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ABSTRACT. As Fefferman and Stein showed, there is a tight connection between Carleson
measures and BMO functions. In this work we extend this type of results to the more general scope
of the BMOϕ(ω) spaces. As a byproduct a weighted version of the Triebel-Lizorkin space Ḟ 0∞,2 is
introduced, which turns out to be isomorphic to BMO(ω) as in the unweighted case.

1. Introduction

Given a growth function ϕ and a weight ω, we shall consider the BMOϕ(ω) space, that is
the set of functions whose oscillation, when averaged over balls, is controlled by means
of ϕ and ω, measuring their degree of smoothness. More precisely, we shall say that a
locally integrable function f belongs to BMOϕ(ω) if there exists a constant C such that
the inequality

1

ω(B)

∫
B

|f (y)−mBf | dy ≤ Cϕ
(
|B| 1

n

)
(1.1)

holds for every ball B in R
n, where, as usual, mBf denotes the average of f over B with

respect to the Lebesgue measure. The first appearance of this kind of weighted spaces goes
back to [8] and [14]. In the latter article, the authors introduced BMO(ω) (ϕ ≡ 1 in our
context) as the natural space where weighted L∞ functions are mapped by H, the Hilbert
transform on the line, generalizing the well known BMO space of John and Nirenberg. In
the more general context ϕ(t) = tβ , 0 < β < 1, it is shown in [10] that the fractional
integral operator Iα mapsLp(w)with p > n/α into these spaces, under suitable conditions
on the weight. Later, this result was extended to weighted Orlicz spaces [11] giving rise to
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the spaces under consideration in their full generality. Finally, in [13], it is shown that they
are preserved by the Hilbert transform on the line.

In their celebrated article [7], Fefferman and Stein shed light on the tight connection
between BMO-functions and Carleson measures. Let us remind that a measureµ on R

n+1+ =
R
n × (0,∞) is said to be a Carleson measure when a constant C exists such that for any

ball B(x0, r) ⊂ R
n

µ(B(x0, r)× (0, r)) ≤ Crn .

With this notation the Fefferman-Stein result can be stated as:

f ∈ BMO ⇔
∫

f (x)

1 + |x|n+1
dx < ∞ and

t |∇(Pt ∗ f )|2(x) dx dt is a Carleson measure, where Pt
denotes the Poisson kernel .

Later on, W. Smith, in [17], proved an extension of this result to the spaces BMOϕ
(i.e., BMOϕ(ω) with ω = 1) giving a suitable definition of ϕ-Carleson measures.

A more recent version of this kind of characterization of functions in BMO appears
in Stein’s book [15] (see Theorem 3, p. 159). Basically, Stein’s statement is the following.

Theorem 1. Let ψ ∈ S with
∫
ψ = 0.

(a) If f ∈ BMO then dµ = |f ∗ ψt |2 dx dt
t

is a Carleson measure.

(b) Conversely, suppose ψ satisfies a Tauberian condition,
∫ |f (x)|

1+|x|n+1 dx < ∞ and dµ =
|f ∗ ψt |2 dx dt

t
is a Carleson measure; then f is in BMO.

Here, by a Tauberian condition we mean that ψ̂ does not vanish identically in any ray
emanating from the origin (i.e., for every ξ 	= 0 there exists a t > 0 with ψ̂(tξ) 	= 0) and,
as usual, ψt = t−nψ(x/t).

Also, it is well known that BMO coincides with the Triebel-Lizorkin space Ḟ 0
∞,2

(see [4] or [5]). The above result, even if very close, does not allow to conclude such
characterization: One should prove part (b) of the theorem under the more general situation
of a distribution in S ′/P (P the set of polynomials) instead of the integrability condition
on the function f .

In this work we give an extension of the theorem above to the more general spaces
BMOϕ(ω) under appropriate assumptions on ϕ and ω, which, at the same time, allows us
to obtain, as a corollary, the identification of BMO(ω) with a weighted version of Ḟ 0

∞,2 .

It is worth mentioning that Bui and Taibleson defined in [1] weighted Ḟ α∞,q spaces.
However, as we will show, for α = 0 and q = 2, their definition does not give the weighted
space BMO(ω). In fact we prove that, at least for weights in the Muckenhoupt class A1, it
coincides rather with the unweighted BMO space.

In proving our main theorem we establish a duality inequality involving generalized
Carleson measures and tent spaces. This is achieved by means of an adequate atomic
decomposition of the latter spaces.

The structure of the article is as follows: Section 2 contains some basic facts and the
statement of our main theorem; Sections 3 and 4, respectively, contain some needed results,
interesting by themselves, about generalizations of Hardy and tent spaces; the proof of the
main theorem is given in Section 5, and, finally, Section 6 is devoted to the above remark
on weighted Triebel-Lizorkin spaces.
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2. Preliminaries and the Main Result

We start by reminding some basic notions about growing functions and weights.
For a nonnegative and nondecreasing function ϕ defined in [0,∞), we shall say that

it is of upper type β, if there exists a constant C such that

ϕ(θt) ≤ Cθβϕ(t) (2.1)

for all θ ≥ 1 and t ≥ 0. If there exists such number β, we shall denote by I (ϕ) = inf{β :
ϕ is of upper type β}. Let us notice that our assumptions on ϕ guarantee that I (ϕ) ≥ 0.
Similarly, whenever (2.1) holds for 0 ≤ θ ≤ 1, ϕ is said to be of lower type β.

