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ABSTRACT. Let G be the semidirect product group of a separable locally compact unimodular
group N of type I with a closed subgroup H of Aut(N). The group N is not necessarily commutative.
We consider irreducible subrepresentations of the unitary representation of G realized naturally on
L2(N), and investigate the wavelet transforms associated to them. Furthermore, the irreducible
subspaces are characterized by certain singular integrals on N analogous to the Cauchy-Szegö
integral.

1. Introduction

It is well known that the theory of continuous wavelet transform is reduced to study of square-
integrable representations of (not necessarily unimodular) locally compact groups G [13,
I]. The most typical example is the case that G is the ‘ax + b’-group and the representation
is realized on L2(R) [13, II]. The results can be naturally generalized to the case that G is
the semidirect product group of a vector group V with a linear group H on V (see [5, 8]
and [10]), and further extensions of the theory have been developed in various directions.
For example, wavelet transforms associated to nonirreducible representations are considered
recently by [12] and [19], while wavelets for vector-valued functions associated to induced
representations are studied by [2] and [3] (see also [1, Chapter 10]). Discretizations of the
theory are considered by many authors (see [4, 15, 16] for example). Another direction of
generalization is to the case that the normal subgroup V is not necessarily commutative.
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Actually, some works discuss the Heisenberg group case [14, 17, 20, 24], while there seem
to be few works treating a general semidirect product (confer [11, Section 5]). Inspired
by [14], we shall study square-integrable representations and associated continuous wavelet
transforms in such a general setting.

Let N be a separable locally compact unimodular group of type I, H a closed subgroup
of the automorphism group Aut(N) of N , and G the semidirect product group N �H . The
group N � G is not necessarily commutative. We write the action of h ∈ H to n ∈ N as
h · n. Let dν be a Haar measure on N , and δ(h) (h ∈ H) the positive number for which
dν(h · n) = δ(h) dν(n) (n ∈ N). Clearly, δ : H → R+ is a representation of H . If
N is a vector group, then δ is the absolute value of the determinant. We define a unitary
representation L of G on the Hilbert space L2(N) by

L(h)f (n0) := δ(h)−1/2f
(
h−1 · n0

)
,

L(n)f (n0) := f
(
n−1n0

) (
f ∈ L2(N), h ∈ H, n, n0 ∈ N

)
.

It is easy to see that the representation (L, L2(N)) is equivalent to the induced representation
IndG

H 1, where 1 stands for the trivial representation of H .
We investigate the representation L via the Plancherel formula for the unimodular

group N (confer [18]). It is known that the Plancherel measure µ on the unitary dual N̂ is
uniquely determined by the abstract Plancherel formula [6]:∫

N

|f (n)|2 dν(n) =
∫

N̂

‖πλ(f )‖2
HS dµ(λ)

(
f ∈ L1(N) ∩ L2(N)

)
, (1.1)

where πλ is a realization of each λ ∈ N̂ , and ‖ · ‖HS stands for the Hilbert-Schmidt norm
of an operator. For λ ∈ N̂ and h ∈ H , let h · λ be the element of N̂ for which the unitary
representation πh·λ of N is equivalent to πλ ◦ h−1. The group H acts on N̂ in this way. We
denote by O∗

λ the H -orbit through λ ∈ N̂ . Let us assume the following:
(A1) There exist elements λk (k ∈ K) of N̂ , indexed by some set K , such that

µ(O∗
λk

) > 0 and O∗
λk

∩ O∗
λk′ = ∅ (k 	= k′).

(A2) The stabilizer Hk := { h ∈ H ; h · λk = λk } at each λk ∈ N̂ is compact.
(A3) For k ∈ K , the map H/Hk 
 hHk �→ h ·λk ∈ O∗

λk
is a homeomorphism, where

the topology on O∗
λk

is induced from the Fell topology on N̂ .

These conditions are rather natural in the context of wavelet analysis (confer [1, Chapter 9],
[10, Section IV], and [8, Section 3]. In the latter part of [8], some cases with noncompact
stabilizers are also discussed).

Under the assumptions, we shall construct irreducible subspaces of L2(N) associated
to the orbits O∗

λk
, and show that each subrepresentation is square-integrable (Theorem 2).

Furthermore, if µ(N̂ \⊔k∈K O∗
λk

) = 0, the unitary representation (L, L2(N)) is decom-
posed into the direct sum of such subrepresentations (Proposition 5). When φ is an element
of the irreducible subspace, one has ‖φ‖2 = ∫

O∗
λk

‖πλ(φ)‖2
HS dµ(λ) for some k. Then φ is

admissible if and only if the integral∫
O∗

λk

‖πλ(φ)‖2
HS�G(h)−1 dµ(λ) (λ = h · λk) (1.2)

is finite, where �G is the Haar modulus of G [see (3.12)]. We give a Mackey-type descrip-
tion of our subrepresentations (Proposition 4), which indicates the connection between the
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present work and a general theory [18] on the Plancherel formula for group extensions (see
also [11, Section 3.6]). In the last section, we describe the orthogonal projections onto the
irreducible subspaces by singular integrals analogous to the Cauchy-Szegö integral.

