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ABSTRACT. The following principle is well-known in Harmonic Analysis: If a real function has
a spectral gap at the origin then it must have many sign changes. We obtain some sharp estimates
showing that the set of positivity of such functions cannot be too small. We also extend the principle
above to complex functions: If a complex function has a spectral gap at the origin then the variation
of argument of this function must be large.

1. Sturm-Hurwitz Theorem and its Extensions

The reader is referred to [5] which gives an excellent account of the history of results
on sign changes of real functions having a spectral gap at the origin. We shall state the
classical Sturm-Hurwitz theorem and some of its extensions dealing with the lower density
of sign changes.

(1) Functions on the unit circle T = R/2πZ.
We shall identify T with the interval [−π, π). For a function f ∈ L2(T) we denote

by {fj } ∈ l2(Z) the sequence of its Fourier coefficients:

f (t) ∼
∑
j∈Z

fj e
ij t . (1.1)

A function f ∈ L2(T) has a spectral gap (m, l) if fj = 0 for m < j < l.

Theorem 1 (Sturm-Hurwitz). Suppose a nontrivial function f is real and continuous on
T, and has a spectral gap (−n, n) for some integer n > 0. Then f has at least 2n sign
changes on T.
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Sturm stated this result for the case of trigonometric polynomials while Hurwitz
generalized it to Fourier series. The interest and importance of the Sturm-Hurwitz theorem
has been highlighted in several recent works of V. I. Arnold [2, 3] (see also [4] for some
multidimensional results). In [2] Arnold outlines three very different proofs of this result.

(2) Functions on the set of integers Z.
Let {fj }Nj=1 be a finite sequence of real numbers. We denote by S({fj }, 1 ≤ j ≤ N)

the number of sign changes of the sequence defined as the number of integers m, 1 ≤ m <

N , such that fmfm+l < 0 where m + l ≤ N , and l is the smallest positive integer such
that fm+l �= 0.

A sequence {fj } ∈ l2(Z) has a spectral gap on an interval I ⊆ T if the function f
in (1.1) vanishes a.e. on I .

Theorem 2 (Logan [9]). Let {fj } ∈ l1(Z) be a nontrivial sequence of real numbers with
a spectral gap (−aπ, aπ), for some number 0 < a < 1. Then

lim inf
j→∞

S({fj }, 1 ≤ j ≤ n)

n
≥ a .

(3) Functions on the real line R.
Let f ∈ L2(R) be a function on the real line R. We denote by f̂ its Fourier transform:

f̂ (x) ∼
∫

R

eitxf (t) dt .

A function f ∈ L2(R) has a spectral gap on an interval I ⊂ R, if f̂ (x) = 0 a.e. for x ∈ I .
In fact, Logan [9] formulates a result about the sign changes of real functions, while

Theorem 2 follows from the proof of that result. Namely, he proves that if a real continuous
function f ∈ L1(R) has a spectral gap (−∞,−bπ) ∪ (−aπ, aπ) ∪ (bπ,∞) for some
0 < a < b (i.e., the spectrum of f is compact), then f has a large number of sign changes:

lim inf
r→∞

S(f, (0, r))

r
≥ a . (1.2)

Here S(f, (0, r)) denotes the number of sign changes of f on (0, r). Since the right-hand
side of (1.2) does not depend on the size of the support of f̂ , Logan conjectured that the
assumption of compactness of support of f̂ is redundant. This was confirmed in a recent
result [5]. We state a corollary of the result from [5].

Theorem 3 (Eremenko-Novikov [5]). Let f ∈ L1(R) be a nontrivial continuous real
function with a spectral gap (−aπ, aπ), for some number a > 0. Then (1.2) holds.

It is shown in [5] that (1.2) still holds for some wider classes of functions and measures
characterized by their rates of growth at infinity, but if the growth is faster than a certain
threshold, the above statement is no longer true (see [5] for details).

The aim of this article is twofold: We show that the positivity set of functions hav-
ing a spectral gap at the origin cannot be too small. We also show that the theorems
above hold for complex functions, provided we replace the number of sign changes by
the variation of argument. To emphasize the simple nature of the results, we shall avoid
complications which arise in a general approach. Therefore, all functions we consider will
be continuous and bounded, though the results can be extended to more general classes of
functions and distributions.
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2. Sturm Theorem on Cyclic Subgroups and Positivity
Sets of Trigonometric Polynomials

The following known result is due to Arnold (see [10]): If a real trigonometric polynomial
of degree m with vanishing constant term changes sign on a circle exactly twice, then the
ratio of the lengths of the arcs they determine is at least 1/m. Equality, up to a multiplicative
constant and rotation, is attained by a polynomial whose double roots form a regular polygon
with m+ 1 sides, with the exception of two consecutive simple roots.

