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ABSTRACT. We study the composition of time-frequency localization operators (wavepacket
operators) and develop a symbolic calculus of such operators on modulation spaces. The use
of time-frequency methods (phase space methods) allows the use of rough symbols of ultra-rapid
growth in place of smooth symbols in the standard classes. As the main application it is shown that,
in general, a localization operator possesses the Fredholm property, and thus its range is closed in
the target space.

1. Introduction

By a symbolic calculus is meant a mapping from a parameter space of symbols to a class of
operators and the investigation of this functional dependence. The prototype of a symbolic
calculus is the symbolic calculus of pseudodifferential operators. This classical symbolic
calculus has lead to an understanding of the composition of pseudodifferential operators, the
construction on an approximate inverse, a so-called parametrix, and the regularity properties
of partial differential operators [23, 28, 30].

In this article we study a different kind of symbolic calculus, namely for (time-
frequency) localization operators. This class of operators occurs in various branches of
mathematics under such names as Toeplitz operators, (anti) Wick operators, time-frequency
multipliers, and others. Their applications range from quantization procedures (Berezin
quantization) in quantum mechanics, via signal analysis, to the approximation of pseu-
dodifferential operators. Localization operators form a special case of the wave-packet
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operators of Cordoba and Fefferman [8] and have been used to approximate general pseu-
dodifferential operators. Technically, localization operators may be regarded as a special
class of pseudodifferential operators and may therefore be investigated with pseudodiffe-
rential calculus. This approach has led to many interesting results in [7, 26, 31, 32].

Our approach to localization operators is based exclusively on time-frequency meth-
ods (phase-space methods). In view of the very definition of this class of operators below,
this approach is not only natural, but it also leads to very strong results with respect to
the admissible symbols and “window functions.” In treating the composition of two local-
ization operators one of the symbols may be rough (in local L∞) and even possess ultra-
rapid growth.

Whereas the product of two pseudodifferential operators is again a pseudodifferential
operator (there are many algebras of pseudodifferential operators), the composition of two
localization operators is not a localization operator in general. This additional difficulty
has captured the interest of several authors and has generated some remarkable ideas. An
exact product formula for localization operators is presented in [13]. However, since it
works only under very restrictive conditions and is unstable, it is not amenable to a de-
tailed analysis of mapping or compactness properties. Therefore many authors resort to
asymptotic expansions that realize the composition of two localization operators as a sum of
localization operators and a controllable remainder [1, 11, 24, 25, 29]. These contributions
were mainly motivated by PDEs and energy estimates, and therefore use smooth symbols
that are defined by differentiability properties, such as the traditional Hörmander or Shubin
classes, and Gaussian windows. For applications in quantum mechanics and signal analysis,
alternative notions of smoothness—“smoothness in phase-space” or quantitative measures
of “time-frequency concentration”—have turned out to be useful. This point of view is
pursued in several recent investigations of localization operators and usually involves mod-
ulation spaces (see [11, 31, 32] and references therein). In the context of modulation spaces,
much rougher symbols and more general “window functions” can be used for localization
operators than have been considered in the studies [10, 12, 27].

Modulation spaces—though still not as well known as standard smoothness spaces—
are the appropriate function spaces for time-frequency analysis, and in several cases have
been shown to furnish optimal results. For instance, they arise as the optimal symbol classes
in the study of boundedness and Schatten class properties of localization operators [9, 10].

Our analysis of the symbolic calculus for localization operators is based on a com-
position formula in [1] and (in full generality) in [11]. It was formulated for symbols in
certain Shubin classes and windows in the Schwartz class. This calculus seems most suit-
able for understanding the composition of localization operators with respect to their action
on phase-space (the time-frequency plane).

The Short-Time Fourier Transform and Localization Operators. To be more
specific and to formulate our results, we first define the short-time Fourier transform and
introduce the class of localization operators.

The operators of translation and modulation are defined to be

Txf (t) = f (t − x) and Mωf (t) = e2πiωtf (t) . (1.1)

We often combine translations and modulations into time-frequency shifts (phase-space
shifts in physical terminology). Write z = (x, ω) ∈ R

2d , then the general time-frequency
shift is defined by

π(z) = MωTx . (1.2)
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Associated to time-frequency shifts is an important transform, the short-time Fourier
transform (STFT), which is also called coherent state transform, Gabor transform, win-
dowed Fourier transform, and the like. The STFT of a function or distribution f with
respect to a fixed nonzero window function g is given by

Vgf (x, ω) =
∫

Rd

f (t) g(t − x) e−2πiωt dt = 〈f,MωTxg〉 = 〈f, π(z)g〉 , (1.3)

whenever the integral or the bracket 〈·, ·〉 is well-defined. The short-time Fourier transform
can be defined on many pairs of distribution spaces and test functions. For instance, Vgf , as
a sesquilinear form, mapsL2(Rd)×L2(Rd) intoL2(R2d) and S(Rd)×S(Rd) into S(R2d).
Furthermore, Vgf can be extended to a map from S ′(Rd)×S ′(Rd) into S ′(R2d) [18, p. 41].
The short-time Fourier transform is the appropriate tool for defining localization operators.

Next, let a be a symbol on the time-frequency “plane” R
2d and choose two windows

ϕ1, ϕ2 on R
d , then the localization operator Aϕ1,ϕ2

a is defined as

Aϕ1,ϕ2
a f (t) =

∫
R2d

a(x, ω)Vϕ1f (x, ω)MωTxϕ2(t) dx dω . (1.4)

Taking the “inner product” with a test function g, the definition of Aϕ1,ϕ2
a can be written in

a weak sense, namely,〈
Aϕ1,ϕ2
a f, g

〉 = 〈aVϕ1f, Vϕ2g〉 = 〈
a, Vϕ1f Vϕ2g

〉
. (1.5)

If a ∈ S ′(R2d) and ϕ1, ϕ2 ∈ S(Rd), then (1.5) defines a continuous operator from
S(Rd) to S ′(Rd). If ϕ1(t) = ϕ2(t) = 2d/4e−πt2 , then Aa = A

ϕ1,ϕ2
a is well-known

as (anti-)Wick operator and the mapping a → A
ϕ1,ϕ2
a is interpreted as a quantization

rule [3, 13, 24, 28, 33]. Furthermore, this definition is also a special case of the wave packet
operators of Cordoba and Fefferman [8, 16], and Aϕ1,ϕ2

a serves as an approximation of the
pseudodifferential operator a(x,D).

While previous work—to a large extent—uses a combination of methods and is al-
ways focused on the model of pseudodifferential operators, we will use exclusively time-
frequency analysis in our study of localization operators. In a sense, this is perfectly natural,
because the definition of a localization operators is in terms of the basic transform of time-
frequency analysis, namely the STFT.

Results. Our starting point is the following composition formula for two localization
operators derived in [11]:

Aϕ1,ϕ2
a A

ϕ3,ϕ4
b =

N−1∑
|α|=0

(−1)|α|

α! A
�α,ϕ2
a∂αb + EN . (1.6)

The essence of this formula is that the product of two localization operators can be
written as a sum of localization operators and a remainder term, which is “small.”

In the spirit of the classical symbolic calculus, this formula was derived in [11,
Theorem 1.1] for smooth symbols belonging to some Shubin classSm(R2d) and for windows
in the Schwartz class S(Rd). In this case, the remainder term is regularizing and maps
L2(Rd) into S(Rd).

The goal of this article is much more ambitious. We will establish the validity of (1.6)
on the modulation spaces (Theorem 5 and Proposition 2). These function spaces are defined
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by imposing a weighted mixedLp-norm on the STFT, e.g., ‖f ‖Mp = ‖Vgf ‖p (for suitable
window g). In view of definition (1.5) modulation spaces are bound to arise in the in-depth
treatment of the symbolic calculus.

The extension of the composition formula (1.6) is far from a routine generalization
and requires the entire arsenal of time-frequency analysis. The derivation of a symbolic
calculus is necessarily technical, and therefore we would like to point out explicitly the
innovative features and the level of generality of our results.

(i) Rough symbols. While in (1.6) the symbol bmust beN -times differentiable, the symbol
a only needs to be locally bounded. The classical results in symbolic calculus require both
symbols to be smooth.

