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ABSTRACT. We prove in two dimensions that the set of Cauchy data for the Pauli Hamiltonian
measured on the boundary of a bounded open subset with smooth enough boundary determines
uniquely the magnetic field and the electrical potential provided that the electrical potential is
small in an appropriate topology. This result has the immediate consequence, in the case that the
magnetic potential and electrical potential have compact support, that we can determine uniquely
the magnetic field and the electrical potential by measuring the scattering amplitude at a fixed
energy provided that the electrical potential is small in an appropriate topology.

1. Introduction

The Pauli Hamiltonian describes particles in a magnetic field with spin. In two
dimensions it is a direct sum of the pair of operators

H �A,q
u :=

2∑

j=1

(
1

i

∂

∂xj

− Aj

)2

u ± Bu − qu (1.1)

where �A denotes the magnetic potential, B = rot �A is the magnetic field, and q is the
electrical potential (see for instance Chapter 6 of [4]). Thus both direct and inverse problems
for the Pauli Hamiltonian consider separately both signs in B in (1.1). For simplicity we
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will choose the plus sign. All of the results below are also valid for the minus sign in B

with minor changes in the arguments.
We first describe the inverse boundary problem we consider. Let � ⊂ R

2 be a
bounded domain with smooth boundary. We consider the Pauli Hamiltonian given by a
real-valued vector field �A = (A1, A2) ∈ W 1,p(�) and an electric potential q ∈ Lp(�),
p > 2,

H �A,q
u :=

2∑

j=1

(
1

i

∂

∂xj

− Aj

)2

u + Bu − qu = 0 in � (1.2)

where B = rot �A. Fix α = p−2
p

throughout this article. The set of Cauchy data of the
solutions of (1.2) is given by

C �A,q
:=

{
(f, g) ∈ C1,α (∂�) × Cα(∂�) : there exists u ∈ C1,α

(
�

)
(1.3)

such that H �A,q
u = 0, u|∂� = f,

((∇ − i �A)
u
)∣∣

∂�
· ν = g

}
.

Here ν denotes the unit normal to ∂�. In the case that 0 is not a Dirichlet eigenvalue for
H �A,q

, C �A,q
is the graph of the Dirichlet-to-Neumann (DN) map

� �A,q
: C1,α(∂�) → Cα(∂�) . (1.4)

The inverse boundary value problem we consider in this article is whether we can determine
�A and q from C �A,q

.
It was observed in [7, 8] that there is a gauge invariance in the problem. That is, if

ϕ ∈ C1(�) with ϕ|∂� = 1, ∇ϕ|∂� = 0, then

C �A+∇ϕ,q
= C �A,q

.

Therefore we can recover at best the magnetic field, rot �A, and q from the DN map. Recall
that rot �A := ∂A2

∂x1
− ∂A1

∂x2
where �A = (A1, A2).

In this article we prove the following semiglobal identifiability result:

Theorem 1.
Let �Aj ∈ W

1,p

0 (�), j = 1, 2, rot �A1 ∈ W
1,p

0 (�), q1 ∈ W 1,p(�), q2 ∈ Lp(�), p >

2. For each M > 0, there exists ε(M, �, p) > 0 such that if ‖ �A1‖Lp(�) ≤ M and
‖q1‖W 1,p(�) ≤ ε and

C �A1,q1
= C �A2,q2

, (1.5)

we conclude

rot �A1 = rot �A2 and q1 = q2 in � . (1.6)

W
1,p

0 (�) denotes the space of W 1,p(�)-functions whose boundary traces are zero.
Observe that no smallness condition is assumed on the electric potential q2. We also

remark that the only place where we need that the magnetic potential has boundary trace
zero is in the proof of Lemma 4. If we assume further regularity in the magnetic and
electrical potentials, then Theorem D of [6] allows to extend the magnetic and electrical
potentials to R

2 with compact support. Theorem D of [6] deals with the three or higher
dimensional case. However the same result is valid for two dimensions. More precisely we
have:
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Theorem 2.
Let �Aj , qj ∈ C∞(�), j = 1, 2, and p > 2. There exists ε(�, p) > 0 such that if