Next we remind that a weight ω belongs to the Muckenhoupt classAr , r > 1, if there
exists a constant C such that for any ball B ⊂ R

n

1

|B|
∫
B

ω

(
1

|B|
∫
B

ω− 1
r−1

)r−1

≤ C ,

and a weight ω belongs to A1 if there exists a constant C such that for any ball B ⊂ R
n

1

|B|
∫
B

ω ≤ C inf
B
ω .

Any constantC satisfying the above inequalities will be calledAp-constant orA1-constant,
respectively. Finally, a weight is in the class A∞ when it belongs to some Ar , r ≥ 1.

The following two lemmas contain some technical results about weights which will
be important to get our main theorem.

Lemma 1. Let ρ be a nonnegative increasing function of finite upper type and ω a weight
in A∞. Then

(a) there exists a constant C0 such that for any C > 0

ρ

(
1

|Q|
∫
Q

Cω

)
≤ C0

1

|Q|
∫
Q

ρ(Cω)

for any cube Q ⊂ R
n.

(b) If in addition ρ is concave, then there exists p > 1 such that for any C > 0, the
weights ρ(Cω) belong to Ap with an Ap-constant independent of C.

The proof of (a) is straightforward using the following characterization of A∞ (see,
for example, [2]).

There exist 0 < α, β < 1 such that for any cube Q ⊂ R
n

|{x ∈ Q : ω(x) > βmQω}| ≥ α|Q| .

Moreover, let us remark that, following the proof that this condition impliesA∞, it is
easy to check that the index p such that w ∈ Ap, as well as the Ap-constant, only depend
on the constants α and β.

For (b), since ω ∈ A∞, the above inequality holds for some values α and β. Using
the concavity of η, it is easy to see that the same type of inequality holds for ρ(Cω) with
exactly the same constants α and β. From the above remark (b) follows.
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Lemma 2. Let ρ be a weight inAp, 1 ≤ p < ∞. Then there exists a constantC such that( |E|
|B|

)p
≤ C

ω(E)

ω(B)

holds for every measurable set E ⊂ B and every ball B ⊂ R
n.

The proof follows easily by using Hölder’s inequality and the Ap condition.
As we said in the introduction, we shall consider the spaces BMOϕ(ω) for ϕ a concave

function as above, andω a weight inA∞. These spaces consist of locally integrable functions
on R

n such that (1.1) holds. Moreover if we set ‖f ‖BMOϕ(ω) as the infimum of the constants
for which (1.1) holds, BMOϕ(ω) turns out to be a Banach space modulo constants. In
particular, when ω ∈ Ap, 1 ≤ p < ∞, it can be proved (see [13], Theorem 2.2, p. 7) that a
function f belongs to BMOϕ(ω) if and only if for any r < ∞ and 1 < r ≤ p′, there exists
a constant Cr such that(

1

ω(B)

∫
B

|f (y)−mBf |rω(y)1−r dy
)1/r

≤ Crϕ
(
|B|1/n

)
holds for every ball B in R

n. Moreover, for every fixed r satisfying these conditions, the
infimum constant Cr defines an equivalent norm in BMOϕ(ω).

Next we introduce a generalization of the notion of Carleson measures. For ϕ and ω
as above, we shall say that a measure dµ on Rn+1+ is a (ϕ, ω)-Carleson measure when there
exists a constant such that ∫

B̂

|dµ| ≤ Cω(B)ϕ2(|B|1/n) (2.2)

for any ball B ⊂ R
n. Here B̂ denotes the tent corresponding to the ball B = B(x0, r), that

is, B̂ = {(x, t) ∈ R
n+1+ : |x − x0| + t < r}. As usual, we denote by [dµ]ϕ,ω the infimum

of the constants appearing in (2.2). This definition is a weighted extension of the notion
given in [17]. Now we are in position to state our main result.

Theorem 2. Let ϕ be a nonnegative, nondecreasing concave function defined on [0,∞)

with I (ϕ) < 1. Let q0 = 1 + (1−I (ϕ))
n

and ω be an Aq weight. Further, let ψ be a function
in S(Rn) with a null integral. The following statements hold:

(a) If f ∈ BMOϕ(ω), then dµ = |ψt ∗ f |2(x) tn

ω(B(x,t))
dx dt

t
is a (ϕ, ω)-Carleson mea-

sure with
[dµ]ϕ,ω ≤ C‖f ‖2

BMOϕ(ω) .

(b) Assume further that ψ satisfies a Tauberian condition. Then any distribution f ∈ S ′/P
such that dµ =| ψt ∗ f |2(x) tn

ω(B(x,t))
dx dt

t
is a (ϕ, ω)-Carleson measure, can be seen as a

BMOϕ(ω) function with
‖f ‖2

BMOϕ (ω) ≤ C[dµ]ϕ,ω .
We notice that part (a) is a generalization of (a) in Theorem 1 while part (b) looks

slightly different. However, we may obtain as a corollary of our theorem such an extension.

Corollary 1. Let ϕ and ω be as above and ψ be a function in S(Rn) satisfying the
Tauberian condition and with a null integral. Then, if f is such that

∫
Rn

|f (x)|
1+|x|n+1 dx < ∞

and dµ = |f ∗ψt |2(x) tn

ω(B(x,t))
dx dt

t
is a (ϕ, ω)-Carleson measure, f is also in BMOϕ(ω)

with ‖f ‖2
BMOϕ(ω)

≤ C[dµ]ϕ,ω.
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This corollary follows from the theorem by noting that a function f satisfying∫
Rn

|f (x)|
1+|x|n+1 dx < ∞ defines an element of S ′/P .

