure of R, and let Rψ

be as in Proposition 8. For 1 ≤ l ≤ n, let ψl = Ylψ (so that, by Proposition 3,
∫
G
ψl = 0

for all l). Then:
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(a) If f ∈ C1
c (G),[

1

V bQ
Rψf − Sψ,ψ,bf

]
(x) = 1

V bQ

n∑
l=1

∫
bR

∫ 1

0
zl
([
ST[t]zYlψ,T[t]zψ,bf

]
+ [

ST[t]zψ,T[t]zYlψ,bf
])
(x) dt dz .

(b) There exists C > 0 such that for all 0 < b < 1, the norm on L2(G)∥∥∥ 1

V bQ
Rψ − Sψ,ψ,b

∥∥∥ ≤ C

bQ−1
.

(c) If Rψ ≥ AI for some A > 0, then there exists b0 > 0 such that {ψj,bγ } is a
frame whenever 0 < b < b0. More precisely, choose B > 0 such that Rψ ≤ BI

(of course we can choose B = ‖Rψ‖). Then, for 0 < b < b0, we can choose
Ab,Bb > 0 such that

Ab‖f ‖2
2 ≤

∑
j∈Z,γ∈�

|〈f,ψj,bγ 〉|2 ≤ Bb‖f ‖2
2 (7.14)

for all f ∈ L2, and such that

lim
b→0+

Bb

Ab
= B

A
. (7.15)

Proof. Of course, the measure of bR is V bQ. Using Theorem 7 (e), together with
Proposition 8, we see that[

1

V bQ
Rψf − Sψ,ψ,bf

]
(x) = 1

V bQ

∫
bR

([
STzψ,Tzψ,bf

]
(x)− [

Sψ,ψ,bf
]
(x)
)
dz

= 1

V bQ

∑
j∈Z,γ∈�

∫
bR

[〈f, (Tzψ)j,bγ 〉(Tzψ)j,bγ (x)− 〈f,ψj,bγ 〉ψj,bγ (x)
]
dx. (7.16)

However, fixing j, γ , we have that

〈f, (Tzψ)j,bγ 〉(Tzψ)j,bγ (x)− 〈f,ψj,bγ 〉ψj,bγ (x) =
∫
G

f (y)K(x, y) dy (7.17)

where

K(x, y) = (Tzψ)j,bγ (y) (Tzψ)j,bγ (x)− ψj,bγ (y)ψj,bγ (x) .

Fix x, y as well, and, for w ∈ G, let

F(w) = (
Tw−1ψ

)
j,bγ

(y)
(
Tw−1ψ

)
j,bγ

(x) .

Explicitly

F(w) = a−jQψ
(
w (bγ )−1

(
a−j y

))
ψ
(
w (bγ )−1

(
a−j x

))
.
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Since each Yl is right-invariant, note that

(Y1F)(w) = a−jQ [(Ylψ) (w (bγ )−1
(
a−j y

))
ψ
(
w (bγ )−1

(
a−j x

))
+ ψ

(
w (bγ )−1

(
a−j y

))
(Ylψ)

(
w (bγ )−1

(
a−j x

))]
= (

Tw−1 [Ylψ]
)
j,bγ

(y)
(
Tw−1ψ

)
j,bγ

(x)

+ (
Tw−1ψ

)
j,bγ

(y)
(
Tw−1 [Ylψ]

)
j,bγ

(x) .

Then, by Lemma 3, and the facts that z−1 = −z and that the Yl are right-invariant, we have

K(x, y) = F
(
z−1)− F(0)

= −
n∑
l=1

zl

∫ 1

0
(YlF )

(
([t]z)−1) dt

= −
n∑
l=1

zl

∫ 1

0

[(
T[t]z [Ylψ]

)
j,bγ

(y)
(
T[t]zψ

)
j,bγ

(x)

+ (
T[t]zψ

)
j,bγ

(y)
(
T[t]z [Ylψ]

)
j,bγ

(x)
]
dt .

Since f ∈ C1
c ,∫

G

f (y)K(x, y) dy = −
n∑
l=1

zl

∫ 1

0

[
〈f, (T[t]z[Ylψ])j,bγ 〉(T[t]zψ)j,bγ (x)

+ 〈f, (T[t]zψ)j,bγ 〉(T[t]z[Ylψ])j,bγ (x)
]
dt .