‖q1‖W 1,p(�) ≤ ε and

C �A1,q1
= C �A2,q2

, (1.7)

we conclude

rot �A1 = rot �A2 and q1 = q2 in � . (1.8)

In [8] Sun proved in two dimensions for the Schrödinger equation in a magnetic field
that if ‖ rot �Aj‖W 1,∞(�) (j = 1, 2) is small enough and qj (j = 1, 2) are in an open and

dense set in an appropriate topology, then we can determine uniquely rot �Aj and qj from
the DN map associated to the magnetic potentials and electrical potentials.

We remark that in dimensions n ≥ 3 a global identifiability result of the magnetic
field and electrical potential was proven in [6] for the Schrödinger equation in a magnetic
field assuming some smoothness conditions on the coefficients.

A particular case of Theorem 1 is when the electrical potential in (1.1) is zero. Thus
we obtain the following global uniqueness result:

Corollary 1.
Let �Aj ∈ W

1,p

0 (�), j = 1, 2, rot �A1 ∈ W
1,p

0 (�), q1 = 0, q2 ∈ Lp(�), p > 2. If

C �A1,0
= C �A2,q2

, (1.9)

we conclude

rot A1 = rot A2 and q1 = q2 = 0 in � . (1.10)

As a consequence of Theorem 2, a similar result to Corollary 1 holds with �Aj ∈
C∞(�), j = 1, 2, without the assumption that the magnetic potentials have zero boundary
trace.

It is well known (see for instance Chapter 12 of [13], and [5]) that Theorem 1 implies
a similar result for the inverse scattering problem at fixed energy if we assume that the
magnetic potential and electrical potential have compact support.

The scattering amplitude for the Pauli Hamiltonian (1.1) with �A ∈ W 1,p(R2), q ∈
Lp(R2), p > 2, �A, q with compact support, is defined in terms of the outgoing eigenfunc-
tions ψ+(λ, x, ω) where λ ∈ R − 0, x ∈ R

2, ω ∈ S1. Namely ψ+ satisfies

ψ+(λ, x, ω) = eiλx·ω + a �A,q
(λ, θ, ω)

|x| 1
2

eiλ|x| + O
(
|x|− 3

2

)
,

where θ = x
|x| . The scattering amplitude, a �A,q

(λ, θ, ω), measures the effect of the magnetic

and electrical potential on a plane wave with frequency λ and direction ω of the form eiλx·ω.
The inverse scattering problem at a fixed energy is to determine �A, q from the scat-

tering amplitude a �A,q
(λ0, θ, ω) with fixed λ0. It is easy to see, as in the case of the Cauchy

data previously discussed, that we can recover at best the magnetic field and the electrical
potential. An immediate consequence of Theorem 1 is the following.
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Theorem 3.
Let �Aj and qj have compact supports. Let �Aj ∈ W 1,p(R2), j = 1, 2, rot �A1 ∈

W 1,p(R2), q1 ∈ W 1,p(R2), q2 ∈ Lp(R2), p > 2. For each M > 0, there exists
ε(M, �, p) > 0 such that if ‖ �A1‖Lp(�) ≤ M and ‖q1‖W 1,p(�) ≤ ε and

a �A1,q1
= a �A2,q2

for a fixed λ , (1.11)

then

rot �A1 = rot �A2 and q1 = q2 in R
2 . (1.12)

One can also state a corollary similar to Corollary 1
The method of proof of Theorem 1 is by reducing the problem to a similar one for a

second order equation which can be factored in terms of ∂ and ∂ . Recall

∂ = 1

2

(
∂x1 + i∂x2

)
, ∂ = 1

2

(
∂x1 − i∂x2

)
.

