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ABSTRACT. In this article we obtain the boundedness of the periodic, discrete and ergodic
bilinear Hilbert transform, from Lp1 × Lp2 into Lp3 , where 1/p1 + 1/p2 = 1/p3, p1, p2 > 1,
and p3 ≥ 1. The main techniques are a bilinear version of the transference method of Coifman
and Weiss and certain discretization of bilinear operators. In the periodic case, we also obtain the
boundedness for 2/3 < p3 < 1.

1. Introduction

If T : S(R) × S(R) → S ′(R) is a continuous bilinear operator which commutes with
simultaneous translations then, in the distributional sense, T can be represented as

T (f, g)(x) =
∫

R2
f̂ (ξ)ĝ(ν)m(ξ, ν)e2πix(ξ+ν) dξ dν ,

for Schwarzt test functions f and g belonging to S(R). It has been of great interest in the
last decades to find conditions on the symbol m such that T extends to a bounded operator
from Lp(R)× Lq(R) → Lr(R) whenever 1/r = 1/p + 1/q (see for example, the works
of [7, 11, 12, 14], or [17]). In particular, if

T (f, g)(x) =
∫

Rn

K(y)f (x − y)g(x + y) dy ,

where K(y) = �(y′)
|y|n , y

′ ∈ �n−1 and � is an odd-function then

T (f, g)(x) = 1

2

∫
�n−1

�(θ)

(∫ ∞

−∞
f (x − tθ)g(x + tθ)

dt

t

)
dθ .
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The operator inside the bracketsHθ(f, g)(x) = ∫∞
−∞ f (x− tθ)g(x+ tθ) dt

t
is the so-called

uni-directional bilinear Hilbert transform whose boundedness can be proved directly from
the boundedness of the bilinear Hilbert transform

H(f, g)(s) =
∫ ∞

−∞
f (s − t)g(s + t)

dt

t
, s ∈ R .

This operator appeared for the first time in 1960, when A .P. Calderón was analyzing Cauchy
integrals on Lipschitz curves and, in particular, the boundedness on L2(R) of the first
commutator with a kernel A(x)−A(y)

(x−y)2 where A′ ∈ L∞(R), and he needed to prove that the

operator H maps boundedly L2(R)× L2(R) → L1(R) (see [6, 16]).
After several articles concerning the problem, M. Lacey and C. Thiele (see [18, 20,

21]) proved Calderón’s conjecture showing that H : Lp(R)× Lq(R) → Lr(R) whenever
p, q > 1 and 1/p + 1/q = 1/r < 3/2, (see also [13]).

Since then, multilinear operators have become a matter of great interest in Harmonic
Analysis.

In 2001, D. Fan and S. Sato [10] were able to show the boundedness of the bilinear
Hilbert transform on the torus

HT(f, g)(x) =
∫

T

f (x − y)g(x + y) cot(πy) dy ,

by transferring the result from R. Their proof relies upon some DeLeeuw type transfer-
ence methods for multilinear multipliers (see [9]). Similar techniques have been recently
extended in [3] and [4].

Our aim in this article will be to study the boundedness of the bilinear Hilbert transform
in different measure spaces. In particular, we shall obtain the boundedness (on the same
range but p3 ≥ 1) of the discrete Hilbert transform

HZ(a, b)(m) =
∑
n�=0

am−nbn+m
n

,

of the ergodic Hilbert transform

HT (f, g)(x) =
∑
n�=0

T nf (x)T −ng(x)
n

,

where T is an ergodic transformation acting on Lpi (�) for a certain σ -finite measure space
�, and, hence also of

HD(f, g)(x) =
∑
n�=0

f (x − n)g(x + n)

n
,

and, we shall also give a new proof of the result of Fan and Sato about the boundedness of
the bilinear Hilbert transform in the torus.