Part (a) of the theorem now follows at once from this, (7.16), (7.17), and Theorem 7 (e).
For (b), choose a numberM > 0 such that |zl | ≤ M whenever z ∈ R and 1 ≤ l ≤ n.

Then, surely, |zl | ≤ balM ≤ bM whenever z ∈ bR and 1 ≤ l ≤ n. Accordingly, by
Theorem 7 (f) and Minkowski’s inequality, there exist C1, C > 0 such that for all f ∈ C1

c

and all 0 < b < 1, we have∥∥∥ 1

V bQ
Rψf − Sψ,ψ,bf ]

∥∥∥
2

≤ bM

V bQ

n∑
l=1

∫
bR

∫ 1

0

(∥∥ST[t]zYlψ,T[t]zψ,bf
∥∥

2

+ ∥∥ST[t]zψ,T[t]zYlψ,bf
∥∥

2

)
dt dz

≤ 2nbM

V bQ
m(bR) C1

bQ
‖f ‖2

= C

bQ−1
‖f ‖2 .

Since C1
c is dense in L2, (b) now follows.

Finally, for (c), take C as in (b). Then for any f ∈ L2,

〈Sψ,ψ,bf, f 〉 = 1

V bQ
〈Rψf, f 〉 +

〈[
Sψ,ψ,b − 1

V bQ
Rψ

]
f, f

〉
so that, for all f ∈ L2,

Ab‖f ‖2
2 ≤ 〈Sψ,ψ,bf, f 〉 ≤ Bb‖f ‖2

2 ,
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where

Ab = A− CV b

V bQ
(7.18)

and

Bb = B + CV b

V bQ
. (7.19)

Put b0 = min( A
CV
, 1). If 0 < b < b0, thenAb > 0, and, moreover, by Theorem 7 (d),

(7.14) holds for all f ∈ L2. Finally, (7.15) is immediate from (7.18) and (7.19). This
proves (c) and completes the proof of the theorem.

Accordingly, the search for frames reduces to the question of findingψ withRψ ≥ AI

for some A > 0.
If G = Rn with the usual addition, then if f ∈ L2,

(̂Rjf )(ξ) = ∣∣ψ̂(aj ξ)∣∣2f̂ (ξ) .
Define

m
ψ̂,a
(ξ) =

∑
j∈Z

∣∣ψ̂(aj ξ)∣∣2 .
(Usually a is fixed and understood, and we will just write m

ψ̂
= m

ψ̂,a
.) Since we are

assuming that
∫
ψ = 0, surely ψ̂(0) = 0, so that |ψ̂(ξ)| ≤ C|ξ | for |ξ | < 1. Also, since

ψ̂ ∈ S, |ψ̂(ξ)| ≤ C
|ξ | for |ξ | ≥ 1. From these facts it is easy to see that the series defining

m
ψ̂
(ξ) converges uniformly on any compact subset of Rn which excludes the origin. We

claim that

(̂Rψf )(ξ) = m
ψ̂
(ξ)f̂ (ξ)

for all f ∈ L2. This is not hard to see, but since we shall need an analogue for general G,
let us present the argument in detail.

First note thatm
ψ̂
(aξ) = m

ψ̂
(ξ) for all ξ , som

ψ̂
is uniformly bounded on Rn. Define

an operatorQ : L2 → L2 by (̂Qf )(ξ) = m
ψ̂
(ξ)f̂ (ξ); we want to show that Rψ = Q. For

