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ABSTRACT. A pair of Clifford-Fourier transforms is defined in the framework of Clifford analysis,
as operator exponentials with a Clifford algebra-valued kernel. It is a genuine Clifford analysis
construct, which is shown to be a refinement of the classical multi-dimensional Fourier transform.
An adequate operational calculus is developed.

1. Introduction

The Fourier Transform is without any doubt one of the most powerful tools in pure and
applied mathematics. Also in Clifford analysis — a direct and elegant generalization to
higher dimension of the theory of holomorphic functions in the complex plane — extensive
use is made of the classical multi-dimensional Fourier transform. The idea of generalizing
the Fourier Transform to the Clifford analysis setting was already performed by Sommen
in [8, 9] where a generalized Fourier transform was introduced in connection with similar
generalizations of the Cauchy, Hilbert, and Laplace transforms; its definition is based on
an exponential function which is a natural generalization of the classical Fourier kernel.

Clifford analysis has gained more and more interest over the years and has grown
out to a proper branch of classical analysis. One of its most fundamental features is the
factorization of the Laplace operator (−�m). Whereas in general the square root of the
Laplace operator is only a pseudo-differential operator, by embedding Euclidean space into a
Clifford algebra,

√−�m can be realized as a first order, elliptic, rotation-invariant, Clifford-
vector differential operator, the so-called Dirac operator ∂x , satisfying −�m = ∂2

x . It is
precisely this Dirac operator ∂x which underlies the notion of monogenicity of a function, a
notion which is the multi-dimensional counterpart to that of holomorphicity in the complex
plane. Monogenic functions have a special relationship with harmonic functions of several
variables in that they are refining their properties. Note, for instance, that each harmonic
function h(x) can be split as h(x) = f (x) + x g(x) with f, g monogenic, and that a real
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harmonic function is always the real part of a monogenic one, which does not need to be
the case for a harmonic function of several complex variables.

It occurred to us that, in the same order of ideas, the classical multi-dimensional
Fourier transform, should not be replaced nor improved by a Clifford analysis alternative.
However, a refinement of the classical Fourier transform automatically appears within the
language of Clifford analysis in much the same way as the notion of electron spin appears
in the Pauli matrix formalism. It is what we call the ”Clifford-Fourier” transform.

In our approach the classical Fourier transform in R
m:

F[f ](y) =
(

1√
2π

)m ∫
Rm

exp (−i < x, y >) f (x) dV (x)

with < x, y > the standard inner product on R
m, is seen as the operator exponential

F = exp
(
−i

π

2
H

)
=

∞∑
n=0

1

n!
(
−i

π

2

)n

Hn

where H is the scalar-valued operator

H = 1

2

( − �m + r2 − m
)
.

Splitting H into a sum of Clifford algebra-valued second order operators containing the
angular Dirac operator �, leads in a natural way to a pair of transforms FH± , the harmonic
average of which is precisely the standard Fourier transform F . Introducing the square root
of FH± in the sense of the Fractional Fourier Transform (see e.g., [6] and [7]) the desired
factorization of F is then obtained:√

FH+
√

FH− = F .

Moreover, it is worth mentioning that in the two-dimensional case, which we treat in a
separate article (see [4]), the newly introduced Clifford-Fourier transform may be qualified
as a co-axial Fourier transform, since its integral kernel can be explicitly calculated to be,

up to constants, exp (x ∧ y) = cos (|x ∧ y|) + x ∧ y

|x ∧ y| sin (|x ∧ y|) whereby |x ∧ y| takes

constant values on co-axial cylinders.
The outline of the article is as follows. For the reader who is not familiar with

Clifford analysis, we recall some of its basic notions and results in Section 2. In Section 3
we discuss two alternative approaches to the classical Fourier transform. Next we discuss
two commuting operators O1 and O2 (Section 4.1) which are used to split the scalar-valued
kernel operator H and thus are crucial to the definition of the Clifford-Fourier transform
(Section 4.2). The eigenfunctions of this new Clifford-Fourier transform are computed and
its relation with the standard Fourier transform is established. In a final section we mention
some operational formulae.