The main technique is based in the so-called transference method of R. Coifman and
G. Weiss (see [8]). This method was introduced in 1977 and since then, it has been developed
and extended by many other people (see [2], or [1]) and has shown to be an extremely useful
tool to prove the boundedness of many operators defined on certain measure space assuming
that we know the boundedness of a related convolution operator on a certain group.
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In 1996, L. Grafakos and G. Weiss (see [15]) proved a first result concerning a
transference method for multilinear operators. They consider a multilinear operator T
defined on an amenable group G by

T (g1, . . . , gk)(v) =
∫
Gk
K(u1, . . . , uk)g1

(
u−1

1 v
)
. . . gk

(
u−1
k v

)
dλ(u1) . . . dλ(uk) ,

with gj in some dense subset of Lpj (G) and where K is a kernel on Gk which may not be
integrable, and they are able to transfer the boundedness of T : Lp1(G) × . . . Lpk (G) →
Lp0(G)whenever 1/p0 = 1/p1 + . . .+1/pk to the boundedness of operator T̃ : Lp1(µ)×
. . . Lpk (µ) → Lp0(µ) where (M,µ) is a measure space and

T̃ (f1, . . . , fk)(x) =
∫
Gk
K(u1, . . . , uk)

(
R1
u1
f1
)
(x) . . .

(
Rkukfk

)
(x) dλ(u1) . . . dλ(uk) ,

where fj is in some dense subset ofLpj (M), andRj : G → B(Lpj (M)) (j = 0, 1, . . . , k)

are representations which are connected through R0
vR

j
u = R

j
uv for all u, v ∈ G and 1 ≤

j ≤ k, and satisfy certain boundedness conditions.
In this article, we shall develop a transference method for bilinear operators in the

same spirit as the one started by Coifman and Weiss for linear operators, which will allow us
to transfer the boundedness of bilinear operators such as the bilinear Hilbert transform on R

to other groups, recovering the Fan and Sato transference result from our general principle.
We shall restrict ourselves to the two variable case, to locally compact abelian groups G
and to integrable kernels (although our results will work in multilinear situation, amenable
groups and more general kernels). A much more detailed study of this type of transference
will be undertaken in [5]. Here, we shall be more concerned about the applications related
to the bilinear Hilbert transform on measure spaces.

The second technique that we shall use concerns the discretization of bilinear opera-
tors.

2. Main Techniques: Transference Method and
Discretization

2.1 Transference Method for Bilinear Operators

LetK ∈ L1(G) be a kernel with compact support and let 1 ≤ p1, p2 < ∞ and 0 < p3 < ∞
such that

1

p3
= 1

p1
+ 1

p2
·

From now on, p1, p2 and p3 will satisfy the above relation.
Consider the mapping

BK(φ,ψ)(v) =
∫
G

φ
(
u−1v

)
ψ(uv)K(u) dm(u) ,

for φ ∈ Lp1(G) and ψ ∈ Lp2(G), wherem is the Haar measure onG, and let us define the
transference operator TK : Lp1(µ)× Lp2(µ) → Lp3(µ) by

TK(f, g)(x) =
∫
G

(
R1
u−1f

)
(x)
(
R2
ug
)
(x)K(u) dm(u) ,
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where Rj : G → B(Lpj (µ)) are strongly continuous mappings for j = 1, 2. Then:

Theorem 1. Under the above conditions, if, for every v ∈ G, there exist Aj > 0 such
that ∥∥Rjvf ∥∥Lpj ≤ Aj‖f ‖Lpj (2.1)

and there exists a strongly continuous mapping R3 : G → B(Lp3(µ)) satisfying that, for
every u, v ∈ G and every f ∈ Lp1(M) and g ∈ Lp2(M),

R3
v

(
R1
u−1fR

2
ug
) = R1

vu−1fR
2
vug , (2.2)

and such that, for every v ∈ G, there exists B > 0 satisfying

‖f ‖Lp3 (M) ≤ B
∥∥R3

vf
∥∥
Lp3 (M)

. (2.3)

then, the bilinear operator TK : Lp1(µ)× Lp2(µ) → Lp3(µ) is bounded and it has norm
bounded by Np1,p2(K)A1A2B where Np1,p2(K) stands for the norm of the bilinear map
BK in the corresponding spaces.

