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ABSTRACT. We introduce the notion of admissible subgroup H ofG = H
d

� Sp(d,R) relative
to the (extended) metaplectic representation µe via the Wigner distribution. Under mild additional
assumptions, it is shown to be equivalent to the fact that the identity f = ∫H 〈f,µe(h)φ〉µe(h)φ dh
holds (weakly) for all f ∈ L2(Rd ). We use this equivalence to exhibit classes of admissible
subgroups of Sp(2,R). We also establish some connections with wavelet theory, i.e., with curvelet
and contourlet frames.

1. Introduction

The study of reproducing formulae for functions in L2(Rd) has attracted the interest of
many authors, in physics [1], group representations [9] and applied mathematics, both in
Gabor analysis [14] and in wavelet theory [4, 10, 18]. In a very general and abstract sense,
they can all be recast in a formula of the type

f =
∫
H

〈f, φh〉φh dh, f ∈ H , (1.1)

where H is a Hilbert space and h �→ φh is an H-valued measurable function on some
measure space (H, dh). Of course, the cases of greatest interest concern Hilbert spaces of
functions, while the measure spaceH serves as parameter space. Thus,H takes into account
the particular kind of analysis and synthesis processes that a formula like (1.1), known as

Math Subject Classifications. 42C15, 17B45.
Keywords and Phrases. Metaplectic representation, symplectic group, wavelets, Wigner distribution.
Acknowledgements and Notes. The first, second, and fourth authors were partially supported by the Progetto
GNAMPA “Laplaciani generalizzati, analisi tempo-frequenza e teoria delle rappresentazioni” and by the
Progetto MIUR Cofinanziato 2005 “Analisi Armonica.”

© 2006 Birkhäuser Boston. All rights reserved
ISSN 1069-5869 DOI: 10.1007/s00041-005-5016-7



158 Elena Cordero, Filippo De Mari, Krzysztof Nowak, and Anita Tabacco

reproducing formula, is meant to describe. We are mostly interested in the case in whichH
is a Lie group with left Haar measure dh, φ ∈ L2(Rd) is fixed and h �→ φh is an L2(Rd)-
valued unitary representation of H . This rich structure often provides both a very efficient
tool for computations and a means for finding new reproducing formulae, specially when
H is chosen among the subgroups of some classical group of linear symmetries. A class of
groups that has been widely studied is the class of semidirect productsH = R

d
�D, where

D is a closed matrix group (the so-called dilation group). They admit a natural unitary
representation on L2(Rd), the main ingredient for the construction of a wavelet transform.
Initially, only irreducible square-integrable representations were considered [2, 12], but it
soon became clear that nonirreducible representations [15, 19, 13] are of relevance as well.

Recently, the authors of [18] have proved a characterization of those dilation groups
D which give rise to a reproducing formula (1.1). They introduce a notion of admissibility,
a sufficient condition for a subgroup D of GL(R, d) to admit a window φ ∈ L2(Rd) such
that (1.1) works for all f ∈ L2(Rd). A dilation groupD is admissible if there exists a Borel
measurable F ∈ L1(Rd) such that F ≥ 0 and∫

D

F
(
x ta
)
da = 1, for a.e. x ∈ R

d , (1.2)

where ta is the transpose of the matrix a, x �→ x ta is the right action of a ∈ D, and da
is the left Haar measure on D. The above definition is motivated by the analysis of the
“ax+ b” group. In that case, any admissible wavelet ψ (in the usual Calderón sense) gives
a function F = |ψ̂ |2 for which formula (1.2) holds.

We work in a somewhat different setting. First, the Lie groupH in (1.1) is a subgroup
of the semidirect productG = H

d
� Sp(d,R) of the Heisenberg group and the symplectic

group. Secondly, the representation h �→ φh arises from the restriction toH of the reducible
(extended) metaplectic representation µe of G as applied to a fixed and suitable window
function φ ∈ L2(Rd). A group H for which there exists a window φ such that (1.1) holds
is said to be reproducing. A complete classification of reproducing subgroups in the case
d = 1 is given in [8], but for the case d ≥ 2, the groups we treat here are the only known
examples.

Although, the setups R
d

� D and H
d

� Sp(d,R) are quite different in spirit, there
is a crucial conceptual link between them. The point is that both are intimately related
to the geometry of affine actions on Euclidean space. Indeed, one of the most important
features of µe is that it may be realized by affine actions on R

2d by means of the Wigner
distribution. The reader is referred to [5, 11, 14] for a thorough discussion of this basic
construct in time-frequency analysis, some of whose properties will be recalled in Section 3.
The cross-Wigner distribution Wf,g of f, g ∈ L2(Rd) is

Wf,g(x, ξ) =
∫
e−2πi〈ξ,y〉f

(
x + y

2

)
g
(
x − y

2

)
dy . (1.3)

The quadratic expression Wf := Wf,f is usually called the Wigner distribution of f . The
crucial property ofW alluded to above is that it intertwines µe and the affine action on R

2d .
In other words:

Wµe(g)φ(x, ξ) = Wφ

(
g−1 · (x, ξ)

)
, g ∈ G ,

where g · (x, ξ) is the natural affine action of G on phase space. Actually, since the
reproducing formula is insensitive to phase factors, i.e., to the action of the center of H

d ,
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the groupG is truly R
2d

� Sp(d,R), whose affine action on R
2d is rather obvious [see the

next section and in particular (2.2)]. This is why in our Definition 2 the Wigner distribution
plays the same role as F plays in (1.2). Thus, we call admissible a connected Lie subgroup
H ⊂ G if there exists φ ∈ L2(Rd) such that∫

H

Wφ

(
h−1 · (x, ξ)

)
dh = 1, for a.e. (x, ξ) ∈ R

2d .

The outline of the article is as follows. In Section 2 we establish some background
and notation. In Section 3 we prove Theorem 1, which states that under mild additional
assumptions on the mapping h �→ Wφ(h

−1 · (x, ξ)), a subgroup H is reproducing if and
only if it is admissible. Theorem 1 has consequences on the geometric properties related
to admissibility. Some of these appear in [7]; a deeper study of the geometry of admissible
groups is developed in a forthcoming article [6]. In Section 4, Theorem 1 is applied to prove
the admissibility of a subgroup H of Sp(2,R) that we denote TDS(2). In Section 5 we
establish some connections with wavelet theory. We exhibit another reproducing subgroup
of Sp(2,R), which is a covering of the similitude group of the plane SIM(2). We then
show that our theory, for both TDS(2) and SIM(2), parallels the theory developed in the
context of two-dimensional wavelets. The groups TDS(2) and SIM(2) are the forerunners
of the curvelet and contourlet frames, nowadays heavily employed in the context of signal
processing [4, 10]. In particular, curvelets are actively investigated from the point of view
of statistical estimation, sparsity of the representation and rate of approximation. Our
approach starts from the whole time-frequency plane R

2d , instead of looking at either time
or frequency, as is typical in the philosophy of the setting R

d
� D. This justifies the use

of the Wigner distribution and its time-frequency properties. In Section 6 we prove that a
class of groups, parametrized by β ∈ R and including SIM(2)when β = 0, is reproducing.
This time, however, our proof is direct, namely we show (1.1) without using Theorem 1.

2. Preliminaries and Notation

The symplectic group is defined by

Sp(d,R) = {g ∈ GL(2d,R) : tgJg = J
}
,

where

J =
[

0 Id
−Id 0

]
is the standard symplectic form

ω(x, y) = txJy, x, y ∈ R
2d . (2.1)

The metaplectic representation µ of (the two-sheeted cover of) the symplectic group
arises as intertwining operator between the standard Schrödinger representation ρ of the
Heisenberg group H

d and the representation that is obtained from it by composing ρ with
the action of Sp(d,R) by automorphisms on H

d (see, e.g., [11]). We briefly review its
construction.

