Volume 12, Issue 3, 2006

Pairs of Explicitly Given Dual Gabor Frames in $L^2(\mathbb{R}^d)$

Ole Christensen and Rae Young Kim

Communicated by A. J. E. M. Janssen

ABSTRACT. Given certain compactly supported functions $g \in L^2(\mathbb{R}^d)$ *whose* \mathbb{Z}^d -translates form a partition of unity, and real invertible $d\times d$ matrices B , C for which $\|C^T B\|$ is sufficiently *small, we prove that the Gabor system* ${E_{Bm}}T_{Cn}g$ _{*m,n∈*ℤd *forms a frame, with a (noncanonical)*} *dual Gabor frame generated by an explicitly given finite linear combination of shifts of* g*. For functions* g *of the above type and arbitrary real invertible* d × d *matrices* B,C *this result leads to a construction of a multi-Gabor frame* ${E_{Bm}}T_{Cn}g_k{_{m,n\in\mathbb{Z}^d, k\in\mathcal{F}}},$ where all the generators g_k *are dilated and translated versions of* g*. Again, the dual generators have a similar form, and are given explicitly. Our concrete examples concern box splines.*

1. Introduction

For $y \in \mathbb{R}^d$, the translation operator T_y and the modulation operator E_y are defined by

$$
(T_y f)(x) = f(x - y), \quad x \in \mathbb{R}^d,
$$

$$
(E_y f)(x) = e^{2\pi i y \cdot x} f(x), \quad x \in \mathbb{R}^d,
$$

where $y \cdot x$ denotes the inner product between y and x in \mathbb{R}^d . Given two real and invertible $d \times d$ matrices B and C we consider Gabor systems of the form

$$
{E_{Bm}T_{Cn}}g\}_{m,n\in\mathbb{Z}^d}={e^{2\pi i Bm\cdot x}g(x-Cn)}_{m,n\in\mathbb{Z}^d}.
$$

Our purpose is to construct a class of Gabor frames with generators that are easy to use in practice, and having the additional property that we can find a dual generator of the form

$$
h = \sum_{k \in \mathcal{F}} c_k T_k g
$$

Math Subject Classifications. 42C15, 42C40.

Keywords and Phrases. Gabor frames, dual frame, dual generator.

Acknowledgements and Notes. The second author thanks the Department of Mathematics at the Technical University of Denmark for hospitality and support during a visit in 2005; the second author was also supported by Korea Research Foundation Grant (KRF-2002-070-C00004).

[©] 2005 Birkhäuser Boston. All rights reserved

ISSN 1069-5869 DOI: 10.1007/s00041-005-5052-3

for some finite set $\mathcal{F} \subset \mathbb{Z}^d$ and explicitly given scalar coefficients c_k . One advantage of this is that the decay of the dual generator h in the frequency domain is controlled by the decay of \hat{g} . Our results extend the one-dimensional results in [2]. As we will see, the extension is nontrivial: It is not clear from the one-dimensional version how one has to define the dual generators in higher dimensions.

Our approach is strongly connected with the results by Janssen [5, 6], Labate [7], Hernandez, Labate, and Weiss [4], and Ron and Shen [8, 9]. However, in contrast to these articles, the focus is on explicit constructions rather than general characterizations. For more information about Gabor systems and their role in time-frequency analysis we refer to the book [3] by Gröchenig; for general frame theory we refer to [1].

In the rest of the introduction we collect a few conventions about notation and a basic result for obtaining a pair of dual frames. The dilation operator associated with a real $d \times d$ matrix C is

$$
(D_C f)(x) = |\det C|^{1/2} f(Cx), \ \ x \in \mathbb{R}^d.
$$

Let C^T denote the transpose of a matrix C; then

$$
D_C E_y = E_{C^T y} D_C, \ \ D_C T_y = T_{C^{-1} y} D_C.
$$

If C is invertible, we use the notation

$$
C^{\sharp} = \left(C^T\right)^{-1}.
$$

For $f \in (L^1 \cap L^2)(\mathbb{R}^d)$ we denote the Fourier transform by

$$
\mathcal{F}f(\gamma) = \hat{f}(\gamma) = \int_{\mathbb{R}^d} f(x) e^{-2\pi i x \cdot \gamma} dx.
$$