3. Some Basic Facts About H
q
η (ω)

In this section we present some results concerning weighted Hardy-Orlicz atomic spaces
that will be useful to our purposes. Mostly, they are spread in the literature, perhaps not
with the degree of generality we need here. We state them and outline their proofs for the
sake of completeness.

In the sequel we shall work with a nonnegative, increasing and concave function η
with η(0) = 0 and of lower type 
 > n

n+1 . Notice that η, being concave, is also of upper type
one. Given such η and a weight ω ∈ Aq , we shall say that a function a is an (η, q, ω)-atom
if a is supported in a ball B, has zero average and

‖a‖Lq(ω) ≤ |B|
(ω(B))1/q

′ η
−1
(

1

|B|
)
, (3.1)

where η−1 denotes the inverse function of η. With this notion, we define the atomic space
H
q
η (ω) as the set of distributions f ∈ S ′ that can be written as f = �∞

i=1bi (in the sense of
distributions), where {bi} is a sequence of multiples of (η, q, ω)-atoms such that

∞∑
i=1

|Bi |η
(
ω(Bi)

1/q ′

|Bi | ‖bi‖Lq(ω)
)
< ∞ ,

where Bi is a ball containing the support of bi . For any such decomposition we introduce
the quantity

�q({bi}) = inf

{
λ :
∑

|Bi |η
(
ω(Bi)

1/q ′

λ1/
|Bi | ‖bi‖Lq(ω)
)

≤ 1

}
,

and we denote by [f ]Hq
η (ω)

the infimum of�q({bi}) taken over all decompositions of f . It
is easy to check that [.]Hq

η (ω)
defines a quasi-metric invariant under translations, which is

positively homogeneous when raised to the (1/
)th-power (i.e., : [αf ]1/

H
q
η
(ω) = |α|[f ]1/


H
q
η (ω)

for every α ∈ R).
Let us observe that any function g inLq(ω), supported in a ball and with zero average,

belongs to Hq
η (ω) and, moreover, if it satisfies (3.1) then, [g]Hq

η (ω)
≤ 1.

The first result we need is quite standard.

Proposition 1. Let L be a functional in the dual of Hq
η (ω). Then there exists h ∈

BMOϕ(ω) with ϕ(t1/n) = 1/tη−1(1/t) such that

L(g) =
∫
h(x)g(x) dx ,

for any g ∈ Lq(ω) with compact support and zero average.
Moreover,

‖h‖BMOϕ(ω) ≤ [L] = inf
{
C : |L(f )| ≤ C[f ]1/


H
q
η (ω)

}
. (3.2)
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Proof. It is easy to see that for any ball B, L defines a bounded linear functional on
L
q

0(B, ω), the subspace of functions in Lq(ω), supported in B with zero average, since for
such f we have

|L(f )| ≤ C[f ]1/

H
q
η (ω)

≤ C
ω(B)1/q

′

|B|η−1
(

1
|B|
)‖f ‖Lq(ω) .

Extending L by the Hahn-Banach Theorem we know that there exists a function hB ∈
Lq

′
(ω1−q ′

) supported in B, such that

L(f ) =
∫
B

hBf =
∫
B

(hB −mBhB)f, f ∈ Lq0(B, ω)

and, moreover, we have(
1

ω(B)

∫
B

|hB −mBhB |q ′
ω1−q ′

)1/q ′

≤ Cϕ
(|B|1/n) , (3.3)

with C independent of B. Taking now an increasing sequence of balls, by a standard
argument, a function h may be defined, modulo constants, satisfying (3.3) for any ball.
Since ω ∈ Aq it is known that such inequality implies h ∈ BMOϕ(ω), producing an
equivalent norm, (see comments after Lemma 2). Therefore (3.2) also follows.

The next result shows that functions in S with zero moments of any order are dense
in our spaces. Related results appear in [18], however their spaces are not quite the same
as ours.

Proposition 2. S∞ = {f ∈ S : supp f̂ ⊂ {x : ε < |x| < 1
ε
}, for some ε > 0} is a dense

subspace of Hq
η (ω) as long as q < 2 + 1

n
− 1



.

Proof. As in [16], given a ball B0 = B(x0, r), a function g ∈ Lq(ω) ∩ L1 with zero
integral can be split, pointwisely and in the sense of S ′, as

g =
∑
k≥0

(g −mk)χEk +
∑
k≥0

βkRk , (3.4)

where E0 = B0, Ek = B(x0, r2k)− B(x0, r2k−1) = Bk − Bk−1,mk = 1
|Ek |

∫
Ek
g, βk =∑

i≥k+1mi |Ei | = ∫
Bck
g and Rk = |Ek+1|−1χEk+1 − |Ek|−1χEk .

Clearly each term in the above sums is a multiple of an atom. Moreover, if g ∈ S, it
is easy to check that this decomposition implies that g ∈ Hq

η (ω). Thus, S∞ is a subspace
of Hq

η (ω).
To obtain the density, we observe that it is enough to approximate functions inLq(ω)∩

L1 with compact support and zero average. Let b be one such function and σ be a radial
function in S such that σ̂ (ξ) = 1 for |ξ | ≤ 1 and σ̂ (ξ) = 0 for |ξ | ≥ 2. For any t, 0 < t ≤ 1,
the function σt ∗ b − σ1/t ∗ b belongs to S∞ and moreover we will show that

‖σt ∗ b − b‖Hq
η (ω)

−→ 0 (3.5)

and

‖σ1/t ∗ b‖Hq
η (ω)

−→ 0 (3.6)
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when t goes to zero.
To this end we use the above decomposition for g = σt ∗ b − b, B0 = 2B∗, with B∗

a ball containing the support of b. We denote mtk and βtk the corresponding coefficients.
For x ∈ Ek, k ≥ 1, using the decay of σ , we get the estimate

|σt ∗ b|(x) ≤ C(N, σ, b, B0, ω)
tN−n

2kN

for any positive integer N . Then∥∥(σt ∗ b − b −mtk
)XEk∥∥Lq(ω) ≤ CtN−n2k(n−N), k ≥ 1 .

