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ABSTRACT. Given certain compactly supported functions g ∈ L2(Rd ) whose Z
d -translates

form a partition of unity, and real invertible d × d matrices B, C for which ‖CT B‖ is sufficiently
small, we prove that the Gabor system {EBmTCng}

m,n∈Zd forms a frame, with a (noncanonical)
dual Gabor frame generated by an explicitly given finite linear combination of shifts of g. For
functions g of the above type and arbitrary real invertible d × d matrices B, C this result leads
to a construction of a multi-Gabor frame {EBmTCngk}

m,n∈Zd ,k∈F , where all the generators gk

are dilated and translated versions of g. Again, the dual generators have a similar form, and are
given explicitly. Our concrete examples concern box splines.

1. Introduction

For y ∈ R
d , the translation operator Ty and the modulation operator Ey are defined by

(Tyf )(x) = f (x − y), x ∈ R
d ,

(Eyf )(x) = e2πiy·xf (x), x ∈ R
d ,

where y · x denotes the inner product between y and x in R
d . Given two real and invertible

d × d matrices B and C we consider Gabor systems of the form

{EBmTCng}m,n∈Zd = {
e2πiBm·xg(x − Cn)

}
m,n∈Zd .

Our purpose is to construct a class of Gabor frames with generators that are easy to use in
practice, and having the additional property that we can find a dual generator of the form

h =
∑
k∈F

ckTkg
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for some finite set F ⊂ Z
d and explicitly given scalar coefficients ck . One advantage of this

is that the decay of the dual generator h in the frequency domain is controlled by the decay
of ĝ. Our results extend the one-dimensional results in [2]. As we will see, the extension is
nontrivial: It is not clear from the one-dimensional version how one has to define the dual
generators in higher dimensions.

Our approach is strongly connected with the results by Janssen [5, 6], Labate [7],
Hernandez, Labate, and Weiss [4], and Ron and Shen [8, 9]. However, in contrast to these
articles, the focus is on explicit constructions rather than general characterizations. For
more information about Gabor systems and their role in time-frequency analysis we refer
to the book [3] by Gröchenig; for general frame theory we refer to [1].

In the rest of the introduction we collect a few conventions about notation and a basic
result for obtaining a pair of dual frames. The dilation operator associated with a real d ×d

matrix C is

(DCf )(x) = | det C|1/2f (Cx), x ∈ R
d .

Let CT denote the transpose of a matrix C; then

DCEy = ECT yDC, DCTy = TC−1yDC .

If C is invertible, we use the notation

C� = (
CT
)−1

.

For f ∈ (L1 ∩ L2)(Rd) we denote the Fourier transform by

Ff (γ ) = f̂ (γ ) =
∫

Rd

f (x)e−2πix·γ dx .

As usual, the Fourier transform is extended to a unitary operator on L2(Rd). The reader
can check that

FTCk = E−CkF .

We conclude the introduction by stating a special case of a result from [4]; it will
form the basis for all the results presented in the article. Let

D := {
f ∈ L2(

R
d
) : f̂ ∈ L∞(

R
d
)

and supp f̂ is compact
}

.

Lemma 1. Let B be an invertible d × d matrix, and let {gn}n∈Zd and {hn}n∈Zd be
collections of functions in L2(Rd). Assume that {TBmgn}m,n∈Zd and {TBmhn}m,n∈Zd are
Bessel sequences and that for all f ∈ D,∑

n∈Zd

∑
m∈Zd

∫
supp f̂

∣∣f̂ (γ + B�m
)∣∣2∣∣ĝn(γ )

∣∣2 dγ < ∞ , (1.1)

∑
n∈Zd

∑
m∈Zd

∫
supp f̂

∣∣f̂ (γ + B�m
)∣∣2∣∣ĥn(γ )

∣∣2 dγ < ∞ . (1.2)

Then {TBmgn}m,n∈Zd and {TBmhn}m,n∈Zd are dual frames for L2(Rd) if and only if∑
k∈Zd

ĝk

(
γ − B�n

)
ĥk(γ ) = | det B|δn,0, a.e. γ ,

for all n ∈ Z
d .
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2. Dual Pairs of Gabor Frames

We first prove a time-domain version of Lemma 1 for Gabor systems. As we will see, we
can remove the technical conditions (1.1) and (1.2) in the Gabor case. We begin with a
lemma.