As usual, the Fourier transform is extended to a unitary operator on $L^2(\mathbb{R}^d)$. The reader can check that

$$
\mathcal{F}T_{Ck}=E_{-Ck}\mathcal{F}.
$$

We conclude the introduction by stating a special case of a result from [4]; it will form the basis for all the results presented in the article. Let

$$
\mathcal{D} := \left\{ f \in L^2(\mathbb{R}^d) : \hat{f} \in L^\infty(\mathbb{R}^d) \text{ and } \operatorname{supp} \hat{f} \text{ is compact} \right\}.
$$

Lemma 1. Let B be an invertible $d \times d$ *matrix, and let* $\{g_n\}_{n \in \mathbb{Z}^d}$ *and* $\{h_n\}_{n \in \mathbb{Z}^d}$ *be collections of functions in* $L^2(\mathbb{R}^d)$ *. Assume that* ${T_{Bm}}g_n$ _{*m,n*∈Zd} *and* ${T_{Bm}}h_n$ _{*m,n*∈Zd} *are Bessel sequences and that for all* $f \in \mathcal{D}$ *,*

$$
\sum_{n\in\mathbb{Z}^d}\sum_{m\in\mathbb{Z}^d}\int_{\text{supp}\,\hat{f}}\big|\hat{f}(\gamma+B^{\sharp}m)\big|^2\big|\hat{g}_n(\gamma)\big|^2\,d\gamma\quad\langle\quad\infty\,,\tag{1.1}
$$

$$
\sum_{n\in\mathbb{Z}^d}\sum_{m\in\mathbb{Z}^d}\int_{\text{supp}\,\hat{f}}|\hat{f}(\gamma+B^{\sharp}m)|^2|\hat{h}_n(\gamma)|^2\,d\gamma\quad\lt\quad\infty\,.
$$

Then ${T_{Bm}}g_n$ _{*m,n*∈ \mathbb{Z} ^{*d*} *and* ${T_{Bm}}h_n$ _{*m,n*∈ \mathbb{Z} *d are dual frames for* $L^2(\mathbb{R}^d)$ *if and only if*}}

$$
\sum_{k\in\mathbb{Z}^d}\overline{\hat{g}_k(\gamma-B^{\sharp}n)}\hat{h}_k(\gamma)=|\det B|\delta_{n,0}, a.e. \gamma,
$$

for all $n \in \mathbb{Z}^d$.

2. Dual Pairs of Gabor Frames

We first prove a time-domain version of Lemma 1 for Gabor systems. As we will see, we can remove the technical conditions (1.1) and (1.2) in the Gabor case. We begin with a lemma.

Lemma 2. Let $g \in L^2(\mathbb{R}^d)$ *and assume that B and C are invertible matrices. Then for all* $f \in \mathcal{D}$ *,*

$$
\sum_{n\in\mathbb{Z}^d}\sum_{m\in\mathbb{Z}^d}\int_{\text{supp}\,\hat{f}}|\hat{f}(\gamma+B^{\sharp}m)|^2|g(\gamma-Cn)|^2\,d\gamma<\infty.
$$

Proof. Let $f \in \mathcal{D}$. Then

$$
\sum_{m\in\mathbb{Z}^d} \left|\widehat{f}(\gamma + B^{\sharp}m)\right|^2 \leq \sup_{\gamma \in B^{\sharp}[0,1]^d} \sum_{m\in\mathbb{Z}^d} \left|\widehat{f}(\gamma + B^{\sharp}m)\right|^2. \tag{2.1}
$$

Independently of the choice of $\gamma \in B^{\sharp}[0, 1]^d$, only a fixed finite number of $m \in \mathbb{Z}^d$ will give nonzero contributions to the sum on the right-hand side of (2.1); since \hat{f} is bounded, this implies that there exists a constant K such that

$$
\sum_{m\in\mathbb{Z}^d}\left|\widehat{f}(\gamma+B^{\sharp}m)\right|^2\leq K,\quad\text{a.e. }\gamma.
$$

Hence,

$$
\sum_{n \in \mathbb{Z}^d} \sum_{m \in \mathbb{Z}^d} \int_{\text{supp} \hat{f}} |\hat{f}(\gamma + B^{\sharp}m)|^2 |g(\gamma - Cn)|^2 d\gamma
$$