(ii) Growth conditions on symbols. The symbolic calculus in (1.6) can handle symbols with
ultra-rapid growth (as long as it is compensated by a decay of b or vice versa). For instance,
a may grow subexponentially as a(z) ∼ eα|z|β for α > 0 and 0 < β < 1. This goes far
beyond the usual polynomial growth and decay conditions.

(iii) General window classes. We provide a precise description of the admissible windows
ϕj in (1.6). Usually only the Gaussian e−πx2

or Schwartz functions are considered as
windows [1, 11, 24].

(iv) Size of the remainder term. We derive norm estimates for the size of the remainder
term EN that depend explicitly on the symbols a, b and the windows ϕj . In applications
to PDE, e.g., [23, 30] it is important that the remainder be regularizing, but this property
does not exclude the possibility thatEN is large in norm. Therefore norm estimates provide
important additional information, see also [24, 25] for more motivation.

The Fredholm Property of Localization Operators. By choosing N = 1, ϕ1 =
ϕ2 = ϕ with ‖ϕ‖2 = 1, a(z) 	= 0, and b = 1/a, the composition formula (1.6) yields the
following important special case:

Aϕ,ϕa A
ϕ,ϕ
1/a = A

ϕ,ϕ
1 + R = I + R . (1.7)

Under mild conditions on a we will show that R is compact and that Aϕ,ϕa is a Fredholm
operator between two modulation spaces Mp,q and Mp,q

m (with different weights), see
Theorem 6. This theorem is remarkable because it works even for ultra-rapidly growing
symbols such as a(z) = eα|z|β for α > 0 and 0 < β < 1. For comparison, the reduc-
tion of localization operators to standard pseudodifferential calculus requires elliptic or
hypo-elliptic symbols, and the proof of the Fredholm property works only under severe
restrictions, see [7].

Itinerary of the Proof of the Symbolic Calculus. To give the reader some insight
how the expansion formula (1.6) is derived, we sketch the main arguments developed in [11].

The composition of two localization operators can be formally written as

Aϕ1,ϕ2
a A

ϕ3,ϕ4
b f =

∫
R2d

∫
R2d

a(y)b(z)Vϕ3f (z)〈π(z)ϕ4, π(y)ϕ1〉π(y)ϕ2 dy dz . (1.8)

Assuming the symbol b to be N -times differentiable, we expand b(z) into a Taylor series
around y and obtain

b(z) =
∑

|α|≤N
∂αb(y)

(z− y)α

α! + bN(y, z) ,
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where the remainder is given by

bN(y, z) = N
∑

|α|=N

∫ 1

0
(1 − t)N−1∂αb(y + t (z− y)) dt

(z− y)α

α! .

For each α with |α| < N we obtain a term of the form

1

α!
∫

R2d
a(y) ∂αb(y)

(∫
R2d
(z− y)αVϕ3f (z) 〈π(z)ϕ4, π(y)ϕ1〉 dz

)
π(y)ϕ2 dy .

The inner integral over z is linear in f and “covariant” in y, and can be expressed as an
STFT 〈f, π(y)�α〉, where �α depends on ϕ1, ϕ3, ϕ4. Using formulas for the moments of
the STFT, this new window was calculated explicitly in [11] to be

�α = 1

(2πi)|α2|
∑
β≤α

(
α

β

)
(−1)|β1|〈ϕ3, X

α1−β1∂α2−β2ϕ4
〉
Xβ1∂β2ϕ1 . (1.9)

[Note that if ϕ1, ϕ3, ϕ4 ∈ S(Rd), then also �α ∈ S(Rd).] Consequently, for the terms
|α| < N , we obtain the localization operators

1

α!
∫

R2d
a(y)∂αb(y) V�αf (y) π(y)ϕ2 dy = 1

α!A
�α,ϕ2
a∂αb f .

The terms corresponding to |α| = N can be collected to a remainderEN given informally by

ENf =
∫

R2d

∫
R2d

a(y)bN(y, z) Vϕ3f (z)〈π(z)ϕ4, π(y)ϕ1〉π(y)ϕ2 dy dz . (1.10)

By summing over α, |α| ≤ N , we obtain the expansion formula (1.6). In [11, Theorem 1.1]
this formal idea was made rigorous for symbolsa, b contained in a Shubin class and windows
ϕj in the Schwartz class.

For the extension of the symbolic calculus (1.6) to rough symbols and general modu-
lation spaces we need to check that all terms in (1.6) are well-defined on modulation spaces
and then derive norm estimates for their size.

To carry out this plan, we will proceed along the following steps. In Section 3 we
introduce the modulation spaces and list some of their main properties. In Section 4 we
present further time-frequency tools, such as properties of the STFT. In Section 5 we inves-
tigate the mapping properties of localization operators between modulation spaces. These
results enable us to give a rigorous meaning to most terms in the symbolic calculus (1.6).
Section 6 is devoted to a careful analysis of the remainder term EN , and we will formulate
conditions for the boundedness and compactness of EN on modulation spaces. This is the
most technical part of the article. In Section 7 we combine the entire machinery and prove
the symbolic calculus (1.6) in the framework of modulation spaces. In the last Section 7 we
study the Fredholm property of localization operators. This property is the main application
of the symbolic calculus and—at least for us—justifies its many subtle technicalities.

Notation. We define t2 = t · t , for t ∈ R
d , and xy = x · y is the scalar product on R

d .
Given a vector x = (x1, . . . , xd) ∈ R

d , the partial derivative with respect to xj is denoted
by ∂j = ∂

∂xj
. Given a multi-index α = (α1, . . . , αd) ≥ 0, i.e., α ∈ Z

d and αj ≥ 0,

we write ∂α = ∂
α1
1 · · · ∂αdd ; moreover, we denote by Xα the operator of multiplication:

(Xαf )(t) = (t
α1
1 · · · tαdd )f (t).
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Given a set K ⊆ R
2d , we denote by meas(K) the Lebesgue measure of K and by

χK the characteristic function of K . We use the brackets 〈f, g〉 to denote the extension
to S ′(Rd) × S(Rd) of the inner product 〈f, g〉 = ∫

f (t)g(t) dt on L2(Rd). The space
of smooth functions with compact support on R

d is denoted by D(Rd). We denote by
L0(R2d) the space of all f ∈ L∞(R2d) that vanish at infinity, i.e., for all ε > 0 there exists
R = R(ε) > 0 such that

|f (z)| < ε, for a. a. |z| > R .

The Fourier transform is normalized to be f̂ (ω) = Ff (ω) = ∫
f (t)e−2πitω dt .

Throughout the article, we shall use the notation A � B to indicate A ≤ cB for a
suitable constant c > 0, whereas A  B means that c−1A ≤ B ≤ cA for some c ≥ 1. The
symbol B1 ↪→ B2 denotes the continuous embedding of the linear space B1 into B2.

2. Modulation Spaces

2.1 Weight Functions

For the quantitative description of decay properties, we use weight functions on the time-
frequency plane. In the sequel v will always be a continuous, positive, even, submultiplica-
tive weight function (in short, a submultiplicative weight), i.e., v(0) = 1, v(z) = v(−z),
and v(z1 + z2) ≤ v(z1)v(z2) , for all z, z1, z2 ∈ R

2d . We furthermore impose the GRS-
condition

lim
n→∞ v(nz)

1/n = 1, ∀z ∈ R
2d . (2.1)

The GRS-condition (introduced by Gelfand-Raikov-Shilov [17]) quantifies the subexpo-
nential growth of v in a precise manner. Every weight of the form v(z) = ea|z|b (1 +
|z|)s logr (e + |z|) for parameters a, r, s ≥ 0, 0 ≤ b < 1 satisfies the GRS-condition,
whereas the exponential weight v(z) = ea|z|, a > 0, does not. Finally, we assume that v
satisfies the property ∫ 1

0
v(tz) dt � v(z) . (2.2)

Associated to every submultiplicative weight we consider the class of so-called v-
moderate weights Mv . A positive, even weight function m on R

2d belongs to Mv if it
satisfies the condition

m(z1 + z2) ≤ Cv(z1)m(z2) ∀z1, z2 ∈ R
2d .