We shall obtain a variant of the Sturm theorem on cyclic subgroups of T, and show
that the estimate in Arnold’s result and some similar results can be deduced from it.

Let us denote by #(I ) the number of elements of a set I , and by meas(I ) the measure
of I . Given a real function f on T, we shall denote by {f > 0} := {t ∈ T : f (t) > 0} the
positivity set of f , {f = 0} := {t ∈ T : f (t) = 0} the zero set of f , and {f ≥ 0} := {f >
0} ∪ {f = 0}.

Suppose that � ⊂ T is a finite set, #(I ) = n. The number S(f, �) of sign changes
of f on � is defined as follows: We set S(f, �) = 0 if � ⊆ {f = 0}. Suppose f does
not vanish on �. Pick γ1 < . . . < γn < γn+1 = γ1 + 2π such that � = {eiγj }nj=1. Then
S(f, �) is the number of j, 1 ≤ j ≤ n, such that f (γj )f (γj+1) < 0. In general, we set
S(f, �) = S(f, � \ {f = 0}). Clearly, S(f, �) is either zero or an even number. Denote
by TN = {exp(2πij/N)}N−1

j=0 the cyclic group of N -th roots of unity, and TN + θ :=
{exp(iθ + 2πij/N)}N−1

j=0 the rotation of TN by θ .
We say that f in (1.1) is a trigonometric polynomial of degree (at most) m if fj = 0

for |j | > m. If such a polynomial has a spectral gap (−n, n), n ≤ m, then, by the
Sturm theorem, it must have ≥ 2n sign changes on the unit circle T. We show that unless
f (t) = a sinmt (i.e., n = m), f must have ≥ 2n sign changes on the cyclic subgroup Tm+n.

Theorem 4. Suppose that θ ∈ [−π, π) and that a real trigonometric polynomial f
of degree m has a spectral gap (−n, n), for some 0 < n ≤ m. Then either f (t) =
a sinm(t − θ), for some a ∈ R (i.e., n = m and f is trivial on T2m + θ ), or f must have
at least 2n sign changes on Tm+n + θ .

Since the number of positive values of f on Tm+n+ θ is at least a half of the number
of its sign changes on this set, we obtain the following.

Corollary 1. Suppose that θ ∈ [−π, π) and that a real trigonometric polynomial f of
degreemhas a spectral gap (−n, n) for some 0 < n ≤ m. Then eitherf (t) = a sinm(t−θ),
for some a ∈ R, or # ({f > 0} ∩ (Tm+n + θ)) ≥ n.

One can easily reformulate Theorem 4 and Corollary 1 in terms of the discrete
Fourier transform.

Proof of Theorem 4. Observe that it is easy to prove Theorem 4 by contradiction using
the orthogonality of f and any polynomial of degree < n on the group Tm+n. We choose
another method, which also works in a more general situation of Fourier transforms, see
Section 5 below.

Clearly, it suffices to prove the theorem for θ = 0. Assume first that the number
m+ n is even. Set l = (m+ n)/2 and k = (m− n)/2. Then f can be written as follows:

f (t) = �

 l+k∑
j=l−k

cj e
ij t


 = �


eilt k∑

j=−k
cj+leij t


 , t ∈ T .
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Hence,

f

(
πj

l

)
= (−1)jϕ

(
πj

l

)
, j = 0, 1, . . . , 2l − 1, ϕ(t) := �


 k∑
j=−k

cj+leij t

 .

We have to show that S(f,T2l ) ≥ 2n.
Observe that ϕ ≡ 0 if and only if k = 0 (so that n = m and l = m) and �(cl) = 0.

This implies f (t) = a sinmt , where a = −�(cl).
Assume thatϕ �= 0. Since the degree ofϕ is at most k, it has at most 2k zeros (and so at

most 2k sign changes) on T. Let us show that S(f,T2l ) ≥ 2l−#{ϕ(t) = 0} ≥ 2l−2k = 2n.
If ϕ(t) does not vanish on T2l , then S(f,T2l ) = 2l − S(ϕ,T2l ) ≥ 2l − #{ϕ(t) = 0} ≥ 2n.
Otherwise, by a small rotation of the zeros of ϕ which lie on T2l , one can find a real
trigonometric polynomial ϕ∗(t) of degree ≤ k which does not vanish on T2l , and such that
the number of sign changes in the sequence f ∗(πj/l) := (−1)jϕ∗(πj/l), 0 ≤ j ≤ l, is
the same as in the sequence f (πj/l), 0 ≤ j ≤ l.

If the number m + n is odd, we apply the argument above to the function f (2t) to
show that it must have at least 4n sign changes on T2(m+n), so that f (t) has at least 2n sign
changes on Tm+n.

We apply Theorem 4 to obtain two known results (proven in [11] and [7] by a different
approach) on the size of the positivity set and the size of the longest positivity arc.