=
$$
\int_{\text{supp} \hat{f}} \sum_{m \in \mathbb{Z}^d} |\hat{f}(\gamma + B^{\sharp}m)|^2 \sum_{n \in \mathbb{Z}^d} |g(\gamma - Cn)|^2 d\gamma
$$

$$
\leq K \int_{\text{supp} \hat{f}} \sum_{n \in \mathbb{Z}^d} |g(\gamma - Cn)|^2 d\gamma.
$$

Choose an integer $a > 0$ such that

$$
\operatorname{supp} \hat{f} \subseteq C[-a,a]^d.
$$

Then

$$
\int_{\text{supp}\,\hat{f}} \sum_{n\in\mathbb{Z}^d} |g(\gamma - C_n)|^2 \,d\gamma \leq \int_{C[-a,a]^d} \sum_{n\in\mathbb{Z}^d} |g(\gamma - C_n)|^2 \,d\gamma
$$
\n
$$
\leq |\det C| \int_{[-a,a]^d} \sum_{n\in\mathbb{Z}^d} |g(C(\xi - n))|^2 \,d\xi \,.
$$

Now, using that (modulo null-sets)

$$
[-a, a]^d = \bigcup_{k \in [-a, a-1]^d \cap \mathbb{Z}^d} (k + [0, 1]^d)
$$

and that the function $\xi \mapsto \sum_{n \in \mathbb{Z}^d} |g(C(\xi - n))|^2$ is \mathbb{Z}^d -periodic,

$$
\int_{[-a,a]^d} \sum_{n \in \mathbb{Z}^d} |g(C(\xi - n))|^2 d\xi
$$

= $(2a)^d \int_{[0,1]^d} \sum_{n \in \mathbb{Z}^d} |g(C(\xi - n))|^2 d\xi$
= $(2a)^d \int_{\mathbb{R}^d} |g(C\xi)|^2 d\xi$
= $|\det C|^{-1} (2a)^d \int_{\mathbb{R}^d} |g(\eta)|^2 d\eta < \infty$.

The following is the frame-pair version of Corollary 3.3 in [7]. It can also be considered as the time-domain version of Lemma 1. Results of that type already appeared in [8] by Ron and Shen, and (in the one-dimensional case) in [5] by Janssen. We provide the short proof for the sake of completeness.

Lemma 3. Two Bessel sequences ${E_{Bm}}T_{Cn}g_{m,n \in \mathbb{Z}^d}$ and ${E_{Bm}}T_{Cn}h_{m,n \in \mathbb{Z}^d}$ form dual *frames for* $L^2(\mathbb{R}^d)$ *if and only if*

$$
\sum_{k \in \mathbb{Z}^d} \overline{g(x - B^{\sharp}n - Ck)} h(x - Ck) = |\det B|\delta_{n,0}.
$$
 (2.2)

Proof. We note that ${E_{Bm}T_{Cn}g}_{m,n \in \mathbb{Z}^d}$ and ${E_{Bm}T_{Cn}h}_{m,n \in \mathbb{Z}^d}$ form dual frames if and only if $\{\mathcal{F}^{-1}E_{Bm}T_{Cn}g\}_{m,n\in\mathbb{Z}^d}$ and $\{\mathcal{F}^{-1}E_{Bm}T_{Cn}h\}_{m,n\in\mathbb{Z}^d}$ are dual frames. Now, $\mathcal{F}^{-1}E_{Bm}T_{Cn}g = T_{-Bm}\mathcal{F}^{-1}T_{Cn}g$; thus, the result follows from Lemma 1 and Lemma 2 with $g_n = \mathcal{F}^{-1}T_{Cn}g$, $h_n = \mathcal{F}^{-1}T_{Cn}h$.

We now present the first version of our results. For simplicity we consider the case $C = I$. For any $d \times d$ matrix we define the norm $||B||$ by

$$
||B|| = \sup_{||x||=1} ||Bx||.
$$

Theorem 1. Let $N \in \mathbb{N}$ *. Let* $g \in L^2(\mathbb{R}^d)$ *be a real-valued bounded function with* $\text{supp} \ g \subseteq [0, N]^d$ *, for which*

$$
\sum_{n\in\mathbb{Z}^d} g(x-n)=1.
$$

Assume that the $d \times d$ matrix B is invertible and $||B|| \leq \frac{1}{\sqrt{d}}$ $\frac{1}{\overline{d}(2N-1)}$ *. For* $i = 1, \ldots, d$ *, let* F_i *be the set of lattice points* $\{k_j\}_{j=1}^d \in \mathbb{Z}^d$ *for which the coordinates* k_j , $j = 1, \ldots, d$, *satisfy the requirements*

$$
\begin{cases}\nif \quad j = 1, ..., i - 1, \quad then \quad |k_j| \le N - 1; \\
if \quad j = i, \quad then \quad 1 \le k_j \le N - 1; \\
if \quad j = i + 1, ..., d, \quad then \quad k_j = 0.\n\end{cases} \tag{2.3}
$$