We multiply Equation (1.13) by − 1
4 and rewrite the result in the form

(
∂ + ā

)
(∂ − a)u − q̃u = 0 in � (1.13)

where

a := 1

2
(A2 + iA1), q̃ = 1

4
q . (1.14)

We define the set of Cauchy data associated to (1.13) by

Ca,q̃ :=
{
(f, g) ∈ C1,α(∂�) × Cα(∂�) : u|∂� = f , (1.15)

((∂ − a)u)|∂� = g, u ∈ C1,α
(
�

)
a solution of (1.13)

}
.

Theorem 1 is then a consequence of

Theorem 4.
Let aj ∈ W 1,p(�), q̃1 ∈ W 1,p(�), q̃2 ∈ Lp(�), p > 2, j = 1, 2. For each M > 0,

there exists ε(M, �, p) > 0 such that if ‖a1‖Lp(�) ≤ M and ‖q̃1‖W 1,p(�) ≤ ε and

Ca1,q̃1 = Ca2,q̃2 , (1.16)

then

q̃1 = q̃2 and ∂
−1

ā1 + ∂−1a1 = ∂
−1

ā2 + ∂−1a2 in � . (1.17)

Here ∂
−1

is the solution operator of the ∂-equation defined by

∂
−1

f (z) := − 1

π

∫

�

f (ζ )

ζ − z
dµ(ζ ), z ∈ � (1.18)

where dµ is the Lebesgue measure on R
2. We note that ∂

−1
in this article is defined as an

integral operator on �, not on the whole of R
2. Of course (1.17) implies that

rot a1 = 1

2

(
∂a1 + ∂ā1

) = rot a2 = 1

2

(
∂a2 + ∂ā2

)
in � . (1.19)
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Observe that the article considers two rotation operators which are related by rot a =
1
4 rot A.

The method of proof of Theorem 4 reduces (1.13) to a first order system and follows
the lines of [3] to construct complex geometrical optics solutions for (1.13) for all complex
frequencies, and uses the scattering transform of Beals and Coifman [2] (see also [9, 10, 11]).
An important difference with [3] is that we work directly on the bounded domain � rather
than the whole space as in [3]. This simplifies several of the arguments.

In Section 2 we construct the complex geometric optics solutions for the first order
system and consider the corresponding scattering transform. In Section 3 we study the
scattering transform determined by the solutions. Finally in Section 4 we prove Theorem 4.

2. Complex Geometrical Optics Solutions for the
∂-System

In this section we reduce the second order equation
(
∂ + ā

)
(∂ − a)u − qu = 0 in � (2.1)

into a system of first order ∂ type system and construct geometrical optics solutions of the
system.

It is well-known that

f (z) = ∂
−1 (

∂f
)
(z) + C (f |∂�) (z), z ∈ � (2.2)

where C(f |∂�) is the Cauchy transform of f |∂�, namely,

C(f |∂�)(z) = 1

2πi

∫

∂�

f (ζ )

ζ − z
dζ, z /∈ ∂� .

We then define ∂−1 and C to be the conjugates of ∂
−1

and C, respectively, i.e.,

∂−1(f ) := ∂
−1 (

f̄
)
, and C(f ) := C

(
f̄

)
.

Then the following formula immediately follows from (2.2):

f (z) = ∂−1(∂f )(z) + C(f |∂�)(z), z ∈ � . (2.3)

We also define

C :=
(

C 0
0 C

)
. (2.4)

Let u be a solution of (2.1) and set w := (∂ − a)u. Then the Equation (2.1) takes the
form

[(
∂ + ā 0

0 ∂ − a

)
−

(
0 q

1 0

)] (
w

u

)
= 0 . (2.5)

We rewrite the Equation (2.5) to obtain
(

e−∂
−1

ā 0

0 e∂−1a

)[(
∂ 0
0 ∂

)
−

(
0 eT aq

e−T a 0

)](
e∂

−1
ā 0

0 e−∂−1a

)(
w

u

)
= 0 (2.6)
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where
T a(z) := ∂

−1
ā + ∂−1a .

Set

D :=
(

∂ 0
0 ∂

)

and

Q :=
(

0 eT aq

e−T a 0

)
.