Corollary 2. Suppose f (t) in (1.1) is a nontrivial real trigonometric polynomial of degree
m with a spectral gap (−n, n), 0 < n ≤ m. Then

(i) ([11]) meas({f > 0}) ≥ 2πn/(n+m),

(ii) ([7]) if f is nonnegative on an arc I ⊂ T then meas(I ) ≤ 2π(m− n+ 1)/(m+ n).
The inequalities in (i) and (ii) are sharp.

Proof.
(i) Since meas({f = 0}) = 0, it suffices to establish the inequality in (i) for the set {f ≥ 0}.

Corollary 1 implies

#({f ≥ 0} ∩ (Tm+n + θ)) ≥ n, θ ∈ [−π, π) .
Hence, the set {f ≥ 0} and its m + n − 1 translations {f ≥ 0} + 2πj/(n + m), j =
1, . . . , n+m− 1, cover the circle with multiplicity n, i.e., each point in the circle belongs
to at least n of these sets. This proves (i).

The sharpness of (i) for n = 1 follows from the example:

f (t) =
m∑
j=1

sin

(
jπ

m+ 1

)
cos j t = sin

(
π

m+ 1

)
cos2 (m+1)t

2

cos t − cos π
m+1

.

To show the sharpness of (i) for m+ n even, we set

f (t) := − sin2 (n+m)t
2∏n−1

j=0 sin
(
t − 2πj

n+m
) . (2.1)

One can check that f is a trigonometric polynomial of degreemwith a spectral gap (−n, n)
(see [11] for similar examples), and the zero set of f is Tm+n. Moreover, f has 2n sign
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changes which occur at the zeros of the denominator, i.e., the points t = 2πj/(m+ n) and
t = π+2πj/(m+n), j = 0, . . . , n−1. Since f (t) is negative in small left neighborhoods
of the origin and π , there are exactly n intervals of the length 2π/(n + m) each where f
is positive, i.e., the measure of its positivity set is exactly 2πn/(n+m). Examples for odd
m+ n can be found in [11].

To verify (ii) we observe that f has at least 2n − 2 sign changes on T \ I , so that the
intersection of T \ I with Tm+n + θ contains at least 2n− 1 points, for each θ ∈ [−π, π).
Hence, meas(T\I ) ≥ 2π(2n−1)/(m+n), which proves (ii). The sharpness of (ii) follows
from the example considered by Yudin (see [11]):

f (t) := (−1)n cos2 (n+m)t
2∏n−1

j=0

(
cos

(
t − 4πj

n+m
)

− cos π
n+m

) .
One can check that f is a trigonometric polynomial of degreemwith a spectral gap (−n, n)
(see [11]). Since the denominator vanishes at t = 4πj/(n + m) ± π/(n + m) + 2πk,
j = 0, . . . , n − 1, k ∈ Z, and f (0) < 0, we see that f is nonnegative on the interval
[4π(n − 1)/(n + m) + π/(n + m), 2π − π/(n + m)], the length of this interval being
2π(m− n+ 1)/(n+m).

Observe also that Theorem 4 and Corollary 1 are sharp in the sense that for every
0 < n < m and N < m+ n there exists a nontrivial trigonometric polynomial f of degree
m with a spectral gap (−n, n) which has ≤ n − 1 positive values (and so ≤ 2n − 2 sign
changes) on TN .

In the case n = 1 (only constant term is missing), Corollary 2 (i) follows from an
elegant result on measure-preserving transformations due to Tabachnikov [10].

3. Positive Fourier Coefficients

Recall that a sequence {fj } ∈ l2(Z) has a spectral gap on an interval I ⊂ T if the function
f in (1.1) vanishes a.e. on I . We shall denote by {fj > 0} := {j : fj > 0} the positivity
set of the sequence. We are interested in the size of this set for the sequences with a spectral
gap at the origin.

Theorem 5.
(i) Let {fj } ∈ l1(Z) be a nontrivial real sequence with a spectral gap (−aπ, aπ) for some
0 < a < 1. Then

lim inf
j→∞

#({fj > 0} ∩ {1, . . . , n})
n

≥ a

2
.

(ii) For every 0 < a < 1 there is a nontrivial real sequence {fj } ∈ l1(Z) with a spectral
gap (−aπ, aπ) such that

lim
j→∞

#({fj > 0} ∩ {1, . . . , n})
n

= a

2
. (3.1)

Proof. Statement (i) follows from Theorem 2 and the observation that the number of
positive elements in any finite real sequence f1, . . . , fn cannot be smaller then a half of
the number of sign changes: #({fj > 0} ∩ {1, . . . , n}) ≥ S({fj }, 1 ≤ j ≤ n)/2.
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Let us establish (ii) for a rational. Write a = (q − p)/q where 0 < p < q are some
even numbers, and set

ϕ(x) := 1

(x + 1/2)(x + 3/2)

p−1∏
j=0

sin

(
π

2x − 2j − 1

2q

)
.