The Heisenberg group H
d is the group obtained by defining on R

2d+1 the product

(z, t) · (z′, t ′) =
(
z+ z′, t + t ′ − 1

2
ω
(
z, z′

))
,
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where ω stands for the standard symplectic form in R
2d given in (2.1). We denote the

translation and modulation operators on L2(Rd) by

Txf (t) = f (t − x) and Mξf (t) = e2πi〈ξ,t〉f (t) .

The Schrödinger representation of the group H
d on L2(Rd) is then defined by

ρ(x, ξ, t)f (y) = e2πit eπi〈x,ξ〉e2πi〈ξ,y−x〉f (y − x) = e2πit eπi〈x,ξ〉TxMξf (y) ,

where we write z = (x, ξ) when we separate space components (that is x) from frequency
components (that is ξ ) in a point z in phase space R

2d . The symplectic group acts on H
d

via automorphisms that leave the center {(0, t) : t ∈ R} 	 R of H
d pointwise fixed:

A · (z, t) = (Az, t) .

Therefore, for any fixed A ∈ Sp(d,R) there is a representation

ρA : H
d → U

(
L2(

R
d
))
, (z, t) �→ ρ (A · (z, t))

whose restriction to the center is a multiple of the identity. By the Stone-von Neumann
theorem, ρA is equivalent to ρ. That is, there exists an intertwining unitary operatorµ(A) ∈
U(L2(Rd)) such that ρA(z, t) = µ(A) ◦ ρ(z, t) ◦ µ(A)−1, for all (z, t) ∈ H

d . By Schur’s
lemma,µ is determined up to a phase factor eis, s ∈ R. It turns out that the phase ambiguity
is really a sign, so that µ lifts to a representation of the (double cover of the) symplectic
group. It is the famous metaplectic or Shale-Weil representation.

The representationsρ andµ can be combined and give rise to the extended metaplectic
representation of the groupG = H

d
�Sp(d,R), the semidirect product of H

d and Sp(d,R).
The group law on G is

((z, t), A) · ((z′, t ′), A′) = ((z, t) · (Az′, t ′), AA′)
and the extended metaplectic representation µe of G is

µe ((z, t), A) = ρ(z, t) ◦ µ(A) .
A slight simplification in our formalism comes from the observation that the reproduc-

ing formula (1.1) is insensitive to phase factors: If we replaceµe(h)φ := φh with eisµe(h)φ
the formula is unchanged, for any s ∈ R. The role of the center of the Heisenberg group
is thus irrelevant, so that the “true” group under consideration is R

2d
� Sp(d,R), which

we denote again by G. Thus, G acts naturally by affine transformations on phase space,
namely

g · (x, ξ) = ((q, p),A) · (x, ξ) = At(x, ξ)+ t(q, p) . (2.2)

For elements of Sp(d,R) in special form, the metaplectic representation can be com-
puted explicitly in a simple way. For f ∈ L2(Rd), we have

µ

([
A 0
0 tA−1

])
f (x) = (detA)−1/2f

(
A−1x

)
(2.3)

µ

([
I 0
C I

])
f (x) = ±eiπ〈Cx,x〉f (x) (2.4)

µ (J ) = (−i)d/2F , (2.5)
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where F denotes the Fourier transform

Ff (ξ) =
∫

Rd

f (x)e−2πi〈x,ξ〉 dx, f ∈ L1(
R
d
) ∩ L2(

R
d
)
.

In the above formula and elsewhere, 〈x, ξ〉denotes the inner product ofx, ξ ∈ R
d . Similarly,

for f, g ∈ L2(Rd), 〈f, g〉 will denote their inner product in L2(Rd). Other notation is as
follows. We put Ṙ = R \ {0}, R± = (0,±∞). For 1 ≤ p ≤ ∞, ‖ · ‖p stands for the
Lp-norm of measurable functions on R

d with respect to Lebesgue measure. The left Haar
measure of a group H will be written dh and we always assume that the Haar measure of
a compact group is normalized so that the total mass is one.

3. The Reproducing Condition

Definition 1. We say that a connected Lie subgroup H of G = R
2d

� Sp(d,R) is a
reproducing group for µe if there exists a function φ ∈ L2(Rd) such that

f =
∫
H

〈f,µe(h)φ〉µe(h)φ dh, for all f ∈ L2(
R
d
)
. (3.1)

Any φ ∈ L2(Rd) for which (3.1) holds is called a reproducing function.

Notice that we do require formula (3.1) to hold for all functions inL2(Rd) for the same
window φ, but we do not require the restriction of µe to H to be irreducible. Equivalently,
formula (3.1) can be written in term of the L2-norm of f

‖f ‖2
2 =

∫
H

|〈f,µe(h)φ〉|2 dh, for all f ∈ L2(
R
d
)
. (3.2)

3.1 The Wigner Distribution and Some Useful Properties

We collect some well-known properties of the Wigner distribution and then we establish
Lemmata 2 and 3, which will be used in Section 4. For the proof of Proposition 1 see [11, 14],
whereas Lemma 1 is from [14]. Recall that the cross-Wigner distribution is defined, for
f, g ∈ L2(Rd), by (1.3).

Proposition 1. The Wigner distribution of f, g ∈ L2(Rd) satisfies:

(i) Wf,g is uniformly continuous on R
2d , and ‖Wf,g‖∞ ≤ 2d‖f ‖2‖g‖2.

(ii) Wf,g = Wg,f ; in particular, Wf is real-valued.

(iii) Moyal’s identity: 〈Wf ,Wg〉L2(R2d ) = 〈f, g〉L2(Rd )〈f, g〉L2(Rd ).

(iv) If f, g ∈ S(Rd), then Wf,g ∈ S(R2d).

(v) If f ∈ L1(Rd) ∩ L2(Rd), then ‖f ‖2
2 = ∫

R2d Wf (x, ξ) dx dξ .

(vi) Marginal property:∫
Rd

Wf (x, ξ) dξ = |f (x)|2, ∀f ∈ L2(
R
d
)

with f̂ ∈ L1(
R
d
)
. (3.3)

An alternative description of Wf,g is provided by the lemma below.
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Lemma 1. Let TsF (x, t) = F(x + t
2 , x − t

2 ) be the symmetric coordinate transform
and F2F(x, ξ) = ∫

Rd
F (x, t)e−2πi〈ξ,t〉 dt be the Fourier transform in the second variable.

Then

Wf,g = F2Ts
(
f ⊗ ḡ

)
. (3.4)

We use Lemma 1 to prove the following density result.

Lemma 2. If R(x, ξ) is a real, slowly increasing measurable function on R
2d such that∫

R2d
R(x, ξ)Wf (x, ξ) dx dξ = 0, for all f ∈ S

(
R
d
)
,

then R(x, ξ) = 0 for a.e. (x, ξ) ∈ R
2d .

Proof. By Lemma 1 it follows that V := span {Wf,g f, g ∈ S(Rd)} is dense in S(R2d).
For f, g ∈ S(Rd), a straightforward computation gives

Wf+g = Wf +Wg + 2ReWf,g, Wf+ig = Wf +Wg + 2ImWf,g

and the assumption implies 〈ReWf,g, R〉 = 0 and 〈ImWf,g, R〉 = 0. Since R is real, these
two identities are equivalent to 〈Wf,g, R〉 = 0. The conclusion follows from the density
of V , because for every F ∈ S(R2d) the functional F �→ ∫

R2d R(x, ξ)F (x, ξ) dx dξ is a
tempered distribution and we have∫

R2d
R(x, ξ)F (x, ξ) dx dξ = 〈F,R〉

=
〈

lim
n→∞

n∑
k=0

ckWfk,gk , R

〉

= lim
n→∞

〈
n∑
k=0

ckWfk,gk , R

〉

= lim
n→∞

n∑
k=0

ck〈Wfk,gk , R〉

= 0 ,

so that R(x, ξ) = 0, for a.e. (x, ξ) ∈ R
2d and the proof is complete.