Define $h \in L^2(\mathbb{R}^d)$ *by*

$$
h(x) := |\det B| \left[g(x) + 2 \sum_{i=1}^{d} \sum_{k \in F_i} g(x + k) \right].
$$
 (2.4)

Then the function g *and the function* h generate dual frames ${E_{Bm}}{T_{n}}g_{m,n \in \mathbb{Z}^d}$ *and* ${E_{Bm}}T_nh_{m,n\in\mathbb{Z}^d}$ for $L^2(\mathbb{R}^d)$ *.*

Proof. We apply Lemma 3. Since B is invertible, for any $n \in \mathbb{Z}^d$ we have

$$
|n| = \|B^T B^{\sharp} n\| \leq \|B\| \|B^{\sharp} n\| ;
$$

thus, for $n \neq 0$, $||B^{\sharp}n|| \geq 1/||B||$. Note that with the definition (2.4), we have supp $h \subseteq$ thus, for $n \neq 0$, $||B^*n|| \geq 1/||B||$. Note that with the definition (2.4), we have supp *h* $[-N + 1, 2N - 1]^d$; thus, (2.2) is satisfied for $n \neq 0$ if $1/||B|| \geq \sqrt{d}(2N - 1)$, i.e., if

$$
||B|| \leq \frac{1}{\sqrt{d}(2N-1)}.
$$

Thus, we only need to check that

$$
\sum_{k \in \mathbb{Z}^d} g(x - k)h(x - k) = |\det B|, \ x \in [0, 1]^d ;
$$

due to the compact support of g , this is equivalent to

$$
\sum_{n \in [0, N-1]^d \cap \mathbb{Z}^d} g(x+n)h(x+n) = |\det B|, \ x \in [0, 1]^d. \tag{2.5}
$$

To check that (2.5) holds, we use that for $x \in [0, 1]^d$,

$$
\sum_{n \in [0, N-1]^d \cap \mathbb{Z}^d} g(x+n) = 1.
$$
 (2.6)

For $n := \{n_j\}_{j=1}^d \in [0, N-1]^d \cap \mathbb{Z}^d$, and $i = 1, \ldots, d$, let E_i^n denote the set of lattice points $\{k_j\}_{j=1}^d \in \mathbb{Z}^d$ whose coordinates k_j satisfy the requirements

$$
\begin{cases}\n\text{if } j = 1, ..., i - 1, \text{ then } 0 \le k_j \le N - 1; \\
\text{if } j = i, \text{ then } n_j + 1 \le k_j \le N - 1; \\
\text{if } j = i + 1, ..., d, \text{ then } k_j = n_j.\n\end{cases}
$$

Define $\tilde{h}_n \in L^2(\mathbb{R}^d)$ by

$$
\tilde{h}_n(x) := |\det B| \left[g(x+n) + 2 \sum_{i=1}^d \sum_{k \in E_i^n} g(x+k) \right].
$$

We now consider the finite set $[0, N - 1]^d \cap \mathbb{Z}^d$. Using lexicographic ordering, i.e.,

$$
(i_1, \ldots, i_d) > (j_1, \ldots, j_d)
$$

\n
$$
\Leftrightarrow (i_d > j_d) \vee ((i_d = j_d) \wedge (i_{d-1} > j_{d-1})) \vee \cdots
$$