Lemma 2. Let g ∈ L2(Rd) and assume that B and C are invertible matrices. Then for
all f ∈ D, ∑

n∈Zd

∑
m∈Zd

∫
supp f̂

∣∣f̂ (γ + B�m
)∣∣2|g(γ − Cn)|2 dγ < ∞ .

Proof. Let f ∈ D. Then∑
m∈Zd

∣∣f̂ (γ + B�m
)∣∣2 ≤ sup

γ∈B�[0,1]d
∑

m∈Zd

∣∣f̂ (γ + B�m
)∣∣2 . (2.1)

Independently of the choice of γ ∈ B�[0, 1]d , only a fixed finite number of m ∈ Z
d will

give nonzero contributions to the sum on the right-hand side of (2.1); since f̂ is bounded,
this implies that there exists a constant K such that∑

m∈Zd

∣∣f̂ (γ + B�m
)∣∣2 ≤ K, a.e. γ .

Hence,

∑
n∈Zd

∑
m∈Zd

∫
supp f̂

∣∣f̂ (γ + B�m
)∣∣2|g(γ − Cn)|2 dγ

=
∫

supp f̂

∑
m∈Zd

∣∣f̂ (γ + B�m
)∣∣2 ∑

n∈Zd

|g(γ − Cn)|2 dγ

≤ K

∫
supp f̂

∑
n∈Zd

|g(γ − Cn)|2 dγ .

Choose an integer a > 0 such that

supp f̂ ⊆ C[−a, a]d .

Then ∫
supp f̂

∑
n∈Zd

|g(γ − Cn)|2 dγ ≤
∫

C[−a,a]d
∑
n∈Zd

|g(γ − Cn)|2 dγ

≤ | det C|
∫

[−a,a]d
∑
n∈Zd

|g(C(ξ − n))|2 dξ .

Now, using that (modulo null-sets)

[−a, a]d =
⋃

k∈[−a,a−1]d∩Zd

(
k + [0, 1]d)

and that the function ξ �→ ∑
n∈Zd |g(C(ξ − n))|2 is Z

d -periodic,
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∫
[−a,a]d

∑
n∈Zd

|g(C(ξ − n))|2 dξ

= (2a)d
∫

[0,1]d
∑
n∈Zd

|g(C(ξ − n))|2 dξ

= (2a)d
∫

Rd

|g(Cξ)|2 dξ

= | det C|−1(2a)d
∫

Rd

|g(η)|2 dη < ∞ .

The following is the frame-pair version of Corollary 3.3 in [7]. It can also be consid-
ered as the time-domain version of Lemma 1. Results of that type already appeared in [8]
by Ron and Shen, and (in the one-dimensional case) in [5] by Janssen. We provide the short
proof for the sake of completeness.

Lemma 3. Two Bessel sequences {EBmTCng}m,n∈Zd and {EBmTCnh}m,n∈Zd form dual
frames for L2(Rd) if and only if∑

k∈Zd

g
(
x − B�n − Ck

)
h(x − Ck) = | det B|δn,0 . (2.2)

Proof. We note that {EBmTCng}m,n∈Zd and {EBmTCnh}m,n∈Zd form dual frames if
and only if {F−1EBmTCng}m,n∈Zd and {F−1EBmTCnh}m,n∈Zd are dual frames. Now,
F−1EBmTCng = T−BmF−1TCng; thus, the result follows from Lemma 1 and Lemma 2
with gn = F−1TCng, hn = F−1TCnh.

We now present the first version of our results. For simplicity we consider the case
C = I . For any d × d matrix we define the norm ‖B‖ by

‖B‖ = sup
‖x‖=1

‖Bx‖ .

Theorem 1. Let N ∈ N. Let g ∈ L2(Rd) be a real-valued bounded function with
supp g ⊆ [0, N ]d , for which ∑

n∈Zd

g(x − n) = 1 .

Assume that the d × d matrix B is invertible and ‖B‖ ≤ 1√
d(2N−1)

. For i = 1, . . . , d, let

Fi be the set of lattice points {kj }dj=1 ∈ Z
d for which the coordinates kj , j = 1, . . . , d,

satisfy the requirements


if j = 1, . . . , i − 1, then |kj | ≤ N − 1 ;
if j = i, then 1 ≤ kj ≤ N − 1 ;
if j = i + 1, . . . , d, then kj = 0 .

(2.3)

Define h ∈ L2(Rd) by

h(x) := | det B|
[
g(x) + 2

d∑
i=1

∑
k∈Fi

g(x + k)

]
. (2.4)
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Then the function g and the function h generate dual frames {EBmTng}m,n∈Zd and
{EBmTnh}m,n∈Zd for L2(Rd).

