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ABSTRACT. We show that there exists an orthonormal basis {bn}∞n=1 for L2(R) such that
{�2(bn)}∞n=1, {µ(bn)}∞n=1 and {µ(b̂n)}∞n=1 are bounded sequences. We also show that there
does not exist any orthonormal basis for L2(R) with {�2(bn)}∞n=1, {�2(b̂n)}∞n=1 and {µ(bn)}∞n=1
being bounded sequences. This is motivated by a question posed by H.S. Shapiro on the mean and
variance sequences associated to orthonormal bases.

1. Introduction

In this article we shall examine a question posed by H.S. Shapiro on how general orthonormal
bases forL2(R) cover the time-frequency plane. Let us begin by introducing some notation
and necessary definitions.

For f ∈ L2(R) we formally define its Fourier transform, f̂ ∈ L2(R̂), by

∀γ ∈ R̂, f̂ (γ ) =
∫
f (t)e−2πitγ dt ,

where the integral is over R, and R̂ = R is used to distinguish between the domains of f
and f̂ . With this notation, the time-frequency plane is R × R̂.

Given f ∈ L2(R) with ||f ||L2(R) = 1, we define the following associated mean

µ(f ) = Mean
(|f |2) =

∫
t |f (t)|2 dt , (1.1)
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and the following associated variance

�2(f ) = Var
(|f |2) =

∫
|t − µ(f )|2|f (t)|2 dt . (1.2)

It will frequently be convenient to also work with the dispersion, �(f ) ≡ √
�2(f ).

If one thinks of f as a function of time and its Fourier transform as a function
of frequency, then µ(f ) and �2(f ) give insight into where f is concentrated in time;
µ(f̂ ) and �2(f̂ ) give insight into where it is concentrated in frequency. Namely, f is
concentrated mostly around the point (µ(f ), µ(f̂ )) in the time-frequency plane, and the
pair (�2(f ),�2(f̂ )) gives a measure of how spread out it is about (µ(f ), µ(f̂ )). The
Heisenberg uncertainty principle,

�2(f )�2(f̂ ) ≥ 1

16π2
,

states that a unit-norm function in L2(R) can not occupy an arbitrarily small region in
the time-frequency plane. For more information on this and other uncertainty principles,
see [9].

When we speak of an orthonormal basis, {ϕn}∞n=1, covering the time-frequency
plane, we refer specifically to the manner in which the sequences {(µ(ϕn), µ(ϕ̂n))}∞n=1
and {(�2(ϕn),�

2(ϕ̂n))}∞n=1 determine regions in R × R̂. For example, during the past
two decades much work has been done on orthonormal bases given by wavelet and Gabor
systems. One reason for the considerable interest in these systems is their respective affine
and Heisenberg structures. These underlying group structures give rise to the statement that
wavelets cover the time-frequency plane by an affine tiling and Gabor systems cover it by
a rectangular tiling, [10].

The question of finding prescribed tilings of the time-frequency plane has been studied
in the engineering literature by Bernardini and Kovačević, [4]. They use local bases to
construct filters which realize a wide class of tilings of the time-frequency plane, and give
applications to audio coding. We also refer the reader to [17]. The manner in which a basis
covers the time-frequency plane is an important factor in determining which applications
the basis is suited for. For example, the affine covering given by wavelet bases provides the
“zooming” effect which has made wavelets so useful in image processing and compression,
e.g., see [14].

2. Shapiro’s Question

In 1991 Harold S. Shapiro posed the following question, [15].

Question 1 (Shapiro). Given four sequences of real numbers,

{an}∞n=1, {bn}∞n=1, {cn}∞n=1, {dn}∞n=1 ,

does there exist an orthonormal basis {ϕn}∞n=1 for L2(R) such that

µ(ϕn) = an, µ
(
ϕ̂n
) = bn, �

2(ϕn) = cn, �
2(ϕ̂n) = dn ,

holds for all n ∈ N?



Time-Frequency Mean and Variance Sequences of Orthonormal Bases 377

This is essentially a question about how orthonormal bases can cover the time-
frequency plane. The following theorem will serve as a starting point for our investigation.

Theorem 1. There does not exist an infinite orthonormal sequence {fn}∞n=1 ⊆ L2(R)

such that all four of the mean and variance sequences are bounded.