Set fj := (−1)j+1ϕ(j), j ∈ Z. Statement (ii) of the theorem now follows from the
following lemma:

Lemma 1. The sequence {fj } belongs to l1(Z), has a spectral gap [−aπ, aπ ] and
satisfies (3.1).

Proof. The function ϕ is an entire function of exponential type pπ/q and is integrable
on the real line. It follows that its Fourier transform ϕ̂ is continuous on the real line and
vanishes outside [−πp/q, πp/q]. Since

ϕ̂(t) =
∑
j∈Z

ϕ(j)eij t , t ∈ T ,

we have ∑
j∈Z

ϕ̂(t + 2πj) =
∑
j∈Z

ϕ(j)eij t , t ∈ R .

We see that∑
j∈Z

ϕ̂(t+π+2πj) =
∑
j∈Z

(−1)jϕ(j)eij t = 0, t ∈
[
− π+πp

q
, π−πp

q

]
= [−aπ, aπ ] .

This gives ∑
j∈Z

fj e
ij t = −

∑
j∈Z

(−1)jϕ(j)eij t = 0, t ∈ [−aπ, aπ ] .

Hence, the sequence {fj } has a spectral gap [−aπ, aπ ].
Observe that ϕ(x)(x + 1/2)(x + 3/2) is a 2q-periodic function, so that the sign of

fj is also 2q-periodic for j ≥ 0. Moreover, ϕ(0) > 0, ϕ(q) > 0, and on the interval
[0, 2q), the function ϕ changes its sign at the points t = j + 1/2 and t = j + 1/2 + q,
j = 0, . . . , p − 1. We see that fj < 0 for j ∈ {0, 1, . . . , p} ∪ {q, q + 1, . . . , q + p}.
Hence, for 0 ≤ j < 2q, the fj are positive if and only if j = p + 1, p + 3, . . . , q − 1, or
j = q + p + 1, q + p + 3, . . . , 2q − 1. This gives

(2q)−1#
({fj > 0} ∩ {0, 1, . . . , 2q − 1}) = q − p

2q
= a

2
,

which proves the lemma.

We shall now sketch the proof for a irrational. Choose two large even integers
0 < p < q such that p/q < 1 − a, and the number δ := (1 − a − p/q)/2 is sufficiently
small (it suffices to assume that δ < 1/(8q)).

For every k ∈ N fix an integer l(k) ∈ N such that |ql(k) − k/δ| < q. Denote
� := {l = l(k), k ∈ N}, and set

ψ(x) := ϕ(x)
∏
l∈�

(
1 − x2

(p + 1/2 + ql)2

)(
1 − x2

(p + 3/2 + ql)2

)
,
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where ϕ is the function defined above. The l∞-distance between the sequence {p+ 1/2 +
ql, l ∈ �} and the sequence (1/δ)N := {k/δ, k ∈ N} does not exceed p + 1/2 + q < 2q,
which is a small number compared to 1/δ. The same is true for the distance between
{p + 3/2 + ql, l ∈ �} and (1/δ)N. Hence, the infinite product in the right-hand side can
be regarded as a ’small’ perturbation of the product(∏

k∈N

(
1 − δ2x2

k2

))2

=
(

sin(πδx)

πδx

)2

.

Therefore, one may check that ψ is an entire function of exponential type π(p/q + 2δ) =
π(1 − a), ψ ∈ L1(R) and {ψ(j), j ∈ Z} ∈ l1(Z).

Set fj := (−1)j+1ψ(j), j ∈ Z. The same argument as in Lemma 1 shows that the
sequence fj has a spectral gap [−aπ, aπ ]. Observe that the set of all positive roots of ψ is
as follows:({

1

2
, . . . , p − 1

2

}
+ q(N \�)

)⋃({
1

2
, . . . , p − 1

2
, p + 1

2
, p + 3

2

}
+ q�

)
.

One may check that ψ(ql) > 0, l = 0, 1, · · · , which gives fj < 0 for j = ql, . . . , p +
ql, l ∈ N \�, and j = ql, . . . , p + 2 + ql, l ∈ �. Outside this values of j , the sequence
fj shifts its sign. Hence,

#
({fj > 0, ql ≤ j ≤ q(l + 1)}) =

{ q−p
2 l ∈ N \� ,

q−p
2 − 1 l ∈ � .

Since the l∞-distance between � and (1/qδ)N is finite, the density of the positivity set of
fj for j > 0 is as follows:

q − p

2q
(1 − qδ)+

(q − p

2q
− 1

q

)
qδ = a

2
.