Besides, for k = 0, using that σt is an approximation to the identity and that ω ∈ Aq , we get

‖XE0(σt ∗ b − b)‖Lq(ω) → 0 for t → 0 .

Therefore, setting htk = (σt ∗ b − b − mtk)χEk , choosing N large enough and using again
that ω ∈ Aq , we easily obtain that �q({htk}) −→ 0, as desired.

Also, for any k ≥ 0, due to the decay of σ we get∣∣βtk∣∣ =
∣∣∣∣ ∫
Bck

σt ∗ b
∣∣∣∣ ≤ CtN−n2k(n−N)‖b‖1 ,

and hence ∥∥βtkRk∥∥Lq(ω) ≤ CtN−n2−kN (ω(Bk))1/q .

Arguing as above, we also get �q({βtkRk}) −→ 0. Then (3.5) is proved.
To show (3.6) we use (3.4) again, now for g = σ1/t ∗ b, and we denote by m̃tk and β̃tk

the corresponding coefficients.
First, for k ≥ 1, using the smoothness and decay of σ , we have for x ∈ Ek

|σ1/t ∗ b|(x) ≤ C
tn+1−M

2kM
‖b‖Lq(ω) ,

for M as large as we want. Choosing M = n+ 1 − δ, with 0 < δ < 1, we get

‖(σ1/t ∗ b)XEk‖Lq(ω) ≤ Ctδ2−k(1−δ)‖b‖Lq(ω) .
As for k = 0, we clearly have

‖(σ1/t ∗ b)XE0‖Lq(ω) ≤ Ctn‖b‖Lq(ω) .
Therefore, setting h̃tk = (σ1/t ∗ b − m̃tk)χEk and using that η is of lower type 
, we obtain

∑
k≥0

|Bk|η
(
ω(Bk)

1/q ′

|Bk|
∥∥h̃tk∥∥Lq(ω)

)
≤ Cη

(
tδ
)∑
k≥0

2k(n+
(n(q−2)+δ−1)) .

Since q < 2 + 1
n

− 1


, we may choose δ small enough to make the last series convergent.

This shows that �q({h̃tk}) −→ 0.
A similar argument proves the convergence to zero of�q({β̃tkRk}), finishing the proof

of the proposition.
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4. Some Basic Facts on the Tent Spaces Tη(ω)

In what follows, for a measurable function G defined on R
n+1+ , we set

V(G)(x) =
(∫

�(x)

|G(y, t)|2 dy dt
tn+1

)1/2

(4.1)

where �(x) denotes the cone {(y, t) : |x − y| < t}.
For a nonnegative increasing and concave function η, with η(0) = 0 and lower type


 > n/(n + 1), and a weight ω in L1
loc(R

n), we introduce the tent space Tη(ω) as those
functions G such that

[V(G)ω]Lη ≡ [G]Tη(ω) < ∞ ,

where by [g]Lη we mean inf{λ : ∫ η(g/λ1/
) ≤ 1}.
The main goal of this section is to get an atomic decomposition of Tη(ω), extending

the result contained in [3] for η(t) = t and ω ≡ 1. We start with the notion of atoms.
Given a ball B = B(x, r) ⊂ R

n we denote by B̂ the tent over B, i.e., B̂ = {(y, t) :
|x − y| + t < r}. Now, a function a(y, t) is said to be an atom whenever it is supported in
some B̂ and(∫

R
n+1+

|a(y, t)|2ω(B(y, t))
tn

dy dt

t

)1/2

≤ |B|
(ω(B))1/2

η−1
( 1

|B|
)
. (4.2)

Observe that if we set W(y, t) = ω(B(y, t))/tn+1 the left-hand side of (4.2) is just
‖a‖L2(W). Also, due to the concavity of η, it is easy to check that atoms do belong to
Tη(ω) and, moreover, [a]Tη(ω) ≤ 1. With this notation we obtain the following result.

Theorem 3 (Atomic decomposition of Tη(ω)). Let η be a function as above and ω be
a weight in A2−(1/
−1/n). Given F ∈ Tη(ω), there exists a sequence of multiple of atoms,
{bj }, such that

F =
∑

bj a.e.

Moreover, if we denote by Bj the ball associated to bj such that supp bj ⊂ B̂j and define

�({bj }) = inf

{
λ > 0 :

∑
|Bj |η

(
(ω(Bj ))

1/2

λ1/
|Bj | ‖bj‖L2(W)

)
≤ 1

}
, (4.3)

we have �({bj }) < ∞ and, moreover,

�({bj }) ≤ C[F ]Tη(ω) . (4.4)

Before proving the theorem we need the following proposition which gives the
weighted version of a key estimate given in [3]. Before stating it, we introduce the definition
of the tent over a general measurable set � ⊂ R

n as the union of the tents B̂ for all the
balls B ⊂ �.

Proposition 3. Letω be a weight inA∞ andB0 a ball in R
n. Then there exists a constant

C such that, for every measurable function F defined on R
n×(0,∞) and every measurable

set E ⊂ B0, we have∫
B̂0−�̂

|F(x, t)|2ω(B(x, t))
tn

dx dt

t
≤ C

∫
B0−E

V2(F )(x)ω(x) dx ,
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where � = {x ∈ B0 : M(XE)(x) > 1
2 }, with M being the Hardy-Littlewood maximal op-

erator.