Let us fix our notation used in what follows. We write T for the set of complex
numbers with absolute value 1. For a Hilbert space H, let B(H) (resp. BHS(H), BTr(H))
be the space of bounded (resp. Hilbert-Schmidt, Trace class) operators on H. The trace
norm of A ∈ BTr(H) is denoted by ‖A‖Tr. We write U(H) for the group of unitary operators
on H.

2. Covariant Functions on the Orbits O∗
λk

In this section, we introduce some covariant functions on the H -orbit O∗
λk

⊂ N̂ to get an
integral formula (Proposition 3) playing a significant role later.

For each λ ∈ N̂ , we fix a realization (πλ, Hλ) of λ. Extending the operator-valued
Fourier transform F : L1(N) ∩ L2(N) → ∫ ⊕

N̂
BHS(Hλ) dµ(λ) given by Ff (λ) := πλ(f ),

we define the unitary isomorphism F : L2(N)
∼→ ∫ ⊕

N̂
BHS(Hλ) dµ(λ). Here we recall the

inversion formula of the Fourier transform F.

Proposition 1 ([11, Theorem 4.15]). Let (A(λ))
λ∈N̂

be an element of the direct integral∫ ⊕
N̂

BTr(Hλ) dµ(λ) of the Banach spaces BTr(Hλ), and f a function on N defined by

f (n) :=
∫

N̂

tr A(λ)πλ(n)∗ dµ(λ) (n ∈ N) .

Then f belongs to L2(N) if and only if (A(λ))
λ∈N̂

∈ ∫ ⊕
N̂

BHS(Hλ) dµ(λ). In that case,

one has Ff (λ) = A(λ) (a. a. λ ∈ N̂).

For h ∈ H and λ ∈ N̂ , we take a unitary intertwining operator C(h, λ) : Hλ → Hh·λ
between πλ ◦ h−1 and πh·λ, so that

C(h, λ) ◦ πλ

(
h−1 · n

) = πh·λ(n) ◦ C(h, λ) (n ∈ N) . (2.1)

Note that this C(h, λ) is determined up to multiple by elements of T owing to Schur’s lemma.
Thus, the map D(h, λ) : B(Hλ) → B(Hh·λ) given by D(h, λ)T := C(h, λ) ◦T ◦C(h, λ)∗
is uniquely determined. For operators S, T ∈ B(Hλ), we have

D(h, λ)(S ◦ T ) = D(h, λ)S ◦ D(h, λ)T . (2.2)

We see from (2.1) that

πh·λ(n) = D(h, λ)πλ

(
h−1 · n

)
. (2.3)

For h, h′ ∈ H and λ ∈ N̂ , we have the chain rule

C
(
h, h′ · λ

) ◦ C
(
h′, λ

) = sh,h′,λC
(
hh′, λ

)
, (2.4)

where sh,h′,λ is an element of T, so that we get

D
(
h, h′ · λ

) ◦ D
(
h′, λ

) = D
(
hh′, λ

)
. (2.5)
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Proposition 2. If f ∈ L2(N), h ∈ H and n ∈ N , one has

F[L(h)f ](λ) = δ(h)1/2D
(
h, h−1 · λ

)
Ff
(
h−1 · λ

)
, (2.6)

F[L(n)f ](λ) = πλ(n)Ff (λ) (2.7)

for almost all λ ∈ N̂ with respect to the measure µ.

Proof. It is sufficient to show the case f ∈ L1(N) ∩ L2(N). We observe that

F[L(h)f ](λ) = πλ(L(h)f )

=
∫

N

δ(h)−1/2f
(
h−1 · n

)
πλ(n) dν(n)

= δ(h)1/2
∫

N

f
(
n′)πλ

(
h · n′) dν

(
n′) (

n′ = h−1 · n
)
.

By (2.3), the last term equals

δ(h)1/2
∫

N

f
(
n′)D(h, h−1 · λ

)
πh−1·λ

(
n′) dν

(
n′) = δ(h)1/2D

(
h, h−1 · λ

)
Ff
(
h−1 · λ

)
.

Therefore (2.6) holds. As for (2.7), we see that

F[L(n)f ](λ) =
∫

N

f
(
n−1n1

)
πλ(n1) dν(n1)

=
∫

N

f (n2)πλ(nn2) dν(n2)
(
n2 = n−1n1

)
= πλ(n)

∫
N

f (n2)πλ(n2) dν(n2)

= πλ(n)Ff (λ) .

Hence, Proposition 2 is proved.

Although the following lemma and succeeding discussions are found in [18, II, 107–
108], we present them for completeness.

Lemma 1. For h ∈ H , one has dµ(h · λ) = δ(h)−1 dµ(λ).

Proof. For a function f ∈ L2(N), we have by (1.1) and (2.6)

‖L(h)f ‖2 =
∫

N̂

‖F[L(h)f ](λ)‖2
HS dµ(λ)

= δ(h)

∫
N̂

∥∥D(h, h−1 · λ
)
Ff
(
h−1 · λ

)∥∥2
HS dµ(λ)

= δ(h)

∫
N̂

∥∥Ff
(
λ′)∥∥2

HS dµ
(
h · λ′) (

λ′ = h−1 · λ
)
.

On the other hand,

‖L(h)f ‖2 = ‖f ‖2 =
∫

N̂

‖Ff (λ)‖2
HS dµ(λ) .