Shapiro, [15], derives this as a corollary of a compactness result of Kolmogorov.
The result also follows from the theory of prolate spheroidal wavefunctions. Motivated by
Theorem 1, we shall examine and answer the following question.

Question 2. If {ϕn}∞n=1 is an orthonormal basis for L2(R), how many of the sequences
{µ(ϕn)}∞n=1, {µ(ϕ̂n)}∞n=1, {�2(ϕn)}∞n=1, {�2(ϕ̂n)}∞n=1 can be bounded? Which combina-
tions of these sequences can be bounded?

3. Main Results

We shall prove the following two theorems which answer Question 2. The first theorem
makes use of a density calculation and the theory of prolate spheroidal wavefunctions,
whereas the second theorem uses a constructive technique of Bourgain, [5].

Theorem 2. There does not exist an orthonormal basis {bn}∞n=1 for L2(R) such that
{�2(bn)}∞n=1, {�2(b̂n)}∞n=1 and {µ(bn)}∞n=1 are all bounded sequences.

Theorem 3. There exists a constant C > 0 such that for any ε > 0 there exists an
orthonormal basis, {bn}∞n=1, for L2(R) satisfying |µ(bn)| ≤ ε, |µ(b̂n)| ≤ ε and �2(bn) ≤
C for all n ∈ N.

Theorem 2 says that it is not possible to have an orthonormal basis for L2(R) with
both variance sequences and one mean sequence bounded. On the other hand, Theorem 3
says that it is possible to have orthonormal bases for L2(R) for which both mean sequences
and one variance sequence are bounded.

4. Examples

Before proving the results in the previous section, we look at some important examples of
orthonormal bases and their mean and variance sequences.

Example 1 (Wavelet basis). Take ψ ∈ L2(R) such that the wavelet system {ψm,n :
m, n ∈ Z} defined by ψm,n(t) = 2−m/2ψ(2−mt − n) is an orthonormal basis for L2(R).
For further information on wavelets see [7, 11]. A direct calculation, e.g., [1], shows that
for wavelet systems the three sequences

{µ(ψm,n)}m,n∈Z,
{
�2(ψm,n)

}
m,n∈Z

,
{
�2(ψ̂m,n)}m,n∈Z

,

are unbounded.

Example 2 (Gabor basis). Let g ∈ L2(R) be any function such that the Gabor system
{gm,n : m, n ∈ Z} defined by gm,n(t) = e2πimtg(t − n) is an orthonormal basis for
L2(R). For more information on Gabor systems see [10, 3]. A direct computation shows
that both {µ(gm,n)}m,n∈Z and {µ(ĝm,n)}m,n∈Z are unbounded sequences. Moreover, the
Balian-Low theorem, e.g., [10, 6], shows that at least one of the two variance sequences,
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{�2(gm,n)}m,n∈Z and {�2(ĝm,n)}m,n∈Z, must be unbounded (in fact, constantly equal to
∞).

Example 3 (Hermite basis). Let {hn}∞n=0 be the Hermite functions defined by

hk(t) = 21/4

√
k!
( −1

2
√
π

)k
eπt

2 dk

dtk

(
e−2πt2) .

We follow the notation of [9]. The Hermite functions are eigenfunctions of the Fourier
transform, form an orthonormal basis for L2(R), and satisfy

2
√
π thk(t) = √

k + 1hk+1(t)+ √
khk−1(t) . (4.1)

By taking the inner product of (4.1) with hk and using the orthonormality of the Hermite
functions, it follows thatµ(hk) = 0 for all k. Since eachhn is an eigenfunction of the Fourier
transform, we also have µ(ĥk) = 0. In particular, both mean sequences are bounded.

Using (4.1) again, one can show that �(hk) = �(ĥk) =
√

2k+1
2
√
π

, so that both variance

sequences are unbounded.

Example 4 (Bourgain basis). Let ε > 0. In [5], Bourgain constructs an orthonormal

basis, {fn}∞n=1, for L2(R) satisfying �2(fn) ≤ ( 1
2π + ε

)2 and �2(f̂n) ≤ ( 1
2π + ε

)2 for all
n ∈ N. However, the mean sequences are both unbounded. For recent work on Bourgain’s
theorem see [2].