Proof. Set Z = {(x, y, t) ∈ (B0 − E) × (B̂0 − �̂) : |x − y| < t} and Z(y,t) =
(B0 − E) ∩ B(y, t). We claim that there exists α > 0, such that for any (y, t) ∈ B̂0 − �̂.

ω(Z(y,t)) ≥ αω(B(y, t)) . (4.5)

In fact, if (y, t) ∈ B̂0−�̂, there exists x0 /∈ �with x0 ∈ B(y, t) ⊂ B0. SoM(XE)(x0) ≤ 1
2 ,

and, in particular

|E ∩ B(y, t)| ≤ 1

2
|B(y, t)| .

Therefore |(B0 − E) ∩ B(y, t)| ≥ 1
2 |B(y, t)| and (4.5) follows from the A∞ condition.

Then, we have∫
B̂0−�̂

|F(y, t)|2ω(B(y, t))
tn

dy dt

t
≤ 1

α

∫
B̂0−�̂

|F(y, t)|2
∫
Z(y,t)

ω(x) dx
dy dt

tn+1

= 1

α

∫
Z

|F(y, t)|2ω(x) dx dy dt
tn+1

≤ 1

α

∫
B0−E

ω(x)

(∫
�(x)

|F(y, t)|2 dy dt
tn+1

)
dx

= 1

α

∫
B0−E

V2(F )(x)ω(x) dx .

Now, we are in a position to proceed with the decomposition into atoms.

Proof of Theorem 3. For k ∈ Z let Ek = {x : V(F )(x) > 2k} and �k = {x :
M(XEk )(x) > 1

2 }. It is not hard to check that, except for a zero measure set, suppF ⊂ ∪�̂k .
In fact, for any Lebesgue point (x, t) not belonging to any �̂k , there exists a sequence
{yk} ⊂ B(x, t) with M(XEk )(yk) ≤ 1

2 . Therefore for any k, |B(x, t) ∩ {z : V(F )(z) ≤
2k}| ≥ 1

2 |B(x, t)|, and taking the limit for k tending to −∞, we get

|B(x, t) ∩ {z : V(F )(z) = 0}| ≥ 1

2
|B(x, t)| .

From here we easily conclude that for some y ∈ B(x, t), F = 0 a.e. in �(y) and
hence F(x, t) = 0.

Now, for each k we make a Whitney decomposition of �k into cubes Qj
k . Next we

choose a family of corresponding concentric ballsBjk , containingQj
k and with radii C-times

the diameter of Qj
k , in such a way that for the sets

A
j
k = B̂

j
k ∩ (Qj

k × (0,∞)
) ∩ (�̂k − �̂k+1

)
,

it holds that

�̂k − �̂k+1 ⊂ ∪jAjk .
In fact, it is not difficult to see that it is enough to take C greater than C0 + 1, where C0 is
the constant of the Whitney covering.



276 Eleonor Harboure, Oscar Salinas, and Beatriz Viviani

Now we define bjk = Fχ
A
j
k

. It is clear that they are multiples of atoms and that F =∑
b
j
k . It remains to show that �({bjk }) ≤ C[F ]Tη(ω). First observe that, by Proposition 3,

we have

∥∥bjk∥∥2
L2(W)

≤
∫
B̂
j
k−�̂k+1

|F(y, t)|2ω(B(y, t))
tn

dy dt

t

≤ C

∫
B
j
k−Ek+1

|V(F )(x)|2ω(x) dx

≤ C22(k+1)ω
(
B
j
k

)
.

We set γ = [F ]1/

Tη(ω)

. Since η is assumed concave, and hence of upper type one, we may
apply Lemma 1 to get

∑
k,j

∣∣Bjk ∣∣η
(
ω
(
B
j
k

)1/2∣∣Bjk ∣∣γ
∥∥bjk∥∥L2(W)

)
≤ C

∑
k,j

∣∣Qj
k

∣∣η(2k+1ω
(
Q
j
k

)
γ
∣∣Qj

k

∣∣
)

≤ C
∑
k,j

∫
Q
j
k

η

(
ω(z)

2k+1

γ

)
dz

≤ C
∑
k

∫
�k

η

(
ω(z)

2k+1

γ

)
dz .

But, by part (b) of the same Lemma 1, there exists p > 1 such that η(Cω) ∈ Ap with a
uniform constant. Therefore the Hardy-Littlewood maximal operator is of weak type (p, p)
with respect to η(Cω) with a uniform constant. Thus, we have

∫
{M(χEk )> 1

2 }
η

(
2k+1

γ
ω(z)

)
dz ≤ C

∫
Ek

η

(
2k+1

γ
ω(z)

)
dz .