Namely, we have∫
N̂

‖Ff (λ)‖2
HS δ(h) dµ(h · λ) =

∫
N̂

‖Ff (λ)‖2
HS dµ(λ)
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for any f ∈ L2(N), whence Lemma 1 follows.

It is easy to see that the measure dG(g) := δ(h)−1 dν(n) dh (g = (n, h) ∈ G) is
a left Haar measure on G, where dh is a left Haar measure on H . Then we observe for
h1 ∈ H

�G(h1)dG(g) = dG(gh1) = δ(hh1)
−1 dν(n)d(hh1) ,

since gh1 = (n, hh1). On the other hand, the last term equals

δ(h1)
−1�H (h1)δ(h)−1 dν(n) dh = δ(h1)

−1�H (h1)dG(g) ,

where �H denotes the Haar modulus of H . It follows that

δ(h1) = �H (h1)/�G(h1) . (2.8)

Since the stabilizer Hk at λk ∈ N̂ is compact, we have δ(Hk) = {1}, so that we can define
a positive function uk on O∗

λk
by

uk(h · λk) := δ(h) (h ∈ H) . (2.9)

Then we see from Lemma 1 that uk dµ is an H -invariant measure on the orbit O∗
λk

. Thus,
there exists a positive constant ck such that∫

H

p(h · λk) dh = ck

∫
O∗

λk

p(λ)uk(λ) dµ(λ) (2.10)

for positive µ-measurable functions p on O∗
λk

. Noting that �G(Hk) = {1} owing to the
compactness of Hk , we define a function Dk on O∗

λ by

Dk(h · λk) := ck�G(h)−1 (h ∈ H) .

Then we see from (2.8) and (2.9) that

Dk(h · λk) = ck�H (h)−1uk(h · λk) (h ∈ Hk) .

Thus, we get by (2.10)∫
O∗

λk

p(λ)Dk(λ) dµ(λ) =
∫

H

p(h · λk)�H (h)−1 dh . (2.11)

Proposition 3. For a positive µ-measurable function p on the orbit O∗
λk

, the integral∫
H

p(h−1 · λ) dh does not depend on λ ∈ O∗
λk

, and equals
∫
O∗

λk

p(λ)Dk(λ) dµ(λ).

Proof. Writing λ = h̃ · λk with h̃ ∈ H , we have∫
H

p
(
h−1 · λ

)
dh =

∫
H

p
((

h̃−1h
)−1 · λk

)
dh =

∫
H

p
(
h−1 · λk

)
dh

=
∫

H

p(h · λk)�H (h)−1 dh .

Therefore Proposition 3 follows from (2.11).
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3. Subrepresentations of L

In this section, we construct irreducible subrepresentations of (L, L2(N)), and consider
the wavelet transforms associated to them. The representations are described by unitary
inductions in Proposition 4, and classified in Theorem 4.

Owing to (2.4), the map τk : Hk 
 h �→ C(h, λk) ∈ U(Hλk
) is a projective rep-

resentation on Hλk
. Since Hk is compact, we have an irreducible decomposition Hλk

=∑⊕
α∈Ak

Hλk,α , where Ak is an at most countable index set. Note that each Hλk,α is finite

dimensional. For λ = h̃ · λk ∈ O∗
λk

, we see that the stabilizer Hλ := { h ∈ H ; h · λ = λ }
equals h̃Hkh̃

−1. Similarly to the above, we define a projective representation τλ of Hλ on
Hλ by τλ(h) := C(h, λ) ∈ U(Hλ) (h ∈ Hλ). We see from (2.4) that τλ(h) ◦ C(h̃, λk) =
shC(h̃, λk) ◦ τk(h̃

−1hh̃) (h ∈ Hλ), where sh is an element of T. Therefore, putting
Hλ,α := C(h̃, λk)Hλk,α for α ∈ Ak (note that the right-hand side is independent of the
choice of h̃ for which λ = h̃ · λk), we get Hλ = ∑⊕

α∈Ak
Hλ,α , which gives an irreducible

decomposition of (τλ, Hλ). By (2.4), we have

C(h, λ)Hλ,α = Hh·λ,α . (3.1)

Let Pλ,α be the orthogonal projection onto Hλ,α , and Bλ,α the closed subspace of BHS(Hλ)

given by

Bλ,α := {
T ∈ BHS(Hλ) ; T Pλ,α = T

}
. (3.2)

We see from (3.1) that D(h, λ)Pλ,α = Ph·λ,α , which leads us to

D(h, λ)Bλ,α = Bh·λ,α . (3.3)

If we identify the Hilbert space BHS(Hλ) with the tensor product Hλ ⊗ Hλ, the subspace
Bλ,α equals Hλ ⊗ Hλ,α . Thus, we have an orthogonal decomposition

BHS(Hλ) =
∑⊕

α∈Ak

Bλ,α . (3.4)

Keeping (3.2) in mind, we define the subspace Lk,α(N) of L2(N) by

Lk,α(N) := F−1

(∫ ⊕

O∗
λk

Bλ,α dµ(λ)

)

=
{

f ∈ L2(N) ; Ff (λ) = Ff (λ)Pλ,α

(
if λ ∈ O∗

λk

)
Ff (λ) = 0

(
if λ /∈ O∗

λk

)
}

.