\n
$$
\vee ((i_d = j_d) \wedge \cdots \wedge (i_2 = j_2) \wedge i_1 > j_1),
$$

we write

$$
[0, N - 1]^d \cap \mathbb{Z}^d = \{n_1, n_2, \cdots, n_{N^d}\},
$$

with $n_j < n_k$ for $j < k$. Then for $x \in [0, 1]^d$, (2.6) implies that

$$
1 = \left(\sum_{j=1}^{N^d} g(x+n_j)\right)^2
$$

\n
$$
= (g(x+n_1) + g(x+n_2) + \cdots + g(x+n_{N^d}))
$$

\n
$$
\times (g(x+n_1) + g(x+n_2) + \cdots + g(x+n_{N^d}))
$$

\n
$$
= g(x+n_1)[g(x+n_1) + 2g(x+n_2) + 2g(x+n_3) + \cdots + 2g(x+n_{N^d})]
$$

\n
$$
+ g(x+n_2)[g(x+n_2) + 2g(x+n_3) + 2g(x+n_4) + \cdots + 2g(x+n_{N^d})]
$$

\n
$$
+ \cdots
$$

\n
$$
+ g(x+n_{N^d-1})[g(x+n_{N^d-1}) + 2g(x+n_{N^d})]
$$

\n
$$
+ g(x+n_{N^d})[g(x+n_{N^d})]
$$

\n
$$
= \frac{1}{|\det B|} \sum_{j=1}^{N^d} g(x+n_j) \tilde{h}_{n_j}(x).
$$

It remains to show that for $x \in [0, 1]^d$ and $n = \{n_j\}_{j=1}^d \in [0, N-1]^d \cap \mathbb{Z}^d$,

$$
h(x+n)=\tilde{h}_n(x) .
$$

In order to do so, it is sufficient to show that for any $i = 1, \ldots, d$,

$$
\sum_{k \in F_i} g(x + n + k) = \sum_{k \in E_i^n} g(x + k), \ x \in [0, 1]^d \tag{2.7}
$$

Fix $i \in \{1, ..., d\}$. If $1 \le j < i$, then

$$
\begin{aligned} \left\{ n_j + k_j : \{ k_j \}_{j=1}^d \in F_i \right\} &= \left[n_j - N + 1, n_j + N - 1 \right] \cap \mathbb{Z} \\ &\geq \left[0, N - 1 \right] \cap \mathbb{Z} \,. \end{aligned} \tag{2.8}
$$

If $j = i$, then

$$
\begin{aligned} \left\{ n_j + k_j : \{k_j\}_{j=1}^d \in F_i \right\} &= \left[n_j + 1, n_j + N - 1 \right] \cap \mathbb{Z} \\ &\geq \left[1 + n_j, N - 1 \right] \cap \mathbb{Z} \,. \end{aligned} \tag{2.9}
$$

If $j>i$, then

$$
\{n_j + k_j : \{k_j\}_{j=1}^d \in F_i\} = \{n_j\}.
$$

Via the definition of the set E_i^n this shows that

$$
E_i^n \subseteq \{n + k : k = \{k_j\}_{j=1}^d \in F_i\}.
$$
\n(2.10)

In order to show that we have equality in (2.7), we again fix $i \in \{1, ..., d\}$. Suppose that $m := \{m_j\}_{j=1}^d \in \{n+k : k = \{k_j\}_{j=1}^d \in F_i\} \setminus E_i^n$. Then either, by (2.8), there exists $j \in \{1, \ldots, i-1\}$ such that

$$
m_j := n_j + k_j \notin [0, N-1] \cap \mathbb{Z} ;
$$

or, by (2.9),

$$
m_i := n_i + k_i \in \big([1 + n_j, n_j + N - 1] \setminus [1 + n_j, N - 1] \big) \cap \mathbb{Z} = [N, n_j + N - 1] \cap \mathbb{Z}.
$$

In both cases, since supp $g \subseteq [0, N]^d$, this implies that $g(x + m) = 0$ for $x \in [0, 1]^d$. Hence,

$$
\sum_{k \in F_i} g(x + n + k) = \sum_{k \in E_i^n} g(x + k) ,
$$

as desired.

Example 1. For $d = 1$, the Gabor system considered in Theorem 1 is $\{E_{mb}T_ng\}_{m,n\in\mathbb{Z}}$ for some $b > 0$. The reader can check that

$$
F_1 = \{1, \ldots, N-1\} ;
$$

thus, the expression for the dual generator h in (2.4) is

$$
h(x) = bg(x) + 2b \sum_{k=1}^{N-1} g(x+k).
$$

This result corresponds to the one-dimensional case treated in [2].