N > 0, set QN = ∑N
j=−N Rj , an operator on L2; then ‖QN‖ ≤ ‖m

ψ̂
‖∞ for all N . If

V = {
f ∈ L2 : f̂ = 0 a.e. outside some compact subset of Rn \ {0}} ,

thenQNf → Qf inL2 for all f ∈ V . Since V is dense inL2 and the ‖QN‖ are uniformly
bounded, we see that QNf → Qf for all f ∈ L2. However, QNf → Rψf pointwise
on Rn if f ∈ C1

c . Consequently, Qf = Rψf for all f ∈ C1
c , and hence for all f ∈ L2,

as claimed.
If we now let

B = sup
ξ �=0

m
ψ̂
(ξ), A = inf

ξ �=0
m
ψ̂
(ξ) ,

we now see that

A‖f ‖2
2 ≤ 〈Rψf, f 〉 ≤ B‖f ‖2

2
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for all f ∈ L2. Theorem 8 then tells us in particular that {ψj,bγ } is a frame for all
sufficiently small b, provided that A > 0. The condition A > 0 is called Daubechies’
criterion. (In [6], Daubechies shows that {ψj,bγ } is a frame if n = 1 and � is the integer
lattice, if Daubechies’ criterion holds. Her methods are very different from those of this
article—she uses Plancherel and Parseval.) Since, for all ξ , m

ψ̂
(aξ) = m

ψ̂
(ξ), A is the

minimum value of m
ψ̂

on the compact annulus {ξ : 1 ≤ |ξ | ≤ a}. Thus, Daubechies’
criterion is equivalent to the hypothesis that there does not exist a nonzero ξ0 ∈ Rn such
that ψ̂(aj ξ0) = 0 for all integers j .

Now we turn to general stratified Lie groups G.

Proof of Theorem 2. We change notation from the statement of Theorem 2, writing H
in place of f . Thus, we restrict attention to ψ of the form ψ = F(L)δ = LH(L)δ, where
F(λ) = λH(λ) and H,F ∈ S(R+). In that case, if f ∈ L2,

Rjf = Fj (L)f

where

Fj (λ) = ∣∣F (a2j λ
)∣∣2 .

Define

mF,a2(λ) =
∑
j∈Z

∣∣F (a2j λ
)∣∣2 .

(Usually a is fixed and understood, and we will just write mF = mF,a2 .) As before, the
series defining mF converges uniformly on any compact subset of R+ which excludes the
origin. We claim that

Rψf = mF (L)f (7.20)

for all f ∈ L2.
As before, mF (a2λ) = mF (λ) for all λ, so mF is uniformly bounded on R+. Set

Q = mF (L), and put H = L2(G). For N > 0, set QN = ∑N
j=−N Rj , an operator on H;

then, by the spectral theorem, ‖QN‖ ≤ ‖mF ‖∞ for all N . Let

V =
⋃

0<ε<N<∞
P[ε,N]H .

(Recall that the P[a,b] are spectral projectors of L.) ThenQNf → Qf in H for all f ∈ V .
But, since P{0} = 0, V is dense in H. Since the ‖QN‖ are uniformly bounded, it follows
that QNf → Qf for all f ∈ H. However, QNf → Rψf pointwise on G if f ∈ C1

c .
Consequently, Qf = Rψf for all f ∈ C1

c , and hence for all f ∈ L2, as claimed.
If we now let

B = sup
λ>0

mF (λ), A = inf
λ>0

mF (λ) ,

and again note that P{0} = 0, we see that

A‖f ‖2
2 ≤ 〈Rψf, f 〉 ≤ B‖f ‖2

2

for all f ∈ L2. Theorem 8 then tells us in particular that {ψj,bγ } is a frame for all sufficiently
small b, provided that A > 0—in other words, if F satisfies Daubechies’ criterion (where
of course we use a2 in place of the a we used on Rn).
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This establishes Theorem 2 (a). (Here Daubechies’ criterion is clearly equivalent to
the nonexistence of a λ0 > 0 such that F(a2j λ0) = 0 for all integers j .)

We now prove Theorem 2 (b). By (7.15) we need only show that if a is close enough
to 1, then

A = inf
λ>0

mF,a2(λ) > 0

(so that the Daubechies condition holds), and that

B

A
= 1 +O

(
|a − 1|2 log |a − 1|

)
, (7.21)

as a → 1. We may assume a > 1 (otherwise replace a by 1
a

, and note that mF,a2 =
mF,(1/a)2 , and O

(|a − 1|2 log |a − 1|) = O
(| 1
a

− 1|2 log | 1
a

− 1|). However, if a > 1,
then (7.21) follows at once from the following elementary lemma.