(3.5)

Thanks to Proposition 2 and (3.3), each Lk,α(N) is G-invariant.
Let us consider the square-integrability of matrix coefficients of the subrepresentation

(L, Lk,α(N)) of G. For f, φ ∈ Lk,α(N), we have by (1.1) and (2.7)

(f |L(n)L(h)φ) =
∫
O∗

λk

tr Ff (λ)F[L(n)L(h)φ](λ)∗ dµ(λ)

=
∫
O∗

λk

tr
(
Ff (λ)F[L(h)φ](λ)∗

)
πλ(n)∗ dµ(λ) .

(3.6)
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We note that each Ff (λ)F[L(h)φ](λ)∗ is a trace class operator on Hλ since both Ff (λ) and
F[L(h)φ](λ) are Hilbert-Schmidt operators. Indeed, (Ff (λ)F[L(h)φ] (λ)∗)λ∈O∗

λk
belongs

to
∫ ⊕
O∗

λk

BTr(Hλ) dµ(λ) because

∫
O∗

λk

∥∥Ff (λ)F[L(h)φ](λ)∗
∥∥

Tr dµ(λ)

≤
∫
O∗

λk

‖Ff (λ)‖HS ‖F[L(h)φ](λ)‖HS dµ(λ)

≤
{∫

O∗
λk

‖Ff (λ)‖2
HS dµ(λ)

}1/2 {∫
O∗

λk

‖F[L(h)φ](λ)‖2
HS dµ(λ)

}1/2

,

(3.7)

where the last term equals ‖f ‖ ‖L(h)φ‖ = ‖f ‖ ‖φ‖ by (1.1).
Now we assume that∫

G

|(f |L(g)φ)|2 dG(g) =
∫

H

∫
N

|(f |L(n)L(h)φ)|2δ(h)−1 dν(n) dh < +∞ .

Then
∫
N

|(f |L(n)L(h)φ)|2 dν(n) is finite for almost all h ∈ H . Thus, we see from (3.6),
Proposition 1 and (1.1) that∫

N

|(f |L(n)L(h)φ)|2 dν(n) =
∫
O∗

λk

∥∥Ff (λ)F[L(h)φ](λ)∗
∥∥2

HS dµ(λ) . (3.8)

Therefore the integral
∫
G

|(f |L(g)φ)|2 dG(g) is equal to∫
H

∫
O∗

λk

∥∥Ff (λ)F[L(h)φ](λ)∗
∥∥2

HS δ(h)−1 dµ(λ) dh . (3.9)

Now we observe that∫
H

∥∥Ff (λ)F[L(h)φ](λ)∗
∥∥2

HS δ(h)−1 dh

=
∫

H

∫
Hλ

(
tr Ff (λ)F[L(h1h)φ](λ)∗F[L(h1h)φ](λ)Ff (λ)∗

)
δ(h1h)−1 dh1 dh .

(3.10)

Since L(h1h)φ belongs to Lk,α(N), we have by (3.5)

Pλ,αF[L(h1h)φ](λ)∗F[L(h1h)φ](λ)Pλ,α = F[L(h1h)φ](λ)∗F[L(h1h)φ](λ) ,

which means that we can regard F[L(h1h)φ](λ)∗F[L(h1h)φ](λ) as a linear operator on the
finite dimensional vector space Hλ,α . Let us consider the integral

I :=
∫

Hλ

δ(h1h)−1F[L(h1h)φ](λ)∗F[L(h1h)φ](λ) dh1 ∈ End(Hλ,α) .

We see from (2.6) that

F[L(h1h)φ](λ) = δ(h1)
1/2D(h1, λ)F[L(h)φ](λ)

= δ(h1)
1/2τλ(h1) ◦ F[L(h)φ](λ) ◦ τλ(h1)

−1 ,
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so that

F[L(h1h)φ](λ)∗F[L(h1h)φ](λ)=δ(h1)τλ(h1) ◦ F[L(h)φ](λ)∗F[L(h)φ](λ) ◦ τλ(h1)
−1.

Thus, we have

I =
∫

Hλ

τλ(h1) ◦
(
δ(h)−1F[L(h)φ](λ)∗F[L(h)φ](λ)

)
◦ τλ(h1)

−1 dh1 . (3.11)

Therefore Schur’s lemma tells us that I is a scalar operator on Hλ,α , that is, we can write
I = cPλ,α with some constant c ∈ R. Then

c nk,α = tr I = δ(h)−1‖F[L(h)φ](λ)‖2
HS ,

where nk,α := dim Hλk,α = dim Hλ,α . It follows that

I = n−1
k,αδ(h)−1‖F[L(h)φ](λ)‖2

HSPλ,α .

Thus, we see from (3.10) and (3.5) that the integral (3.9) equals

1

nk,α

∫
O∗

λk

∫
H

(
tr Ff (λ)Pλ,αFf (λ)∗

)
‖F[L(h)φ](λ)‖2

HSδ(h)−1 dh dµ(λ)

= 1

nk,α

∫
O∗

λk

∫
H

‖Ff (λ)‖2
HS‖F[L(h)φ](λ)‖2

HSδ(h)−1 dh dµ(λ) .