Proof. We apply Lemma 3. Since B is invertible, for any n ∈ Z
d we have

|n| = ∥∥BT B�n
∥∥ ≤ ‖B‖ ∥∥B�n

∥∥ ;

thus, for n �= 0, ‖B�n‖ ≥ 1/‖B‖. Note that with the definition (2.4), we have supp h ⊆
[−N + 1, 2N − 1]d ; thus, (2.2) is satisfied for n �= 0 if 1/‖B‖ ≥ √

d(2N − 1), i.e., if

‖B‖ ≤ 1√
d(2N − 1)

.

Thus, we only need to check that∑
k∈Zd

g(x − k)h(x − k) = | det B|, x ∈ [0, 1]d ;

due to the compact support of g, this is equivalent to∑
n∈[0,N−1]d∩Zd

g(x + n)h(x + n) = | det B|, x ∈ [0, 1]d . (2.5)

To check that (2.5) holds, we use that for x ∈ [0, 1]d ,∑
n∈[0,N−1]d∩Zd

g(x + n) = 1 . (2.6)

For n := {nj }dj=1 ∈ [0, N − 1]d ∩ Z
d , and i = 1, . . . , d, let En

i denote the set of lattice

points {kj }dj=1 ∈ Z
d whose coordinates kj satisfy the requirements




if j = 1, . . . , i − 1, then 0 ≤ kj ≤ N − 1 ;
if j = i, then nj + 1 ≤ kj ≤ N − 1 ;
if j = i + 1, . . . , d, then kj = nj .

Define h̃n ∈ L2(Rd) by

h̃n(x) := | det B|
[
g(x + n) + 2

d∑
i=1

∑
k∈En

i

g(x + k)

]
.

We now consider the finite set [0, N − 1]d ∩ Z
d . Using lexicographic ordering, i.e.,

(i1, . . . , id) > (j1, . . . , jd)

⇔ (id > jd) ∨ ((id = jd) ∧ (id−1 > jd−1)) ∨ · · ·
∨((id = jd) ∧ · · · ∧ (i2 = j2) ∧ i1 > j1) ,

we write
[0, N − 1]d ∩ Z

d = {n1, n2, · · · , nNd } ,



248 Ole Christensen and Rae Young Kim

with nj < nk for j < k. Then for x ∈ [0, 1]d , (2.6) implies that

1 =
(

Nd∑
j=1

g(x + nj )

)2

= (g(x + n1) + g(x + n2) + · · · + g(x + nNd ))

× (g(x + n1) + g(x + n2) + · · · + g(x + nNd ))

= g(x + n1)[g(x + n1) + 2g(x + n2) + 2g(x + n3) + · · · + 2g(x + nNd )]
+ g(x + n2)[g(x + n2) + 2g(x + n3) + 2g(x + n4) + · · · + 2g(x + nNd )]
+ · · ·
+ · · ·
+ g(x + nNd−1)[g(x + nNd−1) + 2g(x + nNd )]
+ g(x + nNd )[g(x + nNd )]

= 1

| det B|
Nd∑
j=1

g(x + nj )h̃nj
(x) .

It remains to show that for x ∈ [0, 1]d and n = {nj }dj=1 ∈ [0, N − 1]d ∩ Z
d ,

h(x + n) = h̃n(x) .

In order to do so, it is sufficient to show that for any i = 1, . . . , d,∑
k∈Fi

g(x + n + k) =
∑
k∈En

i

g(x + k), x ∈ [0, 1]d . (2.7)

Fix i ∈ {1, . . . , d}. If 1 ≤ j < i, then{
nj + kj : {kj }dj=1 ∈ Fi

} = [nj − N + 1, nj + N − 1] ∩ Z (2.8)

⊇ [0, N − 1] ∩ Z .

If j = i, then {
nj + kj : {kj }dj=1 ∈ Fi

} = [nj + 1, nj + N − 1] ∩ Z (2.9)

⊇ [1 + nj , N − 1] ∩ Z .

If j > i, then {
nj + kj : {kj }dj=1 ∈ Fi

} = {nj } .