Lemma 6. Suppose H is a nonzero element of S(R+) and let F(s) = sH(s). Let
I ∈ (0,∞) be defined by

I =
∫ ∞

0
|F(t)|2 dt

t
=
∫ ∞

0
|F(ts)|2 dt

t
(7.22)

(for any s > 0), as in Calderón’s reproducing formula. Suppose a > 1. Then for all s > 0,

A(a) ≤
∞∑

n=−∞

∣∣F (a2ns
)∣∣2 ≤ B(a) < ∞ ,

where, as a → 1,

A(a) = I

2 log a

(
1 −O

(
(a − 1)2

∣∣∣ (log |a − 1|)
∣∣∣)) ,

B(a) = I

2 log a

(
1 +O

(
(a − 1)2

∣∣∣ (log |a − 1|)
∣∣∣)) .

Proof. Define a new function G : R → R by

G(u) = ∣∣F (eu)∣∣2 =
∣∣∣euH (eu)∣∣∣2 ;

then

G ∈ S(R), and |G(u)| ≤ Ke−2|u|

for some constant K .
If we put t = eu in Calderón’s identity (7.22), and also write s = ev , that identity

becomes the simpler identity ∫ ∞

−∞
G(u+ v) du = I

(independent of v). If we again put s = ev , and now write a2 = ec, we see that the sum we
need to estimate has the simpler form

∞∑
n=−∞

∣∣F (a2ns
)∣∣2 =

∞∑
n=−∞

G(nc + v) . (7.23)
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Since the sum on the right side of (7.23) is periodic with period c, the sum need only
be estimated for 0 ≤ v ≤ c. Since we are letting a → 1+, we may assume 0 < c =
2 log a < 1

e
.

We note that c
∑∞
n=−∞G(nc + v) is a Riemann sum for the integral

∫∞
−∞G(u +

v) du = I . To estimate the difference, we recall the midpoint rule: Say f is C2 in a
neighborhood of [a, b]. Divide [a, b] into n intervals of equal length�x = b−a

n
and let x∗

k

be the midpoint of the kth interval. Let

E =
∣∣∣∣ ∫ b

a

f (x) dx −
n∑
k=1

f
(
x∗
k

)
�x

∣∣∣∣ .
Then

E ≤ 1

24

∥∥f ′′∥∥∞(b − a)(�x)2 .

Thus, there is a constant P > 0 such that whenever 0 ≤ v ≤ c < 1
e
, and whenever

N > 0 is an integer,∣∣∣∣c ∞∑
n=−∞

G(nc + v)− I

∣∣∣∣
=
∣∣∣∣c ∞∑
n=−∞

G(nc + v)−
∫ ∞

−∞
G(u+ v) du

∣∣∣∣
≤
∣∣∣∣c N∑
n=−N

G(nc + v)−
∫ Nc+ c

2

−(Nc+ c
2 )

G(u+ v) du

∣∣∣∣
+ c

∑
|n|>N

G(nc + v)+
∫

|u|>Nc+ c
2

G(u+ v) du

≤ 1

24

∥∥G′′∥∥∞[(2N + 1)c]c2 + 2Ke−2(N+1)ce2v c

1 − e−2c
+Ke−(2N+1)ce2v

≤ P
(
Nc3 + e−2Nc) .

Note that for x > e, x log x > e log e > 1. Since we are assuming 1
c
> e, there is an

integer N with

log
(

1
c

)
c

< N <
2 log

(
1
c

)
c

.

Using such an N we see that∣∣∣∣ ∞∑
n=−∞

∣∣F (a2ns
)∣∣2− I

c

∣∣∣∣= ∣∣∣∣ ∞∑
n=−∞

G(nc + v)− I
c

∣∣∣∣≤P(2c log
(1

c

)
+c
)
≤3Pc log

(1

c

)
.

Accordingly
∑∞
n=−∞ |F(a2ns)|2 is between ( I

c
)(1 ±Qc2| log c|), where Q = 3P

I
.