By (2.6), the right-hand side is rewritten as

1

nk,α

∫
O∗

λk

‖Ff (λ)‖2
HS

(∫
H

∥∥Fφ
(
h−1 · λ

)∥∥2
HS dh

)
dµ(λ) ,

which is equal to

1

nk,α

∫
O∗

λk

‖Ff (λ)‖2
HS dµ(λ)

∫
O∗

λk

‖Fφ(λ)‖2
HSDk(λ) dµ(λ)

= ‖f ‖2 · 1

nk,α

∫
O∗

λk

‖Fφ(λ)‖2
HSDk(λ) dµ(λ)

by Proposition 3 and (1.1). Hence, under the condition that (f |L(g)φ) is a square-integrable
function on G with f 	= 0, we have shown

Cφ := 1

nk,α

∫
O∗

λk

‖Fφ(λ)‖2
HSDk(λ) dµ(λ) < +∞ , (3.12)

and ∫
G

|(f |L(g)φ)|2 dG(g) = Cφ‖f ‖2 . (3.13)

Conversely, if φ ∈ Lk,α(N) satisfies the condition (3.12), the calculations above tell us that
the integral (3.9) converges for any f ∈ Lk,α(N). Thus, the right-hand side of (3.8) is finite
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for almost all h ∈ H . Then Proposition 1 implies the equality (3.8), so that we get (3.13)
again.

Theorem 1. The unitary representation (L, Lk,α(N)) of G is irreducible.

Proof. Let L be a nonzero invariant subspace of Lk,α(N), and L⊥ its orthogonal
complement. We take a nonzero φ ∈ L. Then for any f ∈ L⊥ we have by (3.13)

0 =
∫

G

|(f |L(g)φ)|2 dG(g) = Cφ‖f ‖2 ,

which implies f = 0. Indeed, this argument is valid even if Cφ is not finite. Therefore
L⊥ = {0}, and Theorem 1 is verified.

From (3.12) and (3.13) we also obtain

Theorem 2. The representation (L, Lk,α(N)) is square-integrable. The formal degree
(the Duflo-Moore operator [7]) Kk,α : Lk,α(N) → Lk,α(N) of the representation is de-
scribed as

F[Kk,αf ](λ) = nk,αDk(λ)−1Ff (λ)
(
f ∈ Lk,α(N), λ ∈ O∗

λk

)
.

Applying the general arguments in [13, I] to our setting, we obtain the following
results for the continuous wavelet transform associated to the representation (L, Lk,α(N)).

Theorem 3. For φ ∈ Lk,α(N) satisfying the admissible condition (3.12), the wavelet
transform Wφ : Lk,α(N) → L2(G) given by

Wφf (g) := C
−1/2
φ (f |L(g)φ) (f ∈ Lk,α(N))

is an isometric intertwining operator from L into the left regular representation of G.
The range of Wφ is characterized by the reproducing kernel Rφ defined by Rφ(g1, g2) :=
C−1

φ (φ|L(g−1
2 g1)φ) (g1, g2 ∈ G). The inverse formula of Wφ is given by

f = C
−1/2
φ

∫
G

Wφf (g)L(g)φ dG(g) ,

where the integral is taken in the weak sense.

For an element h of the stabilizer Hk at λk , the operator D(h, λk) maps Bλk,α onto
itself because of (3.3). Furthermore, for h ∈ Hk, n ∈ N and T ∈ Bλk,α , we see from (2.2),
(2.3), and (2.5) that

D(h, λk)
[
πλk

(n) ◦ D
(
h−1, λk

)
T
] = D(h, λk)πλk

(n) ◦ D(h, λk)
(
D
(
h−1, λk

)
T
)

= πλk
(h · n) ◦ T .

Therefore we can define a unitary representation (lk,α, Bλk,α) of the semidirect product
group Gk := N � Hk by

lk,α(h)T := D(h, λk)T , lk,α(n)T := πλk
(n) ◦ T (T ∈ Bλk,α, h ∈ Hk, n ∈ N) .

Proposition 4. The representation (L, Lk,α(N)) of G is equivalent to the induced rep-
resentation ρk,α := IndG

Gk
lk,α .
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Proof. Let L2(G, Bλk,α; lk,α) be the Hilbert space of equivalence classes of measurable
Bλk,α-valued functions ϕ on G such that

(a) ϕ(gg′) = lk,α(g′)−1ϕ(g) for g ∈ G and g′ ∈ Gk ,

(b) ‖ϕ‖2 := ∫
H

‖ϕ(h)‖2
HS dh < +∞.