Example 5 (Wilson basis). Let g ∈ L2(R) and define the associated Wilson system,
{ψl,k : l, k ∈ Z, and 0 ≤ l}, by

ψ0,k(t) = g(t − k), k ∈ Z

ψl,k(t) = √
2g(t − k/2)cos(2πlt), l > 0, k + l even ,

ψl,k(t) = √
2g(t − k/2)sin(2πlt), l > 0, k + l odd .

See [10] for background on Wilson bases. For any nontrivial g one can verify that

{µ(ψl,k)}l,k∈Z,0≤l and
{
�2(ψ̂l,k)}l,k∈Z,0≤l are unbounded sequences .

For an example of a Wilson basis whose generator g has exponential localization in time
and frequency, see [8].

5. Two Variances and One Mean

In this section we shall prove Theorem 2. We begin with some background on the prolate
spheroidal wavefunctions.

5.1 Prolate Spheroidal Wavefunctions

Fix � > 0 and let {ψn}∞n=0 be the associated prolate spheroidal wavefunctions, as defined
in [16]. {ψn}∞n=0 is an orthonormal basis for PW� ≡ {f ∈ L2(R) : suppf̂ ⊆ [−�,�]}.
See [16, 12, 13] for background on prolate spheroidal wavefunctions. One of the main
applications of prolate spheroidal wavefunctions is to study the set of almost timelimited
and almost bandlimited functions, ST,�,ε,η ⊆ L2(R).
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Definition 1. Given constants ε, η, T ,� > 0,

ST,�,ε,η =
{
f ∈ L2(R) :

∫
|t |≥T

|f (t)|2 dt ≤ ε2 and
∫

|γ |≥�
∣∣f̂ (γ )∣∣2dγ ≤ η2

}
.

Our main interest in prolate spheroidal wavefunctions lies in the following theorem
on the approximate dimension of ST,�,ε,η, see Theorem 12 in [13].

Theorem 4 (Landau, Pollak). If f ∈ ST,�,ε,η with ‖f ‖L2(R) = 1 then there exists

{an}
2T��
n=0 ⊆ C, such that∥∥∥∥∥f −


2T��∑
n=0

anψn

∥∥∥∥∥
2

L2(R)

≤ 12(ε + η)2 + η2 .

In other words, the set of almost timelimited and almost bandlimited functions has
approximate dimension 2T�. This yields the following corollary, whose proof we include
for the sake of completeness.

Corollary 1. Let ε, η > 0 be sufficiently small, and let T ,� > 0. There exists N ∈ N

such that ST,�,ε,η contains no orthonormal subset containing more than N elements.

Proof. Suppose {fk}Nk=1 ⊆ ST,�,ε,η is orthonormal. Let {ψn}∞n=0 be the prolate

spheroidal wavefunctions associated to �. For each 1 ≤ k ≤ N , let {an,k}
2T��
n=0 be the

coefficients given by Landau and Pollak’s theorem which satisfy∥∥∥∥∥fk −

2T��∑
n=0

an,kψn

∥∥∥∥∥
2

L2(R)

≤ 12(ε + η)2 + η2 .

To simplify notation, we let

Fk =

2T��∑
n=0

an,kψn .

Since the fk are orthonormal, we have that for j �= k∣∣∣∣∣

2T��∑
n=0

an,j an,k

∣∣∣∣∣ = ∣∣〈Fj , Fk〉∣∣ = ∣∣〈Fj − fj + fj , Fk − fk + fk〉
∣∣

≤ |〈Fj − fj , Fk − fk〉| + |〈Fj − fj , fk〉| + |〈fj , Fk − fk〉|
≤ 12(ε + η)2 + η2 + 2

√
12(ε + η)2 + η2 .

Next, note that we also have( 
2T��∑
n=0

|an,k|2
) 1

2

=
∥∥∥∥∥


2T��∑
n=0

an,kψn

∥∥∥∥∥
L2(R)

≥ ‖fk‖L2(R) −
∥∥∥∥∥fk −


2T��∑
n=0

an,kψn

∥∥∥∥∥
L2(R)

≥ 1 −
√

12(ε + η)2 + η2 .