The next lemma will be used in Section 4.

Lemma 3. Let φ0, φ1 ∈ L2(Rd) and define φ := φ0 ⊗ φ1 ∈ L2(R2d). Then

Wφ((z1, z2), (ζ1, ζ2)) = Wφ0(z1, ζ1)Wφ1(z2, ζ2) , (3.5)

where the variables z1, z2, ζ1, ζ2 are in R
d .

Proof. Simply compute the Wigner distribution (1.3) of φ = φ0 ⊗ φ1.

3.2 The Admissibility Condition

In this section we find an admissibility condition that, together with some additional inte-
grability and boundedness properties of h �→ Wφ(h

−1 · (x, ξ)) implies that a subgroup H
of G = R

2d
� Sp(d,R) is reproducing.
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Theorem 1. Suppose that φ ∈ L2(Rd) is such that the mapping

h �→ Wµe(h)φ(x, ξ) = Wφ

(
h−1 · (x, ξ)) (3.6)

is in L1(H) for a.e. (x, ξ) ∈ R
2d and∫

H

∣∣Wφ

(
h−1 · (x, ξ))∣∣ dh ≤ M, for a.e. (x, ξ) ∈ R

2d . (3.7)

Then condition (3.1) holds for all f ∈ L2(Rd) if and only if the following admissibility
condition is satisfied:∫

H

Wφ

(
h−1 · (x, ξ)) dh = 1, for a.e. (x, ξ) ∈ R

2d . (3.8)

Proof. It is enough to test the reproducing formula (3.2) on the Schwartz class. Namely,
if we show the mapping f �→ 〈f,µe(h)φ〉 is an isometry on S(Rd) into L2(H), the
pointwise convergence of the coefficients 〈f,µe(h)φ〉 guarantees that (3.2) holds for all
f ∈ L2(Rd) as well.

Sufficiency. Assume that (3.8) is true and take f ∈ S(Rd). By (v) of Proposition 1,
its L2-norm can be computed via its Wigner distribution, that is:

‖f ‖2
2 =

∫
R2d

Wf (x, ξ) dx dξ =
∫

R2d

(∫
H

Wφ

(
h−1 · (x, ξ)) dh) Wf (x, ξ) dx dξ

=
∫
H

(∫
R2d

Wφ

(
h−1 · (x, ξ)) Wf (x, ξ) dx dξ

)
dh .

In the last equality, the integral interchange is justified by Fubini Theorem. Indeed, by (3.6)
and (3.7) we have∫

R2d

∫
H

∣∣Wφ

(
h−1 · (x, ξ))Wf (x, ξ)

∣∣ dh dx dξ
=
∫

R2d

(∫
H

∣∣Wφ

(
h−1 · (x, ξ))∣∣ dh) |Wf (x, ξ)| dx dξ

≤ M

∫
R2d

|Wf (x, ξ)| dx dξ < ∞ .

Further, Moyal’s identity gives∫
R2d

Wφ

(
h−1 · (x, ξ)) Wf (x, ξ) dx dξ = 〈Wµe(h)φ,Wf 〉 = 〈f,µe(h)φ〉〈f,µe(h)φ〉 ,

hence, the equality

‖f ‖2
2 =

∫
H

|〈f,µe(h)φ〉|2 dh, for all f ∈ S
(
R
d
)
.

Necessity. Conversely, assume (3.1) true and let f be in S(Rd). Moyal’s identity
gives

‖f ‖2
2 =

∫
R2d

(∫
H

Wφ

(
h−1 · (x, ξ)) dh) Wf (x, ξ) dx dξ . (3.9)
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Using again (v) of Proposition 1, equality (3.9) may be recast as∫
R2d

(∫
H

Wφ

(
h−1 · (x, ξ)) dh− 1

)
Wf (x, ξ) dx dξ = 0 .

The function

R(x, ξ) =
∫
H

Wφ

(
h−1 · (x, ξ)) dh− 1

is real by (ii) of Proposition 1. Hence, (3.8) follows applying Lemma 2 to it.

Motivated by Theorem 1, we give the following definition.

Definition 2. We say that a connected Lie subgroup H of G = R
2d

� Sp(d,R) is an
admissible group for µe if there exists a function φ ∈ L2(Rd) such that∫

H

Wφ

(
h−1 · (x, ξ)) dh = 1, for a.e. (x, ξ) ∈ R

2d . (3.10)

Any φ ∈ L2(Rd) for which (3.10) holds is called an admissible function.

It is clear that we now dispose of two different tools for checking whether a subgroup
H of G = R

2d
� Sp(d,R) is reproducing or not. Either we find a window function φ for

which (3.1) holds or else we check the admissibility of the subgroupH and use Theorem 1.
The latter method is used in the next section, while the former is applied in Section 5. We
stress that Theorem 1 admits other useful applications [6, 7].

4. The Reproducing Group T DS(2)

Throughout this section d = 2. We prove that the four-dimensional triangular group

TDS(2) =
{
At,	,y :=

[
t−1/2S	/2 0
t−1/2ByS	/2 t1/2 tS−	/2

]
: t > 0, 	 ∈ R, y ∈ R

2
}

(4.1)

is a reproducing subgroup of Sp(2,R), where

By =
[

0 y1
y1 y2

]
, y = (y1, y2) ∈ R

2; S	 =
[

1 	

0 1

]
, 	 ∈ R . (4.2)

The matrix S	 is called shearing matrix. We use the letters TDS because the restriction of
the metaplectic representation to it gives rise to translation, dilation, and shearing operators.
This fact will be discussed in Section 5.

The main idea of the proof is to reduce the two-dimensional condition (3.8) to the
one-dimensional analogue that arises from a reproducing subgroup of R

2
� SL(2,R) and

to a reproducing condition for a window function of another reproducing subgroup of
R

2
�SL(2,R). It was proven in [8, Theorem 2.1] that, up to conjugation, there are exactly

five reproducing subgroups of R
2

� SL(2,R). We are interested in the following two:

H0 =
{([

q

p

]
, I

)
, p, q ∈ R

}
H1 =

{([
0
0

]
,

[
1 0
b 1

] [
a−1/2 0

0 a1/2

])
, a > 0, b ∈ R

}
.
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A function φ0 is reproducing for H0 if

φ0 ∈ L2(R), and ‖φ0‖2 = 1 , (4.3)

while a function φ1 is reproducing for H1 if and only if φ1 ∈ L2(R) and∫ ∞

0
|φ1(x)|2 dx

x2
=
∫ ∞

0
|φ1(−x)|2 dx

x2
= 1

2
,

∫ ∞

0
φ1(x)φ1(−x)dx

x2
= 0 . (4.4)

Clearly, H0 	 R
2 so that its Haar measure is the Lebesgue measure dq dp. The

group H1 is the only reproducing subgroup that lies entirely inside Sp(1,R) = SL(2,R),
and it is isomorphic to the “ax + b” group.

Observe that (3.8) can be rewritten in terms of the right Haar measure drh as∫
H

Wφ

(
h−1 · (x, ξ)) dh =

∫
H

Wφ(h · (x, ξ)) drh = 1 ,

leading to the following alternative formulation that H0 is admissible∫
R2
Wφ0(x + q, ξ + p) dq dp = 1, for a.e. (x, ξ) ∈ R

2 . (4.5)

We can finally show that TDS(2) is reproducing.