Note that the invariant integral over the quotient space G/Gk is given by the integral
over H because G/Gk is isomorphic to H/Hk and Hk is compact. We realize ρk,α on
L2(G, Bλk,α; lk,α) by ρk,α(g)ϕ(g0) := ϕ(g−1g0). We shall show that the map �k,α :
Lk,α(N) → L2(G, Bλk,α; lk,α) defined by

�k,αf (g) := c
−1/2
k δ(h)−1/2D

(
h−1, h · λk

)[
πh·λk

(n)−1 ◦ Ff (h · λk)
]

(f ∈ Lk,α(N), g = (n, h) ∈ G)
(3.14)

gives a unitary equivalence between the two representations (L, Lk,α(N)) and (ρk,α ,
L2(G, Bλk,α; lk,α)). First of all, we verify that �k,αf belongs to L2(G, Bλk,α; lk,α). For
h′ ∈ Hk we have gh′ = (n, hh′) and δ(h′) = 1, so that we get by (2.5)

�k,αf
(
gh′)

= c
−1/2
k δ

(
hh′)−1/2

D
((

hh′)−1
, hh′ · λk

)[
πhh′·λk

(n)−1 ◦ Ff
(
hh′ · λk

)]
= D

((
h′)−1

, λk

)[
c
−1/2
k δ(h)−1/2D

(
h−1, h · λk

)[
πh·λk

(n)−1 ◦ Ff (h · λk)
]]

= lk,α

(
h′)−1

�k,αf (g) .

On the other hand, since gn′ = (n(h · n′), h) for n′ ∈ N , we have

�k,αf
(
gn′)

= c
−1/2
k δ(h)−1/2D

(
h−1, h · λk

)[
πh·λk

(
n
(
h · n′))−1 ◦ Ff (h · λk)

]
= c

−1/2
k δ(h)−1/2D

(
h−1, h · λk

)[
πh·λk

(
h · n′)−1 ◦ πh·λk

(n)−1 ◦ Ff (h · λk)
]

= πλk

(
n′)−1 ◦ c

−1/2
k δ(h)−1/2D

(
h−1, h · λk

)[
πh·λk

(n)−1 ◦ Ff (h · λk)
]

= lk,α

(
n′)−1

�k,αf (g) ,

where we use (2.2) and (2.3) for the third equality. Thus, the condition (a) holds for
ϕ = �k,αf . For the condition (b), we observe from (2.9), (2.10), and (1.1) that∫

H

‖�k,αf (h)‖2
HS dh = c−1

k

∫
H

‖Ff (h · λk)‖2
HSδ(h)−1 dh

=
∫
O∗

λk

‖Ff (λ)‖2
HS dµ(λ)

= ‖f ‖2 .

Therefore �k,αf ∈ L2(G, Bλk,α; lk,α), and �k,α is an isometry. Conversely, for ϕ ∈
L2(G, Bλk,α; lk,α) we can take a unique element f ∈ Lk,α(N) such that

Ff (λ) = c
1/2
k δ

(
h̃
)1/2

D
(
h̃, λk

)
ϕ
(
h̃
) (

λ = h̃ · λk ∈ O∗
λk

)
, (3.15)

because the right-hand side is independent of the choice of h̃ for which λ = h̃ · λk . Indeed,
if h̃1 · λk = λ = h̃ · λk , we can write h̃1 = h̃h′ with h′ ∈ Hk . Then we see from (2.5) and
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the condition (a) that

c
1/2
k δ

(
h̃1
)1/2

D
(
h̃1, λk

)
ϕ
(
h̃1
) = c

1/2
k δ

(
h̃h′)1/2

D
(
h̃h′, λk

)
ϕ
(
h̃h′)

= c
1/2
k δ

(
h̃
)1/2

D
(
h̃, λk

)
D
(
h′, λk

)
D
((

h′)−1
, λk

)
ϕ
(
h̃
)

= c
1/2
k δ

(
h̃
)1/2

D
(
h̃, λk

)
ϕ
(
h̃
)
.

Comparing (3.15) with (3.14), we can easily check that ϕ = �k,αf , so that �k,α is sur-
jective. Let us investigate the equivalence of the representations. For g0 = (n0, h0) and
h ∈ H , we have by (2.6)

�k,α[L(h)f ](g0)

= c
−1/2
k δ(h0)

−1/2D
(
h−1

0 , h0 · λk

)[
πh0·λk

(n0)
−1 ◦ F[L(h)f ](h0 · λk)

]
= c

−1/2
k δ(h0)

−1/2

× D
(
h−1

0 , h0 · λk

)[
πh0·λk

(n0)
−1 ◦ δ(h)1/2D

(
h, h−1h0 · λk

)
Ff
(
h−1h0 · λk

)]
.

Using (2.2) and (2.3), we rewrite the last term as

c
−1/2
k δ

(
h−1h0

)−1/2

× D
(
h−1

0 , h0 · λk

)
D
(
h, h−1h0 · λk

)[
πh−1h0·λk

(
h−1 · n0

)−1 ◦ Ff
(
h−1h0 · λk

)]
,

which equals

c
−1/2
k δ

(
h−1h0

)−1/2

× D
((

h−1h0
)−1

, h−1h0 · λk

)[
πh−1h0·λk

(
h−1 · n0

)−1 ◦ Ff
(
h−1h0 · λk

)]
by (2.5). The above is nothing but �k,αf (h−1g0) since h−1g0 = (h−1·n0, h

−1h0). Namely
we obtain

�k,α[L(h)f ](g0) = ρk,α(h)�k,αf (g0) .