Thus, defining vk = (a0,k, a1,k, . . . , a
2T��,k) ∈ C
2T��+1 for k = 1, 2, . . . , N , we have

1 ≥ ||vk||l2 ≥ 1 −
√

12(ε + η)2 + η2 , (5.1)
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and

12(ε + η)2 + η2 + 2
√

12(ε + η)2 + η2 ≥ |〈vj , vk〉|, for j �= k . (5.2)

Take ε, η > 0 small enough so that

α ≡ 3
√

12(ε + η)2 + η2 <
1

100
.

Now, for j �= k, ||vj ||l2 ≥ 1 − α and α ≥ |〈vj , vk〉| imply that

||vj − vk||2l2 ≥ 2(1 − α)2 − 2α > 1 .

A volume counting argument shows that

N ≤
Volume

({
v ∈ C
2T��+1 : ||v||l2 ≤ 3/2

})
Volume

({
v ∈ C
2T��+1 : ||v||l2 ≤ 1/2

}) ≤ 32
2T��+2 .

While more refined estimates are possible, this suffices for our purposes. Note that the
choice of sufficiently small ε, η > 0 does not depend on T ,�, but the size of N does
depend on T ,�.

5.2 Preliminary Lemmas

Lemma 1. Suppose g ∈ L2(R), ||g||L2(R) = 1, satisfies

|µ(g)| < A,
∣∣µ(ĝ)∣∣ < B ,�(g) < J ,�

(
ĝ
)
< K .

Fix ε > 0. If R > max{ J
ε
, K
ε
} then g ∈ SA+R,B+R,ε,ε .

Proof. Since R2 > J 2

ε2 ,∫
|t |≥A+R

|g(t)|2 dt ≤
∫

|t |≥|µ(g)|+R
|g(t)|2 dt ≤

∫
|t−µ(g)|≥R

|g(t)|2 dt

≤ 1

R2

∫
R

|t − µ(g)|2|g(t)|2 dt ≤ J 2

R2
< ε2 .

Likewise, ∫
|γ |≥B+R

∣∣̂g(γ )∣∣2 dγ ≤ K2

R2
< ε2 .

Lemma 2. Suppose f, g ∈ L2(R), ||f ||L2(R) = ||g||L2(R) = 1, and that the means and
variances

µ(f ), µ
(
f̂
)
, µ(g), µ

(
ĝ
)
,�2(f ),�2(f̂ ),�2(g),�2(ĝ)

are all finite. Then,

|〈f, g〉| ≤ 2
�(f )+�

(
f̂
)+�(g)+�

(
ĝ
)

|µ(f )− µ(g)| + ∣∣µ(f̂ )− µ
(
ĝ
)∣∣ .
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Proof. Let

S1 =
{
t : |t − µ(f )|≥ 1

2
|µ(f )− µ(g)|

}
and S2 =

{
t : |t − µ(g)|≥ 1

2
|µ(f )− µ(g)|

}
.

So,

|〈f, g〉| ≤
∫

|f (t)||g(t)| dt ≤
∫
S1

|f (t)||g(t)| dt +
∫
S2

|f (t)||g(t)| dt

≤ 2

|µ(f )− µ(g)|
∫

|t − µ(f )||f (t)||g(t)| dt

+ 2

|µ(f )− µ(g)|
∫

|t − µ(g)||f (t)||g(t)| dt

≤ 2�(f )

|µ(f )− µ(g)| + 2�(g)

|µ(f )− µ(g)| = 2
�(f )+�(g)

|µ(f )− µ(g)| .

Likewise,

|〈f, g〉| = ∣∣〈f̂ , ĝ〉∣∣ ≤ 2
�
(
f̂
)+�

(
ĝ
)∣∣µ(f̂ )− µ

(
ĝ
)∣∣ .

Now, combining the previous two inequalities gives

|〈f, g〉| ≤ 2
�(f )+�

(
f̂
)+�(g)+�

(
ĝ
)

|µ(f )− µ(g)| + ∣∣µ(f̂ )− µ
(
ĝ
)∣∣ ,

as desired.

5.3 Two Variances and One Mean: The Proof

We shall derive Theorem 2 as a corollary of the following theorem.

Theorem 5. Suppose {bn}∞n=1 is an orthonormal basis for L2(R) with

∀n ∈ N, �(bn) ≤ K and �
(
b̂n
) ≤ K .