Proof. Using the continuity of R3
v and (2.2), we get that

R3
v(TK(f, g)) =

∫
G

R3
v

(
R1
u−1fR

2
ug
)
K(u) dm(u)

=
∫
G

R1
vu−1fR

2
vugK(u) dm(u) ,

and by (2.3), we obtain that, for every f ∈ Lp1(�), g ∈ Lp2(�), and every open set
V ⊂ G,

‖TK(f, g)‖p3
Lp3 (µ)

≤ Bp3
1

m(V )

∫
V

∫
�

∣∣R3
vTK(f, g)

∣∣p3 dµ dm(v) .

Now, we can use similar arguments to those given in [8]. For any ε > 0, let V ∈ V such
that

max

{
m(VC)

m(V )
,
m
(
VC−1

)
m(V )

}
≤ 1 + ε ,

with C = supp K . Then,

‖TK(f, g)‖p3
Lp3 (µ)

≤ Bp3

m(V )

∫
�

∫
V

∣∣∣∣
∫
G

(
R1
vu−1f

)
χVC−1

(
vu−1)(R2

vug
)
χVC(vu)K(u) dm(u)

∣∣∣∣
p3

dµ dm(v)

≤ Bp3
1

m(V )

∫
�

∥∥BK(R1
uf χVC−1 , R

2
ugχCV

)∥∥p3
p3
dµ

≤ Bp3Np1,p2(K)
p3

· 1

m(V )

∫
�

[(∫
VC−1

∣∣R1
vf
∣∣p1 dm(v)

)p3/p1(∫
VC

∣∣R2
vg
∣∣p2 dm(v))

)p3/p2]
dµ

≤ Bp3Np1,p2(K)
p3

1

m(V )

(∫
VC−1

∥∥R1
vf
∥∥p1
Lp1

)p3/p1
(∫

VC

∥∥R2
vg
∥∥p2
Lp2

)p3/p2

≤ Bp3A
p3
1 A

p3
2 Np1,p2(K)

p3(1 + ε)||f ||p3
p1 ||g||p3

p2 ,

from which the result follows.
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2.2 Discretization Techniques

Let us denote Au = u+A where u ∈ R and A is an interval in R and let I = (−1/4, 1/4)
and p ≥ 1. Denote by Q : Lp(R) → p(Z) the bounded operator defined by

f →
(∫

In

f (t) dt

)
n∈Z

and by P : p(Z) → Lp(R) the map defined by

(an)n∈Z → f =
∑
n∈Z

anχIn .

Observe that ‖Q‖ = 2−1/p′
and ‖P ‖ = 2−1/p.

Proposition 1. Let K be an integrable kernel in L1(R) and let us define

Kn =
∫
I

∫
(n+Iu)∩(n−Iu)

K(t) dt du .

If

TK(f, g)(x) =
∫

R

f (x − t)g(x + t)K(t) dt

then
QTK(Pa, Pb)(m) = T(Kn)(a, b)(m) =

∑
n∈Z

am−nbm+nKn .

In particular, for p3 ≥ 1, one gets ‖T(Kn)‖p1,p2 ≤ 1
2‖TK‖p1,p2 , where ‖T(Kn)‖p1,p2

stands for the norm of the bilinear map T(Kn) from p1(Z) × p2(Z) to p3(Z) and
‖TK‖p1,p2 stands for the norm of the bilinear map TK from Lp1(R)× Lp2(R) to Lp3(R).

Proof. Given finite sequences a, b, we have that

TK(Pa, Pb)(x) =
∑
n,m

anbmTK(χIn, χIm)(x)

=
∑
n,m

anbm

∫
(x−In)∩(−x+Im)

K(t) dt

=
∑
n,m

anbm

∫
(x−n+I )∩(−x+m+I )

K(t) dt .