We note that this definition implies that 1
v

� m � v, m 	= 0 everywhere, and that 1/m ∈
Mv .

We will often use the polynomial weights 〈·〉s defined by

〈(x, ω)〉s = 〈z〉s = (
1 + x2 + ω2)s/2, z = (x, ω) ∈ R

2d s ∈ R (2.3)

and the product weights 〈·〉s ⊗ 〈·〉s signifying 〈x〉s〈ω〉s .
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2.2 Modulation Spaces

The modulation space norms are a measure of the joint time-frequency distribution of a
function or distribution. They occur in many problems in time-frequency analysis and
play an increasing role as symbol classes for various types of pseudodifferential operators.
For their basic properties we refer, for instance, to [18, Chapter 11-13] and the original
literature quoted there.

Let ϕ0(t) = e−πt2 be the Gaussian and let

SC = span
{
π(z)ϕ0 : z ∈ R

2d} (2.4)

be the linear space of all finite linear combination of time-frequency shifts of the Gaussian
(the “space of special windows”).

Definition 1. For any moderate weight m ∈ Mv and 1 ≤ p, q ≤ ∞ we define the
modulation space norm on SC by

‖f ‖Mp,q
m

= ‖Vϕ0f ‖Lp,qm =
(∫

Rd

(∫
Rd

|Vϕ0f (x, ω)|pm(x, ω)p dx
)q/p

dω

)1/q

.

If p, q < ∞, the modulation space Mp,q
m is the norm completion of SC in the Mp,q

m -norm.
If p = ∞ or q = ∞, then Mp,q

m is the completion of SC in the σ(SC,SC)-topology. Then
by definition, Mp,q

m (Rd) is a Banach space. If p = q, we write Mp
m instead of Mp,p

m , and
if m(z) ≡ 1 on R

2d , then we write Mp,q and Mp for Mp,q
m and Mp,p

m .

This definition can be read on several levels of generality. If v and therefore m ∈
Mv grow polynomially, m(z) = O(|z|N) for some N ≥ 0, then Mp,q

m consists of all
tempered distributions f ∈ S ′(Rd) such that Vϕ0f ∈ Lp,qm (R2d)with the norm ‖f ‖Mp,q

m
=

‖Vϕ0f ‖Lp,qm . If p, q ≤ 2 and m ≥ 1, then Mp,q
m is a subspace of L2(Rd).

However, if v and m grow faster than polynomially, we may need to appeal to the
theory of ultra test functions and ultradistributions to get a concrete definition of Mp,q

m in
place of the equivalent definition as an abstract norm completion [4, 15, 26]. For instance,
if v(z) = ea|z|γ for γ < 1, thenM1

v ⊆ S(Rd) ⊆ S ′(Rd) ⊆ M∞
1/v , and the elements inMp,q

m

are those “ultra distributions” whose STFT is in Lp,qm .
We list the some of the main properties of modulation spaces [18, Chapter 11].

Theorem 1. Let 1 ≤ p, q ≤ ∞, v be a submultiplicative weight as above, andm ∈ Mv .

(i) Then Mp,q
m (Rd) is a Banach space, and

‖π(z)f ‖Mp,q
m

� v(z) ‖f ‖Mp,q
m
. (2.5)

(ii) Duality: If 1 ≤ p, q < ∞ and p′ = p
p−1 is the conjugate exponent, then (Mp,q

m )∗ =
M
p′,q ′
1/m .

Remark. The modulation spaces M∞,1
m is the dual of M1,0

1/m where M1,0
1/m is the closure

of SC in the M1,∞
1/m -norm [2]. Similarly, M1,∞

m = (M
0,1
1/m)

∗. Thus, duality and weak-∗
arguments can be used for all indices p, q.

The following statement on norm equivalence is crucial and will be used repeatedly.
Again ϕ0(t) = e−πt2 .
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Theorem 2.
(i) [18, Lemma 12.1.1]. If f, g ∈ M1

v , then

‖Vgf ‖L1
v

� ‖f ‖M1
v
‖g‖M1

v
. (2.6)

(ii) Equivalent norms [18, Theorem 11.4.2]: If g ∈ M1
v and f ∈ Mp,q

m , then

‖Vgf ‖Lp,qm � ‖g‖M1
v
‖f ‖Mp,q

m
� ‖Vgf ‖Lp,qm . (2.7)

The estimates in (2.7) imply that the definition ofMp,q
m is independent of the window

g and that ‖Vgf ‖Lp,qm is an equivalent norm for any g ∈ M1
v . To understand the various

conditions on the occurring windows, it is helpful to keep in mind that M1
v is the maximal

class of test functions that works simultaneously for all modulation spaces Mp,q
m , 1 ≤

p, q ≤ ∞ and all v-moderate weights m.
Among the modulation spaces occur several well-known function spaces:

(i) M2(Rd) = L2(Rd).

(ii) Weighted L2-spaces: If µs(x, ω) = 〈x〉s , then

M2
µs

(
R
d
) = L2

s

(
R
d
) = {

f : f (x)〈x〉s ∈ L2(
R
d
)}
.

(iii) Sobolev spaces: If τs(x, ω) = 〈ω〉s , then

M2
τs

(
R
d
) = Hs

(
R
d
) = {

f : f̂ (ω)〈ω〉s ∈ L2(
R
d
)}
.

(iv) Shubin-Sobolev spaces [28, 6]: If ms(z) = (1 + |z|)s = 〈z〉s , then

M2
ms

(
R
d
) = L2

s

(
R
d
) ∩Hs

(
R
d
) = Qs

(
R
d
)
.

(v) The Schwartz class is related to modulation spaces as follows [21]: S(Rd) =⋂
s≥0M

∞〈·〉s (Rd) .

(vi) The space of tempered distributions [21]:

S ′(
R
d
) =

⋃
s≤0

M∞〈·〉s
(
R
d
)
. (2.8)

3. Time-Frequency Tools

The following properties of the STFT, defined in (1.3), will be used in the sequel. For
proofs, see [16], [18, Chapter 3].

Lemma 1. Let f, g, h ∈ L2(Rd). Then we have

(i) Covariance property: If x, u, ω, η ∈ R
d , then

Vg(MηTuf )(x, ω) = e−2πiu(ω−η)Vgf (x − u, ω − η) , (3.1)

and thus |Vg(π(y))(z)| = |Vgf (z− y)| for y, z ∈ R
2d .

(ii) Inversion formula: ∫
R2d

Vgf (x, ω)MωTxh dx dω = 〈h, g〉f , (3.2)
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where the integral is to be understood in the weak sense.

Fix a nonzero window γ , we define an operator V ∗
γ mapping a function F on R

2d to

a function or distribution on R
d by

V ∗
γ F =

∫
R2d

F (x, ω)MωTxγ dx dω . (3.3)

If γ, f ∈ L2(Rd) and F ∈ L2(R2d), then V ∗
γ is simply the adjoint of Vγ in the sense that〈

V ∗
γ F, f

〉 = 〈F, Vγ f 〉 .
The following proposition [18, Proposition 11.3.2] concerns the boundedness of the operator
V ∗
γ and will be crucial for the analysis of localization operators.

Proposition 1. Let m ∈ Mv , γ ∈ M1
v , 1 ≤ p, q ≤ ∞. Then V ∗

γ maps Lp,qm (R2d) onto

M
p,q
m and satisfies∥∥V ∗

γ F
∥∥
M
p,q
m

� ‖Vϕ0γ ‖L1
v
‖F‖Lp,qm = ‖γ ‖M1

v
‖F‖Lp,qm . (3.4)

In particular, if F = Vgf , then the inversion formula holds in Mp,q
m :

f = 1

〈γ, g〉
∫

R2d
Vgf (x, ω)MωTxγ dx dω . (3.5)

In this notation, we can write a localization operator informally as

Aϕ1,ϕ2
a f = V ∗

ϕ2
(a Vϕ1f ) . (3.6)

Lemma 2. Let v be any submultiplicative weight and ϕ0(t) = e−πt2 . Then, for all
multi-indices α, β ≥ 0,∥∥Vϕ0

(
Xβ∂αϕ0

)∥∥
L1
v

=
∫

R2d

∣∣Vϕ0

(
Xβ∂αϕ0

)
(x, ω)

∣∣v(x, ω) dx dω < ∞ . (3.7)

Proof. We use the (multivariate) Hermite functions hγ to show that the integral (3.7)
is finite. Since Xβ∂αϕ0 can be written in the form pϕ0 where p is a polynomial of degree
|α| + |β|, Xβ∂αϕ0 is a finite sum of Hermite functions Xβ∂αϕ0 = ∑

|γ |≤|α|+|β| cγ hγ .
By a well-known formula (called the “Laguerre connection” in [16]), the STFT of hγ is

Vϕ0hγ (x, ω) = L0,γ (π(x
2+ω2))(x, ω)e−π(x2+ω2)/2, whereL0,γ is a Laguerre polynomial

of degree |γ |. Consequently, Vϕ0(X
β∂αϕ0) = |P(x, ω)|e−π(x2+ω2)/2 for some polynomial

of degree at most |α|+ |β|. Since a submultiplicative weight v grows at most exponentially
(i.e., v(x, ω) ≤ O(ec(|x|+|ω|))), the convergence of the integral (3.7) is guaranteed.