For n ∈ N , we observe from (2.7)

�k,α[L(n)f ](g0)

= c
−1/2
k δ(h0)

−1/2D
(
h−1

0 , h0 · λk

)[
πh0·λk

(n0)
−1 ◦ F[L(n)f ](h0 · λk)

]
= c

−1/2
k δ(h0)

−1/2D
(
h−1

0 , h0 · λk

)[
πh0·λk

(n0)
−1 ◦ πh0·λk

(n) ◦ Ff (h0 · λk)
]

= c
−1/2
k δ(h0)

−1/2D
(
h−1

0 , h0 · λk

)[
πh0·λk

(
n−1n0

)−1 ◦ Ff (h0 · λk)
]
,

and the last term equals �k,αf (n−1g0) = ρk,α(n)�k,αf (g0) since n−1g0 = (n−1n0, h0).
Hence, Proposition 4 is proved.

Identifying Bλk,α with Hλk
⊗Hλk,α , we can interpret Proposition 4 as the description

of (L, Lk,α(N)) by the method of Kleppner and Lipsman [18]. Then the square-integrability
of (L, Lk,α(N)) can be shown by [18, I, Corollary 11.1]. We can also deduce the following
statement from [18, I, Lemma 9.7]. However, we give a direct proof for its own interest.

Theorem 4. The representations (L, Lk,α(N)) and (L, Lk′,α′(N)) of G are equivalent if
and only if k = k′ and the projective representations (τk, Hk,α) and (τk, Hk,α′) of Hk are
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equivalent, that is, there exists an isometry A : Hk,α → Hk,α′ such that τk(h)◦A=A◦τk(h)

for all h ∈ Hk .

Proof. We first prove the “if” part. It is easy to check that the map RA : Bλk,α
′ 


T �→ T ◦ A ◦ Pλk,α ∈ Bλk,α gives a unitary intertwining operator from (lk,α′ , Bλk,α
′)

onto (lk,α, Bλk,α). Therefore we obtain (L, Lk,α′(N)) ∼ (L, Lk,α(N)) by Proposition 4.
Next we shall show the “only if” part. Let � : Lk,α(N) → Lk′,α′(N) be an intertwining
operator between representations (L, Lk,α(N)) and (L, Lk′,α′(N)) of G. Take f, φ ∈
Lk,α(N) \ {0} with Cφ < +∞, and put f ′ := �(f ), φ′ := �(φ) ∈ Lk′,α′(N). Then
(f |L(g)φ) = (f ′|L(g)φ′) for g ∈ G. On the other hand, recalling (3.6), we have for
g = (n, h) ∈ G

(f |L(g)φ) =
∫
O∗

λk

tr
(
Ff (λ)F[L(h)φ](λ)∗

)
πλ(n)∗ dµ(λ) ,

(
f ′|L(g)φ′) =

∫
O∗

λ
k′

tr
(
Ff ′(λ)F

[
L(h)φ′](λ)∗

)
πλ(n)∗ dµ(λ) .

Thus, we see from Proposition 1 and (1.1) that

0 <

∫
G

|(f |L(g)φ)|2dG(g)

=
∫

G

(f |L(g)φ)
(
f ′|L(g)φ′) dG(g)

=
∫
O∗

λk
∩O∗

λ
k′

∫
H

∫
Hλ

(
tr Ff (λ)F

[
L(h1h)φ](λ)∗F[L(h1h)φ′](λ)Ff ′(λ)∗

)

× δ(h1h)−1 dh1 dh dµ(λ) .

(3.16)

Therefore O∗
λk

∩ O∗
λk′ 	= ∅, so that k = k′ by (A1). On the other hand, similarly to (3.11),

we have ∫
Hλ

δ(h1h)−1F
[
L(h1h)φ

]
(λ)∗F

[
L(h1h)φ′](λ) dh1

=
∫

Hλ

τλ(h1) ◦
(
δ(h)−1F[L(h)φ](λ)∗F

[
L(h)φ′](λ)

)
◦ τλ(h1)

−1 dh1

∈ HomHλ(Hλ,α′ , Hλ,α) .

Since the left-hand side is nonzero by (3.16), we get HomHλ(Hλ,α′ , Hλ,α) 	= {0}, which
means that (τk, Hk,α) and (τk, Hk,α′) are equivalent.

We conclude this section by presenting the following result, which is easily seen
from (3.4) and the Plancherel formula (1.1).

Proposition 5. If µ(N̂ \⊔k∈K O∗
λk

) = 0, the representation (L, L2(N)) is decomposed
into the direct sum of irreducibles as

L2(N) =
∑⊕

k∈K

∑⊕

α∈Ak

Lk,α(N) .
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4. Szegö-type kernels

For a function f ∈ L2(N), we denote by fk,α (k ∈ K, α ∈ Ak) the image of f by the
orthogonal projection onto Lk,α(N). Then fk,α is characterized as an element of L2(N)

such that

Ffk,α(λ) =
{

Ff (λ)Pλ,α

(
λ ∈ O∗

λk

)
,

0
(
λ /∈ O∗

λk

)
,

(4.1)

in view of (3.5). In this section, we shall express fk,α by a certain singular integral analogous
to the Cauchy-Szegö integral.