We are seeking special solutions of the system

(D − Q)ψ = 0 in � (2.7)

in the form

ψ =
(

e−∂
−1

ā 0

0 e∂−1a

)
m(z, k)

(
eizk 0

0 e−iz̄k

)
(2.8)

where m(z, k) is a 2 × 2 matrix valued function in �.
We need a few more definitions (see [3]): For z and k in C, let

ẽk(z) = exp
(
i
(
zk̄ + z̄k

))
and ek(z) = exp

(
i
(
zk + z̄k̄

))
,

and

�(z, k) := �k(z)

=
(

ẽk(z) 0
0 e−k(z)

)
.

We then define

EkA := Ek

(
a11 a12
a21 a22

)
=

(
a11 ẽ−ka12

eka21 a22

)
.

Then, m defined in (2.8) satisfies

Dkm − Qm = 0 in � (2.9)

where Dk is the operator

DkA = E−1
k DEkA .

Let

D−1 :=
(

∂
−1

0
0 ∂−1

)
.

We have from (2.9) that
DEkm − EkQm = 0 in � .

Applying D−1 to the last equation and using (2.2) and (2.3), we get

Ekm(z) − D−1EkQm(z) = C(Ekm|∂�)(z), z ∈ � .
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Thus we conclude
(
I − D−1

k Q
)

m(z) = E−1
k C(Ekm|∂�)(z), z ∈ � , (2.10)

where I is the 2 × 2 identity matrix and

D−1
k := E−1

k D−1Ek .

In order to investigate the invertability of the operator I − D−1
k Q, we consider its

null space. We denote by H(�) the class of holomorphic functions in �.

Lemma 1.
Suppose that m ∈ L∞(�) and satisfies (I − D−1

k Q)m = 0 in �. Define ψ by (2.8).
Then ψ21, ψ22 ∈ C1,α(�) are solutions of the equation (∂ + ā)(∂ − a)u − qu = 0 in �

and there are fij ∈ H(C \ �) ∩ (C \ �) with fij (z) = O(|z|−1) as |z| → ∞, i, j = 1, 2,
such that





ψ21|∂� = e∂−1ae−iz̄k̄ f̄21 ,

(∂ − a)ψ21|∂� = e−∂
−1

āeizkf11 ,
(2.11)

and




ψ22|∂� = e∂−1ae−iz̄kf̄22 ,

(∂ − a)ψ22|∂� = e−∂
−1

āeizk̄f12 .
(2.12)

The converse is also true: If ψ21, ψ22 ∈ C1,α(�) are solutions of (2.1) and satisfy (2.11)
and (2.12), then define ψ by ψ11 := (∂ − a)ψ21 and ψ12 := (∂ − a)ψ22, and m by (2.8).
Then we have (I − D−1

k Q)m = 0 in �.

Proof. Suppose that m ∈ L∞(�) and
(
I − D−1

k Q
)

m = 0 in � .

Then, m ∈ C1,α(�) and satisfies

(Dk − Q)m = 0 in � ,

and, by (2.10),
C(Ekm|∂�)(z) = 0, z ∈ � .

Thus we obtain

C(m11|∂�)(z)=C(ekm21|∂�)(z)=C
(
ẽ−km12|∂�

)
(z) = C(m22|∂�)(z) = 0, z ∈ � . (2.13)

(2.13) is equivalent to the fact that there are fij ∈ H(C\�)∩(C\�) with fij (z) = O(|z|−1)

as |z| → ∞, i, j = 1, 2, such that

m11|∂� = f11 ,

ekm21|∂� = f21 ,

ẽ−km12|∂� = f12 ,

m22|∂� = f22 .
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This can be proven using Plemelj’s jump formula for the Cauchy integral, namely,

lim
t→0+ C(f )(z − tν(z)) − lim

t→0+ C(f )(z + tν(z)) = f (z), z ∈ ∂� ,

where ν(z) is the outward unit normal to ∂� at z. Since ψ is defined by (2.8), (2.11),
and (2.12) follow.

To prove the converse, one can simply reverse the argument above. This completes
the proof.