Since c = 2 log a, and since log a
a−1 → 1 as a → 1+, we have completed the proof of

Lemma 6, and, with it, the proof of Theorem 2.
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Example. Daubechies ([6], especially p. 77 and pp. 71–72), calculated for instance, that

if a = 2
1
3 , ψ(x) = c(1 − x2)e− x2

2 (for x ∈ R; here c �= 0 could be chosen arbitrarily),
B = supξ>0mψ̂,a(ξ), A = infξ>0mψ̂,a(ξ), then B

A
= 1.0000 to four significant digits.1

In that case ψ is a multiple of the second derivative of e− x2
2 , so ψ̂(ξ) = c′ξ2e−

ξ2

2 .

Again c′ is nonzero and arbitrary; let us now take it to be 1. If we letF(λ) = ψ̂(
√
λ) = λe− λ

2

(essentially2 making the change of variables λ = ξ2), then

F(L)δ = Le−L/2δ = �, say ,

and

mF,a2(λ) = m
ψ̂,a

(√
λ
)
,

so that supλ>0mF,a2(λ) = supξ>0mψ̂,a(ξ) = B, say, and infλ>0mF,a2(λ) =
infξ>0mψ̂,a(ξ) = A, say. By the aforementioned calculation of Daubechies, B

A
= 1.0000

to four significant digits. Thus, by Theorem 8, we can choose b0 > 0 such that {�j,bγ }
is a frame whenever 0 < b < b0, with frame bounds Ab,Bb and such that, moreover,
Bb
Ab

= 1.0000 to four significant digits.
� is, up to a constant multiple, a natural generalization of the Mexican Hat wave-

let to G.

8. Frames in Other Banach Spaces

In this section we discuss the invertibility of Sψ,ψ,b on other Banach spaces, such as Lp or
H 1. Let us clarify which Banach spaces we can allow.

Definition 3. We call a Banach space B of measurable functions on G acceptable if
L2 ∩ B is dense in B, B ⊆ S′ (continuous inclusion), and if the following condition holds:

There exist C0, N > 0, such that for any A0 > 0, we have the following. Whenever
T : L2 → L2 is linear and satisfies:

(i) The operator norm of T on L2 is less than or equal to A0;

(ii) There is a kernel K(x, y), C1 off the diagonal, such that if f ∈ C1
c , then for

x outside the support of f , (Tf )(x) = ∫
K(x, y)f (y) dy; and whenever 0 ≤

α1 + . . .+ αn + β1 + . . .+ βn ≤ 1, and whenever x, y ∈ G with x �= y, we have∣∣∣XαxXβyK(x, y)∣∣∣ ≤ A0
∣∣y−1x

∣∣−(Q+|α|+|β|); and (8.1)

(iii) T ∗(1) = 0;

then T |L2∩B extends to a bounded operator on B, with norm ‖T ‖ ≤ C0A0.

Surely [3, 4] Lp (1 < p < ∞) andH 1 are acceptable Banach spaces. In this section,
we shall show the following.

1Actually, Daubechies took a specific value of c, but clearly that is irrelevant in computing B/A. Also,
in her table on p. 77 of [6], her B/A is larger than supξ>0 mψ̂,a(ξ)/ infξ>0 mψ̂,a(ξ), [see her Equa-

tions (3.3.19) and (3.3.20)], but that is an even stronger assertion than the one we are making.
2If G = R we are of course passing from the spectral resolution of d/dx to that of d2/dx2.



574 Daryl Geller and Azita Mayeli

Theorem 9. Suppose H ∈ S(R+), F(λ) = λH(λ), and that F satisfies Daubechies’
criterion (i.e., that infλ>0mF,a2(λ) > 0). Let ψ = F(L)δ. Suppose B is acceptable, and
that ψj,bγ ∈ B for all j ∈ Z and 0 < b < 1. Then:

(a) For some b0 > 0, Sψ,ψ,b is invertible on B whenever 0 < b < b0. Suppose now
that 0 < b < b0.

(b) Suppose that for some dense subspace D of B, the series
∑
j,γ 〈f,ψj,bγ 〉ψj,bγ con-

verges unconditionally to Sψ,ψ,bf in B for all f ∈ D. Then this series converges
unconditionally toSψ,ψ,bf for allf ∈ B. Moreover, if we letφj,bγ = S−1

ψ,ψ,bψj,bγ ,
then for any f ∈ B,

f =
∑
j,γ

〈f,ψj,bγ 〉φj,bγ ,

where the series converges unconditionally to f in B. In particular, the set {φj,bγ }
is a complete system in B (i.e., the closure of the linear span of this set is all of B).