Now, it is clear that (x−n+ I )∩ (−x+m+ I ) �= ∅, if and only if |2x− (n+m)| <
1/2, and hence, given k ∈ Z and x ∈ Ik , (x − n + I ) ∩ (−x + m + I ) �= ∅ implies that
|2k − (n+m)| < 1; that is 2k = n+m. Thus,∫

Ik

TK(Pa, Pb)(x) dx =
∑
n,m

anbm

∫
k+I

∫
(x−n+I )∩(−x+m−I )

K(t) dt dx

=
∑
n,m

anbm

∫
I

∫
(k−n+Iu)∩(−k+m−Iu)

K(t) dt du

=
∑

n+m=2k

anbm

∫
I

∫
(k−n+Iu)∩(k−n−Iu)

K(t) dt du

=
∑
l∈Z

ak−lbk+l
∫
I

∫
(l+Iu)∩(l−Iu)

K(t) dt du ,
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and therefore, for every m ∈ Z,

QTK(Pa, Pb)(m) =
∑
n∈Z

am−nbm+nKn ,

as we wanted to see.

3. Applications

3.1 Bilinear Hilbert Transform on T

We shall apply our transference method to give a new proof of the result in [10] for the
bilinear Hilbert transform on T. For such a purpose takeG = R with the Lebesgue measure,
(�,�,µ) the measure space (T,B(T),m) the Lebesgue measure on T and R1 = R2 =
R3 = R, where

(Ruf )
(
eiθ
) = f

(
ei(θ−u)

)
.

Trivially Rj , j = 1, 2, 3, satisfy conditions (2.1), (2.2), and (2.3).

Definition 1. A function m ∈ L∞(R) is said to be normalized, if mn = φ̂n ∗ m is
pointwise convergent to m where φn(x) = 1

2nχ[−n,n] ∗ χ[−n,n].

Theorem 2. Let K ∈ S ′(R) such that K̂(ξ) = m(ξ) for some normalized function m.
Let

TK(f, g)(x) =
∫

R

∫
R

f̂ (ξ)ĝ(ν)m(ξ − ν)eix(ξ+ν) dξ dν ,

for f, g ∈ S and let

T̃K(P,Q)(x) =
∑
k∈Z

∑
k′∈Z

P̂ (k)Q̂(k)m
(
k − k′)eix(k+k′) ,

for P and Q trigonometric polynomials.
Then, if TK : Lp1(R)× Lp2(R) → Lp3(R) is bounded, we have that

T̃K : Lp1(T)× Lp2(T) → Lp3(T)

is also bounded, if p3 ≥ 1.

Proof. As in Lemma 3.5 of [8], let us take ψ ∈ L2(R) with compact support such
that ψ̂(0) = 1 and let us define Kn(x) = (mnĥn)̌(x) where hn(x) = nψ(nx). Then
Kn ∈ L1(R), it has compact support and K̂n(x) → m(x) for all x ∈ R.

Let

Tn(f, g)(x) =
∫

R

Kn(t)f (x − t)g(x + t) dt

for f, g ∈ S(R).
We shall show first that Tn : Lp1(R)× Lp2(R) → Lp3(R) and supn∈N ||Tn|| < ∞.
Now,

Tn(f, g)(x) =
∫

R

K̂n(ξ)[f (x − ·)g(x + ·)] (̌ξ ) dξ

=
∫

R

ĥn(ξ)mn(ξ)[f (x − ·)g(x + ·)] (̌ξ ) dξ

=
∫

R

hn(t)An(t, x) dt
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where An(x, t) = (m̌n ∗ f (x + ·)g(x − ·))(t). We write

An(x, t) =
∫

R

m̌n(y)f (x + t − y)g(x − t + y) dy

=
∫

R

mn(y)[f (x + t − ·)g(x − t + ·)]ˇdy

=
∫

R

(∫
R

φ̂n(z)m(y − z) dz

)
[f (x + t − ·)g(x − t + ·)]ˇdy

=
∫

R

φ̂n(z)

(∫
R

m(y − z)[f (x + t − ·)g(x − t + ·)]ˇdy
)
dz .