Theorem 2. Let φ0, φ1 ∈ S(R) be reproducing functions for the subgroups H0 and H1,
respectively. Then, the window function φ defined by

φ(x, ξ) = 1

2

(
φ0 ⊗ φ̃1

)
(x, ξ), (x, ξ) ∈ R

2 , (4.6)

where φ̃1(y) = yφ1(y), is a reproducing function forTDS(2), i.e., TDS(2) is a reproducing
subgroup.

Proof. Notice that the assumptions (3.6) and (3.7) are trivially satisfied. Hence, it
remains to verify the admissibility condition (3.8), i.e.,∫

R2

∫
R

∫ ∞

0
Wφ

(
(z, ζ ) tAt,	,y

) dt
t
d	 dy1 dy2 = 1, a.e. (z, ζ ) ∈ R

4 , (4.7)

where t−1 dt d	 dy1 dy2 is the right Haar measure of TDS(2). Observe that the action
of the TDS(2) group on R

4 has only two orbits with nonzero Lebesgue measure on R
4,

namely O(0,1,0,0) and O(0,−1,0,0). Then (4.7) is equivalent to∫
R3

∫ ∞

0
Wφ

(
(0,±1, 0, 0) tAt,	,y

) dt
t
d	 dy1 dy2 = 1 , (4.8)

where

(0,±1, 0, 0) tAt,	,y = ±t−1/2
(
	

2
, 1, y1, y1

	

2
+ y2

)
.

We only compute the integral related to the orbit O(0,1,0,0) because the computation related
to O(0,−1,0,0) is analogous. Performing the change of variables

t−1/2 = α, t−1/2	/2 = u1, t
−1/2y1 = u2, t

−1/2
(
y1
	

2
+ y2

)
= v ,
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with dt d	 dy1 dy2 = 4 dα du1 du2 dv/α
6, we can write∫

R3

∫ ∞

0
Wφ

(
t−1/2

(
	

2
, 1, y1, y1

	

2
+ y2

))
dt

t
d	 dy1 dy2

= 4
∫

R3

∫ ∞

0
Wφ(u1, α, u2, v)

dα

α4
du1 du2 dv . (4.9)

In the following computations, we shall use Lemma 3, the Wigner marginal property (3.3),
and the assumption φ̃1(y) = yφ1(y).

4
∫

R3

∫ ∞

0
Wφ(u1, α, u2, v)

dα

α4
du1 du2 dv = 2

∫
R2
Wφ0(u1, u2) du1 du2

×
∫ ∞

0

∫
R

Wφ̃1
(α, v) dv

dα

α4

= 2
∫ ∞

0

∫
R

Wφ̃1
(α, v) dv

dα

α4

= 2
∫ ∞

0

∣∣φ̃1(α)
∣∣2 dα
α4

= 2
∫ ∞

0
|φ1(α)|2 dα

α2
.

Finally, the expression on the right-hand side is equal to 1, for φ1 is a reproducing function
of the subgroup H1 and, consequently, fulfills the first reproducing condition in (4.4).

Remark 1. The assumptions φ0, φ1 ∈ S(R) are actually only technical ones. Any pair
of functions φ0, φ1 ∈ L2(R), reproducing for H0 and H1 respectively, defines a function
φ ∈ L2(R2) in (4.6) for which (5.17) (with constant cφ = 1/2) and (5.18) of Theorem 5
hold true.

5. Connections with Wavelet Theory

We now come closer to the group theory that lies behind the construction of two-dimensional
wavelets. The analysis of oriented features in images requires more flexible objects than
the wavelets arising from the tensor product of the usual one-dimensional wavelets. An-
swers to this problem, in the context of signal processing, have been provided by frame
systems of directional functions with excellent angular selectivity, the frames of curvelets
and contourlets [4, 10]. Both make use of translation and dilation operations, and while the
curvelet approach obtains directional selectivity by a construction that requires a rotation
operation, the contourlet setup uses a shearing operation. Although, our results do not have
direct implications in either curvelet or contourlet analysis, we point out that they appear to
be connected from the point of view of group theory, that is, by looking at the restriction of
the metaplectic representation to two admissible subgroups of Sp(2,R), namely SIM(2)
and TDS(2).

The main results in this section are Theorem 3 and Theorem 4.

5.1 The Group SIM(2) and its Natural Representation

In this section we prove Theorem 3. The similitude group SIM(2) of the plane R
2 is

the group generated by translations, rotations, and dilations (a survey on the topic and the
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related two-dimensional directional wavelets is in [1]). More precisely, for a real angle θ
put

Rθ =
[

cos θ sin θ
− sin θ cos θ

]
, (5.1)

the standard 2 × 2 rotation matrix. Then SIM(2) consists of all the 3 × 3 matrices

T (t, y, θ) =
[
tR−θ y

0 1

]
,

where t > 0, y is a column vector in R
2 and θ ∈ [0, 2π). The product in SIM(2) is just

matrix product and a simple calculation yields

T (t, y, θ)T (s, z, φ) = T (ts, y + tR−θ z, (θ + φ) mod 2π), 0 ≤ θ, φ < 2π . (5.2)

Formally, the action of SIM(2) on R
2 is obtained by viewing R

2 as one of the affine charts
in RP

2, namely

R
2 	

{[
x

1

]
: x ∈ R

2
}

⊂ RP
2 .

In other words, SIM(2) acts on RP
2 preserving this affine chart:

T (t, y, θ)

[
x

1

]
=
[
tR−θ y

0 1

] [
x

1

]
=
[
tR−θ x + y

1

]
.

The wavelet representation ν of SIM(2) on L2(R2) is defined as follows:

ν(t, y, θ)f (x) = t−1f
(
t−1 (Rθ (x − y))

)
,

where ν(t, y, θ) stands for ν(T (t, y, θ)). Notice that if we transpose rotations, dilations
and translations to functions by

(Rθf ) (x) = f (Rθx), (Dtf ) (x) = t−1f
(
t−1x

)
,
(
Tyf

)
(x) = f (x − y) ,

then ν(t, y, θ)f = (TyRθDt) f . The representation ν is known to be irreducible onL2(R2)

and it gives rise to a reproducing formula. A wavelet φ is reproducing if∫
R2

∣∣φ̂(ξ)∣∣2
|ξ |2 dξ < ∞ .

For our purposes however, it is convenient to view ν in the frequency domain, that is, to
compose it with the Fourier transform F . We shall therefore write

π(t, y, θ)f (u) = (F ◦ ν(t, y, θ) ◦ F−1f
)
(u) = te−2πi〈y,u〉f (tRθu) . (5.3)

The Group SIM(2) and the Action on the Lagrange Manifold

We adopt the following notation. If y = (y1, y2) ∈ R
2, we put

y =
[
y1 y2
y2 −y1

]
, (5.4)
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a 2 × 2 symmetric and traceless matrix. Consider the two subgroups of Sp(2,R):

G0 =
{
g0(t, y) =

[
t−1/2 0
t−1/2y t1/2

]
: t > 0, y ∈ R

2
}

(5.5)

K =
{
k(θ) =

[
R−θ/2 0

0 R−θ/2

]
: θ ∈ [0, 4π)

}
. (5.6)

It is straightforward to check that:

g0(t, y)g0(s, z) = g0(ts, y + tz)

k(θ)g0(s, z)k(θ)
−1 = g0(s, R−θ , z) (5.7)

the latter being immediate from

R−θ/2xRθ/2 = R−θ x . (5.8)

The equality (5.7) shows that K normalizes G0 and hence that G0K inherits the structure
of a semidirect product, where the product law is given by

g0(t, y)k(θ) · g0(s, z)k(φ) = g0(t, y)
[
k(θ)g0(s, z)k(θ)

−1]k(θ)k(φ)
= g0(t, y)g0(s, R−θ z) k(θ + φ)

= g0(ts, y + tR−θ z) k(θ + φ) .