Let {χ(t)
k }t>0 be a family of L1-functions on the orbit O∗

λk
with respect to dµ such

that (i) 0 ≤ χ(t)
k (λ) ≤ 1, and (ii) lim

t→+0
χ(t)

k (λ) = 1 for almost all λ ∈ O∗
λk

. Then we have

χ(t)
k ∈ L2(O∗

λk
, dµ) because ‖χ(t)

k ‖2
L2 ≤ ‖χ(t)

k ‖L1 by (i). Using {χ(t)
k }t>0, we define a

family of functions {S(t)
k,α}t>0 on N by

S
(t)
k,α(n) :=

∫
O∗

λk

χ(t)
k (λ) trPλ,απλ(n)∗ dµ(λ) (n ∈ N) , (4.2)

and call S
(t)
k,α the Szegö-type kernel. Since

∫
O∗

λk

‖χ(t)
k (λ)Pλ,α‖Tr dµ(λ) = nk,α‖χ(t)

k ‖L1

and
∫
O∗

λk

‖χ(t)
k (λ)Pλ,α‖2

HS dµ(λ) = nk,α‖χ(t)
k ‖2

L2 , Proposition 1 tells us that S
(t)
k,α ∈ L2(N)

with

FS
(t)
k,α(λ) =

{
χ(t)

k (λ)Pλ,α

(
λ ∈ O∗

λk

)
,

0
(
λ /∈ O∗

λk

)
.

(4.3)

Theorem 5. For f ∈ L2(N), the convolution product f ∗ S
(t)
k,α belongs to Lk,α(N) for

all t > 0. Furthermore, one has

lim
t→+0

f ∗ S
(t)
k,α = fk,α .

Proof. By (4.2), we have S
(t)
k,α(n−1) = S

(t)
k,α(n) (n ∈ N), so that

f ∗ S
(t)
k,α(n) =

∫
N

f (n0)S
(t)
k,α

(
n−1

0 n
)
dν(n0) =

∫
N

f (n0)S
(t)
k,α

(
n−1n0

)
dν(n0)

= (
f |L(n)S

(t)
k,α

)
.

Then (1.1) together with (4.3) leads us to

f ∗ S
(t)
k,α(n) =

∫
O∗

λk

(
Ff (λ)

∣∣F[L(n)S
(t)
k,α

]
(λ)
)

HS dµ(λ)

=
∫
O∗

λk

tr
(
χ(t)

k (λ)Ff (λ)Pλ,απλ(n)∗
)
dµ(λ) .
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Similarly to (3.7), we observe∫
O∗

λk

∥∥χ(t)
k (λ)Ff (λ)Pλ,α

∥∥
Tr dµ(λ)

≤
{∫

O∗
λk

‖Ff (λ)‖2
HS dµ(λ)

}1/2 {∫
O∗

λk

∣∣χ(t)
k (λ)

∣∣2‖Pλ,α‖2
HS dµ(λ)

}1/2

= n
1/2
k,α‖f ‖ ∥∥χ(t)

k

∥∥
L2 .

We have also∫
O∗

λk

∥∥χ(t)
k (λ)Ff (λ)Pλ,α

∥∥2
HS dµ(λ) ≤

∫
O∗

λk

‖Ff (λ)‖2
HS dµ(λ) = ‖f ‖2 .

Thus, we see from Proposition 1 that f ∗ S
(t)
k,α ∈ L2(N) and that

F
[
f ∗ S

(t)
k,α

]
(λ) =

{
χ(t)

k (λ)Ff (λ)Pλ,α

(
λ ∈ O∗

λk

)
,

0
(
λ /∈ O∗

λk

)
.

(4.4)

Therefore f ∗ S
(t)
k,α belongs to Lk,α(N) by (3.5). We have by (4.1), (4.4), and (1.1)

‖fk,α − f ∗ S
(t)
k,α‖2

L2 =
∫
O∗

λk

∣∣1 − χ(t)
k (λ)

∣∣2‖Ff (λ)Pλ,α‖2
HS dµ(λ) .

The dominated convergence theorem tells us that the right-hand side converges to 0 as
t → +0.

Corollary 1. One has

Lk,α(N) =
{

f ∈ L2(N) ; f = lim
t→+0

f ∗ S
(t)
k,α

}
.

As an example, we consider the case that G is the ‘ax + b’-group with N = R and
H = R+. We identify N̂ with R by πλ(x) := e−iλx (x ∈ N, λ ∈ R), so that the Plancherel
measure dµ(λ) equals (2π)−1dλ. The representation (L, L2(R)) of G is described as

L(b, a)f (x) = a−1/2f ((x − b)/a) (b, x ∈ N, a ∈ H) ,

and the irreducible decomposition is given by L2(R) = L+(R) ⊕ L−(R) with

L±(R) :=
{

f ∈ L2(R) ; Ff (λ) = 0 if λ /∈ O∗±
}

,

where O∗± := { λ ∈ R ; ±λ > 0 }. Note that the projection Pλ,α is trivial in this case.

Putting χ(t)
± (λ) := e−t |λ|, we have

S
(t)
± (x) =

∫
O∗±

χ(t)
± (λ)πλ(x) dµ(λ) = − 1

2πi(x ± it)
,

so that the convolution f ∗ S
(t)
± (x) is nothing but the classical Cauchy-Szegö integral [22,

Chapter 3, Section 3].
On the other hand, when the argument is applied to the Heisenberg group case dis-

cussed in [14], we obtain the singular integral investigated by Strichartz [23].
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