With this estimate, the above sum over k is bounded by

C
∑
k

∫
Ek

η

(
2k+1

γ
ω(z)

)
dz ≤ C

∫
Rn

∑
k<log2 V(F )(z)

η

(
2k+1

γ
ω(z)

)
dz

≤ C

∫
Rn

∑
k<log2 V(F )(z)

∫ 2k+2

2k+1
η

(
s

γ
ω(z)

)
ds

s
dz

≤ C

∫
Rn

(∫ 4ω(z)V(F )(z)/γ

0
η(s)

ds

s

)
dz

≤ C

∫
Rn

η

(V(F )(z)
γ

ω(z)

)
dz ,

where we have used that the positive lower type of η implies
∫ t

0 η(s)
ds
s

≤ Cη(t). Since by
definition of γ , the last quantity is less than or equal to one, the theorem is
completely proved.
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5. Proof of the Main Result

Proof of Theorem 2. Part (a). Let B = B(x0, r) be a ball in R
n. We split f as

f = (f −mBf )χB̃ + (f −mBf )χB̃c +mBf = f1 + f2 + f3 ,

where B̃ = B(x0, 2r). Since ψt has zero average, ψt ∗ f3 ≡ 0. For f1, using Hölder’s
inequality, we have

I =
∫
B̂

|ψt ∗ f1|2(y) tn

ω(B(y, t))

dy dt

t

≤ C

∫
B̂

|ψt ∗ f1|2(y)ω
−1(B(y, t))

tn

dy dt

t

= C

∫
B̂

|ψt ∗ f1|2(y)
(∫

B(y,t)

ω−1(z) dz

)
dy dt

tn+1

≤ C

∫
B(x0,r)

ω−1(z)

(∫
�(z)

|ψt ∗ f1|2(y)dy dt
tn+1

)
dz .

Since ω ∈ A2, from the theory of vector valued singular integrals we have that
the square function Sψf (z) = (

∫
�(z)

|ψt ∗ f |2(y) dy dt
tn+1 )

1/2 is bounded from L2(ω−1) into

L2(ω−1), then

I ≤ C

∫
Rn

|f1(z)|2ω−1(z) dz = C

∫
B̃

|f (z)−mBf |2ω−1(z) dz

≤ C

(∫
B̃

|f (z)−mB̃f |2ω−1(z) dz

+|mBf −m
B̃
f |2w−1(B̃))

≤ Cω(B)ϕ2(|B|1/n)‖f ‖2
BMOϕ(ω) .

The last inequality is due to the equivalence of norms in BMOϕ(ω) (see comments after
Lemma 2) and the fact that ω ∈ A2. Now, for f2, denoting by Bk = B(x0, 2kr), we have

|ψt ∗f2|(y)≤
∞∑
k=2

∫
Bk−Bk−1

|f (x)−mBf ||ψt(y−x)| dx

≤
∞∑
k=2

∫
Bk−Bk−1

|f (x)−mBkf ||ψt(y − x)| dx (5.1)

+
∞∑
k=2

k∑
j=1

1

|Bj |
(∫

Bj

|f (z)−mBj f | dz
)(∫

Bk−Bk−1

|ψt(y − x)| dx
)

=D1 +D2 ,

where we have used the inequality |f (x) − mBf | ≤ |f (x) − mBkf | + ∑k
j=1 |mBj f −

mBj−1f |.
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Using that ψ ∈ S, we get for (y, t) ∈ B̂

D1 ≤ C

∞∑
k=2

∫
Bk−Bk−1

|f (x)−mBkf | tα

(t + |y − x|)n+α dx

≤ C
( t
r

)α ∞∑
k=2

1

2kα
1

|Bk|
∫
Bk

|f (x)−mBkf | dx

≤ C
( t
r

)α‖f ‖BMOϕ(ω)

∞∑
k=2

1

2kα
ω(Bk)

|Bk| ϕ
(
2kr

)
.

If ϕ is of upper type β, then taking α = n + β and recalling that an A2 weight is in
A2−ε for some ε > 0, Lemma 2 with p = 2 − ε, B = Bk and E = B allows us to obtain

D1 ≤ C
( t
r

)n+β‖f ‖BMOϕ(ω)
ω(B)

|B| ϕ(r)
∞∑
k=2

2k(n(2−ε)−2n−β+β)

= C‖f ‖BMOϕ(ω)

( t
r

)n+β
ϕ(r)

ω(B)

|B| .

To estimate D2 we observe that∫
Bk−Bk−1

|ψt(y − x)| dx ≤ C
tα(

t + 2kr
)n+α |Bk| .

Therefore, with similar arguments to those used for D1, we get

D2 ≤ C‖f ‖BMOϕ(ω)

∞∑
k=2

tα(
2kr

)α k∑
j=1

ω(Bj )

|Bj | ϕ
(
2j r

)
≤ C‖f ‖BMOϕ(ω)

( t
r

)α ω(B)
|B| ϕ(r)

∞∑
k=2

1

2kα

k∑
j=1

2jn(2−ε)2j (β−n)

≤ C‖f ‖BMOϕ(ω)

( t
r

)n+β
ϕ(r)

ω(B)

|B| .

So we obtain the same estimate for D1 and D2. Then, integrating over B̂ and applying the
A2 condition, we get∫

B̂

|ψt ∗ f2|2(y)ω
−1(B(y, t))

tn

dy dt

t

≤ C‖f ‖2
BMOϕ(ω)

ϕ2(r)

r2(n+β)

(
ω(B)

|B|
)2 ∫

B̂

tn+2βω−1(B(y, t))
dy dt

t

≤ C‖f ‖2
BMOϕ(ω)

ϕ2(r)

r2(n+β)

(
ω(B)

|B|
)2

ω−1(B)|B|
∫ r

0
tn+2β dt

t

≤ C ‖ f ‖2
BMOϕ(ω) ϕ

2(r)ω(B) .