Fix a, b ∈ R. If{(
µ(bn), µ

(
b̂n
))}∞

n=1 ⊂ Wa,b ≡ {
(x, y) ∈ R2 : x ≤ a or y ≤ b

}
, (5.3)

then

∞∑
n=1

1(
1 + |µ(bn)| + ∣∣µ(b̂n)∣∣)2 = ∞ . (5.4)

Proof. Without loss of generality assume a = b = 0. We proceed by contradiction and
begin by assuming such a basis exists and satisfies

∞∑
n=1

1(
1 + |µ(bn)| + ∣∣µ(b̂n)∣∣)2 < ∞ . (5.5)

Fix f ∈ L2(R) with ||f ||L2(R) = 1, µ(f ) = µ(f̂ ) = 0, and �(f ),�(f̂ ) ≤ K . Let
fN(t) = e2πiNtf (t −N), so that µ(fN) = µ(f̂N) = N and �(fN),�(f̂N) ≤ K .
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By Lemma 2,

1 = ||fN ||2
L2(R)

=
∞∑
n=1

|〈fN, bn〉|2 ≤ 64K2
∞∑
n=1

1(|N − µ(bn)| + ∣∣N − µ
(
b̂n
)∣∣)2 . (5.6)

Now let
P1 = {

j ∈ N : µ(b̂j ) ≤ 0
}

and P2 = {j ∈ N : µ(bj ) ≤ 0} .
If j ∈ P1∪P2 = N, andN > 0 then |µ(bj )|+|µ(b̂j )|+N ≤ 2|µ(bj )−N |+2|µ(b̂j )−N |.

Thus,

∞∑
n=1

1(|N − µ(bn)| + ∣∣N − µ
(
b̂n)
∣∣)2 ≤ 4

∞∑
n=1

1(|µ(bn)| + ∣∣µ(b̂n)∣∣+N
)2 ≡ I (N) .

By assumption (5.5) we have limN→∞ I (N) = 0. Hence,

1 ≤ (16K)2I (N) → 0, as N → ∞ ,

which is a contradiction.

We now show that Theorem 2 follows from Theorem 5.

Proof of Theorem 2. Suppose {bn}∞n=1 is an orthonormal basis forL2(R)with�(bn) ≤
K,�(b̂n) ≤ K and |µ(bn)| ≤ B. For each n ∈ Z, let

In = [−B,B] × [n, n+ 1] and Sn = {
j ∈ N : (µ(bj ), µ(b̂j )) ∈ In

}
.

By translating to the origin and using Lemma 1 and Corollary 1

∃M such that ∀n ∈ Z, card Sn ≤ M .

Thus,

∞∑
n=1

1(|µ(bn)| + ∣∣µ(b̂n)∣∣+ 1
)2 =

∑
k∈Z

∑
j∈Sk

1(|µ(bj )| + ∣∣µ(b̂j )∣∣+ 1
)2

≤ 2M
∞∑
j=0

1

(|j | + 1)2
< ∞ .

Since this contradicts Theorem 5, Theorem 2 holds.

6. Two Means and One Variance

We prove Theorem 3 in this section. Our proof is based on Bourgain’s method of construc-
tion in [5].

Proof of Theorem 3. We begin by defining a system of functions G(T ,N), which
we shall need for the proof. C∞

c (R) denotes the set of infinitely differentiable, compactly
supported functions on R.

I. Let g be a function in the Schwartz class, S(R), satisfying
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• ||g||L2(R) = 1 and ĝ ∈ C∞
c (R),

• supp ĝ ⊆ [−1/2, 1/2],
• g is real and even,

• µ(g) = µ(ĝ) = 0 and �(g) ≡ δ < ∞.

Regarding the third and fourth bullets, note that g is real and even, if and only if ĝ is
real and even. Also, the mean of an even Schwartz class function is 0. Now define
gn(t) = √

2 cos(2πnt)g(t). The functions {gn}∞n=1 have the following properties which
are easily verified:

• ĝn(γ ) =
√

2
2 (ĝ(γ − n)+ ĝ(γ + n)),

• ||gn||L2(R) = 1, and 〈gn, gm〉 = 0, if n �= m,

• µ(gn) = 0 = µ(ĝn),

• �(gn) ≤ (
√

2)�(g) = (
√

2)δ,

• supp ĝn ⊆ [−n− 1
2 ,−n+ 1

2 ]⋃[n− 1
2 , n+ 1

2 ].
Given T ,N ∈ N, we define the orthonormal system G(T ,N) = {gn}N+T−1

n=N .