Lemma 2 helps us prove the boundedness of the operators Xβ∂α from M1
v(〈·〉N⊗〈·〉N)

into M1
v(〈·〉N−|β|⊗〈·〉N−|α|). A similar result can be found in [32].

Lemma 3. Let g ∈ M1
v(〈·〉N⊗〈·〉N) and |α|, |β| ≤ N . Then∥∥Xβ∂αg∥∥

M1
v(〈·〉N−|β|⊗〈·〉N−|α|)

� ‖g‖M1
v(〈·〉N⊗〈·〉N )

. (3.8)
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Proof. We use the following algebraic formula [18, Lemma 11.2.1] to interchange the
operators ∂αXβ with time-frequency shifts:

∂αXβ(MωTxh) =
∑
δ1≤α

∑
δ2≤β

(
α

δ1

)(
β

δ2

)
xδ2(2πiω)δ1MωTx

(
∂α−δ1Xβ−δ2h

)
, (3.9)

for all (x, ω) ∈ R
2d and α, β with |α|, |β| ≤ N . Substituting (3.9) into the STFT ofXβ∂αg,

we obtain∣∣Vϕ0

(
Xβ∂αg

)
(x, ω)

∣∣= ∣∣〈Xβ∂αg,MωTxϕ0
〉∣∣= ∣∣〈g, ∂αXβ(MωTxϕ0)

〉∣∣
≤
∑
δ1≤α

∑
δ2≤β

(
α

δ1

)(
β

δ2

)∣∣xδ2(2πiω)δ1
∣∣ ∣∣〈g,MωTx

(
∂α−δ1Xβ−δ2ϕ0

)〉∣∣
≤(2π)N 〈x〉|β|〈ω〉|α|∑

δ1≤α

∑
δ2≤β

(
α

δ1

)(
β

δ2

)∣∣〈g,MωTx
(
∂α−δ1Xβ−δ2ϕ0

)〉∣∣.
Taking the L1-norm with weight v (〈·〉N−|β| ⊗ 〈·〉N−|α|), the previous estimate yields∥∥Vϕ0

(
Xβ∂αg

)∥∥
L1
v(〈·〉N−|β|⊗〈·〉N−|α|)

�
∑
δ1≤α

∑
δ2≤β

(
α

δ1

)(
β

δ2

)∥∥V(∂α−δ1Xβ−δ2ϕ0)
g
∥∥
L1
v(〈·〉N⊗〈·〉N )

.

Now we apply Theorem 2 (i) to each of the terms on the right-hand side and obtain that∥∥Xβ∂αg∥∥
M1
v(〈·〉N⊗〈·〉N )

�
∑
δ1≤α

∑
δ2≤β

‖g‖M1
v(〈·〉N⊗〈·〉N )

∥∥∂α−δ1Xβ−δ2ϕ0
∥∥
M1
v(〈·〉N⊗〈·〉N )

< ∞ .

The latter expression is finite, since by assumption g ∈ M1
v(〈·〉N⊗〈·〉N) and ∂αXβϕ0 ∈

M1
v(〈·〉N⊗〈·〉N) by Lemma 2.

Remark. Similarly, one can see that Xβ∂α mapsMp,q

m(〈·〉N⊗〈·〉N) intoMp,q

m(〈·〉N−|β|⊗〈·〉N−|α|).

4. Mapping Properties of Localization Operators
Between Modulation Spaces

We investigate how a localization operator maps modulation spaces into each other. For
a more detailed analysis of the boundedness properties of localization operators we refer
to [10].

Theorem 3. Let m ∈ Mv , µ ∈ Mw.

(i) Assume that a ∈ L∞
1/m(R

2d), ϕ1 ∈ M1
vw and ϕ2 ∈ M1

w, then the localization operator

A
ϕ1,ϕ2
a is bounded from M

p,q
µm into Mp,q

µ with a norm estimate∥∥Aϕ1,ϕ2
a f

∥∥
M
p,q
µ

� ‖ϕ1‖M1
vw

‖ϕ2‖M1
w

‖a‖L∞
1/m

‖f ‖Mp,q
µm
. (4.1)

(ii) If a ∈ L∞
m (R

2d), ϕ1 ∈ M1
w, and ϕ2 ∈ M1

vw, then Aϕ1,ϕ2
a is bounded from M

p,q
µ into

M
p,q
µm , with ∥∥Aϕ1,ϕ2

a f
∥∥
M
p,q
µm

� ‖ϕ1‖M1
w

‖ϕ2‖M1
vw

‖a‖L∞
m

‖f ‖Mp,q
µ
. (4.2)
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Proof. We write the localization operator Aϕ1,ϕ2
a as in (3.6) and use Proposition 1.

(i) Since ϕ2 ∈ M1
w, estimate (3.4) implies that V ∗

ϕ2
is bounded from L

p,q
µ onto Mp,q

µ and,
for f ∈ Mp,q

µm , we have ∥∥Aϕ1,ϕ2
a f

∥∥
M
p,q
µ

= ∥∥V ∗
ϕ2
(a Vϕ1f )

∥∥
M
p,q
µ

� ‖ϕ2‖M1
w
‖a Vϕ1f ‖Lp,qµ .

Since by assumption |a(x, ω)| ≤ ‖a‖L∞
1/m
m(x, ω) for (x, ω) ∈ R

2d , the Lp,qµ -norm of the
product a Vϕ1f can be controlled in the following way:

‖a Vϕ1f ‖
L
p,q
µ

≤ ‖a‖L∞
1/m

‖mVϕ1f ‖
L
p,q
µ

= ‖a‖L∞
1/m

‖Vϕ1f ‖
L
p,q
µm

≤ ‖ϕ1‖M1
vw

‖a‖L∞
1/m

‖f ‖
M
p,q
µm

.

In the last equivalence we have used ϕ1 ∈ M1
vw and Theorem 2 (ii).

(ii) Is similar. Since ϕ2 ∈ M1
vw, V ∗

ϕ2
is bounded from L

p,q
µm onto Mp,q

µm by Proposition 1.
Hence, for f ∈ Mp,q

µ , we have∥∥Aϕ1,ϕ2
a f

∥∥
M
p,q
µm

= ∥∥V ∗
ϕ2
(a Vϕ1f )

∥∥
M
p,q
µm

� ‖ϕ2‖M1
vw

‖a Vϕ1f ‖Lp,qµm
≤ ‖ϕ2‖M1

vw
‖a‖L∞

m
‖(1/m)Vϕ1f ‖Lp,qµm

= ‖ϕ2‖M1
vw

‖a‖L∞
m

‖Vϕ1f ‖Lp,qµ � ‖ϕ1‖M1
w

‖ϕ2‖M1
wv

‖a‖L∞
m

‖f ‖Mp,q
µ
.

Remark. Note once again the role of the windows. In (i) the source space Mp,q
µm is

measured by the window ϕ1, which by Theorem 2 has to be in M1
vw. For the target space

M
p,q
µ we use ϕ2, thus the required condition is ϕ2 ∈ M1

w.

The following result will be used in the proof of the Fredholm property of Aϕ1,ϕ2
a

(Corollary 1). For weights of polynomial growth, Lemma 4 was already observed in [7,
Lemma 3.8].