For a ∈ Lp(�), define T a(z) := ∂
−1

ā + ∂−1a as before. Since ∂
−1

and ∂−1 are
bounded from Lp(�) into Cα(�) (α = p−2

p
), there exists a constant C = C(�, p) such

that
‖T a‖Cα(�) ≤ C‖a‖p .

Therefore, there are constants C and C1 depending only on � and p such that

‖ exp(T a)‖∞ ≤ exp(C‖a‖p) (2.14)

‖ exp(T a)‖Cα(�) ≤ C1‖a‖p exp(C‖a‖p) . (2.15)

In fact, (2.15) follows from the following estimate:

| exp(T a)(z) − exp(T a)(ζ )| = | exp(T a)(z)||1 − exp[(T a)(ζ ) − (T a)(z)]|
≤ C1 exp(C‖a‖p)‖a‖p|(T a)(ζ ) − (T a)(z)|
≤ C1 exp(C‖a‖p)‖a‖p|z − ζ |α .

Lemma 2.
There exist constants C1 and C2 depending only on � and p such that if C1 exp(C2

‖a‖p)‖q‖p < 1, then I − D−1
k Q : L∞(�) → L∞(�) is invertible.

Proof. Fix α = p−2
p

. Since Q : L∞(�) → Lp(�) and D−1
k : Lp(�) → Cα(�)

are bounded, D−1
k Q is a compact operator on L∞(�). Thus it suffices to establish the

injectivity of I − D−1
k Q. Suppose that u ∈ L∞(�) satisfies

u − D−1
k Qu = 0 in � .

Then,
Eku − D−1EkQu = 0 .

Considering the first column of the last equation, we have

u11 = ∂
−1

(
eT aqu21

)
(2.16)

ek(z)u21 = ∂−1
(
eke

−T au11

)
. (2.17)

It then follows from (2.14) and (2.16) that

‖u11‖∞ ≤ C1
∥∥eT aqu21

∥∥
p

≤ C1 exp(C2‖a‖p)‖q‖p‖u21‖∞ .
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We also have from (2.17) that

‖u21‖∞ ≤ C3
∥∥e−T au11

∥∥∞
≤ C3 exp(C2‖a‖p)‖u11‖∞ .

Note that all the constants in the estimates depend only on � and p . Thus if C1C3 exp(2C2
‖a‖p)‖q‖p < 1, then we have u21 = u11 = 0. In the same way, one can show that
u12 = u22 = 0. This completes the proof.

3. The Scattering Transform

We assume that I − D−1
k Q : L∞(�) → L∞(�) is invertible and let I ∈ L∞(�) be

the 2 × 2 identity matrix viewed as a matrix valued function. Define

m(z, k) :=
(
I − D−1

k Q
)−1

(I ) , (3.1)

and the scattering transform by

S(k) = − 1

π
J

∫

�

Ek(Q(z)m(z, k)) dµ(z) (3.2)

where the operator J is defined by

J
(

a11 a12
a21 a22

)
=

(
0 −ia12

ia21 0

)
.

Theorem 5.

(i) For each fixed z, k → m(z, k) is differentiable as a function of k and satisfies

∂

∂k̄
m(z, k) = m

(
z, k̄

)
�k(z)S(k) . (3.3)

(ii) There are constants C3 and C4 such that

‖m11(·, k)−1‖∞+‖m22(·, k)−1‖∞ ≤ C3

|k| (‖a‖p + 1) exp(C4‖a‖p)‖q‖p , (3.4)

‖m12(·, k)‖∞ + ‖m21(·, k)‖∞ ≤ C3

|k| (‖a‖p + 1) exp(C4‖a‖p) . (3.5)

Proof. (i) is proved in [3].
Note that m satisfies

Ekm − D−1EkQm = I .