4. Positivity Sets of Fourier Transforms

To include the trigonometric polynomials into consideration, we shall consider real func-
tions f which can be represented as the Fourier-Stieltjes transform of a finite complex-
valued Borel measure. Such functions f admit a representation

f (x) = �
(∫ ∞

0
eisx dσ (s)

)
, (4.1)

where σ is a complex finite measure. The function f has a spectral gap on a symmetric
interval I,−I = I , if σ = 0 on I ∩ [0,∞).

We are interested in the size of the positivity set {f > 0} = {x ∈ R : f (x) > 0}
when f has a spectral gap at the origin.

Let us first assume that the support of σ is compact, i.e., there exist 0 < a < b

such that

dσ = 0 on [0, aπ) ∪ (bπ,∞) . (4.2)
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The following result extends Corollary 2 (i) to Fourier-Stieltjes transforms.

Theorem 6. Let f be a nontrivial real function in (4.1) satisfying (4.2). Then

lim inf
r→∞

meas ({f > 0} ∩ (0, r))
r

≥ a

a + b
. (4.3)

Theorem 6 is sharp: It is possible to show that for every 0 < a < b there exists a
function f in (4.1) which satisfies (4.2), and

lim
r→∞

meas ({f > 0} ∩ (0, r))
r

= a

a + b
.

For a, b ∈ 2N, this follows from example (2.1).
In general, if the support of σ is unbounded, the set {f > 0} can be arbitrarily small.

This is already true for functions f ∈ L1(R). However, it turns out that the set {f > 0}
cannot be too small when f ∈ Lp(R), p > 1.

Theorem 7.
(i) For any positive increasing functionψ(x) ↗ ∞ defined on [0,∞) there is a real function
f ∈ L1(R) which has a spectral gap (−π, π), and such that∫

{f>0}
ψ(|x|) dx < ∞ . (4.4)

(ii) Suppose a real function f ∈ L1(R) ∩ Lp(R), p > 1, has a spectral gap (−α, α) for
some α > 0. Set

Mn :=
∫

{f>0}
|x|n dx, n = 0, 1, . . . . (4.5)

Then either Mn = ∞ for some n ≥ 0 or

∞∑
n=1

Mn−1

Mn

< ∞ .

Corollary 3. Suppose a real function f ∈ L1(R) ∩ Lp(R), p > 1, has a spectral gap
(−α, α), α > 0. Then ∫

{f>0}
eε|x| dx = ∞ ,

for every positive ε.

Proof of Theorem 6. Assume a real f ∈ L1(R) satisfies (4.2), where dσ(x) = f̂ (x) dx.
Then the function f̂ (bt) is concentrated on aπ/b ≤ |t | ≤ π . Theorem 5 now gives a (sharp)
estimate of the positivity set {j : f (j/b) > 0}:

lim inf
n→∞

# ({j : f (j/b) > 0} ∩ {1, . . . , n})
n

≥ a

2b
.

The proof of Theorem 6 is based on the fact that the positivity set of the sequence {f (2j/(a+
b))} is ‘larger’ than the one of the sequence {f (j/b)}.
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Lemma 2. Let f be a nontrivial real function in (4.1) satisfying (4.2). Then for every
x ∈ [0, 2/(a + b)) we have

lim inf
n→∞

# ({j : f (2j/(a + b)+ x) > 0} ∩ {1, . . . , n})
n

≥ a

a + b
.

Proof. It suffices to establish Lemma 2 for x = 0. The proof is similar to the proof of
Theorem 4 above.

By using a suitable change of variable, in what follows we may assume that a = 1−α
and b = 1 +α for some 0 < α < 1, so that the spectrum of f belongs to π(1 −α) ≤ |x| ≤
π(1 + α):

f (t) = �
(∫ π(1+α)

π(1−α)
eits dσ (s)

)
= �

(
eiπt

∫ πα

−πα
eits dσ (s + π)

)
.

This gives

f (k) = (−1)kϕ(k), k ∈ Z, ϕ(t) := �
(∫ πα

−πα
eits dσ (s + π)

)
.

To prove the lemma, we have to show that

lim inf
n→∞

# ({j : f (j) > 0} ∩ {1, . . . , n})
n

≥ 1 − α

2
.

However, since the number of positive elements in any finite sequence is not smaller then
a half of the number of sign changes, it suffices to show that

lim inf
n→∞

S ({f (j)}, 1 ≤ j ≤ n)

n
≥ 1 − α . (4.6)

Since ϕ has at least one zero between any two integers j, l such that ϕ(j)ϕ(l) < 0,
one can verify that the number of sign changes in a sequence f (1), . . . , f (j) is not smaller
that j − Z(ϕ, (0, j)), where Z(ϕ, (0, j)) is the number of zeros (including multiplicities)
of ϕ(t) on (0, j) (see [1] for details). Hence, to establish (4.6) it suffices to show that

lim sup
r→∞

Z(ϕ, (0, r))

r
≤ α .