Lemma 4. Let m ∈ Mv , µ ∈ Mw. If a ∈ L∞(R2d) with compact support, and
ϕ1 ∈ M1

v , ϕ2 ∈ M1
w, then the localization operator Aϕ1,ϕ2

a is compact from M
p,q
m into

M
p,q
µ , for 1 ≤ p, q ≤ ∞.

Proof. We show that Aϕ1,ϕ2
a is bounded and compact from M∞

1/v into M1
w. The com-

pactness of Aϕ1,ϕ2
a from M

p,q
m into Mp,q

µ then follows from the continuous embeddings
M
p,q
m ↪→ M∞

1/v and M1
w ↪→ M

p,q
µ . We denote the compact support of a by K ⊆ R

2d .
Let f ∈ M∞

1/v , then∥∥Aϕ1,ϕ2
a f

∥∥
M1
w

= ∥∥V ∗
ϕ2
(aVϕ1f )

∥∥
M1
w

� ‖aVϕ1f ‖L1
w

=
∫
K

|a(z)| |Vϕ1f (z)|w(z) dz

� sup
z∈K

|Vϕ1f (z)|
1

v(z)

∫
K

|a(z)|v(z)w(z) dz
� ‖f ‖M∞

1/v
,

and so Aϕ1,ϕ2
a is bounded.
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Let fn ∈ M∞
1/v be a bounded sequence that converges weak∗ to some f ∈ M∞

1/v . This

is equivalent to saying that Vϕ1fn converges uniformly on compact sets of R
2d to Vϕ1f ,

e.g., by [15, Theorem 4.1 (v)]. Consequently,

∥∥Aϕ1,ϕ2
a (fn − f )

∥∥
M1
w

� sup
z∈K

|Vϕ1(fn − f )(z)| 1

v(z)

∫
K

|a(z)|v(z)w(z) dz → 0 ,

and this property implies that Aϕ1,ϕ2
a is compact from M∞

1/v to M1
w.

For the analysis of the remainder, we will use the well-known fact that every linear
operator A : S → S ′ can be written in the form Af = V ∗

ϕ2
(T Vϕ1f ) for a suitable integral

operator T , see e.g., [16, 20]. The boundedness properties of operators given in this form
are derived as in Theorem 3.

Lemma 5. Let ϕ1, ϕ2 ∈ M1
w(R

d) and T be the integral operator with kernel K on R
4d

(acting on functions F on R
2d) defined by T F(y) = ∫

R2d K(y, z)F (z) dz and define the
operator A (acting on functions f on R

d) by

Af = V ∗
ϕ2
(T Vϕ1f ) .

If µ ∈ Mw and T is bounded on Lp,qµ (R2d), 1 ≤ p, q ≤ ∞, then A is bounded
on Mp,q

µ (Rd).

Proof. Since T is bounded by assumption and V ∗
ϕ2

is bounded by Proposition 1, we
obtain that

‖Af ‖Mp,q
µ

= ∥∥V ∗
ϕ2
(T Vϕ1f )

∥∥
M
p,q
µ

≤ ‖ϕ2‖M1
w
‖T (Vϕ1f )‖Lp,qµ

≤ CT ‖ϕ2‖M1
w
‖Vϕ1f ‖Lp,qµ � CT ‖ϕ1‖M1

w
‖ϕ2‖M1

w
‖f ‖Mp,q

µ
,

where the constant CT is the operator norm of T on Lp,qµ (R2d).

5. Treatment of Remainder Term

The mapping properties of localization operators, as studied in the previous section, enable
us to understand the left-hand side in the expansion formula (1.6). We now turn to the
investigation of the remainder term EN .

An explicit formula for the remainder and its Weyl symbol was derived in [11]. Here
we give a different treatment that leads to estimates for the operator norm of EN .

We recall the form of the remainder term from [11] and the introduction (1.6). Let
bN(y, z) be given by

bN(y, z) = N
∑

|α|=N

∫ 1

0
(1 − t)N−1∂αb(y + t (z− y)) dt

(z− y)α

α! , (5.1)

then the remainder in (1.6) is given by the formula

ENf =
∫

R2d

∫
R2d

a(y)bN(y, z) Vϕ3f (z)〈π(z)ϕ4, π(y)ϕ1〉π(y)ϕ2 dz dy . (5.2)
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If we introduce the integral operator T with kernel

K(y, z) = a(y)bN(y, z) 〈π(z)ϕ4, π(y)ϕ1〉 , (5.3)

i.e., TH(y) = ∫
R2d K(y, z)H(z) dz , then EN can be written formally as

ENf = V ∗
ϕ2
(T Vϕ3f ) . (5.4)

After these preparations we can formulate the following result for the boundedness
and compactness of the remainder term.

Theorem 4. Let m ∈ Mv , µ ∈ Mw, 1 ≤ p, q ≤ ∞ and assume that ϕ1, ϕ4 ∈
M1
wv〈·〉N (R

d), and ϕ2, ϕ3 ∈ M1
w(R

d).

(i) If a ∈ L∞
1/m(R

2d) and ∂αb ∈ L∞
m (R

2d) for |α| = N , then EN is bounded on Mp,q
µ with

the following estimate

‖ENf ‖
M
p,q
µ

�‖a‖L∞
1/m

( ∑
|α|=N

1

α!
∥∥∂αb∥∥

L∞
m

)
‖ϕ1‖

M1
vw〈·〉N

‖ϕ2‖M1
w
‖ϕ3‖M1

w
‖ϕ4‖

M1
vw〈·〉N

‖f ‖
M
p,q
µ
. (5.5)

(ii) If ∂αbm ∈ L0(R2d), then EN is compact on Mp,q
µ .

Proof.
(i) It suffices to show that the integral operator T defined by the kernelK in (5.3) is bounded
on Lp,qµ (R2d). Then EN is bounded on Mp,q

µ by Lemma 5.

Step 1. An estimate for the kernel K(y, z).
By assumption |a(y)| ≤ ‖a‖L∞

1/m
m(y) and |∂αb(y)| ≤ ‖∂αb‖L∞

m
m(y)−1. Therefore we

find that

|a(y)bN(y, z)| = |a(y)|N
∑

|α|=N

∣∣∣∣∣
∫ 1

0
(1 − t)N−1∂αb(y + t (z− y)) dt

(z− y)α

α!

∣∣∣∣∣
≤ N‖a‖L∞

1/m
m(y)〈z− y〉N

∑
|α|=N

1

α!
∥∥∂αb∥∥

L∞
m

∫ 1

0
m(y + t (z− y))−1 dt

≤ CN‖a‖L∞
1/m
m(y) 〈z− y〉N

∑
|α|=N

1

α!
∥∥∂αb∥∥

L∞
m

∫ 1

0
m(y)−1v(t (y−z)) dt

� ‖a‖L∞
1/m

∑
|α|=N

1

α!
∥∥∂αb∥∥

L∞
m
v(y − z)〈y − z〉N

where in the last inequality we have used property (2.2) of the weight v. Consequently, if

we set Ca,b,N := ‖a‖L∞
1/m

∑
|α|=N

1

α! ‖∂
αb‖L∞

m
< ∞, the integral kernel K is dominated by

a convolution kernel in the sense that

|K(y, z)| � Ca,b,Nv(y − z)〈y − z〉N |Vϕ1ϕ4(y − z)| . (5.6)

Step 2. Boundedness of the integral operator T on Lp,qµ (R2d).
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By (5.6) we obtain that

|TH(y)| =
∣∣∣∣∫

R2d
K(y, z)H(z) dz

∣∣∣∣
≤ Ca,b,N

∫
R2d

v(y − z)〈y − z〉N |Vϕ1ϕ4(y − z)| |H(z)| dz
= Ca,b,N

(|H | ∗ (v〈·〉N |Vϕ1ϕ4|
))
(y) .

If H ∈ L
p,q
µ (R2d), then Young’s inequality with weights (e.g., [18, Proposition 11.1.3.])

implies that

‖TH‖Lp,qµ ≤ Ca,b,N
∥∥|H | ∗ (v〈·〉N |Vϕ1ϕ4|

)∥∥
L
p,q
µ

� ‖H‖Lp,qµ
∥∥|Vϕ1ϕ4| v〈·〉N

∥∥
L1
w

= ‖H‖Lp,qµ ‖Vϕ1ϕ4‖L1
vw〈·〉N

.