2. Some Basic Notions of Clifford Analysis

Clifford analysis (see e.g., [1] and [5]) offers a function theory which is a higher-dimensional
analogue of the theory of the holomorphic functions of one complex variable.
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The functions considered are defined in R
m (m > 1) and take their values in the Clif-

ford algebra Rm or its complexification Cm = Rm ⊗ C. If (e1, . . . , em) is an orthonormal
basis of R

m, then a basis for the Clifford algebra Rm is given by (eA : A ⊂ {1, . . . , m})
where e∅ = 1 is the identity element. The non-commutative multiplication in the Clifford
algebra is governed by the rules:

e2
j = −1 , j = 1 , . . . , m .

ej ek + ekej = 0 , j �= k , j, k = 1, . . . , m .

Conjugation is defined as the anti-involution for which

ej = −ej , j = 1, . . . , m

with the additional rule i = −i in the case of Cm.
For k = 0, 1, . . . , m fixed, we call

R
k
m =

{ ∑
#A=k

aAeA ; aA ∈ R

}

the subspace of k-vectors, i.e., the space spanned by the products of k different basis
vectors.

The Euclidean space R
m is embedded in the Clifford algebras Rm and Cm by identi-

fying (x1, . . . , xm) with the vector variable x given by

x =
m∑

j=1

ej xj .

The product of two vectors splits up into a scalar part and a 2-vector, also called bivector,
part:

x y = x . y + x ∧ y ,

where

x . y = − < x, y >= −
m∑

j=1

xjyj

and

x ∧ y =
m∑

i=1

m∑
j=i+1

eiej (xiyj − xjyi) .

Note that the square of a vector variable x is scalar-valued and is the norm squared up to a
minus sign:

x2 = − < x, x >= −|x|2 .

The central notion in Clifford analysis is the notion of monogenicity, the higher-
dimensional analogue of holomorphicity.
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An Rm- or Cm-valued function F(x1, . . . , xm) is called left monogenic in an open
region of R

m, if in that region:

∂xF = 0 .

Here ∂x is the Dirac operator in R
m:

∂x =
m∑

j=1

ej ∂xj
,

an elliptic vector differential operator of the first order, splitting the Laplace operator:

�m = −∂2
x .

The notion of right monogenicity is defined in a similar way by letting act the Dirac operator
from the right.

Introducing spherical co-ordinates in R
m by:

x = rω , r = |x| ∈ [0, +∞[ , ω ∈ Sm−1

with Sm−1 the unit sphere in R
m, the Dirac operator takes the form:

∂x = ω

(
∂r + 1

r
�

)
,

where

� = x ∧ ∂x = −
m∑

i=1

m∑
j=i+1

eiej (xi∂xj
− xj ∂xi

)

is the so-called angular Dirac operator which depends only on the angular co-ordinates.
Another fundamental operator is the so-called Euler operator

E =< x, ∂x >=
m∑

i=1

xi∂xi
,

which measures the degree of homogeneity.
In the sequel the monogenic homogeneous polynomials will play an important rôle.
A left, respectively right, monogenic homogeneous polynomial Pk of degree k (k ≥ 0)

in R
m is called a left, respectively right, inner spherical monogenic of order k. The set of all

left, respectively right, inner spherical monogenics of order k will be denoted by M+
� (k),

respectively M+
r (k). The dimension of M+

� (k) is given by

dim
(
M+

� (k)
) = (m + k − 2)!

(m − 2)! k! .

The set {
φs,k,j (x) = exp

(
−|x|2

2

)
Hs,m,k

(√
2x

)
P

(j)
k

(√
2x

)}
,
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s, k ∈ N ∪ {0}, j = 1, . . . , dim
(
M+

� (k)
)
, constitutes an orthogonal basis for the space

L2(R
m) of square integrable functions (see [2]).
Here {

P
(j)
k (x); j = 1, 2, . . . , dim

(
M+

� (k)
)}

denotes an orthonormal basis of M+
� (k). The polynomials Hs,m,k(x) are the so-called

generalized Clifford-Hermite polynomials introduced by Sommen in [10]; they are a multi-
dimensional generalization to Clifford analysis of the classical Hermite polynomials on
the real line. Note that Hs,m,k(x) is a polynomial of degree s in the variable x with real
coefficients depending on k. Furthermore H2s,m,k(x) only contains even powers of x, while
H2s+1,m,k(x) only contains odd ones.