This follows from the theorem of Cartwright and Levinson ([8], Chapter V, Theorem 7).
The reason for this inequality to hold is that ϕ is an entire function of exponential type πα
bounded on the real line. This implies that ϕ is of completely regular growth in the sense
of Levin and Pfluger. The latter means that the sequence of complex zeros of ϕ in any open
angle containing the positive ray has density α, so the upper density of its positive zeros is
at most α.

We can now finish the proof of Theorem 6. Since meas({f = 0}) = 0 it suffices to
establish (4.3) for the set {f ≥ 0} instead of {f > 0}. This easily follows.

Lemma 3. For any positive ε < (1 − α)/2 there exists an integer N(ε) such that

n−1 meas ({f ≥ 0} ∩ (0, n)) ≥ 1 − α

2
− ε, n ≥ N(ε) .
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Proof. By Lemma 2, for every 0 < ε < (1 − α)/2 and x ∈ [0, 1) there exists an integer
N(x, ε) such that

# ({f ≥ 0} ∩ {1 + x, 2 + x, . . . , n+ x}) ≥
(1 − α

2
− ε

)
n, n ≥ N(x, ε) .

Since f is continuous, it is clear that for every X ∈ (0, 1) we have

# ({f ≥ 0} ∩ {1 +X, 2 +X, . . . , n+X})
≤ lim sup

x→X

# ({f ≥ 0} ∩ {1 + x, 2 + x, . . . , n+ x}) ,

the strict inequality may occur when f has an even order zero at some point X + j and f
is negative in a neighborhood of this point. This gives

N(X, ε) ≥ lim sup
x→X

N(x, ε) .

Hence, N(ε) := supx∈[0,1) N(x, ε) < ∞ for every ε > 0. The functions

kn(x) := # ({f ≥ 0} ∩ {1 + x, 2 + x, . . . , n+ x}) , n ≥ N(ε) ,

are piece-wise constant, and satisfy kn(x) ≥ ((1 − α)/2 − ε)n. We conclude that

n−1 meas ({f ≥ 0} ∩ (0, n)) = n−1
∫ 1

0
kn(x) dx ≥ 1 − α

2
− ε, n ≥ N(ε) ,

which proves Lemma 3.

Proof of Theorem 7.
(i) Let ψ(x) ↗ ∞ be a positive increasing function. We shall construct a function f ∈
L1(R)which satisfies (4.4) and such that f̂ (t) = 0 on (−π, π). Our approach is somewhat
similar to that in [6].

Set

f1(x) := 1

π

1

1 + x2
.

Then f̂1(t) = e−|t |. Write

e−|t | = c0

2
+

∞∑
n=1

cn cos nt, |t | < π , (4.7)

where

cn := 2

π

∫ π

0
e−t cos nt dt = 1 − (−1)ne−π

π
(
1 + n2

) , n = 0, 1, . . . .

We see that

∞∑
n=0

|cn| < ∞ . (4.8)
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We now choose any sequence of positive numbers εn < 1/2, n ≥ 0, which satisfy:

nkεn → 0, n → ∞, for every k > 0 , (4.9)

and
∞∑
n=0

∫
(n−ε|n|,n+ε|n|)

ψ(x) dx < ∞ . (4.10)

Set

f̂2(t) := c0

2

sin ε0t

ε0t
+

∞∑
n=1

cn cos nt
sin εnt

εnt
.

Denote by χ[a,b](x) the characteristic function of the interval [a, b]. Since

1

2a
χ̂[−a,a](t) = sin at

at
,

it is clear that f̂2 is the Fourier transform of the function

f2(x) :=
∑
n∈Z

c|n|
4ε|n|

χ[n−ε|n|,n+ε|n|](x) .

This shows that

supp(f2) =
⋃
n∈Z

[n− ε|n|, n+ ε|n|] , (4.11)

where supp(f2) denotes the support of f2. Observe that, by (4.8)∫
R

|f2(x)| dx ≤
∑
n∈Z

|c|n||
4ε|n|

∫ n+ε|n|

n−ε|n|
1 dx ≤

∞∑
n=0

|cn| < ∞ .

Hence, f2 ∈ L1(R).
Since

sin εnt

εnt
= 1 − 1

3! (εnt)
2 + 1

5! (εnt)
4 − . . .

we see by (4.7) that

f̂2(t) = c0

2
+

∞∑
n=1

cn cos nt + ϕ(t) = e−|t | + ϕ(t), t ∈ (−π, π) , (4.12)

where

ϕ(t) := − t
2

3!

(
c0ε

2
0

2
+

∞∑
n=1

cnε
2
n cos nt

)
+ t4

5!