Step 3. The boundedness of the remainder EN is now a consequence of Lemma 5. Ac-
cordingly, we need ϕ2, ϕ3 ∈ M1

w, whereas by Theorem 2 ‖Vϕ1ϕ4‖L1
vw〈·〉N

� ‖ϕ1‖M1
vw〈·〉N‖ϕ4‖M1

vw〈·〉N
. By keeping track of all the constants, we find estimate (5.5).

(ii) Compactness of EN .

Step 4. We first show that if b has compact support then EN is a compact operator from
M∞
µ into M1

µ. So assume that supp b ⊆ K for some compact set K ⊆ R
2d . Similar

arguments as in item (i) give the boundedness of the integral operator T from M∞
µ to M1

µ.
Since by assumption ∂αb ∈ L∞

m , we have∣∣∂αb(z)∣∣ ≤ ∥∥∂αb∥∥
L∞
m
m(z)−1χK(z) .

As in Step 1 above we derive the kernel estimate

|K(y, z)| � ‖a‖L∞
1/m

∑
|α|=N

1

α!
∥∥∂αb∥∥

L∞
m

∫ 1

0
v(t (z− y))χK(y + t (z− y)) dt

· 〈z− y〉N |Vϕ4ϕ1(z− y)| .

Let H ∈ L∞
µ (R

2d). To estimate TH we apply the preceding computation and also
use the w-moderateness of µ. This yields the majorization

‖TH‖L1
µ

≤
∫

R2d

(∫
R2d

|K(y, z)||H(z)| dz
)
µ(y) dy

�
∫

R2d

∫
R2d

∫ 1

0
v(t (z− y))χK(y + t (z− y))| 〈z− y〉NH(z) (5.7)

· |Vϕ4ϕ1(z− y)|µ(z)w(z− y) dz dy dt .

Performing the change of variables z′ = z− y, y′ = y + t (z− y) so that dy dz = dy′ dz′,
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and using (2.2), we get

‖TH‖L1
µ

� ‖H‖L∞
µ

∫
R2d

∫
R2d

∫ 1

0
v
(
tz′
)
χK
(
y′)〈z′〉N ∣∣Vϕ4ϕ1

(
z′
)∣∣w(z′) dz′ dy′ dt

� ‖H‖L∞
µ

∫
R2d

χK
(
y′) dy′

∫
R2d

v
(
z′
)
w
(
z′
)〈
z′
〉N ∣∣Vϕ4ϕ1

(
z′
)∣∣ dz′

= ‖H‖L∞
µ

meas (K) ‖Vϕ4ϕ1‖L1
vw〈·〉N

. (5.8)

To prove the compactness, we need to show that every bounded sequence fn ∈ M∞
µ

possesses a subsequence fnk such that ENfnk converges in the M1
µ-norm. So, assume that

fn ∈ M∞
µ = (M1

1/µ)
∗ and ‖fn‖M∞

µ
≤ 1 for all n ∈ N. By the Theorem of Alaoglu-

Bourbaki there is a subsequence fnk that converges in the w∗-topology to some f ∈ M∞
µ .

After replacing fnk by fnk − f , we may assume without loss of generality that fnk
w∗→ 0.

Since ϕ3 ∈ M1
w(R

d) ⊆ M1
1/µ(R

d), the w∗-convergence implies in particular that

(Vϕ3fnk )(z) = 〈fnk , π(z)ϕ3〉 → 0, ∀z ∈ R
2d .

The estimate (5.7) yields the majorization

‖ENfnk‖M1
µ

�
∫

R2d

∫
R2d

∫ 1

0
v(t (z− y))χK(y + t (z− y))| 〈z− y〉NVϕ3fnk (z)

· |Vϕ4ϕ1(z− y)|µ(z)w(z− y) dz dy dt .

Since Vϕ3fnk (z)µ(z) ≤ ‖fnk‖M∞
µ

≤ 1 for all z ∈ R
2d , the previous integral is bounded

(uniformly in nk) by the function

v(t (z− y)) χK(y + t (z− y)) 〈z− y〉N |Vϕ4ϕ1(z− y)|w(z− y) .

This function is integrable on R
2d×R

2d×[0, 1]by (5.8). Thus, the hypotheses of Lebesgue’s
Theorem on dominated convergence are satisfied, and we conclude that ‖ENfnk‖M1

µ
→ 0,

as desired. So EN is compact from M∞
µ into M1

µ.

Step 5. Since the embeddingsMp,q
µ ↪→ M∞

µ andM1
µ ↪→ M

p,q
µ are continuous, it follows

that EN is compact from M
p,q
µ into Mp,q

µ .

Step 6. If (∂αb)m ∈ L0 for all |α| = N , there exist sequences of functions ραn with
compact support such that∥∥(∂αb)m− (

ραn
)
m
∥∥
L∞ → 0, ∀α, |α| = N .

Let EnN denote the operator obtained by replacing the derivatives ∂αb by their ap-
proximations ραn in (5.2). Then by Step 5 EnN : Mp,q

µ → M
p,q
µ is a compact operator,

and we have

∥∥EN − EnN

∥∥
M
p,q
µ →M

p,q
µ

�
∑

|α|=N

∥∥∂αb − ραn

∥∥
L∞
m

α! → 0 .

Being the limit of compact operators, EN is also compact from M
p,q
µ into Mp,q

µ .
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6. The Main Theorem—Symbolic Calculus for
Localization Operators

We now have all the pieces in place to prove the validity of the composition formula for
localization operators

Aϕ1,ϕ2
a A

ϕ3,ϕ4
b =

N−1∑
|α|=0

(−1)|α|

α! A
�α,ϕ2
a∂αb + EN (6.1)

on modulation spaces. According to [11] the windows�α are given explicitly by the formula

�α = 1

(2πi)|α2|
∑
β≤α

(
α

β

)
(−1)|β1|〈ϕ3, X

α1−β1∂α2−β2ϕ4
〉
Xβ1∂β2ϕ1 . (6.2)

In order to treat (6.1) on modulation spaces, we need to verify that (a) all occurring
windows are in the correct window classes, (b) all the terms are well-defined bounded
operators on modulation spaces, and (c) the equality (6.1) holds true. The proof consists in
the careful combination of the main results of Sections 4 and 5.

The generality of the hypotheses on the admissible weight functions, windows, and
symbols makes the conditions somewhat technical and cumbersome. At a first reading one
may assume that all weights are of at most polynomial growth. Then it suffices to take all
windows ϕj , j = 1, . . . , 4, in S(Rd) (whereas the more general conditions in the following
theorem permit to choose them in much larger modulation spaces).

Theorem 5. Consider the following set of hypotheses:

(i) Weights: m ∈ Mv, µ ∈ Mw.

(ii) Windows: ϕ1, ϕ4 ∈ M1
vw(〈·〉N⊗〈·〉N), ϕ2, ϕ3 ∈ M1

w.

(iii) Symbols: a ∈ L∞
1/m(R

2d), ∂αb ∈ L∞
m (R

2d) for all |α| ≤ N .
If hypotheses (i)–(iii) hold, then the symbolic calculus for localization operators is

valid in the following sense:

(i) For |α| < N the window �α on R
d defined by (6.2) belongs to M1

vw.

(ii) The composition formula given in (6.1) is well-defined on everyMp,q
µ , for 1 ≤ p, q ≤ ∞.

This means that the product on the left-hand side and all operators on the right-hand side
are bounded from M

p,q
µ to Mp,q

µ , and (6.1) is valid as an identity of operators.

(iii) If, in addition, (
∂αb

)
m ∈ L0(

R
2d) , ∀α, |α| = N , (6.3)

then the remainder EN is compact on Mp,q
µ .