The basis functions φs,k,j satisfy the orthogonality relation

(
φs,k1,j1 , φt,k2,j2

) =
∫

Rm

φs,k1,j1(x) φt,k2,j2(x) dV (x)

= γs,k1

2m/2
δs,t δk1,k2 δj1,j2 , (2.1)

with dV (x) the Lebesgue measure on R
m and γs,k1 real constants depending on the parity

of s.
Hence, a square integrable function f ∈ L2(R

m) can be expanded in terms of the
basis functions φs,k,j :

f (x) =
∞∑

s=0

∞∑
k=0

dim(M+
� (k))∑

j=1

φs,k,j (x) as,k,j . (2.2)

The orthogonality relation (2.1) implies that the expansion coefficients as,k,j are given by
the integral representation

as,k,j = 2m/2

γs,k

∫
Rm

φs,k,j (x) f (x) dV (x) . (2.3)

Note that in general these coefficients are Clifford algebra-valued.

3. The Classical Fourier Transform

The classical Fourier transform in R
m

F[f ](y) =
(

1√
2π

)m ∫
Rm

exp (−i < x, y >) f (x) dV (x) (3.1)

has an interesting alternative representation as an operator exponential:

F[f ] = exp
(
−i

π

2
H

)
[f ] =

∞∑
n=0

1

n!
(
−i

π

2

)n

Hn[f ] (3.2)

where the scalar-valued differential operator H is given by

H = 1

2

( − �m + r2 − m
)
.
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Note that the operators H and exp
( − i

π

2
H

)
are Fourier invariant, i.e.,

F
[
H[f ]] = H

[
F[f ]] and F

[
exp

(
−i

π

2
H

)
[f ]

]
= exp

(
−i

π

2
H

)[
F[f ]] .

The equivalence of this operator exponential form (3.2) with the traditional integral form
(3.1) can be found in classical textbooks such as [7]. However, it may be proved in a rather
easy way in the framework of Clifford analysis. Indeed, in [2] we have shown that the
L2(R

m)-basis functions φs,k,j are simultaneous eigenfunctions of the Fourier transform
operator F in integral form and of the kernel operator H. We thus have at the same time:

F[φs,k,j ](y) =
(

1√
2π

)m ∫
Rm

exp (−i < x, y >) φs,k,j (x) dV (x)

= exp
(
−i(s + k)

π

2

)
φs,k,j (y)

and

H
[
φs,k,j (x)

] = (s + k) φs,k,j (x) .

It then follows that

exp
(
−i

π

2
H

)
[φs,k,j ] =

∞∑
n=0

1

n!
(
−i

π

2

)n

Hn[φs,k,j ]

=
∞∑

n=0

1

n!
(
−i

π

2

)n

(s + k)nφs,k,j

= exp
(
−i

π

2
(s + k)

)
φs,k,j

= F[φs,k,j ]
which gives rise to the desired equivalence in L2(R

m).
Moreover, if the function f ∈ L2(R

m) is developed in terms of the basis functions
φs,k,j according to (2.2), then its Fourier transform takes the series expansion form

F[f ](y) =
∞∑

s=0

∞∑
k=0

dim(M+
� (k))∑

j=1

exp
(
−i(s + k)

π

2

)
φs,k,j (y) as,k,j .

Note that from this series expansion the standard integral form is re-obtained by substi-
tuting expression (2.3) for the coefficients as,k,j and applying the Mehler formula for the
generalized Clifford-Hermite polynomials, established in [2].