For $d = 2$, (2.3) leads to the sets

$$
F_1 = \{(k_1, k_2) \in \mathbb{Z}^2 | 1 \le k_1 \le N - 1, k_2 = 0\},
$$

\n
$$
F_2 = \{(k_1, k_2) \in \mathbb{Z}^2 | |k_1| \le N - 1, 1 \le k_2 \le N - 1\}.
$$

For $N = 3$, the sets F_1 and F_2 are marked on Figure 1.

FIGURE 1 The sets F_1 (marked by \Box) and F_2 (marked by \Diamond) corresponding to $N = 3$ and $d = 2$.

Via a change of variable Theorem 1 leads to a construction of frames of the type ${E_{Bm}T_{Cn}g}_{m,n\in\mathbb{Z}^d}$ and convenient duals.

 $\hfill \square$

Theorem 2. Let $N \text{ ∈ } N$ *. Let* $g \text{ ∈ } L^2(\mathbb{R}^d)$ *be a real-valued bounded function with* $\text{supp} \ g \subseteq [0, N]^d$ *, for which*

$$
\sum_{n\in\mathbb{Z}^d} g(x-n)=1.
$$

Let B and C be invertible $d \times d$ matrices such that $||C^T B|| \leq \frac{1}{\sqrt{d}}$ d(2N−1) *, and let (with the sets* Fi *defined as in Theorem 1)*

$$
h(x) = |\det(C^T B)| \left[g(x) + 2 \sum_{i=1}^d \sum_{k \in F_i} g(x + k) \right].
$$
 (2.11)

Then the function $D_{C^{-1}}g$ *and the function* $D_{C^{-1}}h$ *generate dual Gabor frames* ${E_{Bm}T_{Cn}D_{C^{-1}}g}_{m,n\in\mathbb{Z}^d}$ *and* ${E_{Bm}T_{Cn}D_{C^{-1}}h}_{m,n\in\mathbb{Z}^d}$ *for* $L^2(\mathbb{R}^d)$ *.*

Proof. By assumptions and Theorem 1, the Gabor systems ${E_{C^{T}Bm}}T_{n}g_{m,n\in\mathbb{Z}^{d}}$ and ${E_{C^{T}Bm}T_{n}h}_{m,n\in\mathbb{Z}^{d}}$ form dual frames; since

$$
D_{C^{-1}}E_{C^{T}Bm}T_{n}=E_{Bm}T_{Cn}D_{C^{-1}}\ ,
$$

the result follows from $D_{C^{-1}}$ being unitary.

For functions g of the above type and arbitrary real invertible $d \times d$ matrices B and C, Theorem 2 leads to a construction of a (finitely generated) multi-Gabor frame ${E_{Bm}}T_{Cn}g_k$ _{m,n∈} \mathbb{Z}^d , $_{k\in\mathcal{F}}$, where all the generators g_k are dilated and translated versions of g. Again, the dual generators have a similar form, and are given explicitly.

Theorem 3. Let $N \text{ ∈ } N$ *. Let* $g \text{ ∈ } L^2(\mathbb{R}^d)$ *be a real-valued bounded function with* $\text{supp} \ g \subseteq [0, N]^d$ *, for which*

$$
\sum_{n\in\mathbb{Z}^d} g(x-n)=1.
$$

Let B and C be invertible $d \times d$ matrices and choose $J \in \mathbb{N}$ such that $J \geq \|C^T B\| \ \sqrt{d} (2N-1)$ 1)*. Define the function* h *by* (2.11)*. Then the functions*

$$
g_k = T_{\frac{1}{J}Ck} D_{JC^{-1}}g, \ \ h_k = T_{\frac{1}{J}Ck} D_{JC^{-1}}h, \ k \in \mathbb{Z}^d \cap [0, J-1]^d
$$

generate dual multi-Gabor frames { $E_{Bm}T_{Cn}g_k$ }_{m.n∈Z}d_{.k∈Z}d_{∩[0,J−1]}d and ${E_{Bm}T_{Cn}h_k}_{m,n\in\mathbb{Z}^d,k\in\mathbb{Z}^d\cap[0,J-1]^d}$ for $L^2(\mathbb{R}^d)$ *.*