Proof. Boundedness of the operators on the left-hand side. We apply Theorem 3 whose
assumptions are tailored for this purpose. By (4.2)Aϕ3,ϕ4

b is bounded fromM
p,q
µ intoMp,q

µm ,
and by (4.1) Aϕ1,ϕ2

a is bounded from M
p,q
µm into Mp,q

µ . Thus, the product Aϕ1,ϕ2
a A

ϕ3,ϕ4
b is

bounded on Mp,q
µ with an operator norm not exceeding ‖a‖L∞

1/m
‖b‖L∞

m
‖ϕ1‖M1

vw
‖ϕ2‖M1

w‖ϕ3‖M1
w
‖ϕ4‖M1

vw
.

Boundedness of the operators on the right-hand side. The boundedness of the remainderEN
onMp,q

µ was stated and proved in Theorem 4 (i). With the additional decay condition (6.3)
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the compactness of EN follows from Theorem 4 (ii). Note that 〈(x, ω)〉N ≤ 〈x〉N 〈ω〉N
and thus M1

vw(〈·〉N⊗〈·〉N) ⊆ M1
vw〈·〉N . The slightly stronger condition on ϕ1, ϕ4 is required

in the next step.

Next we turn to the sum of localization operators A�α,ϕ2
a∂αb . We first check that each

window �α defined in (6.2) belongs to M1
vw . For β = (β1, β2) and |β| ≤ N , Lemma 3

gives

Xβ1∂β2ϕ1 ∈ M1
vw(〈·〉N−|β1|⊗〈·〉N−|β2 |) ⊆ M1

vw

and likewise Xα1−β1∂α2−β2ϕ4 ∈ M1
vw ⊆ L2 when |β| ≤ |α| ≤ N . Consequently, the

brackets 〈ϕ3, t
α1−β1∂α2−β2ϕ4〉 are well-defined as an inner product in L2, and �α , as a

finite linear combination of Xβ1∂β2ϕ1, is then also in M1
vw ⊆ M1

w.

For boundedness ofA�α,ϕ2
a∂αb onMp,q

µ we invoke once more Theorem 3. We know that

a∂αb ∈ L∞
1/m · L∞

m = L∞(R2d) and �α, ϕ2 ∈ M1
w, hence A�α,ϕ2

a∂αb is bounded on Mp,q
µ .

Formula (6.1) is an identity of operators. So far we have shown that all terms in the symbolic
calculus (6.1) are well-defined and bounded onMp,q

µ . It remains to show that (6.1) is actually
an identity of operators, under the general hypothesis stated. Regarding this question, we
already know from the main result in [11] that (6.1) holds for windows ϕj in the Schwartz
class and symbols in certain Shubin classes, in particular for symbols a, b ∈ S(R2d). We
need to extend the validity of (6.1) to windows in the (possibly larger) modulation spaces
and to nonsmooth symbols in weighted L∞-spaces.

To accomplish this extension, we view each of the terms in the symbolic calculus as
a multilinear form mapping (a, b, ϕ1, . . . , ϕ4) = (a, b, �ϕ) to one of the operators

T
(
a, b, �ϕ) = Aϕ1,ϕ2

a A
ϕ3,ϕ4
b , A

�α,ϕ2
a∂αb , or EN(a, b, ϕ) . (6.4)

The operator norm of each of these operators onMp,q
µ obeys an estimate of the form∥∥T (a, b, �ϕ)∥∥

M
p,q
µ →M

p,q
µ

(6.5)

� ‖a‖L∞
1/m

∥∥∂αb∥∥
L∞
m

‖ϕ1‖M1
vw(〈·〉N⊗〈·〉N )

‖ϕ2‖M1
w
‖ϕ3‖M1

w
‖ϕ4‖M1

vw(〈·〉N⊗〈·〉N )
,

for suitable α, |α| ≤ N as proved in Theorem 3 and 4, and (5.5).
The extension of the symbolic calculus from windows in S(Rd) to windows in the

modulation spaces can be done by a routine density argument, because SC is dense inM1
v for

any submultiplicative weight v. Since by (6.5) each operatorT (a, b, �ϕ) is jointly continuous
in ϕj , j = 1, . . . , 4, we may choose four sequences ϕj,n ∈ SC such that ϕj,n → ϕj in the
correctly weighted M1-norm. Then, as n → ∞, each T (a, b, �ϕn) converges to T (a, b, �ϕ)
in operator norm. As a consequence, the symbolic calculus (6.1) holds under the general
hypotheses on the windows as stated.

The extension of the symbolic calculus to nonsmooth symbols is more subtle, because
S is not norm-dense in L∞

1/m or L∞
m . We have to take recourse to a weak-∗ approxima-

tion argument.
Given a ∈ L∞

1/m(R
2d), we choose a sequence ak ∈ S(R2d) converging weak-∗ to a,

i.e., 〈ak, F 〉 → 〈a, F 〉 for all F ∈ L1
m. Likewise, given b ∈ L∞

m with ∂αb ∈ L∞
m for all

α, |α| ≤ N , we may choose a sequence bn ∈ S, such that 〈∂αbn, F 〉 → 〈∂αb, F 〉 for all
F ∈ L1

1/m. This is always possible by a regularization of b, see e.g., [22].
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Next we show that, for each operator T (a, b, �ϕ) in (6.4) and all f ∈ M
p,q
µ and

g ∈ Mp′,q ′
1/µ , we have

lim
k,n→∞

〈
T
(
ak, bn, �ϕ)f, g〉 = 〈

T
(
a, b, �ϕ)f, g〉 . (6.6)

To be specific, we carry out the argument for the remainder EN(a, b, �ϕ).
Since by Theorem 4 we have

|〈EN(a, b)f, g〉| � ‖a‖L∞
1/m
,

there exists an F ∈ L1
m (depending on all other parameters b, ϕj , f, g), such that

〈EN(a, b)f, g〉 = 〈a, F 〉 .
In fact, according to (5.2) F is given explicitly by

F(y) =
∫

R2d
bN(y, z) Vϕ3f (z)〈π(z)ϕ4, π(y)ϕ1〉Vϕ2g(y) dz ,

and can be shown directly to be in L1
m(R

2d) as in Steps 1 and 2 of the proof of Theorem 4.

Consequently, if ak
w∗→ a, then

〈EN(ak, b)f, g〉 = 〈ak, F 〉 → 〈a, F 〉 = 〈EN(a, b)f, g〉 .
For the convergence in b, let EαN be the term in the remainder that corresponds to the α-th
derivative of b. Since as part of the proof of Theorem 4 we have shown that∣∣〈EαN(a, b)f, g〉∣∣ �

∥∥∂αb∥∥
L∞
m
,

there exists G ∈ L1
1/m (depending on a, f, g, ϕj ) such that〈

EαN(a, b)f, g
〉 = 〈

∂αb,G
〉
.

Consequently, if ∂αbn
w∗→ ∂αb, then〈

EαN(a, bn)f, g
〉 = 〈

∂αbn,G
〉 → 〈

∂αb,G
〉 = 〈

EαN(a, b)f, g
〉
.

By summing over all α, |α| = N , we have shown (6.6) for EN . The weak-∗ convergence
of Aϕ1,ϕ2

a A
ϕ3,ϕ4
b and A�α,ϕ2

a∂αb is shown by exactly the same argument.
Finally, the weak-∗ convergence of each term in the symbolic calculus (6.1) implies

that it remains valid under weak-∗ limits of the symbols a and b. Consequently, (6.1) holds
for arbitrary symbols a ∈ L∞

1/m and b with ∂αb ∈ L∞
m for |α| ≤ N . This completes the

proof of the expansion formula on Mp,q
µ .

Theorem 5 possesses a symmetric version that is obtained by using the Taylor expan-
sion for the symbol a instead of b. Precisely, the following result holds.

Proposition 2. Under the assumptions of Theorem 5, with the rules of the symbols a
and b interchanged, that is, b ∈ L∞

1/m, ∂αa ∈ L∞
m , ∀α ≤ N , we obtain the symmetric

composition formula

Aϕ1,ϕ2
a A

ϕ3,ϕ4
b =

N−1∑
|α|=0

(−1)|α|

α! A
ϕ3,�α
(∂αa)b + ẼN . (6.7)
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Here

�α = (−1)|α|

(2πi)|α2|
∑
β≤α

(
α

β

)
(−1)|β1|〈ϕ2, X

α1−β1∂α2−β2ϕ1〉Xβ1∂β2ϕ4 ,

and the remainder ẼN is given by

ẼNf =
∫

R2d

∫
R2d

aN(z, y)b(z)Vϕ3f (z)〈π(z)ϕ4, π(y)ϕ1〉π(y)ϕ2 dy dz ,

with aN already defined in (5.1). Formula (6.7) is a well-defined identity of bounded
operators on Mp,q

µ .