4. The Clifford-Fourier Transform

As already explained in the introduction (Section 1) we aim at defining a Clifford-Fourier
transform as an operator exponential involving a Clifford algebra-valued operator kernel.
As ∂2

x = −�m and x2 = −r2, the classical operator kernel H also reads

H = 1

2

(
∂2
x − x2 − m

)
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and in our quest for an appropriate operator, a “factorization” of H into linear operators
seemed promising. This lead us to considering the operators

O1 = 1

2
(∂x − x)(∂x + x) and O2 = 1

2
(∂x + x)(∂x − x) ,

which turned out to be crucial in our approach.

4.1 The Operators O1 and O2

The operators O1 and O2 were already introduced in [3] while studying (anti-) monogenic
operators in the generalized Clifford-Hermite polynomial setting. They satisfy the following
properties.

Proposition 1. One has

(i)

O1 = 1

2

(
∂2
x − x2) +

(
� − m

2

)
= H + �

(ii)

O2 = 1

2

(
∂2
x − x2) −

(
� − m

2

)
= H − � + m

(iii)

O1 + O2 = ∂2
x − x2 = 2

(
H + m

2

)
(iv)

O1 − O2 = 2
(
� − m

2

)
(v) O1 and O2 are Fourier invariant operators

(vi) O1 and O2 are commuting operators

(vii)

O1
[
φs,k,j (x)

] = Cs,m,k φs,k,j (x)

with

Cs,m,k =
{

s for s even

s − 1 + m + 2k for s odd

(viii)

O2
[
φs,k,j (x)

] = Cs+1,m,k φs,k,j (x) .

Proof.
(i) (ii) Taking into account that the angular Dirac operator � may be written as

� = −1

2
(x ∂x − ∂x x − m) ,
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the results follow from a straightforward computation.

(iii) (iv) Trivial.

(v) This property follows directly from the Fourier invariance of the operators H and �.

(vi) As � commutes with the Laplace operator �m and with the multiplication operator r ,
we have that [

1

2

(
∂2
x − x2), �]

=
[

1

2

( − �m + r2), �]
= 0

which, in view of (i) and (ii) yields [O1, O2] = 0.

(vii) (viii) It was proved in [3] that

(∂x − x)
[
φs,k,j (x)

] = −√
2 φs+1,k,j (x)

and

(∂x + x)
[
φs,k,j (x)

] = −√
2 Cs,m,k φs−1,k,j (x) .

By combining these results, the basis functions φs,k,j are found to be eigenfunctions of O1
and O2.

Remark. Note that (∂x − x) increases the degree of the generalized Clifford-Hermite
polynomial, so that it may be qualified as a creation operator. In the same order of ideas,
(∂x + x) is an annihilation operator.

4.2 The Definition of the Clifford-Fourier Transform

In view of Proposition 1 (vii) and (viii), we define the Clifford-Fourier transform as the pair
of transformations

FH+ = exp
(
−i

π

2
H+)

and FH− = exp
(
−i

π

2
H−)

with operators H+ and H− closely linked to the operators O1 and O2. As we want the
classical Fourier transform to be the harmonic average of the Clifford-Fourier transform
pair {FH+ , FH−}, i.e.,

F2 = FH+ FH−

with F2 the parity operator:

F2[f ](x) = f (−x) ,

the operators H+ and H− must satisfy

H+ + H− = 2 H
or

H+ + H− = ∂2
x − x2 − m = O1 + O2 − m .

This eventually inspires the following “symmetric” definition of H+ and H−.

Definition 1. One puts

H+ = O1 − m

2
and H− = O2 − m

2
.

Note that the operators H+ and H− contain a scalar part and a bivector part. The
following properties are easily proved.
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Proposition 2. One has

(i)

H+ = 1

2

(
∂2
x − x2) + � − m = H +

(
� − m

2

)
H− = 1

2

(
∂2
x − x2) − � = H −

(
� − m

2

)
(ii) H+ and H− are Fourier invariant

(iii)

H±[
φs,k,j (x)

] = C±
s,m,k φs,k,j (x)

with

C+
s,m,k := Cs,m,k − m

2
=

{
s − m

2 for s even

s − 1 + m
2 + 2k for s odd

and

C−
s,m,k := Cs+1,m,k − m

2
=

{
s + m

2 + 2k for s even

s + 1 − m
2 for s odd .