Finally, from this estimate and that obtained for I we finish the proof of (a).
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Now we turn into the proof of (b). Under our assumptions on ψ , there exists ψ̄ ∈ S
with

∫
ψ̄ = 0 such that, for any g ∈ S,

gε =
∫ 1/ε

ε

ψ̄t ∗ ψt ∗ g dt
t

−→ g

pointwise, when ε goes to zero (see, for example, [15], p. 159). The above formula first
appeared in [12] and is often referred to as the “Calderón reproducing formula” or “Calderón
representation theorem.” Furthermore, for g ∈ S∞ (see Proposition 2 for the definition), we
may follow the same steps as in [5], p. 122, to conclude that the above convergence occurs
also in the topology of S. Therefore, for f as in the hypothesis, g ∈ S∞, and denoting
g̃(x) = g(−x), we have(

f, g̃
) = lim

ε−→0

(
f, g̃ε

)
= lim
ε−→0

∫ 1/ε

ε

(
f, ψ̄t ∗ ψt ∗ g̃)dt

t

= lim
ε−→0

∫ 1/ε

ε

(
ψ̄t ∗ f,ψt ∗ g)dt

t

= lim
ε−→0

∫ 1/ε

ε

(∫
Rn

(ψt ∗ f )(x)(ψ̄t ∗ g)(x) dx) dt
t
,

(5.2)

where for the last equality we use thatψt ∗f and ψ̄t ∗g areC∞ functions and that, as we will
see below, the integral is absolutely convergent. We claim that for any pair of measurable
functions on R

n+1+ , say F and G, we have

∫
R
n+1+

|F(x, t)||G(x, t)|dx dt
t

≤ C[dF ]1/2
ϕ,ω[G]1/


Tη(ω)
, (5.3)

where dF = |F(x, t)|2 tn

ω(B(x,t))
dx dt
t
, η−1( 1

t
) = 1

tϕ(t1/n)
and 
 = 1/(1 + β/n), being β an

upper type for ϕ, such that ω ∈ Aq for some q < 1 + 1−β
n

. Such choice of β is possible
due to the property ‘ω ∈ Ap ⇒ ω ∈ Ap−ε, for some ε > 0’. Let us notice that if ϕ is of
upper type β, then, from its definition, η−1 is of upper type 1 + β/n and, consequently, η
is of lower type 
.

To show (5.3) note that if G ∈ Tη(ω), in view of the atomic decomposition (see
Theorem 3), G can be written a.e. as

G(x, t) =
∑
j

bj (x, t)

in such a way that

�({bj }) ≤ C[G]Tη(ω) .

Observe that Theorem 3 can be applied since, as we remarked above, ω ∈ Aq ⊂ A1+ 1−β
n

=
A2−(1/
−1/n).
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Therefore, if Bj is the ball associate to bj such that supp(bj ) ⊂ B̂j , we get∣∣∣∣ ∫
R
n+1+
F(x, t)G(x, t)

dx dt

t

∣∣∣∣ ≤
∑
j

(∫
B̂j

|F(x, t)|2 tn

ω(B(x, t))

dx dt

t

)1/2

(∫
B̂j

|bj (x, t)|2ω(B(x, t))
tn

dx dt

t

)1/2

≤ [dF ]1/2
ϕ,ω

∑
j

ω(Bj )
1/2ϕ

(|Bj |1/n)‖bj‖L2(W) .

Now, if σ denotes the last sum, it is easy to check that∑
j

|Bj |η
(
ω(Bj )

1/2

|Bj |σ ‖bj‖L2(W)

)
≥ 1 .

In fact, replacing in σ, ϕ(|Bj |1/n) by 1/(|Bj |η−1(1/|Bj |)), the above inequality follows
using the fact that η is of upper type less than or equal to one. Therefore, in view of the
definition of �, we get

σ
 ≤ �({bj })
which together with (4.4) gives (5.3). Now, applying this inequality in (5.2), we have

∣∣(f, g̃)∣∣ ≤ C[dµ]1/2
ϕ,ω

[(∫
�(.)

∣∣ψ̄t ∗ g∣∣2(y)dy dt
tn+1

)1/2

ω(.)

]1/


Lη

= C[dµ]1/2
ϕ,ω

[(
Sψ̄g

)
ω
]1/


Lη
,

where dµ denotes the measure associate toψt ∗f , as given in the statement of the theorem.
Then, it is clear that part (b) of our theorem would follow from the above inequality by
using Propositions 1 and 2, provided we can prove that

[(Sψ̄g)]Lη ≤ C[g]Hq
η (ω)

. (5.4)

Notice that we may apply Proposition 2 since ω ∈ Aq for q < 2 + 1
n

− 1


. In order to

check that (5.4) holds, we recall, as in the proof of part (a), that Sψ̄ is nothing else but the
square function.

Then, the theory of vector valued singular integrals allows us to assert that it is bounded
on Lq(ω) for any ω ∈ Aq . Now, for a function b in Lq(ω) with compact support on a ball
B0 = B(x0, r0) and zero average, Jensen’s inequality leads us to the following estimate∫

B̃0

η(Sψ̄b(x)ω(x)) dx ≤ C|B0|η
(
ω(B0)

1/q ′

|B0| ‖Sψ̄b‖Lq(ω)
)

(5.5)

≤ C|B0|η
(
ω(B0)

1/q ′

|B0| ‖b‖Lq(ω)
)
,

where B̃0 = B(x0, 2r0). On the other hand, it is also known that

Sψ̄b(x) ≤ C

(
r0

|x − x0|
)n+1 ‖b‖Lq(ω)

ω(B0)1/q
,
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for x /∈ B̃0. Then, a standard reasoning using this estimate, Jensen’s inequality and the fact
that ω ∈ Aq allows us to get

∫
B̃c0

η(Sψ̄b(x)ω(x)) dx ≤ C|B0|
∞∑
j=2

2jn (5.6)

× η

(
ω(B0)

1/q ′

|B0|
‖b‖Lq(ω)

2(2n−nq+1)j

)
≤ C|B0|η

(
ω(B0)

1/q ′

|B0| ‖b‖Lq(ω)
)

because of our assumptions on q and 
. Therefore, if b is an atom inHq
η (ω), (5.5) and (5.6)

imply (5.4) for g=b. Consequently, (5.4) holds for every g in Hq
η (ω) , finishing our proof.