(ii) If (
∂αa

)
m ∈ L0(

R
2d) , ∀α, |α| = N , (6.8)

then ẼN is compact on Mp,q
µ .

7. Fredholm Property of Localization Operators

In the final section we investigate the Fredholm property of localization operators. As
in the theory of partial differential equations, the construction of a parametrix (a left in-
verse or a right inverse modulo regularizing terms) is one of the main applications of the
symbolic calculus.

Recall that a bounded operator A : B1 → B2 between two Banach spaces B1, B2 is
called a Fredholm operator if

dim KerA < ∞ and dim CokerA < ∞ .

Equivalently, A is Fredholm, if there exists a left parametrix B : B2 → B1 such that
BA = IB1 + K1 for some compact operator K1 : B1 → B1 and a right parametrix
C : B2 → B1 such that AC = IB2 +K2 for a compact operator K2 : B2 → B2 [5, 11].

The expansion formula (1.6) for Aϕ1,ϕ2
a with N = 1 and b = 1/a yields a natural

candidate for a parametrix, namely the localization operatorAϕ2,ϕ1
1/a . This idea is formulated

precisely in the next theorem.

Theorem 6 (Fredholm property). Letm ∈ Mv, µ ∈ Mw. Assume that the symbol a and
the windows ϕ1, ϕ2 satisfy the following conditions:

(i) |a|  1/m, in particular a ∈ L∞
m (R

2d),

(ii) (∂j a)m ∈ L0 for j = 1, . . . , 2d , and

(iii) ϕ1, ϕ2 ∈ M1
wv2(〈·〉⊗〈·〉) and |〈ϕ1, ϕ2〉| = 1.

Then the operators

Aϕ1,ϕ2
a : Mp,q

µ → M
p,q
µm and A

ϕ2,ϕ1
1/a : Mp,q

µm → Mp,q
µ

are Fredholm operators.

Proof. Construction of a left parametrix for Aϕ1,ϕ2
a . Once more, Theorem 3 (ii) implies

that Aϕ1,ϕ2
a is bounded from M

p,q
µ into Mp,q

µm , since a ∈ L∞
m (R

2d). Likewise, 1/a ∈ L∞
1/m

and by Theorem 3 (i) Aϕ2,ϕ1
1/a is bounded from M

p,q
µm into Mp,q

µ .
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Next, we apply Theorem 5 with N = 1 to the product Aϕ2,ϕ1
1/a A

ϕ1,ϕ2
a and obtain the

composition formula

A
ϕ2,ϕ1
1/a Aϕ1,ϕ2

a = A
�0,ϕ1
1 + E1 , (7.1)

as an operator identity on Mp,q
µ .

According to (6.2), �0 is given by �0 = 〈ϕ1, ϕ2〉ϕ2. Using the inversion for-
mula (3.2), which corresponds to a ≡ 1, we obtain

A
�0,ϕ1
1 f =

∫
R2d

1 〈f, π(z)�0〉πzϕ1 dz

= 〈ϕ1,�0〉f = |〈ϕ1, ϕ2〉|2f = f .

The remainder E1 is compact on Mp,q
µ because of assumption (ii) on a and assump-

tion (iii) on the windows and Theorem 4 (ii). This means that Aϕ2,ϕ1
1/a is a left parametrix

for Aϕ1,ϕ2
a .
Construction of a right parametrix of Aϕ1,ϕ2

a . The construction of a right parametrix
is similar. Since we apply Proposition 2 to Mp,q

µm instead of Mp,q
µ , we have to replace the

pair of weights (w,µ) in the hypotheses by the pair (vw,µm). Then, by the symmetric
formula (6.7), we obtain the composition formula on Mp,q

µm :

Aϕ1,ϕ2
a A

ϕ2,ϕ1
1/a = A

�0,ϕ2
1 + Ẽ1 = I + Ẽ1 .

Again by Theorem 4 (ii) Ẽ1 is a compact operator on Mp,q
µm , and thus Aϕ2,ϕ1

1/a is the right

parametrix for Aϕ1,ϕ2
a .

Altogether we have shown that Aϕ1,ϕ2
a is a Fredholm operators between Mp,q

µ and
M
p,q
µm . Likewise, Aϕ2,ϕ1

1/a is Fredholm between Mp,q
µm and Mp,q

µ .

Theorem 6 applies to the standard weight functions, such as (1+|z|2)s/2 or (1+|z|)s ,
and also to submultiplicative weights satisfying a condition of the form |∂j v(z)| ≤ v(z)τ

for some τ, 0 < τ < 1. However, as written, our main theorem does not seem to work for
the subexponential weights v(z) = ea|z|b , 0 < b < 1, because(

∂j e
a|z|b)e−a|z|b = −a|z|b−1 zj

|z|
possesses a mild singularity at 0 and is not bounded in a neighborhood of 0. The next result
shows that this difficulty can be circumvented easily, because the decisive property of a in
Theorem 5 is the asymptotic behavior at ∞ and not the local behavior at 0.

Corollary 1. The conclusions of Theorem 6 hold if condition (ii) on the symbol a is
replaced by the weaker condition:

(ii’) There exists a compact set K ⊂ R
2d such that,

(1 − χK)(∂j a)m ∈ L0(
R

2d), j = 1, . . . , 2d . (7.2)

Proof. We first find the left-inverse of Aϕ1,ϕ2
a . Let ψ be a test function in D such that

ψ(z) = 1 for z ∈ K . Then the product Aϕ2,ϕ1
1/a A

ϕ1,ϕ2
a can be recast as

A
ϕ2,ϕ1
1/a Aϕ1,ϕ2

a = A
ϕ2,ϕ1
1/a A

ϕ1,ϕ2
aψ + A

ϕ2,ϕ1
(1/a)ψ A

ϕ1,ϕ2
a(1−ψ) + A

ϕ2,ϕ1
(1/a)(1−ψ)A

ϕ1,ϕ2
a(1−ψ) . (7.3)
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Since both functions aψ and (1/a)ψ are bounded with compact support, Lemma 4
guarantees that the corresponding operators are compact onMp,q

µ . Thus, the first two terms
of the right-hand side of (7.3) are compact operators on Mp,q

µ . To treat the third term, we
apply the expansion formula of Theorem 5 with N = 1 and we obtain

A
ϕ2,ϕ1
(1/a)(1−ψ)A

ϕ1,ϕ2
a(1−ψ) = A

�0,ϕ1
(1−ψ)2 + E1

= I + 〈ϕ1, ϕ2〉Aϕ2,ϕ1
−2ψ+ψ2 + E1 .

Since (ii’) implies that a(1 − ψ) satisfies condition (6.8), the remainder E1 is com-
pact on Mp,q

µ whereas the compactness of the operator Aϕ2,ϕ1
−2ψ+ψ2 on Mp,q

µ follows again
by Lemma 4.

We have shown that Aϕ2,ϕ1
1/a A

ϕ1,ϕ2
a = I + R, for some compact operator R and thus

have obtained a left parametrix forAϕ1,ϕ2
a . The argument for the right parametrix is similar.

Remark. It is natural to conjecture that for symbols of the form a = 1/m the localization
operator Aϕ1,ϕ2

a is an isomorphism between Mp,q and Mp,q
m . Under very restrictive condi-

tions (m depends only on one variable, orm is hypoelliptic and grows at most polynomially)
this has been proved in [14, 7] and others. Using completely different techniques (Banach
algebra methods and spectral invariance) the following can be shown: Assume that a is
measurable and 0 < A ≤ a(z) ≤ B < ∞ for almost all z ∈ R

2d and ϕ1, ϕ2 ∈ M1
v , then

A
ϕ1,ϕ2
a is an isomorphism on Mp,q

m for 1 ≤ p, q ≤ ∞ and all m ∈ Mv [19]. In contrast to
existing results, no smoothness conditions are required on the symbol a in this case.
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