Via the definition of the set En
i this shows that

En
i ⊆ {

n + k : k = {kj }dj=1 ∈ Fi

}
. (2.10)

In order to show that we have equality in (2.7), we again fix i ∈ {1, . . . , d}. Suppose that
m := {mj }dj=1 ∈ {n + k : k = {kj }dj=1 ∈ Fi} \ En

i . Then either, by (2.8), there exists
j ∈ {1, . . . , i − 1} such that

mj := nj + kj /∈ [0, N − 1] ∩ Z ;
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or, by (2.9),

mi := ni +ki ∈ ([1 + nj , nj + N − 1] \ [1 + nj , N − 1]) ∩ Z =[N, nj + N − 1] ∩ Z .

In both cases, since supp g ⊆ [0, N ]d , this implies that g(x + m) = 0 for x ∈ [0, 1]d .
Hence, ∑

k∈Fi

g(x + n + k) =
∑
k∈En

i

g(x + k) ,

as desired.

Example 1. For d = 1, the Gabor system considered in Theorem 1 is {EmbTng}m,n∈Z

for some b > 0. The reader can check that

F1 = {1, . . . , N − 1} ;
thus, the expression for the dual generator h in (2.4) is

h(x) = bg(x) + 2b

N−1∑
k=1

g(x + k) .

This result corresponds to the one-dimensional case treated in [2].
For d = 2, (2.3) leads to the sets

F1 = {
(k1, k2) ∈ Z

2
∣∣ 1 ≤ k1 ≤ N − 1, k2 = 0

}
,

F2 = {
(k1, k2) ∈ Z

2
∣∣ |k1| ≤ N − 1, 1 ≤ k2 ≤ N − 1

}
.

For N = 3, the sets F1 and F2 are marked on Figure 1.

−3 −2 −1 0 1 2 3
−1

0

1

2

3

FIGURE 1 The sets F1 (marked by �) and F2 (marked by ©) corresponding to N = 3 and d = 2.

Via a change of variable Theorem 1 leads to a construction of frames of the type
{EBmTCng}m,n∈Zd and convenient duals.
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Theorem 2. Let N ∈ N. Let g ∈ L2(Rd) be a real-valued bounded function with
supp g ⊆ [0, N ]d , for which ∑

n∈Zd

g(x − n) = 1 .

Let B and C be invertible d × d matrices such that ‖CT B‖ ≤ 1√
d(2N−1)

, and let (with the

sets Fi defined as in Theorem 1)

h(x) = ∣∣ det
(
CT B

)∣∣ [g(x) + 2
d∑

i=1

∑
k∈Fi

g(x + k)

]
. (2.11)

Then the function DC−1g and the function DC−1h generate dual Gabor frames
{EBmTCnDC−1g}m,n∈Zd and {EBmTCnDC−1h}m,n∈Zd for L2(Rd).

Proof. By assumptions and Theorem 1, the Gabor systems {ECT BmTng}m,n∈Zd and
{ECT BmTnh}m,n∈Zd form dual frames; since

DC−1ECT BmTn = EBmTCnDC−1 ,

the result follows from DC−1 being unitary.

For functions g of the above type and arbitrary real invertible d × d matrices B

and C, Theorem 2 leads to a construction of a (finitely generated) multi-Gabor frame
{EBmTCngk}m,n∈Zd ,k∈F , where all the generators gk are dilated and translated versions of
g. Again, the dual generators have a similar form, and are given explicitly.

Theorem 3. Let N ∈ N. Let g ∈ L2(Rd) be a real-valued bounded function with
supp g ⊆ [0, N ]d , for which ∑

n∈Zd

g(x − n) = 1 .

Let B and C be invertible d×d matrices and choose J ∈ N such that J ≥ ‖CT B‖ √
d(2N−

1). Define the function h by (2.11). Then the functions

gk = T 1
J

Ck
DJC−1g, hk = T 1

J
Ck

DJC−1h, k ∈ Z
d ∩ [0, J − 1]d

generate dual multi-Gabor frames {EBmTCngk}m,n∈Zd ,k∈Zd∩[0,J−1]d and
{EBmTCnhk}m,n∈Zd ,k∈Zd∩[0,J−1]d for L2(Rd).