Of course, G0 � K is a subgroup of Sp(2,R). Further, G0 is normal in G0 � K and
obviously G0 �K/G0 	 K . We shall write

g(t, y, θ) = g0(t, y)k(θ) =
[
t−1/2 0
t−1/2y t1/2

] [
R−θ/2 0

0 R−θ/2

]
=
[
t−1/2R−θ/2 0
t−1/2yR−θ/2 t1/2R−θ/2

]
.

Therefore

g(t, y, θ)g(s, z, φ) = g(ts, y + tR−θ z, (θ + φ) mod 4π), 0 ≤ θ, φ < 4π .

The mapping
g(t, y, θ) �→ T (t, y, θ mod 2π)

is a homomorphism of G0 � K onto SIM(2) [see (5.2)] with kernel given by N =
{(1, 0, 0), (1, 0, 2π)}, that is, G0 � K is a covering group of SIM(2). Consequently, the
metaplectic representation can not be viewed as a representation of SIM(2) on L2(Rd) in
the proper sense, however, when restricted toL2

even(R
d), it becomes a proper representation.

This fact will be used in Theorem 3.
Next, we identify the action of SIM(2) on R

2 with the action ofG0 �K on a suitable
two-dimensional cell C of the Lagrange manifoldL(R4). The Lagrange manifold is defined
as the set of maximal isotropic planes in R

4, namely the two-dimensional linear subspaces
of R

4 that enjoy the following property: If x, y ∈ L, then ω(x, y) = 0. This set inherits
the manifold structure of a three-dimensional homogeneous space of Sp(2,R). Indeed, let
us represent planes in R

4 as 4 × 2 matrices via

L(A,B) = span

[
A

B

]
, A, B ∈ M2(R), rank

[
A

B

]
= 2 . (5.9)
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Under the identification (5.9), two 4 × 2 full-rank matrices identify the same plane if and
only if they differ by right multiplication by some g ∈ GL(2,R). Such a 4 × 2 full-rank
matrix represents a Lagrangian plane if and only if tAB is symmetric. Also, its columns
form an orthonormal set if and only if tAA+ tBB = I . In this case,

g(A,B) =
[
A −B
B A

]
∈ Sp(2,R)

and g(A,B) carries the “base” Lagrangian plane L0 = L(I, 0) onto L(A,B). In general,
Sp(2,R) acts on Lagrangian spaces from the left, by matrix multiplication on the spanning
column vectors. Since we know that g(A,B) · L0 = L(A,B), the Sp(2,R)-action is
transitive on L(R4) and the stabilizer at L0 is the subgroup

U =
{[
A A

0 tA−1

]
: A ∈ GL(2,R), symmetric

}
⊂ Sp(2,R) .

Thus, L(R4) 	 Sp(2,R)/U . An open set in L(R4) that contains the base point L0 is L0 =
{L() := L(I,) :  symmetric }, and is diffeomorphic to R

3 under the identification
 ↔ L(). We put

C =
{
L(x) = L(x) : x ∈ R

2
}
,

the two-dimensional slice inside L0 identified with the traceless symmetric matrices.

Proposition 2. The action of SIM(2) on R
2 corresponds to the natural action ofG0 �K

on C inside the Lagrange manifold L(R4).

Proof. Allowing right multiplication by t1/2Rθ/2 and using (5.8), we compute

g(t, y, θ) · L(x) = span

([
t−1/2R−θ/2 0
t−1/2yR−θ/2 t1/2R−θ/2

] [
I

x

] [
t1/2Rθ/2

])
= span

[
I

y + tR−θ/2xRθ/2

]
= span

[
I

y + tR−θ x

]
= span

[
I

y+tR−θ x

]
= L(y + tR−θ x) .

Therefore, under the canonical homomorphism of G0 � K onto SIM(2), the action of
SIM(2) on R

2 corresponds to the natural action of G0 �K on C.

We now compute the metaplectic representationµ onG0 �K . We start from a simple
observation. Every g(t, θ, y) ∈ G0 � K decomposes as the product of a block-diagonal
matrix and a block-lower triangular matrix, both in Sp(2,R), as follows:[

t−1/2R−θ/2 0
t−1/2yR−θ/2 t1/2R−θ/2

]
=
[
t−1/2R−θ/2 0

0 t1/2R−θ/2

] [
I 0

t−1Rθ/2yR−θ/2 I

]
.
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We rewrite this as g(t, y, θ) = D(t, θ) L(t, y, θ). Owing to (2.3) and (2.4), we have

µ(g(t, y, θ))f (x) = µ(D(t, θ) L(t, y, θ))f (x)

= det
(
t−1/2R−θ/2

)−1/2
µ(L(t, y, θ))f

(
t1/2Rθ/2x

)
= t1/2 exp

(
iπ
〈[
t−1Rθ/2yR−θ/2

]
t1/2 Rθ/2x, t

1/2Rθ/2x
〉)

× f
(
t1/2Rθ/2x

)
= t1/2 exp

(
iπ
〈
t−1/2Rθ/2yx, t

1/2Rθ/2x
〉)
f
(
t1/2Rθ/2x

)
= t1/2eiπ〈yx,x〉f

(
t1/2Rθ/2x

)
,

that is

µ(g(t, y, θ))f (x) = t1/2eiπ〈yx,x〉f
(
t1/2Rθ/2x

)
, 0 ≤ θ < 4π . (5.10)

We observe that the metaplectic representation of SIM(2) is

µ(T (t, y, θ))f (x) = t1/2eiπ〈yx,x〉f
(
t1/2Rθ/2x

)
, 0 ≤ θ < 2π ,

and is not a group homomorphism. Note that, when restricted to L2
even(R

d), it becomes a
proper representation.

The Intertwining Operator and the Equivalence

Consider the mapping

� : Ṙ × R+ → R × Ṙ, x �→
(
x2

2 − x2
1

2
,−x1x2

)
. (5.11)

Its properties are described in the next proposition.

Proposition 3. Let f be an even function defined on R
2. The mapping (5.11) is a

diffeomorphism that satisfies:

(a) The Jacobian of � at x ∈ Ṙ × R+ is J�(x) = ‖x‖2;

(b) the Jacobian of �−1 at u ∈ R × Ṙ is J�−1(u) = ‖x(u)‖−2 = 1/(2‖u‖);
(c) f (�(aRθx)) = f (a2R2θ�(x)) for every a ∈ R, every x ∈ R

2;

(d) f (�−1(tRθu)) = f (t1/2Rθ/2�
−1(u)), for every t > 0, every u ∈ R × Ṙ;

(e) 〈yx, x〉 = −2〈y,�(x)〉 for every x ∈ Ṙ × R+ and every y ∈ R
2.

Proof. First we show that � defines a bijective mapping of R+ × R+ onto R × R−.
Indeed, for (x1, x2) ∈ R+ × R+ and (u1, u2) ∈ R × R+


x2

2 − x2
1

2
= u1

−x1x2 = u2

⇐⇒


x2

2 − u2
2

x2
2

= 2u1

x2 = −u2

x1
.
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For fixed u2 ∈ R−, the map h(t) = t − u2
2/t defined in R+ is increasing since h′(t) =

1 + u2
2/t

2 > 0. Further, h(t) → −∞ for t → 0+ and h(t) → +∞ for t → +∞.
Therefore, for any given u1 ∈ R there is exactly one value of x2

2 such that h(x2
2 ) = 2u1.