Now, observe that

B(z, x, t) =
∫

R

m(y − z)[f (x + t − ·)g(x − t + ·)]ˇdy

=
∫

R

K(y)e2πizyf (x + t − y)g(x − t + y) dy

=
∫

R

K(y)Fz,t (x − y)Gz,t (x + y) dy

where Fz,t (u) = eπizuf (u+ t) and Gz,t (u) = eπizug(u− t).
Therefore,

Tn(f, g)(x) =
∫

R

hn(t)

(∫
R

φ̂n(z)BK(Fz,t ,Gz,t )(x) dz

)
dt

and, hence, since

||BK(Fz,t ,Gz,t )||p3 ≤ C||Fz,t ||p1 ||Gz,t ||p2 ≤ C||f ||p1 ||g||p2 ,

and p3 ≥ 1, we obtain that

||Tn(f, g)||p3 ≤ C||hn||1
∥∥φ̂n∥∥1||f ||p1 ||g||p2 .

Now, we can apply Theorem 1 with RuP (θ) = P(θ − u), to get that the transferred
bilinear operator

T̃n(P,Q)(θ) =
∫

T

K̃n(u)P (θ − u)Q(θ + u) du ,

where K̃n(u) = ∑
m∈Z

Kn(m+ u), is bounded from Lp1(T)×Lp2(T) → Lp3(T) and the
norms are uniformly bounded for n ∈ N.

To finish the proof observe that, if ek(θ) = eikθ then

T̃n
(
ek, ek′

) = ekek′
∫

R

Kn(u)e
iu(k′−k) du = ek+k′mn

(
k − k′)ĥn(k − k′) ,

and hence,
lim
n→∞ Tn(ek, ek′) = ek+k′m

(
k − k′) = T̃K(ek, ek′) .

Therefore, by linearity, density and Fatou’s lemma, we obtain the result.
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Now, in order to avoid the condition of p3 ≥ 1 in the case of the bilinear Hilbert trans-
form, we need the following lemma that follows from the boundedness of the corresponding
maximal bilinear Hilbert operator (see [19]).

Lemma 1. Let 0 < A,A ≤ ∞ and let p1, p2 > 1. Define KA,A′(x) = 1
x
χA<|x|<A′(x).

Let

BA,A′(f, g)(x) =
∫

R

f (x − t)g(x + t)KA,A′(t) dt

and let ‖BA,A′ ‖p1,p2 denote the norm as bounded bilinear map from Lp1(R)×Lp2(R) into
Lp3(R). Then

sup
A,A′

‖BA,A′ ‖p1,p2 < ∞ .

Let us give an easy proof of the above lemma in the case p3 ≥ 1. To this end, we
first need the following lemma.

Lemma 2. Let p3 ≥ 1. Let h1, h2 ∈ L1(R) and define m(ξ) = sign(ξ)ĥ1(ξ)+ ĥ2(ξ). If

Bh1,h2(f, g)(x) =
∫

R

∫
R

f̂ (ξ)ĝ(η)m(ξ − η)ei(ξ+η)x dξ dη .

Then Bh is bounded from Lp1(R)×Lp2(R) into Lp3(R) and ‖Bh1,h2‖p1,p2 ≤ ‖H‖p1,p2‖h1‖1+ ‖h2‖1.

Proof.

Bh1,h2(f, g)(x) =
∫

R

∫
R

f̂ (ξ)ĝ(η)m(ξ − η)ei(ξ+η)x dξ dη

=
∫

R

∫
R

f̂ (ξ)ĝ(η) sign(ξ − η)

(∫
R

h1(y)e
−i(ξ−η)y dy

)
ei(ξ+η)x dξ dη

+
∫

R

∫
R

f̂ (ξ)ĝ(η)

(∫
R

h2(y)e
−i(ξ−η)y dy

)
ei(ξ+η)x dξ dη

=
∫

R

(∫
R

∫
R

f̂ (ξ)e−iξy ĝ(η)eiηy sgn(ξ − η)ei(ξ+η)x dξ dη
)
h1(y) dy

+
∫

R

(∫
R

∫
R

f̂ (ξ)e−iξ(y−x)ĝ(η)eiη(y+x) dξ dη
)
h2(y) dy

=
∫

R

H(fy, g−y)(x)h1(y) dy +
∫

R

f (x − y)g(x + y)h2(y) dy

where fx(y) = f (y − x). Now using the boundedness of the bilinear Hilbert transform,
Hölder inequality and the integrability of h1 and h2 one gets the result.