Proof. The choice of J implies that the matrices B and 1
J
C satisfy the conditions in

Theorem 2; thus{
e2πiBm·x(DJC−1g)

(
x− 1

J
Cn

)}
m,n∈Zd

and

{
e2πiBm·x(DJC−1h)

(
x− 1

J
Cn

)}
m,n∈Zd

form a pair of dual Gabor frames for L2(Rd). Now,{
1

J
Cn

}
n∈Zd

=
⋃

k∈Zd∩[0,J−1]d

{
1

J
Ck + Cn

}
n∈Zd

.
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FIGURE 2 Plots of the generators in Example 2: (a) g(0,0); (b) g(1,0); (c) g(0,1); (d) g(1,1); (e) h(0,0);
(f) h(1,0); (g) h(0,1); (h) h(1,1).
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Thus,

{
(DJC−1g)

(
· − 1

J
Cn

)}
n∈Zd

=
⋃

k∈Zd∩[0,J−1]d

{
(DJC−1g)

(
· − 1

J
Ck − Cn

)}
n∈Zd

=
⋃

k∈Zd∩[0,J−1]d

{
TCnT 1

J
Ck

DJC−1g(·)
}

n∈Zd
.

Inserting this into the expression for the pair of dual frames leads to the result.

Note that multi-generated Gabor system have appeared in various applications for a
long time, see, e.g., [10].

Via our results we now construct Gabor frames for L2(Rd) with box spline generators
and dual generators having a similar form.

Example 2. Let B2 be the one-dimensional B-spline of order 2 defined by

B2(x) =



x, x ∈ [0, 1[ ;
2 − x, x ∈ [1, 2[ ;
0, x /∈ [0, 2[ .

Define g ∈ L2(R2) by

g(x, y) = B2(x) B2(y) ; (2.12)

then supp g ⊆ [0, 2]2, and

∑
n∈Z2

g(x − n) = 1, x ∈ R
2 ,

since the integer-translates of B2 form a partition of unity. Let the 2 × 2 matrices B and C

be defined by

B = 1

10

(
1 1
0 1

)
, C =

(
1 0
1 1

)
.

A direct calculation shows that

∥∥CT B
∥∥2 =

∥∥∥∥ 1

10

(
1 2
0 1

)∥∥∥∥
2

= sup
θ

∥∥∥∥ 1

10

(
1 2
0 1

)(
cos θ

sin θ

)∥∥∥∥
2

=
(

1

10

)2 (√
2 + 1

)2
.

Thus,

∥∥CT B
∥∥√d(2N − 1) = 3

10

(
2 + √

2
) = 1.02 · · · .
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FIGURE 3 The functions g [Figure (a)] and h [Figure (b)] in Example 3.
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Thus, we can apply Theorem 3 with J = 2. Define the function h ∈ L2(R2) by (2.11), i.e.,

h(x, y) = ∣∣ det
(
CT B

)∣∣[g(x, y) + 2g((x, y) + (1, 0))

+ 2g((x, y) + (−1, 1)) + 2g((x, y) + (0, 1)) + 2g((x, y) + (1, 1))]

= 1

10




2xy + 2x + 2y + 2, (x, y) ∈ [−1, 0[×[−1, 0[;
2x + 2, (x, y) ∈ [−1, 0[×[0, 1[;
4x − 2xy + 4 − 2y, (x, y) ∈ [−1, 0[×[1, 2[;
2y + 2, (x, y) ∈ [0, 1[×[−1, 0[;
−xy + 2, (x, y) ∈ [0, 1[×[0, 1[;
−2x + xy + 4 − 2y, (x, y) ∈ [0, 1[×[1, 2[;
2y + 2, (x, y) ∈ [1, 2[×[−1, 0[;
−xy + 2, (x, y) ∈ [1, 2[×[0, 1[;
−2x + xy + 4 − 2y, (x, y) ∈ [1, 2[×[1, 2[;
6y + 6 − 2xy − 2x, (x, y) ∈ [2, 3[×[−1, 0[;
6 − 6y − 2x + 2xy, (x, y) ∈ [2, 3[×[0, 1[;
0, otherwise .

(2.13)

By Theorem 3, the four functions

gk = T 1
2 Ck

D2C−1g, k ∈ Z
2 ∩ [0, 1]2 (2.14)

generate a multi-Gabor frame {EBmTCngk}m,n∈Z2,k∈Z2∩[0,1]2 , with a dual frame
{EBmTCnhk}m,n∈Z2,k∈Z2∩[0,1]2 , where

hk = T 1
2 Ck

D2C−1h, k ∈ Z
2 ∩ [0, 1]2 . (2.15)

Example 3. Similar calculations can be performed for any tensor product of B-splines.
On Figure 3 we plot the box spline g(x, y) = B3(x)B3(y) and the function h in (2.11) for
the choice

B = 1

10

(
1 1
0 1

)
, C =

(
1 0
1 1

)
.
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