Proof. The choice of J implies that the matrices B and $\frac{1}{J}C$ satisfy the conditions in Theorem 2; thus

$$
\left\{e^{2\pi i Bm\cdot x}(D_{JC^{-1}}g)\left(x-\frac{1}{J}Cn\right)\right\}_{m,n\in\mathbb{Z}^d} \text{ and } \left\{e^{2\pi i Bm\cdot x}(D_{JC^{-1}}h)\left(x-\frac{1}{J}Cn\right)\right\}_{m,n\in\mathbb{Z}^d}
$$

form a pair of dual Gabor frames for $L^2(\mathbb{R}^d)$. Now,

$$
\left\{\frac{1}{J}Cn\right\}_{n\in\mathbb{Z}^d}=\bigcup_{k\in\mathbb{Z}^d\cap[0,J-1]^d}\left\{\frac{1}{J}Ck+Cn\right\}_{n\in\mathbb{Z}^d}.
$$

 \Box

 (c) (d)

FIGURE 2 Plots of the generators in Example 2: (a) $g_{(0,0)}$; (b) $g_{(1,0)}$; (c) $g_{(0,1)}$; (d) $g_{(1,1)}$; (e) $h_{(0,0)}$; (f) $h_{(1,0)}$; (g) $h_{(0,1)}$; (h) $h_{(1,1)}$.

Thus,

$$
\left\{ (D_{JC^{-1}}g) \left(\cdot - \frac{1}{J}Cn \right) \right\}_{n \in \mathbb{Z}^d} = \bigcup_{k \in \mathbb{Z}^d \cap [0, J-1]^d} \left\{ (D_{JC^{-1}}g) \left(\cdot - \frac{1}{J}Ck - Cn \right) \right\}_{n \in \mathbb{Z}^d}
$$

=
$$
\bigcup_{k \in \mathbb{Z}^d \cap [0, J-1]^d} \left\{ T_{Cn}T_{\frac{1}{J}Ck}D_{JC^{-1}}g(\cdot) \right\}_{n \in \mathbb{Z}^d}.
$$

Inserting this into the expression for the pair of dual frames leads to the result.

Note that multi-generated Gabor system have appeared in various applications for a long time, see, e.g., [10].

Via our results we now construct Gabor frames for $L^2(\mathbb{R}^d)$ with box spline generators and dual generators having a similar form.

Example 2. Let B_2 be the one-dimensional B -spline of order 2 defined by

$$
B_2(x) = \begin{cases} x, & x \in [0, 1[; \\ 2 - x, & x \in [1, 2[; \\ 0, & x \notin [0, 2[.
$$

Define $g \in L^2(\mathbb{R}^2)$ by

$$
g(x, y) = B_2(x) B_2(y); \qquad (2.12)
$$

 \Box

then supp $g \subseteq [0, 2]^2$, and

$$
\sum_{n\in\mathbb{Z}^2} g(x-n) = 1, x \in \mathbb{R}^2,
$$

since the integer-translates of B_2 form a partition of unity. Let the 2×2 matrices B and C be defined by

$$
B = \frac{1}{10} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \ C = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.
$$

A direct calculation shows that

$$
\begin{aligned}\n\left\| C^T B \right\|^2 &= \left\| \frac{1}{10} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \right\|^2 = \sup_{\theta} \left\| \frac{1}{10} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \right\|^2 \\
&= \left(\frac{1}{10} \right)^2 \left(\sqrt{2} + 1 \right)^2.\n\end{aligned}
$$

Thus,

$$
\|C^T B\|\sqrt{d}(2N-1) = \frac{3}{10}(2+\sqrt{2}) = 1.02\cdots.
$$

FIGURE 3 The functions g [Figure (a)] and h [Figure (b)] in Example 3.

Thus, we can apply Theorem 3 with $J = 2$. Define the function $h \in L^2(\mathbb{R}^2)$ by (2.11), i.e.,

$$
h(x, y) = |\det (C^T B)||g(x, y) + 2g((x, y) + (1, 0))
$$

+2g((x, y) + (-1, 1)) + 2g((x, y) + (0, 1)) + 2g((x, y) + (1, 1))]