Corollary 1. The basis functions φs,k,j are eigenfunctions of the Clifford-Fourier trans-
form:

FH±
[
φs,k,j

]
(y) = exp

(
−i

π

2
C±

s,m,k

)
φs,k,j (y) .

Now if f ∈ L2(R
m) is expanded w.r.t. the basis

{
φs,k,j (x) ; s, k ∈ N ∪ {0}, j =

1, . . . , dim
(
M+

� (k)
)}

, the eigenvalue equation of Corollary 1 immediately yields the series
representation of the Clifford-Fourier transform:

FH±[f ](y) =
∞∑

s=0

∞∑
k=0

dim(M+
� (k))∑

j=1

exp
(
−i

π

2
C±

s,m,k

)
φs,k,j (y) as,k,j

the coefficients as,k,j being given by (2.3).
Moreover, as the orthogonal L2-basis

{
φs,k,j (x) ; s, k ∈ N ∪ {0}, j = 1, . . . ,

dim
(
M+

� (k)
)}

consists of eigenfunctions of both the operators H and �, one can easily
verify the following properties.

Proposition 3.
(i) The operators H, �, O1, O2, H+, and H− are self-adjoint, i.e., for all f, g ∈ L2(R

m)

and T any of the mentioned operators one has

(T [f ], g) = (f, T [g]) .

(ii) The operators H, O1, and O2 are non-negative, i.e., for each f ∈ L2(R
m) and T any

of the mentioned operators one has[(
T [f ], f )]

0 ≥ 0 ,
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where [λ]0 denotes the scalar part of the Clifford number λ.

Next, by means of Proposition 2 (i), we obtain in terms of operator exponentials

FH± = exp
(
−i

π

2

(
H ± � ∓ m

2

))
= exp

(
∓i

π

2

(
� − m

2

))
exp

(
−i

π

2
H

)
= exp

(
∓i

π

2

(
� − m

2

))
F . (4.1)

This establishes the relationship between the classical Fourier transform and the newly
introduced Clifford-Fourier transform. Note that use has been made of the commuting
property of the operators H and �, so that indeed

exp
(
−i

π

2
(H ± �)

)
= exp

(
−i

π

2
H

)
exp

(
∓i

π

2
�

)
= exp

(
∓i

π

2
�

)
exp

(
−i

π

2
H

)
.

It thus turns out that the Clifford-Fourier transform is obtained as the composition of the
classical Fourier transform with the operator exponential

exp
(
∓i

π

2

(
� − m

2

))
.

As an immediate consequence, we obtain an integral representation for the Clifford-Fourier
transform:

FH±[f ](y)=
(

1√
2π

)m ∫
Rm

exp
(
∓i

π

2

(
�y − m

2

))[
exp (−i < x, y >)

]
f (x) dV (x) .

Introducing the square root of the Clifford-Fourier transforms, in the sense of the
Fractional Fourier Transform (see [6] and [7]), by

√
FH± = exp

(
−i

π

4
H±)

we also obtain that√
FH+

√
FH− = √

FH−
√

FH+ = exp
(
−i

π

4

(
H+ + H−)) = exp

(
−i

π

2
H

)
leading to the factorization of the standard Fourier transform:

F = √
FH+

√
FH− = √

FH−
√

FH+ .

In [4] we study the two-dimensional Clifford-Fourier transform, since in this special
two-dimensional case we succeed in finding a closed form for the kernel of the above
mentioned integral representation. This closed form enables us to generalize the well-
known properties of the classical multi-dimensional Fourier transform, as well in the L1 as
in the L2 context.

Note that each operator which is (anti-) invariant under the classical Fourier transform
and commutes with the angular Dirac operator �, is also (anti-) invariant under the Clifford-

Fourier transform. For example, the operators �− m

2
and E+ m

2
are, respectively, invariant
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and anti-invariant under the classical Fourier transform; as they both commute with the
angular Dirac operator �, they show the (anti-)invariance property w.r.t the Clifford-Fourier
transform.