Hence, for any given u1 ∈ R and u2 < 0 there is a unique (x1, x2) ∈ R+ × R+ such
that �(x1, x2) = (u1, u2). This shows that � is bijective from R+ × R+ onto R × R−.
Similarly, it is bijective from R− × R+ onto R × R+ and hence from Ṙ × R+ onto R × Ṙ.
It is clearly smooth and its regularity follows from

J�(x) = det

[−x1 x2
−x2 −x1

]
= x2

1 + x2
2 .

This establishes that � is a diffeomorphisms and proves (a). As for (b), it follows from (a)
and the observation that

u2
1 + u2

2 =
(
x2

2 − x2
1

2

)2

+ x2
1x

2
2 = 1

4

(
x2

1 + x2
2

)2
,

so that 2‖u‖ = ‖x‖2.

(c) Here we compute

�(aRθx) = �(a(cos θx1 + sin θx2), a(− sin θx1 + cos θx2))

=
(
a2

2

[
cos 2θ

(
x2

2 − x2
1

)
− 2 sin 2θ(x1x2)

]
,

a2

2

[
sin 2θ

(
x2

1 − x2
2

)
− 2 cos 2θ(x1x2)

])
= a2

[
cos 2θ sin 2θ

− sin 2θ cos 2θ

][
x2

2−x2
1

2−x1x2

]
= a2R2θ�(x) .

(d) Put a = t1/2 and ψ = 2θ in (c) to get �(t1/2Rψ/2x) = tRψ�(x). Put next �(x) = u

and take �−1 from both sides. This yields t1/2Rψ/2�−1(u) = �−1(tRψu) .

(e) From the definition of y and of �, we obtain

〈yx, x〉 =
〈[
y1x1 + y2x2
y2x1 − y1x2

]
,

[
x1
x2

]〉
= y1

(
x2

1 − x2
2

)+ y2(2x1x2) = −2〈y,�(x)〉 ,

as desired to conclude the proof.

Theorem 3. The mapping

Uf (u) = ‖u‖−1/2f
(
�−1(u)

)
, u ∈ Ṙ × R+

defines an isometry ofL2
even(R

2) ontoL2(R2) that intertwinesπ andµ: π(g)◦U = U◦µ(g)
for every g ∈ SIM(2).
Proof. Let f ∈ L2

even(R
2). Then, by (b) in Proposition 3

‖Uf ‖2
2 =

∫
R2

|Uf (u)|2 du =
∫

R2

1

‖u‖
∣∣∣f (�−1(u)

)∣∣∣2 du
= 2

∫ +∞

0

∫ +∞

−∞
|f (x)|2 dx =

∫
R2

|f (x)|2 dx
= ‖f ‖2

2 .
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Thus, U is an isometry. By (5.3) and (d) in Proposition 3

π(t, y, θ) (Uf ) (u) = te−2πi〈y,u〉 Uf (tRθu)

= t

‖tRθu‖1/2
e−2πi〈y,u〉 f

(
�−1 (tRθu)

)
= t1/2

‖u‖1/2
e−2πi〈y,u〉 f

(
t1/2Rθ/2�

−1(u)
)
.

Finally, by (5.10) and (e) in Proposition 3

U (µ(t, y, θ)f ) (u) = 1

‖u‖1/2 (µ(t, θ, y)f )
(
�−1(u)

)
= 1

‖u‖1/2
t1/2eiπ〈y�−1(u),�−1(u)〉f

(
t1/2Rθ/2�

−1(u)
)

= t1/2

‖u‖1/2
e−iπ2〈y,u〉f

(
t1/2Rθ/2�

−1(u)
)
,

as desired.

5.2 The Group T DS(2), the Contourlet Point of View

In this section we prove Theorem 4. We first explain the connection between TDS(2) and
the two-dimensional wavelet theory that leads to the contourlet construction introduced
in [10]. The point is that TDS(2) is isomorphic to the group of mappings of (functions on)
the plane generated by translations, dilations, and shearing, where the shearing operator is
given by

(S	f ) (x) = f
(
tS	x

)
, f ∈ L2(R) ,

and the matrix S	 is defined in (4.2). These are the ingredients of the contourlet frames [10].
Just as for curvelets, one allows dilation and translation operations, but the angular selectivity
is achieved by a shearing operation rather than a rotation.

Let L denote the two-dimensional subgroup of GL(2,R) given by

L =
{[

t 0
−	t t

]
: t > 0, 	 ∈ R

}
.

The affine action that it induces on R
2 leads to the semidirect product H = R

2
� L.

This action has two open orbits O+ and O− in R
2, where O+ = {(x1, x2) ; x2 > 0} and

O− = {(x1, x2) ; x2 < 0}. The wavelet representation ν of H is

ν(t, y, 	)f = (TyDtS	) f, f ∈ L2(
R

2) , (5.12)

but it is more convenient to view ν in the frequency domain, namely

π(t, y, 	)f (u) = (F ◦ ν(t, y, 	) ◦ F−1f
)
(u) = e−2πi〈y,u〉D−t tS−	f (u) . (5.13)

We have π = πO+ ⊕ πO− , where πO+ and πO− are the subrepresentations of π obtained
by restriction to L2(O+) and L2(O−), respectively. A wavelet φ such that φ̂ ∈ L2(O+) is
reproducing for πO+ if ∫ ∞

0

∫
R

∣∣∣∣∣ φ̂(ξ1, ξ2)

ξ2

∣∣∣∣∣
2

dξ1 dξ2 < ∞
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and similarly for πO− (see [3] for more details).
If y = (y1, y2) ∈ R

2, we put By = [ 0 y1
y1 y2

]
, a 2 × 2 symmetric matrix. Then, we

check that TDS(2) = G0 �G1, where

G0 =
{
g0(t, y) =

[
t−1/2 0
t−1/2By t1/2

]
: t > 0, y ∈ R

2
}

G1 =
{
g1(	) =

[
S	/2 0

0 tS−	/2

]
: 	 ∈ R

}
.

Indeed, for y = (y1, y2) ∈ R
2, it is easy to see that, using the parametrization in (4.1)

g0(t, y)g1(	) = At,	,(y1,y2+	y1) ,

so that TDS(2) = G0G1 set-theoretically. Furthermore,

g1(	)g0(t, (y1, y2))g1(	)
−1 = g0(t, (y1, y2 − 	y1)) . (5.14)

This means that G1 normalizes G0, so that TDS(2) is the semidirect product G0 � G1.
Since G0 is normal in TDS(2), obviously TDS(2)/G0 	 G1. Finally, the product is

g(t, (y1, y2), 	)g(r, (z1, z2), s) = g(tr, (y1 + tz1, y2 + tz2 − 	tz1), s + 	) ,

which implicitly shows the isomorphism TDS(2) 	 H , as one checks by computing the
product inH = R

2
�L. Observe that the decomposition of TDS(2) as a semidirect product

is similar to the decomposition of SIM(2) as far as the normal factors are concerned. The
basic difference consists in the structure of their quotients: It is compact for SIM(2) and
noncompact for TDS(2).

In order to compute the metaplectic representation on TDS(2), we observe first that
the matrixAt,y,	 in (4.1) can be written as the product of a diagonal matrixDt,	 and a lower
triangular matrix Lt,y,	 as follows

At,y,	 = Dt,	Lt,y,	 =
[
t−1/2S	/2 0

0 t1/2 tS−	/2

] [
I 0

t−1 tS	/2ByS	/2 I

]
.

We then use the fact that µ is a representation and formulae (2.3) and (2.4) to obtain that
for f ∈ L2(R2)

µ(At,y,	)f (x) = µ(Dt,	Lt,y,	)f (x) = t1/2(Lt,y,	f )
(
t1/2S−	/2x

)
= t1/2eiπ〈 tS	/2Byx,S−	/2x〉 f

(
t1/2S−	/2x

)
= t1/2eiπ〈Byx,x〉 f

(
t1/2S−	/2x

)
.