(c) The hypotheses, and hence the conclusion, of (b) hold if B = Lp (1 < p < ∞)

or H 1. Here we may take D = C∞
c ∩ B.

Proof. We retain all the notation of the proofs of Theorems 7 and 8.
For (a), by Theorem 7 and Definition 3, Sψ,ψ,b|L2∩B extends to a bounded operator

on B. Also, by Proposition 8, Theorem 7 (f), the second last sentence of the proof of
Theorem 7 (f), and Definition 3, we have that Rψ |L2∩B extends to a bounded operator on
B. Further, by Theorem 8 (a) and Minkowski’s inequality, there exists C > 0 such that for
all 0 < b < 1, the norm on B∥∥∥ 1

V bQ
Rψ − Sψ,ψ,b

∥∥∥ ≤ C

bQ−1
.

To prove (a), it suffices to show that Rψ is invertible on B. Indeed, say this were known.
For (a), it is clearly enough to show that the operator

Lb = V bQR−1
ψ Sψ,ψ,b

is invertible on B for all sufficiently small b. But this is clear, since

‖I − Lb‖ ≤ Cb
∥∥R−1

ψ

∥∥
which is less than 1 if b is sufficiently small.

So it is enough to show that Rψ is invertible on B. By (7.20), Rψ ≡ mF (L) on L2.
By Daubechies’ criterion, 1

mF
= G, say, is a bounded function on R+, so surely, by the

spectral theorem, the inverse of Rψ on L2 is G(L). It suffices then to show that G(L),
restricted to L2 ∩ B, has an extension to a bounded operator on B. (Indeed, we would then
know that mF (L)G(L)f = G(L)mFf = f for all f ∈ L2 ∩ B, so this would hold for
all f ∈ B and mF (L) would be invertible on B.) It suffices then to show that T = G(L)

satisfies (i), (ii), and (iii) of Definition 3, for some A0 > 0. Surely (i) is satisfied.
First note that mF (λ) is smooth for λ > 0. Indeed, if V = |H |2, then V ∈

S(R+), and

mF (λ) =
∑
j∈Z

a4j λ2V
(
a2j λ

)
.
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Since V and all its derivatives are bounded and decay rapidly at ∞, the smoothness of mF
follows at once.

Thus, G ∈ C∞((0,∞)). If λ > 0, choose l with a2l ≤ λ ≤ a2(l+1). Surely
G(λ) = G(a−2lλ), so for any k∣∣∣G(k)(λ)∣∣∣ = a−2kl

∣∣∣G(k)(a−2lλ
)∣∣∣ ≤ a2kλ−kM ,

where M = max1≤λ≤a2 |G(k)(λ)|. This shows that ‖λkGk(λ)‖∞ < ∞ for any k. (ii)
and (iii) now follow by the spectral multiplier theorem of Hulanicki-Stein [12], Theo-
rem 6.25; see also [1]. (Indeed, by that theorem, G(L) : H 1 → H 1, so (iii) holds. Also,
in the terminology of [12], the proof of their Theorem 6.25 shows that G(L) is given by
convolution with a kernel of type (0, r) for any r , so (ii) holds as well.) (a) is therefore
established.

For (b), note that, sinceL2 ∩B is dense in B, and since B ⊆ S′ (continuous inclusion),
the operators SF

ψ,ψ,b, acting on L2 ∩ B, may be extended to operators on B, where they are
given by

SF
ψ,ψ,bf =

∑
(j,γ )∈F

〈f,ψj,bγ 〉ψj,bγ .

It suffices then to show that for some C > 0, the operator norms on B of SF
ψ,ψ,b are all less

than C, for all F. But, during the proof of Theorem 7 [see the discussion after (7.12)], we
have observed that the operator norms of SF

ψ,ψ,b on L2 are uniformly bounded in F, and

that the kernels K = KF
ψ,ψ,b satisfy the inequality (8.1) for some A0 independent of F.