Proof of Lemma 1 for p3 ≥ 1. It is known that

mA,A′(ξ) = K̂A,A′(ξ) = sign(ξ)
∫ A′

A

sin(|ξ |u)
u

du , (3.1)

and hence,
mA,A′(ξ) = m(Aξ)−m

(
A′ξ

)
where m(ξ) = sign(ξ)

∫∞
1

sin(|ξ |u)
u

du.
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Denoting by K(x) = K1,∞(x) = 1
x
χ{|x|>1}(x) and Q(x) = x

1+x2 , we have that

K −Q = h ∈ L1(R). In particular,

m(ξ) = K̂(ξ) = −i sign(ξ)P̂ (ξ)+ ĥ(ξ) ,

where P(x) = 1
1+x2 is the Poisson kernel.

Then,

mA,A′(ξ) = −i sign(ξ)
(
P̂A(ξ)− P̂A′(ξ)

)+ ĥA(ξ)− ĥA′(ξ) ,

where, as usual, fA(x) = 1
A
f ( x

A
).

Finally, we can apply Lemma 2 to obtain that

‖BA,A′ ‖p1,p2 ≤ ‖H‖p1,p2‖PA − PA′ ‖1 + ‖hA − hA′ ‖1 ≤ 2‖H‖p1,p2 + 2‖h‖1 ,

as we wanted to see.

As a consequence of the previous result, we obtain the following [10].

Corollary 1. The bilinear Hilbert transform on the torus

HT(f, g)(x) =
∫

T

f (x − y)g(x + y) cot(πy) dy ,

is bounded from Lp1(T)× Lp2(T) into Lp3(T) whenever p1, p2 > 1 and 1/p1 + 1/p2 =
1/p3 < 3/2.

Proof. Let us take A = 1/N and A′ = N in Lemma 1. Then, since the corresponding
kernel KA,A′ is in L1 with compact support, we can apply our transference argument and
this lemma to obtain that the operator

T̃ NK (P,Q)(x) =
∑
k∈Z

∑
k′∈Z

P̂ (k)Q̂(k)m1/N,N
(
k − k′)eix(k+k′) ,

for P and Q trigonometric polynomials, satisfies that

T̃ NK : Lp1(T)× Lp2(T) → Lp3(T)

uniformly in N . Letting N goes to infinity, we obtain the result.

3.2 Bilinear Hilbert Transform on Z

Using now the discretization technique of Section 2.2, we obtain the following result,
whenever p3 ≥ 1.

Proposition 2. Let N ∈ N, and let us define the truncated discrete bilinear Hilbert
transform by

HZ,N (a, b)(m) =
∑

k �=0,|n|≤N

am−nbm+n
n

.

Then, for p1, p2 > 1,
sup
N∈N

‖HZ,N‖p1,p2 < ∞ .
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Proof. Let us apply Lemma 1 with K = K 1
2 ,N− 1

2
and Proposition 1, to obtain that

TN(a, b)(m) =
∑
n∈Z

am−nbm+nKn (3.2)

is bounded from p1(Z) × p2(Z) into p3(Z). Let us now compute Kn in this particular
case:

Kn =
∫
I

∫
(n+Iu)∩(n−Iu)

K(t) dt du

=
∫
I

∫
(n+Iu)∩(n−Iu)∩( 1

2 ,N− 1
2 )

dt

t
du+

∫
I

∫
(n+Iu)∩(n−Iu)∩(−N+ 1

2 ,− 1
2 )

dt

t
du .