$$
\begin{cases}\n2xy + 2x + 2y + 2, & (x, y) \in [-1, 0[\times [-1, 0[];\n2x + 2, & (x, y) \in [-1, 0[\times [0, 1[;\n4x - 2xy + 4 - 2y, & (x, y) \in [-1, 0[\times [1, 2[;\n2y + 2, & (x, y) \in [0, 1[\times [-1, 0[;\n-xy + 2, & (x, y) \in [0, 1[\times [0, 1[;\n-2x + xy + 4 - 2y, & (x, y) \in [1, 2[\times [-1, 0[;\n-xy + 2, & (x, y) \in [1, 2[\times [-1, 0[;\n-xy + 2, & (x, y) \in [1, 2[\times [0, 1[;\n-2x + xy + 4 - 2y, & (x, y) \in [1, 2[\times [1, 2[;\n6y + 6 - 2xy - 2x, & (x, y) \in [2, 3[\times [-1, 0[;\n6 - 6y - 2x + 2xy, & (x, y) \in [2, 3[\times [0, 1[;\n0, & \text{otherwise.} \n\end{cases}
$$
\n(2.13)

By Theorem 3, the four functions

$$
g_k = T_{\frac{1}{2}Ck} D_{2C^{-1}}g, \ k \in \mathbb{Z}^2 \cap [0, 1]^2 \tag{2.14}
$$

generate a multi-Gabor frame ${E_{Bm}}T_{Cn}g_k{_{m,n\in\mathbb{Z}^2,\&k\in\mathbb{Z}^2\cap[0,1]^2}$, with a dual frame ${E_{Bm}T_{Cn}h_k}_{m,n \in \mathbb{Z}^2, k \in \mathbb{Z}^2 \cap [0,1]^2}$, where

$$
h_k = T_{\frac{1}{2}C_k} D_{2C^{-1}} h, \ k \in \mathbb{Z}^2 \cap [0, 1]^2.
$$
 (2.15)

Example 3. Similar calculations can be performed for any tensor product of B-splines. On Figure 3 we plot the box spline $g(x, y) = B_3(x)B_3(y)$ and the function h in (2.11) for the choice

$$
B = \frac{1}{10} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \ C = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.
$$

Acknowledgments

The authors thank Joachim Stöckler for proposing to use lexicographic ordering, and the referees for many suggestions, leading to improvements of the presentation.

References

- [1] Christensen, O. (2003). *An Introduction to Frames and Riesz Bases,* Birkhäuser.
- [2] Christensen, O. (2006). Pairs of dual Gabor frames with compact support and desired frequency localization, to appear in *Appl. Comput. Harmon. Anal.*
- [3] Gröchenig, K. (2000). *Foundations of Time-Frequency Analysis,* Birkhäuser, Boston.
- [4] Hernandez, E., Labate, D., and Weiss, G. (2002). A unified characterization of reproducing systems generated by a finite family II, *J. Geom. Anal.* **12**(4), 615–662.
- [5] Janssen, A. J. E. M. (1998). The duality condition for Weyl-Heisenberg frames, in *Gabor Analysis: Theory and Application,* Feichtinger, H. G. and Strohmer, T., Eds., Birkhäuser, Boston.
- [6] Janssen, A. J. E. M. (2001). Representations of Gabor frame operators, in *Twentieth Century Harmonic Analysis — A Celebration,* 73–101, NATO Sci. Ser. II Math. Phys. Chem. **33**, Kluwer Acad. Publ. Dordrecht.
- [7] Labate, D. (2002). A unified characterization of reproducing systems generated by a finite family I, *J. Geom. Anal.* **12**(3), 469–491.
- [8] Ron, A. and Shen, Z. (1997). Weyl-Heisenberg systems and Riesz bases in $L^2(\mathbb{R}^d)$, *Duke Math. J.* **89**, 237–282.
- [9] Ron, A. and Shen, Z. (2005). Generalized shift-invariant systems, *Constr. Approx.* **22**(1), 1–45.
- [10] Zibulski, M., Zeevi, Y. Y., and Porat, M. (1998). Multi-window Gabor schemes in signal and image representations, in *Gabor Analysis: Theory and Application,* Feichtinger, H. G. and Strohmer, T., Eds., Birkhäuser, Boston.

Received September 6, 2005

Revision received February 14, 2006

Department of Mathematics, Technical University of Denmark, Building 303 2800 Lyngby, Denmark e-mail: Ole.Christensen@mat.dtu.dk

Department of Mathematics, Yeungnam University, 214-1, Dae-dong, Gyeongsan-si, Gyeongsangbuk-do, 712-749, Republic of Korea e-mail: rykim@ynu.ac.kr