II. Let {ϕn}∞n=1 ⊆ S(R) be dense in the unit sphere of L2(R) and satisfy

∀n ∈ N, ||ϕn||L2(R) = 1 and ϕ̂n ∈ C∞
c (R) .

The basis will be of the form B = ⋃∞
j=1 Bj , where each Bj is a finite set of Schwartz class

functions whose Fourier transforms are compactly supported. We shall construct the Bj
inductively.

Suppose we have already constructed B1, . . . , Bn−1. Let

�n = ϕn − P[B1,...,Bn−1]ϕn ,

where [S] is the notation in [5] which denotes the closed linear span of a set of functions S,
and P[S] is the orthogonal projection of L2(R) onto the closed subspace [S] ⊆ L2(R). In
particular, when S = {sn}∞n=1 ⊆ L2(R) is any set of orthonormal functions then

P[S]f =
∞∑
n=1

〈f, sn〉sn .

For the base case of our inductive construction let �1 = ϕ1. Observe that ||�n||L2(R) ≤ 1,
and �n is orthogonal to the elements of Bj for each j < n. Note that �̂n ∈ C∞

c (R) since
ϕn and the elements of

⋃n−1
j=1 Bj also satisfy this property.

Take Nn large enough so that [−Nn + 1, Nn − 1] contains the support of �̂n and the
supports of the Fourier transforms of the functions in

⋃n−1
j=1 Bj . Take Tn ∈ N large enough

so that: ∫
|t |2|�n(t)|2 dt ≤ T 2

n , (6.1)

and ∣∣∣∣∫ t |�n(t)|2 dt
∣∣∣∣ ≤ εT 2

n and

∣∣∣∣∫ γ
∣∣�̂n(γ )∣∣2 dγ ∣∣∣∣ ≤ εT 2

n , (6.2)

where ε > 0 is as in the hypotheses of the theorem.
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Enumerate the elements of G(T 2
n ,Nn) as {gj,n}T

2
n

j=1. The support properties of

G(T 2
n ,Nn) ensure that the elements of G(T 2

n ,Nn) are orthogonal to�n and the elements of⋃n−1
j=1 Bj . We now define the elements of Bn = {bj,n}T

2
n

j=1 as

b1,n(t) = �

Tn
�n(t)+ α1,ng1,n(t) ,

and for 1 < j ≤ T 2
n ,

bj,n(t) = �

Tn
�n(t)+ β1,ng1,n(t)+ · · · + βj−1,ngj−1,n(t)+ αj,ngj,n(t) ,

where 0 < � < 1
4 is a fixed constant, and {αj,n}T

2
n

j=1 and {βj,n}T
2
n −1
j=1 are chosen to ensure

that Bn = {bj,n}T
2
n

j=1 ⊆ L2(R) is an orthonormal set. We may assume that

0 < αj,n ≤ 1 . (6.3)

Moreover, as in the proof of Bourgain’s theorem in [5], one can show that

|βj,n| ≤ �

T 2
n

. (6.4)

For further information, see Equation (3.8) in [5].

III. Let us now prove estimates for µ(bj,n). Recall that µ(gj,n) = 0 for all j, n. Using that
�̂n and the ĝj,n all have disjoint supports we have

µ(bj,n)=
∫
t |bj,n(t)|2 dt = 1

2πi

〈(
b̂j,n

)′
, b̂j,n

〉
= 1

2πi

�2

T 2
n

〈(
�̂n
)′
, �̂n

〉+ 1

2πi

j−1∑
k=1

|βk,n|2
〈(
ĝk,n

)′
, ĝk,n

〉+ 1

2πi
|αj,n|2

〈(
ĝj,n

)′
, ĝj,n

〉
=�2

T 2
n

∫
t |�n(t)|2 dt +

j−1∑
k=1

|βk,n|2µ(gk,n)+ |αj,n|2µ(gj,n)

=�2

T 2
n

∫
t |�n(t)|2 dt .

Thus, by (6.2)

|µ(bj,n)| ≤ �2

T 2
n

∣∣∣∣∫ t |�n(t)|2 dt
∣∣∣∣ ≤ �2 ε < ε .