(
c0ε

4
0

2
+

∞∑
n=0

cnε
4
n cos nt

)
− . . . .

It follows from (4.8) and (4.9) that ϕ ∈ C∞(R). Clearly there exists a function f̂3 which
belongs to C∞(R) ∩ L1(R) such that f̂3(t) = ϕ(t), t ∈ (−π, π). Its inverse Fourier
transform f3 satisfies: ∣∣xkf3(x)

∣∣ → 0, |x| → ∞, for every k > 0 . (4.13)
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In particular, f3 ∈ L1(R).
Set f (x) := −f1(x)+ f2(x)− f3(x). Then f ∈ L1(R). By construction, f̂3(x) =

ϕ(x) on (−π, π). Hence, by (4.12), f̂ (x) = 0 on (−π, π). By (4.13), there is a constant
x0 > 0 such that

−f1(x)− f3(x) = − 1

π
(
1 + x2

) − f3(x) < 0, |x| ≥ x0 .

Hence,

{f > 0} ⊆ [−x0, x0]
⋃

{f2 > 0} ⊆ [−x0, x0]
⋃

supp(f2) .

By (4.11) and (4.10), we see (4.4) holds.

(ii) Let Nn, n ∈ N, be a logarithmically convex sequence (i.e., N2
n ≤ Nn−1Nn+1, n > 1).

For an interval I , denote by C(Nn; I ) the class of functions F ∈ C∞(I ) with the property
that |F (n)(x)| ≤ Nn for all n ∈ N and all x ∈ I . We call the class C(Nn, I ) quasi-analytic
(in the sense of Denjoy-Carleman), if every function F ∈ C(Nn, I ) is uniquely determined
by the sequence of all its derivatives at every fixed point on I . We shall use the following

Lemma 4 (Denjoy-Carleman). The class C(Nn, I ) is quasi-analytic, if and only if∑∞
n=2Nn−1/Nn = ∞.

Set f+(t) := f (t)χ{f>0}(t), where χ{f>0}(t) is the characteristic function of the
set {f > 0}.

Let us assume that Theorem 7 (ii) is not true, i.e., it is possible that

∞∑
n=1

Mn−1

Mn

= ∞ . (4.14)

To show that assumption (4.14) leads to a contradiction, we use the following

Lemma 5. Suppose (4.14) is true, whereMn are defined in (4.5). Then the function f̂+(x)
belongs to some quasi-analytic class C(Nn,R).

A convenient way to generate a logarithmically convex sequence Nn is to fix a non-
decreasing function η : [1,∞) → (0,∞) and set

Nn = Nn−1η(n), n ≥ 2 .

Then the Denjoy-Carleman result is equivalent to the statement that C(Nn, I ) is quasi-
analytic if and only if

∫ ∞

1

1

η(x)
dx = ∞ . (4.15)

Proof of Lemma 5. Since f ∈ L1(R) ∩ Lp(R), we have f ∈ Ls(R) for every
s, 1 < s < p. Take a number s so that q := s/(s − 1) ∈ N. Clearly, 1/q + 1/s = 1.

Let Mn be the (logarithmically convex!) sequence defined in (4.5), and let η0(x) be
a function satisfying (4.15) and such that

Mn = Mn−1η0(n), n ≥ 2 .
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Observe that

max
x∈R

∣∣∣f̂+
(n)
(x)

∣∣∣ ≤
∫

{f>0}
|t |n|f (t)| dt

≤
(∫

{f>0}
|t |nq dt

)1/q (∫
{f>0}

|f (t)|s dt
)1/s

≤ cM
1/q
nq ,

where c := ‖f ‖s < ∞ is a constant. Set

η(x) := η0(qx),Nn :=
n∏
k=1

η(k) .

Then η(x) satisfies (4.15), so that Nn satisfy (4.14), Nn is logarithmically convex, and
we have

Nn =
n∏
k=1

η0(qk) ≥
(
qn∏
k=1

η0(k)

)1/q

= M
1/q
nq .

We conclude that the function f̂+(x)/c belongs toC(Nn,R), and so f̂+(x) is quasi-analytic
on the real line.

To prove Theorem 7 (ii) write f (t) = f+(t)− f−(t), where

f−(t) = f+(t)− f (t) = f (t)
(
χ{f>0}(t)− 1

) ≥ 0, t ∈ R .

Since f̂ (x) = 0 on some interval (−α, α), we see that f̂−(x) = f̂+(x), x ∈ (−α, α), so
that f̂−/c ∈ C(Nn, (−α, α)). However, since f−(t) is a nonnegative function, we get for
every x ∈ R and n = 0, 1, 2, . . . that∣∣∣f̂−

(2n)
(x)

∣∣∣ ≤
∣∣∣∣
∫

R

(it)2neitxf−(t) dt
∣∣∣∣ ≤

∫
R

t2nf−(t) dt =
∣∣∣f̂−

(2n)
(0)
∣∣∣ ≤ cN2n .