6. A Weighted Triebel-Lizorkin Space

As we said in Section 1, Bui and Taibleson introduced in [1] a weighted version of the
Triebel-Lizorkin spaces Ḟ α∞,q . Specifically, they take ψ ∈ S with supp ψ̂ ⊂ {ξ : 1

2 ≤
|ξ | ≤ 2} and

∑∞
j=−∞ |ψ̂(2−j ξ)|2 = 1 for |ξ | 	= 0. Then, for ω ∈ A∞, the space

Ḟ
α,ω∞,q , α ∈ R, 0 < q < ∞ is defined as the set of f in S ′/P such that

sup
Q

(
1

ω(Q)

∫
Q

∞∑
j=− log2(
(Q))

(
2jα|ψ2−j ∗ f |(x))qω(x) dx)1/q

< ∞ , (6.1)

whereQ denotes a dyadic cube in R
n with side length 
(Q). For the case α = 0 and q = 2

we have the following result.

Proposition 4. The space BMO is contained in Ḟ 0,ω
∞,2 for any ω in A2. Moreover, if in

addition, we assume ω ∈ A1, then both spaces coincide.

In view of the above proposition and Lemma 2, we consider that Ḟ α,ω∞,q should be
rather defined as the set of f in S ′/P such that

sup
B

(
1

ω(B)

∫
B̂

(
t−α|ψt ∗ f |(x))q tn

ω(B(x, t))

dx dt

t

)1/q

< ∞ .

When α = 0 and q = 2, note that for ω ∈ A1+1/n and ψ in S satisfying a Tauberian
condition, Lemma 2 allows us to obtain two facts: First, a weighted version of the well
known result BMO � Ḟ 0

∞,2, and, second, as a consequence, that the definition of the space
does not depend on the choice of ψ .

Proof of Proposition 4. Let f be in BMO. Given a cube Q, we split f as follows

f = (f −mQ,ωf )XQ̃ + (f −mQ,ωf )χQ̃c +mQ,ωf = f1 + f2 + f3 ,

where mQ,ωf = 1
ω(Q)

∫
Q
fω and Q̃ denotes the concentric cube with Q and side length
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2
(Q). In order to prove that f satisfies (6.1) for α = 0 and q = 2, we first estimate

I =
∫
Q

∞∑
j=− log2 
(Q)

|ψ2−j ∗ f1|2(x)ω(x) dx

≤
∫

Rn

∞∑
j=−∞

|ψ2−j ∗ f1|2(x)ω(x) dx .

It is well known that this discrete version of the square function, that is G(f )(x) =
(
∑∞
j=−∞ |ψ2−j ∗ f |2(x))1/2, is bounded on Lp(ω) as long as ω ∈ Ap (see, for example,

[4], p. 125, or, for more details, [9]). So, we have

I ≤ C

∫
Rn

|f1(x)|2ω(x) dx = C

∫
Q̃

|f −mQ,ωf |2ω(x) dx

≤ C‖f ‖2
BMO ω(Q) ,

where the last inequality follows from the fact that

supQ

(
1

ω(Q)

∫
Q

|f −mQ,ωf |pω
)1/p

� ‖f ‖BMO ,

(see, for example, [6], Corollary 2.4).
On the other hand, denoting byQk the concentric cube withQ and side length 2k
(Q),

a similar reasoning to that applied for getting estimate (5.1) allows us to get

|ψ2−j ∗ f2|(y) ≤ C

(
2−j


(Q)

)α ( ∞∑
k=2

1

2kα
1

|Qk|
∫
Qk−Qk−1

|f (x)−mQk,ωf | dx

+
∞∑
k=2

k∑
i=2

1

ω(Qi)

∫
Qi

|f (x)−mQi,ωf |ω(x) dx

×
∫
Qk−Qk−1

|ψ2−j (y − x)| dx
)
,

for every j ∈ Z, for α > 0 fixed. Then, since ω ∈ A2, Hölder’s inequality and the fact that
the norms are equivalent, yield to

|ψ2−j ∗ f2|(y) ≤ C

(
2−j


(Q)

)α
‖f ‖BMO .

Now, from this inequality, we get∫
Q

∞∑
j=− log2 
(Q)

|ψ2−j ∗ f2|2(x)ω(x) dx ≤ C
ω(Q)

(
(Q))α
‖f ‖BMO

∞∑
j=− log2 
(Q)

2−jα

≤ Cω(Q)‖f ‖BMO .

So, the above estimate, the one obtained for I , and the fact that ψ2 − j ∗ f3 = 0 prove
f ∈ Ḟ 0,ω

∞,2, in other words, BMO ⊂ Ḟ
0,ω
∞,2.
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Now, assuming ω ∈ A1 and using the well known unweighted result BMO � Ḟ 0
∞,2

(see [4], for instance), we can write

‖f ‖2
BMO ≤ sup

Q

1

|Q|
∫
Q

∞∑
j=− log2 
(Q)

|ψ2−j ∗ f |2(x) dx

≤ C sup
Q

1

ω(Q)

∫
Q

∞∑
j=− log2 
(Q)

|ψ2−j ∗ f |2(x)ω(x) dx .

Clearly, this implies Ḟ 0,ω
∞,2 ⊂ BMO.
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