IV. Next we estimate |µ(b̂j,n)|. Recall that µ(ĝj,n) = 0 for all j, n. Using the support
properties of the various functions, we have

µ
(
b̂j,n

) =
∫
γ
∣∣b̂j,n(γ )∣∣2 dγ

= �2

T 2
n

∫
γ
∣∣�̂n(γ )∣∣2 dγ +

j−1∑
k=1

|βk,n|2µ
(
ĝk,n

)+ |αj,n|2µ
(
ĝj,n

)
= �2

T 2
n

∫
γ
∣∣�̂n(γ )∣∣2 dγ .
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Thus, by (6.2) ∣∣µ(b̂j,n)∣∣ ≤ �2

T 2
n

∣∣∣∣∫ γ
∣∣�̂n(γ )∣∣2 dγ ∣∣∣∣ ≤ �2 ε < ε .

V. Now we estimate�2(bj,n). Once again, using the disjointness of supports and proceed-
ing as in part III, we have

�2(bj,n) ≤
∫

|t |2|bj,n(t)|2 dt

=
∫

|t |2
∣∣∣∣�Tn�n(t)

∣∣∣∣2 dt + j−1∑
k=1

∫
|t |2|βk,ngk,n(t)|2 dt

+
∫

|t |2|αj,ngj,n(t)|2 dt

= �2

T 2
n

∫
|t |2|�n(t)|2 dt +

j−1∑
k=1

|βk,n|2�2(gk,n)+ |αj,n|2�2(gj,n)

≤ �2

T 2
n

∫
|t |2|�n(t)|2 dt +

j−1∑
k=1

�2

T 4
n

2δ2 + |αj,n|22δ2

≤ �2

T 2
n

∫
|t |2|�n(t)|2 dt + T 2

n

(
2δ2�2

T 4
n

)
+ (1)2δ2

≤ �2

T 2
n

∫
|t |2|�n(t)|2 dt + 2�2δ2 + 2δ2

≤ �+ 2�2δ2 + 2δ2 < 1 + 4δ2 .

The first step above holds since �2(h) = infa∈R

∫ |t − a|2|h(t)|2 dt . The second step
above follows by the same type of calculations as in part III. We used (6.1) in the final
inequality.

Note that when� > 0 is chosen sufficiently small, the upper bound on�2(bj,n) can
be made arbitrarily close to 2δ2 = 2�2(g), where g ∈ S(R) is the function used to define
the system G(T ,N).
VI. It only remains to show that B = ⋃∞

j=1 Bj is complete. The verification is identical to
that in [5], but we repeat the details here for the sake of completeness.

||P[B1,··· ,Bk]ϕk||2L2(R)
= ||P[B1,··· ,Bk−1]ϕk||2L2(R)

+ ||P[Bk]ϕk||2L2(R)

= ||P[B1,··· ,Bk−1]ϕk||2L2(R)
+ ||P[Bk](�k + P[B1,··· ,Bk−1]ϕk)||2L2(R)

= 1 − ||�k||2L2(R)
+ ||P[Bk]�k||2L2(R)

= 1 − ||�k||2L2(R)
+
(Tk)

2∑
j=1

|〈�k, bj,k〉|2

= 1 − ||�k||2L2(R)
+ (Tk)

2
(
�

Tk
||�k||2L2(R)

)2

= 1 − ||�k||2L2(R)
+�2||�k||4L2(R)

≥ �2 .
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To see the final inequality, let h(t) = 1 − t2 + a2t4 be defined on [0, 1], where 0 < a < 1
4

is fixed. It is easy to see that h(t) ≥ a2. Since ||�k||L2(R) ≤ 1 and � < 1
4 , the last step

follows.
Now, suppose y ∈ L2(R) satisfies 〈y, b〉 = 0 for all b ∈ B. If y is not identically

zero, then ỹ = y/||y||L2(R) is in the unit sphere of L2(R) and there exists ϕnk such that
ϕnk → ỹ in L2(R) as k → ∞. Thus,

0 < � ≤ ||P[B1,··· ,Bnk ]ϕnk ||L2(R) ≤ ||P[B]ϕnk ||L2(R) → ∥∥P[B]ỹ
∥∥
L2(R)

= 0 ,

where the limit is as k → ∞. This contradiction shows that the orthonormal setB ⊆ L2(R)

is complete and hence is an orthonormal basis for L2(R).
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