Moreover, by the Cauchy-Schwartz inequality,∣∣∣f̂−
(2n+1)

(x)

∣∣∣2 ≤
∣∣∣f̂−

(2n)
(0)f̂−

(2n+2)
(0)
∣∣∣ ≤ c2N2nN2n+2, n = 0, 1, 2, . . . .

This shows that f̂−/c ∈ C(N∗
n ,R), where we set N∗

n = Nn, n = 0, 2, 4, . . . , and N∗
n =√

Nn−1Nn+1, n = 1, 3, . . . . Clearly, the sequence N∗
n is logarithmically convex, and since

Nn satisfy (4.14) then so do N∗
n . We conclude that both f̂+ and f̂− are quasi-analytic

on R. Hence, f̂ is quasi-analytic on R. This implies f̂ (x) ≡ 0, which contradicts the
assumption f �= 0.

5. Variation of Argument of Functions with a Spectral
Gap at the Origin

First let us define the variation of argument Var (arg f, �) of a complex function f on a
finite set � ⊂ T, #(�) = n. We set Var(arg f, �) = 0 if � = ∅. If f does not vanish on �,
we set

Var( arg f, �) =
n∑
j=1

∣∣∣∣arg
f (γj+1)

f (γj )

∣∣∣∣ ,
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where � = {eiγj }nj=1, γ1 < . . . < γn+1 = γ1 + 2π , and we choose | argw| ≤ π for each
complex number w �= 0. In general, we set

Var( arg f, �) := Var( arg f, � \ {f = 0}) .
The variation of argument of f on the circle is defined as follows:

Var(arg f,T) := sup
�

Var(arg f, �) ,

where the supremum is taken over all finite subsets� ⊂ T. Clearly, if f is a real continuous
function, then Var(arg f, �) = πS(f, �), and Var(arg f,T) = πS(f,T), where S(f, �)
and S(f,T) are the number of sign changes of f on � ⊂ T and T, respectively. Observe
also that if f ∈ C1(T) then

Var(arg f,T) =
∫ π

−π
|d arg f (t)| . (5.1)

There is a simple connection between the variation of argument and the number of
sign changes based on the formula:

∣∣∣ arg
w1

w2

∣∣∣ =
∫ π

0
S
(
�(w1e

−iθ ),�(w2e
−iθ )) dθ ,

where w1, w2 �= 0 are arbitrary complex numbers, | argw| ≤ π for every complex w �= 0,
and S(a, b) for a, b real means the number of sign changes: S(a, b) = 1 if ab < 0 and
S(a, b) = 0 otherwise. Let � ⊂ T be a finite set. Using the previous formula, one can
easily deduce the following formula:

Var(arg f, �) =
∫ π

0
S
(�(f (t)e−iθ ), �) dθ , (5.2)

where S(�(f (t)e−iθ ), �) is the number of sign changes of �(f (t)e−iθ ) on � ⊂ T. The
same formula is true for � = T.

Equality (5.2) allows to estimate the variation of argument of a complex function f
via the number of the sign changes of its projections to the lines arg z = θ . Let us for
example extend the Sturm-Hurwitz theorem and Theorem 4 to complex functions.

Theorem 8.
(i) Suppose a nontrivial complex continuous function f on the circle T has a spectral gap
(−n, n). Then Var (arg f,T) ≥ 2πn.

(ii) If we additionally assume that f is a trigonometric polynomial of degree m ≥ n

then either f (t) = a sinmt for some a ∈ C (i.e., n = m and f is trivial on T2m), or
Var (arg f,Tm+n) ≥ 2πn.

Observe that Theorem 8 ceases to be true if we replace the variation of argument by
the change of argument [i.e., if we set the modulus sign outside the integral in (5.1)].

Let us prove part (i). If a nontrivial continuous function f has a spectral gap
(−n, n), then every function �(f (t) exp(−iθ)), θ ∈ [−π, π), is real, continuous and has
a spectral gap (−n, n). By the Sturm-Hurwitz theorem, the number of sign changes of
�(f (t) exp(−iθ)) is at least 2n, for each θ . Hence, by (5.2), we obtain:

Var( arg f,T) =
∫ π

0
S
(�(f (t)e−iθ ),T) dθ ≥ 2πn .

The proof of (ii) is similar.
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One can extend the definition of variation of argument to sequences on Z and functions
on R. Then one can formulate extensions of Theorems 2 and 3 to complex functions in
which the number of sign changes is replaced by the variation of argument. The proofs are
similar to the proof of Theorem 8 plus an extra argument: One needs to obtain a uniform
estimate of the number of sign changes of the projections �(f e−iθ ). This can be done in a
similar way as in Lemma 3.
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