Observe that for u ∈ I , we have that (n+ Iu)∩ (n− Iu) ⊂ (n− 1
2 , n+ 1

2 ), and hence
Kn = 0, if |n| ≥ N and K0 = 0.

For 1 ≤ n < N , we can write

Kn = 2
∫ 1/4

0

∫
(n+u− 1

4 ,n+u+ 1
4 )∩(n−u− 1

4 ,n−u+ 1
4 )∩( 1

2 ,N− 1
2 )

dt

t
du ,

and, if 0 < u < 1
4 , we obtain that(

n+ u− 1

4
, n+ u+ 1

4

)
∩
(
n− u− 1

4
, n− u+ 1

4

)
=
(
n+ u− 1

4
, n− u+ 1

4

)
.

Hence,

Kn = 2
∫ 1/4

0
log

(
n− u+ 1

4

n+ u− 1
4

)
du = 2

∫ 1/4

0
log

(n+ v

n− v

)
dv

= 2n
∫ 1/4n

0
log

(1 + x

1 − x

)
dx .

Integrating by parts, we obtain∫ 1/4n

0
log

(
1 + x

1 − x

)
dx = 1

4n
log

(
1 + 1

4n

1 − 1
4n

)
−
∫ 1/4n

0

2x

1 − x2
dx

= 1

4n
log

(
1 + 1

4n

1 − 1
4n

)
+ log

(
1 − 1

16n2

)
,

and hence,

Kn = 1

2
log

(
n+ 1

4

n− 1
4

)
− 2n log

(
16n2

16n2 − 1

)
.

Since log(1 + x) = x +O(x2), (x → 0), we finally get

Kn = 1

4n− 1
+O

(
1(

n− 1
4

)2
)

+ 2n

16n2 − 1
+ 2nO

(
1(

16n2 − 1
)2
)

= 6n+ 1

16n2 − 1
+O

( 1

n2

)
= 3

8n
+O

( 1

n2

)
.

The case −N ≤ n ≤ −1 is obtained similarly, and the result follows from (3.2).
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3.3 Ergodic Bilinear Hilbert Transform

The idea now is to transfer the boundedness of the discrete bilinear Hilbert transform to a
measure space using our transference result.

Let G = Z and let (�,�,µ) be a σ -finite measure space. Let T be a bounded and
invertible operator acting on Lpi (�), such that

max
(∥∥T −1

∥∥
L(Lpi (�))

, ‖T ‖L(Lpi (�))
)

≤ 1 ,

for i = 1, 2. Let us assume that there exists a bounded and invertible operator S acting on
Lp3(�), such that max

(‖S−1‖L(Lp3 (�)), ‖S‖L(Lp3 (�))

) ≤ 1 and such that

Sm
(
T nf T −ng

) = T m+nf T m−ng . (3.3)

Then:

Theorem 3. The bilinear ergodic Hilbert transform

HT (f, g)(x) =
∑
n�=0

T nf (x)T −ng(x)
n

is bounded from Lp1(�)×Lp2(�) into Lp3(�) whenever p1, p2 > 1 and 1/p1 + 1/p2 =
1/p3 ≤ 1.

Proof. It is trivial to see that, if we take R1
n = R2

n = T n and R3
n = Sn and use (3.3)

then conditions (2.1), (2.2), and (2.3) hold and hence, we can transfer, using Theorem 1, the
boundedness of the truncated discrete bilinear Hilbert transform proved in Proposition 2,
to show that, in fact,

HN
T (f, g)(x) =

N∑
n�=0,n=−N

T nf (x)T −ng(x)
n

is bounded uniformly in N . From this, the result follows.

In particular, using Tf (x) = f (x − 1) and S = T one obtains the following:

Corollary 2. The bilinear Hilbert transform

H(f, g)(x) =
∑
n�=0

f (x − n)g(x + n)

n

is bounded from Lp1(R)×Lp2(R) into Lp3(R) whenever p1, p2 > 1 and 1/p1 + 1/p2 =
1/p3 ≤ 1.
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