For the inversion of the Clifford-Fourier transform, it suffices to observe that

(FH±)−1 = exp
(
i
π

2
H±)

= exp
(
±i

π

2

(
� − m

2

))
F−1 .

Finally, using the notation TT = exp
( − i

π

2
T

)
, we can draw the following picture

5. Operational Calculus

As is the case for the classical Fourier transform, an operational calculus may be based upon
the Clifford-Fourier transform. The operational formulae are derived from the relation (4.1)
expressing the Clifford-Fourier transform in terms of the classical Fourier transform F . One
can easily prove the following results.

Proposition 4. The Clifford-Fourier transform satisfies:

(i) the linearity property

FH±[f λ + gµ] = FH±[f ] λ + FH±[g] µ for λ, µ ∈ Cm

(ii) the change of scale property

FH±
[
f (ax)

]
(y) = 1

am
FH±

[
f (x)

] (
y

a

)
for a ∈ R+
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(iii) the multiplication rule

FH±
[
xf (x)

]
(y) = ∓ ∂y FH∓

[
f (x)

]
(y)

and more generally

FH±
[
x2nf (x)

]
(y) = (−1)n ∂2n

y FH±
[
f (x)

]
(y)

FH±
[
x2n+1f (x)

]
(y) = ∓ (−1)n ∂2n+1

y FH∓
[
f (x)

]
(y)

(iv) the differentiation rule

FH±
[
∂xf (x)

]
(y) = ∓ y FH∓

[
f (x)

]
(y)

and more generally

FH±
[
∂2n
x f (x)

]
(y) = (−1)n y2n FH±

[
f (x)

]
(y)

FH±
[
∂2n+1
x f (x)

]
(y) = ∓ (−1)n y2n+1 FH∓

[
f (x)

]
(y)

(v) the mixed product rule

FH±
[
(x∂x)

nf (x)
]
(y) = (−1)n (∂yy)n FH±

[
f (x)

]
(y)

FH±
[
(∂xx)nf (x)

]
(y) = (−1)n (y∂y)

n FH±
[
f (x)

]
(y) .

As the Fourier transform of a radial function remains radial, and the angular Dirac
operator � does not affect radial functions, the next result follows readily.

Proposition 5. For a radial function f one has

FH±[f ] = exp
(
±i

π

4
m

)
F[f ]

and in particular,

FH±[δ] = exp
(
±i

π

4
m

) 1(√
2π

)m

and

FH±[1] = exp
(
±i

π

4
m

) (√
2π

)m
δ .
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[5] Delanghe, R., Sommen, F., and Souček, V. (1992). Clifford Algebra and Spinor-Valued Functions, Kluwer
Academic Publishers, Dordrecht.



The Clifford-Fourier Transform 681

[6] Namias, V. (1980). The fractional order Fourier transform and its application to quantum mechanics, J. Inst.
Math. Appl. 25, 241–265.

[7] Ozaktas, H. M., Zalevsky, Z., and Kutay, M. A. (2001). The Fractional Fourier Transform, Wiley, Chichester.

[8] Sommen, F. (1982). Hypercomplex Fourier and Laplace transforms I, Illinois J. Math. 26(2), 332–352.

[9] Sommen, F. (1983). Hypercomplex Fourier and Laplace transforms II, Complex Variables: Theory and
Application, 1, 209–238.

[10] Sommen, F. (1988). Special Functions in Clifford analysis and axial symmetry, J. Math. Anal. Appl. 130(1),
110–133.

Received December 08, 2004

Revision received April 28, 2005

Clifford Research Group, Department of Mathematical Analysis
Faculty of Engineering, Ghent University, Galglaan 2, 9000 Gent, Belgium

e-mail: fb@cage.ugent.be

Clifford Research Group, Department of Mathematical Analysis
Faculty of Engineering, Ghent University, Galglaan 2, 9000 Gent, Belgium

e-mail: nds@cage.ugent.be

Clifford Research Group, Department of Mathematical Analysis
Faculty of Sciences, Ghent University, Galglaan 2, 9000 Gent, Belgium

e-mail: fs@cage.ugent.be