The Intertwining Operator and the Equivalence for T DS(2)

We shall be concerned with the mapping

� : Ṙ × R+ → Ṙ × R−, x �→
(

−x1x2,−x
2
2

2

)
, (5.15)

whose properties are described in the following elementary proposition. Its proof is analo-
gous to that of Proposition 3 and is therefore omitted.

Proposition 4. The mapping (5.15) defines diffeomorphisms from Ṙ×R+ or from Ṙ×R−
onto Ṙ × R− and is such that �(−x) = �(x). Further, it satisfies:



174 Elena Cordero, Filippo De Mari, Krzysztof Nowak, and Anita Tabacco

(a) The Jacobian of� atx = (x1, x2) ∈ Ṙ×R+ (x = (x1, x2) ∈ Ṙ×R−, respectively)
is J�(x) = x2

2 ;

(b) the Jacobian of �−1 at u = (u1, u2) ∈ Ṙ × R− is J�−1(u) = 1/(2u2);

(c) �−1(t2S2	u) = tS	�
−1(u) for every t > 0 and every u ∈ Ṙ × R−;

(d) 〈Byx, x〉 = −2〈y,�(x)〉 for every x ∈ Ṙ × R+ (x = (x1, x2) ∈ Ṙ × R−,
respectively) and every y ∈ R

2.

The proof of the following theorem is analogous to the proof of Theorem 3 and its
details are given in [7].

Theorem 4. The mapping obtained by extending

Qf (u) = |2u2|−1/2f
(
�−1(u1, u2)

)
, u ∈ Ṙ × R+

to Ṙ × Ṙ as an even function defines an isometry of L2
even(R

2) onto itself that intertwines
the representations π and µ, that is π(g) ◦ Q = Q ◦ µ(g) for every g ∈ TDS(2).

Admissible Functions for T DS(2)

The reproducibility ofTDS(2) follows either by the admissibility condition (3.8) (Section 4)
or directly by the same techniques as in Theorem 6, with the admissibility conditions stated
below.

Theorem 5. Let H = TDS(2). The identity∫
H

|〈f,µ(h)φ〉|2 dh = cφ ‖f ‖2
2 , (5.16)

holds for every f ∈ L2(R2) if and only if the function φ satisfies the following two admis-
sibility conditions:

cφ = 4
∫

R

∫ ∞

0
|φ(x)|2 dx2

x4
2

dx1 = 4
∫

R

∫ ∞

0
|φ(−x)|2 dx2

x4
2

dx1 (5.17)

and ∫
R

∫ ∞

0
φ(x)φ(−x) dx2

x4
2

dx1 = 0 . (5.18)

Theorem 5 is proved in [7], where examples of admissible wavelets for TDS(2) are
also given.

6. A Class of Reproducing Groups Including SIM(2)

The (double cover of) SIM(2) is one in a family of reproducing groups parametrized by
R. For any parameter1 pair (α, β) �= (0, 0), consider the three-dimensional subgroup of
Sp(2,R)

Hα,β =
{
hα,β(t, y) :=

[
e−αt/2Rβt/2 0
ye

−αt/2Rβt/2 eαt/2Rβt/2

]
: t ∈ R, y ∈ R

2
}

1The reason for assuming (α, β) �= (0, 0) will be discussed below.
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where the rotation matrix Rθ is defined in (5.1) and the matrix y in (5.4). Clearly,

hα,β(t, y) =
[
I 0
y I

] [
e−αt/2Rβt/2 0

0 eαt/2Rβt/2

]
= exp

[
0 0
y 0

]
exp

(
− t

2

[
αI − βJ 0

0 −αI − βJ

])
,

where as usual J = [
0 1−1 0

]
. Furthermore, y = y1H + y2L, where H = [

1 0
0 −1

]
and

L = [ 0 1
1 0

]
. Thus, the Lie algebra hα,β of Hα,β is spanned by

X =
[

0 0
H 0

]
, Y =

[
0 0
L 0

]
, Z = 1

2

[
αI − βJ 0

0 −αI − βJ

]
.

Because of the brackets [H, J ] = 2L and [L, J ] = −2H one sees immediately that
[X, Y ] = 0

[X,Z] = αX − βY

[Y,Z] = βX + αY .

According to the classification of three-dimensional Lie algebras [17], all hα,β fall in the
class A = {g� : � ∈ GL(2,R)}, where g� = span{X, Y,Z} has bracket table

[X, Y ] = 0

[X,Z] = aX + bY

[Y,Z] = cX + dY

� =
[
a b

c d

]
∈ GL(2,R) .

In our case

� = �α,β =
[
α −β
β α

]
is nonsingular since det � = α2 + β2 �= 0 because (α, β) �= (0, 0). The isomorphism
classes in A are described by �, as we now explain. First of all, two multiple matrices
� and λ� give rise to the same algebra if λ �= 0, for if g� = span{X, Y,Z}, then the
basis {X, Y, λZ} yields the bracket table that corresponds to λ� and generates the same Lie
algebra. Thus, g� = gλ� if λ �= 0. The isomorphism classes within A are in one-to-one
correspondence with the conjugacy classes in PGL(2,R) = GL(2,R)/(Ṙ · id). In other
words, two nonmultiple matrices � and �′ correspond to isomorphic Lie algebras if and
only if they are conjugate in GL(2,R). It is however an elementary exercise to check
that a matrix g ∈ GL(2,R) conjugates �α,β into a matrix �γ,δ of the same type if and

only if g is of the form g = cRθ or g = cKRθ , where c is a scalar and K =
[

1 0
0 −1

]
.

In this case, g(�α,β)g−1 = �α,β or g(�α,β)g−1 = �α,−β , respectively. Therefore, to
each point in {(1, β), β ≥ 0} there corresponds an isomorphism class in the subclass
H = {hα,β : (α, β) �= (0, 0)} of A. There is another issue that must be discussed, in the
light of Theorem 1. One of its consequences is that an admissible subgroup of Sp(d,R)
cannot be unimodular. This fact is proved in [6] and is really a straightforward adaptation of
a theorem proved in [18]. This explains why we have chosen (α, β) �= (0, 0) from the start.
Indeed, if (α, β) = (0, 0), thenH0,0 is (two-dimensional and) nilpotent, hence unimodular,
and the constructions that follow cannot possibly lead to admissible groups. Furthermore,
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we must exclude from our parameters all those that correspond to unimodular groups. The
modular function� onHα,β is, as for any Lie group,�(x) = det(Ad(x−1)). If v = expV
is close to the identity,

�(v) = det
(

Ad
(
v−1
))

= det(Ad(exp(−V )) = det
(
e− ad V

)
= e− tr(ad V )

shows that �(v) = 1 if and only if tr(ad V ) = 0. Thus, Hα,β is unimodular if and only
if this is true for every V ∈ hα,β . From the bracket table we see that tr(adZ) = 0 and
tr(adX) = tr(ad Y ) = α. Hence, Hα,β is unimodular if and only if α = 0. We summarize
this discussion, and other elementary facts, in the proposition that follows.

Proposition 5. The subgroups Hα,β of Sp(2,R) satisfy the following properties:

(a) The product law in Hα,β is explicitly given by:

hα,β(t, y)hα,β(s, z) = hα,β
(
t + s, y + eαtRβt z

)
, t, s ∈ R, y, z ∈ R

2 .

(b) The left Haar measure on Hα,β is dhα,β(s, z) = e−2αs ds dz.

(c) Hα,β is unimodular if and only if α = 0.

(d) Hα,β and Hγ,δ are conjugate within Sp(2,R) if and only if they are equal, if and
only if (α, β) = λ(γ, δ), for some λ �= 0.