This proves our assertion, by definition of acceptable Banach space.
For (c), first take B = Lp, and say f ∈ C∞

c . By Theorem 7 (a):

(*) Say ε1 > 0. There is a finite set F1 ⊆ Z × �, such that for any finite set G with
F1 ⊆ G ⊆ Z × �, we have ∥∥∥Sψ,ψ,bf − S

G
ψ,ψ,bf

∥∥∥∞ < ε1 .

Moreover, since theKF
ψ,ψ,b satisfy (8.1) uniformly in F, the argument leading to (7.8)

shows that there is a C such that
∣∣[SG

ψ,ψ,bf ](x)∣∣ ≤ C|x|−Q for all x and all finite G. These
facts imply that for any ε > 0, and any number 0 < q < Q, there is a finite set F ⊆ Z ×�,
such that for any finite set G with F ⊆ G ⊆ Z × �, we have∣∣∣Sψ,ψ,bf − S

G
ψ,ψ,bf

∣∣∣ < εgq . (8.2)

(Here gq is as in Lemma 5.) If now also q is also required to satisfy q > Q/p, so that

gq ∈ Lp, then in (8.2), ‖Sψ,ψ,bf − SG
ψ,ψ,bf ‖p < ε‖gq‖p. The unconditional convergence

in Lp, for f ∈ C∞
c , follows at once.

Finally, in (c), take B = H 1; then

D = C∞
c ∩H 1 =

{
f ∈ C∞

c :
∫
f = 0

}
.

We define a standard molecule to be anL2 functionM with ‖M‖2 ≤ 1,
∫ |M(x)|2|x|Q+1 ≤

1, and
∫
M = 0. In [4], it is shown that M ∈ H 1, and further that there is an A0 > 0 such

that ‖M‖H 1 ≤ A0 for all standard molecules M .
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Suppose now f ∈ D. Combining (*) above and (7.10), we see that for any ε > 0,
and any number 0 < q < Q+ 1, there is a finite set F ⊆ Z ×�, such that for any finite set
G with F ⊆ G ⊆ Z × �, we have∣∣∣Sψ,ψ,bf − S

G
ψ,ψ,bf

∣∣∣ < εgq . (8.3)

If now also q is also required to satisfy q > Q + 1
2 , then max

(‖gq‖2,[ ∫ |gq(x)|2|x|Q+1 dx
] 1

2
) = C0, say, is finite. Thus, in (8.3), Sψ,ψ,bf − S

G
ψ,ψ,bf is εC0

times a standard molecule, so its H 1 norm is less than εC0A0. The unconditional conver-
gence in H 1, for f ∈ D, follows at once.

9. Remarks

(1) When studying frames, one often takes several different ψs, say ψ1, . . . , ψN , all
having integral zero, and asks when ∪Nk=1{ψkj,bγ } is a frame. In our situation, by
Theorem 8 (b), ∥∥∥∥∥

N∑
k=1

[
1

V bQ
Rψk − Sψk,ψk,b

]∥∥∥∥∥ ≤ C

bQ−1
.

Thus, a simple modification of the proof of Theorem 8 (c) shows that, if we can
find positive A,B with

AI ≤
N∑
k=1

Rψk ≤ BI ,

then for some b0 > 0, if 0 < b < b0, we can choose Ab,Bb > 0 such that

Ab‖f ‖2
2 ≤

N∑
k=1

∑
j∈Z,γ∈�

∣∣〈f,ψkj,bγ 〉∣∣2 ≤ Bb‖f ‖2
2

for all f ∈ L2, and such that

lim
b→0+

Bb

Ab
= B

A
.

We restrict attention to ψk of the form ψk = Fk(L)δ = LHk(L)δ, where
Fk(λ) = λHk(λ) and Hk, F k ∈ S(R+). Then

∑N
k=1 Rψk = ∑N

k=1mFk(δ) ,
and we can take

B = sup
λ>0

N∑
k=1

mFk(λ), A = inf
λ>0

N∑
k=1

mFk(λ) ,

provided thisA is positive. (This will be so if there does not exist aλ0 > 0 such that
Fk(a2j λ0) = 0 for all k and all integers j .) With higherN , one has more flexibility
in making

∑N
k=1mFk nearly constant, thereby getting a nearly tight frame.
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(2) In this article, we have let L be the sub-Laplacian for simplicity, but the our main
results (Theorem 1, Corollary 1, and Theorem 2) continue to hold if L is any
positive Rockland operator. (In (1.1), one must change a2j to akj where k is
the homogeneous degree of L.) Indeed, the key fact that we have used about L is
Theorem 3, and that theorem continues to hold ifL is a positive Rockland operator.
(See [22] for this fact and the definition of a Rockland operator.)