(e) Each Hα,β is normalized by the natural copy of SO(2) inside Sp(2,R).

(f) The semidirect product H1,0 � SO(2) is (canonically) isomorphic to G0 �K .

(g) The restriction of the metaplectic representation to Hα,β is given by:

µ(hα,β(t, y))f (x) = eαt/2eπi〈yx,x〉 f
(
eαt/2R−βt/2x

)
. (6.1)

Proof. The statements follow either from the above discussion or from straightforward
computations. We content ourselves with a couple of comments. By the natural copy of
SO(2) inside Sp(2,R) we mean of course

SO(2) 	
{
kθ =

[
Rθ 0
0 Rθ

]
: θ ∈ [0, 2π)

}
(6.2)

and by (5.8) one computes immediately kθ hα,β(t, y) k
−1
θ = hα,β (t, R2θ y), which is the

conjugation referred to in (e). As for (f), notice that when α = 1, β = 0 and τ = et , the
matrix h1,0(τ, y) is the G0-component of an element in G0 �K .

By (c) and (d), we may assume α = 1, and by (e) we may define the family of groups

Gβ = H1,β � SO(2) β ≥ 0 .

The elements of Gβ will be denoted gβ = hβk, where k ∈ SO(2). Also, the left Haar
measure is dgβ = dhβ dk. In the sequel, we shall parametrizeK = SO(2)with the angular
parameter θ , as in (6.2). We prove next that the groups Gβ are all reproducing.

Theorem 6. The identity∫
Gβ

|〈f,µ(gβ)φ〉|2 dgβ = cφ ‖f ‖2
2 , (6.3)
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holds for every f ∈ L2(R2) if and only if the function φ satisfies the following two admis-
sibility conditions:

cφ = 2
∫

R2

|φ(x)|2
‖x‖4

dx < ∞ ; (6.4)∫
R2
φ(x)φ(−x) dx

‖x‖4
= 0 . (6.5)

First, we prove an identity of Plancherel type.

Lemma 4. Let � be the mapping defined in (5.11) and h ∈ L2(R2) be a function which
vanishes outside some annulus c < ‖x‖ < C, with 0 < c < C < ∞. Then∫

R2

∣∣∣∣∫
R2
h(x)e2πi〈y,�(x)〉 dx

∣∣∣∣2 dy =
∫ ∞

0

∫
R

|h(x)+ h(−x)|2 dx

‖x‖2
.

Proof. We make the change of variables �(x) = u. By (b) in Proposition 3:∫
R2
h(x)e2πi〈y,�(x)〉 dx =

∫ ∞

0

∫
R

(h(x)+ h(−x))e2πi〈y,�(x)〉 dx

=
∫

R2

(
h
(
�−1(u)

)
+ h

(
−�−1(u)

))
e2πi〈y,u〉 du

‖x(u)‖2
.

By the Plancherel formula we obtain

∫
R2

∣∣∣∣∫
R2

(
h
(
�−1(u)

)
+ h

(
−�−1(u)

))
e2πi〈y,u〉 du

‖x(u)‖2

∣∣∣∣2 dy
=
∫

R2

∣∣∣(h (�−1(u)
)

+ h
(
−�−1(u)

))∣∣∣2 du

‖x(u)‖4

=
∫ ∞

0

∫
R

|h(x)+ h(−x)|2 dx

‖x‖2
,

as desired.

Corollary 1. Let h be as in Lemma 4. Then

∫
R2

∣∣∣∣∫
R2
h(x)e−πi〈yx,x〉 dx

∣∣∣∣2 dy
=
∫ ∞

0

∫
R

(
|h(x)|2 + |h(−x)|2 + 2Re h(x)h(−x)

) dx

‖x‖2
.

Proof of Theorem 6. By (6.1), we must evaluate∫
H1,β�K

|〈f,µ(hβk)φ〉|2 dhβ dk (6.6)

=
∫ 2π

0

∫
R

∫
R2

∣∣∣∣∫
R2
f (x)et/2e−πi〈yx,x〉φ

(
et/2R−(βt/2+θ)x

)
dx

∣∣∣∣2 dye−2t dt dθ .
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Take f as in Lemma 4 and apply Corollary 1 to the right-hand side of (6.6)∫
H1,β�K

|〈f,µ(hβk)φ〉|2 dhβ dk

=
∫ 2π

0

∫
R

∫ ∞

0

∫
R

[
|f (x)|2et ∣∣φ(et/2R−(βt/2+θ)x

)∣∣2 (6.7)

+ |f (−x)|2et ∣∣φ(− et/2R−(βt/2+θ)x
)∣∣2

+ 2Re f (x)f (−x)etφ(− et/2R−(βt/2+θ)x
)
φ
(
et/2R−(βt/2+θ)x

)]
× dx

‖x‖2
e−2t dt dθ .

Suppose at first that f satisfies the additional property: f (x1, x2) = 0 for x2 < 0.
Perform now the change of variable given by the mapping

(t, θ) �→ et/2R−(βt/2+θ)x = y , (6.8)

a well-defined diffeomorphism. One checks that dt dθ = 2e−t‖x‖−2 dy and hence∫
H1,β�K

|〈f,µ(hβk)φ〉|2 dhβ dk =
∫ ∞

0

∫
R

|f (x)|2
(∫

R2
|φ(y)|2 2

‖y‖4
dy

)
dx

= ‖f ‖2
2

(
2
∫

R2

|φ(y)|2
‖y‖4

dy

)
.

If f (x1, x2) = 0, for x2 > 0, the same relation holds. This argument shows that if the
reproducing formula (6.3) works for all f ∈ L2(Rd), then it works for f vanishing in a
half-plane and outside an annulus, so that φ must fulfil (6.4). Take now a bounded function
f supported in some annulus c < ‖x‖ < C. Then

G(θ, t, x) := 2Re f (x)f (−x)etφ(− et/2R−(βt/2+θ)x
)
φ
(
et/2R−(βt/2+θ)x

) 1

‖x‖2

is integrable with respect to the measure dxe−2t dt dθ . By performing again the change of
variable (6.8), and using the established value of cφ , (6.7) becomes∫
H1,β�K

|〈f,µ(hβk)φ〉|2 dhβ dk = cφ‖f ‖2
2 +

∫ 2π

0

∫
R

∫
R×R+

G(θ, t, x) dxe−2t dt dθ .

The reproducing formula (6.3) implies that the integral ofG(θ, t, x) vanishes. On the other
hand, using once more the change of variable (6.8)∫ 2π

0

∫
R

∫
R×R+

G(θ, t, x) dxe−2t dt dθ

= 4
∫

R2

∫
R×R+

Re
{
f (x)f (−x)φ(−y)φ(y)

}
dx

dy

‖y‖4
.

Choosing f such that f (x)f (−x) is real valued, respectively purely imaginary valued, one
obtains that∫

R2
Re
{
φ(−y)φ(y)

} dy

‖y‖4
= 0 and

∫
R2

Im
{
φ(−y)φ(y)

} dy

‖y‖4
= 0 ,
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so that (6.5) must be true as well.
Conversely, assume that (6.4) and (6.5) are satisfied. If f is a function as in Lemma 4,

then all the terms (6.6) are integrable and (6.3) holds for f . We conclude by showing that it
actually works for all f ∈ L2(R2). To see this, take f ∈ L2(R2) and let fn be a sequence
of functions as in Lemma 4 which tends to f in the L2-norm. Then F(fn) = 〈fn, µ(gβ)φ〉
is a Cauchy sequence on L2(Gβ, dgβ) which tends pointwise to F(f ) = 〈f,µ(gβ)φ〉.
Since (6.3) holds for all fn, it follows that it also holds for f .
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