A. Appendix: T(1) Theorem Technicalities

As we have said, the “easier case” of the T (1) theorem for stratified Lie groups, as used
in this article, may be proved by making only minor changes in the proof for Rn in [30],
pp. 293–300. However, one change requires a little thought.

Stein assumes that T is given to be a continuous linear mapping from S to S′. He
however only uses this assumption in the argument at the top of p. 296. Moreover, the
argument at the top of p. 296 uses the Fourier transform. We need to present a replacement
for that argument, for general G, in which only C∞

c functions are used.
For R > 0, let B(0, R) = {x ∈ G : |x| < R}. We begin by observing the following.

Proposition A.1. Say T : C1
c (G) → L2(G) is linear and restrictedly bounded. Then T

is continuous from C∞
c to L2.

Proof. By definition we need to show that for any compact set K ⊆ G, there exist
C0, N such that ‖Tf ‖2 ≤ C0 for all f ∈ C∞

c with support contained in K and with
‖f ‖CN ≤ 1. We claim that we can always takeN = 1. Indeed, fixK and chooseR > 0 with
K ⊆ B(0, R). If f is as above, set F(x) = cf (Rx), where c = min(1, R−a1 , . . . , R−an).
Then F is a normalized bump function, and f = ( 1

c
)FR,0. Since T is restrictedly bounded,

for some C > 0, ‖Tf ‖2 ≤ C
c
R

Q
2 , as desired.

To replace the argument at the top of p. 296 in [30], we now proceed as follows. Say
φ ∈ C∞

c (G) has support contained in the unit ball B(0, 1). For f ∈ L2(G), let

Sjf = f ∗ φ2−j .

We claim the following.

Proposition A.2. Suppose a linear operator T : C1
c (G) → L2(G) is restrictedly

bounded. Then:

(a) For all f ∈ C∞
c , SjT Sjf → Tf in L2 as j → ∞; and

(b) for all f ∈ C∞
c , SjT Sjf → 0 in L2 as j → −∞.

Proof. Of course Sj is bounded on L2 for all j , and ‖Sj‖ ≤ ‖φ2−j ‖1 = ‖φ‖1 =A, say.
For (a), we observe

‖SjT Sjf − Tf ‖2 ≤ ‖SjT (Sjf − f )‖2 + ‖SjTf − Tf ‖2

≤ A‖T (Sjf − f )‖2 + ‖SjTf − Tf ‖2 −→ 0

as j → ∞, since Sjf → f in C∞
c , T : C∞

c → L2 is continuous, and SjTf → Tf in L2.
For (b) we observe ‖SjT Sjf ‖2 ≤ A‖T Sjf ‖2, so we need only show T Sjf → 0 in

L2. Write J = −j , and note

Sjf = f ∗ φ2J = (
f2−(J+1) ∗ φ2−1

)
2J+1 .
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As J → ∞, f2−(J+1) ∗ φ2−1 → φ2−1 in C∞
c , where c = ∫

G
f ; moreover, for J sufficiently

large the supports of all these functions are contained in the unit ball. Thus, we may choose
C1 such that for J sufficiently large, any one of these functions is C1 times a normalized
bump function. But for any function F ,

F2J+1 = 2−(J+1)F 2J+1,0 ,

so ‖T Sjf ‖2 ≤ CC12− J+1
2 → 0 as J → ∞, as desired.

Another very small point: We have defined a normalized bump function to be a C1

function with support contained in the unit ball, whose C1 norm is less than or equal to 1;
Stein assumes in addition that the function is smooth. But our definition only makes the
hypotheses of Theorems 5 and 6 stronger, so of course the theorems hold.
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