Thus m11 and m21 satisfy

m11 = ∂
−1

(
eT aqm21

)
+ 1 (3.6)

ek(z)m21 = ∂−1
(
eke

−T am11

)
. (3.7)
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From (3.6), we have

‖m11 − 1‖Cα(�) ≤ C1
∥∥eT aqm21

∥∥
p

≤ C1 exp(C2‖a‖p)‖q‖p‖m21‖∞ . (3.8)

We have that ∂∂
−1

is a Calderón–Zygmund operator and therefore is bounded on Lp (1 <

p < ∞). Using this and (3.6) gives

‖∂m11‖p ≤ C3
∥∥eT aqm21

∥∥
p

≤ C3 exp(C2‖a‖p)‖q‖p‖m21‖∞ . (3.9)

Since ek(z) = 1
ik

∂ek(z), one can see from an integration by parts that

∂−1(eke
−T am11

)
(z)

= 1

ik

[
C

(
eke

−T am11
)∣∣

∂�

)
(z) + ∂−1(ek(∂T a)e−T am11

)
(z) − ∂−1(eke

−T a∂m11
)
(z)

]

:= 1

ik
[I1 + I2 + I3] .

A standard estimate for the Cauchy transform, (2.15), and (3.8) gives

‖I1‖∞ ≤ C4
∥∥e−T am11

∥∥
Cα(∂�)

≤ C4
∥∥e−T a

∥∥
Cα(�)

‖m11‖Cα(�)

≤ C5 exp(C2‖a‖p)(‖a‖p‖q‖p‖m21‖∞ + 1) . (3.10)

Since ∂T is bounded on Lp (p < ∞), we have

‖I2‖∞ ≤ C6
∥∥(∂T a)e−T am11

∥∥
p

≤ C6‖∂T a‖p

∥∥e−T a
∥∥∞‖m11‖∞

≤ C7‖a‖p exp(C2‖a‖p)(‖q‖p‖m21‖∞ + 1) . (3.11)

From (3.9), we get

‖I3‖∞ ≤ C
∥∥e−T a

∥∥∞‖∂m11‖p

≤ C1 exp(C2‖a‖p)‖q‖p‖m21‖∞ . (3.12)

It thus follows from (3.7), (3.10), (3.11), and (3.12) that

‖m21‖∞ ≤ C8

|k| [‖a‖p exp(C2‖a‖p)‖q‖p‖m21‖∞ + (‖a‖p + 1) exp(C2‖a‖p)]

and hence

‖m21‖∞ ≤ C9

|k| (‖a‖p + 1) exp(C2‖a‖p)

if |k| is so large that C8‖a‖p exp(C2‖a‖p)‖q‖p < 1
2 |k|. We can easily conclude from (3.6)

that

‖m11 − 1‖∞ ≤ C10

|k| (‖a‖p + 1) exp(C2‖a‖p)‖q‖p .

Estimates for m12 and m22 can be derived in the same way. This completes the proof.
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Lemma 3.
Suppose that q ∈ W 1,p(�). Let the scattering matrix

S(k) =
(

0 s1(k)

s2(k) 0

)
.

Then, there are constants C1 and C2 such that

|s1(k)| ≤ C1

|k| + 1
(‖a‖p + 1) exp(C2‖a‖p)‖q‖W 1,p , (3.13)

|s2(k)| ≤ C1

|k| + 1
(‖a‖p + 1) exp(C2‖a‖p)(‖q‖p + 1) . (3.14)

Proof. Let
m = I + m̃ .

By (3.2), we have

s1(k) = − 1

π

∫

�

ẽk(z)e
T a(z)q(z) (1 + m̃22(z)) dµ(z) .

If |k| is small, it is easy to see, using (3.4), that

|s1(k)| ≤ C1‖a‖p exp(C2‖a‖p)‖q‖p .

If |k| is large, we get from (3.4)
∣∣∣∣
∫

�

ẽk(z)e
T a(z)q(z)m̃22(z) dµ(z)

∣∣∣∣ ≤ C1

|k| (‖a‖p + 1) exp(C2‖a‖p)‖q‖2
p .

By an integration by parts, we can show that
∣∣∣∣
∫

�

ẽk(z)e
T a(z)q(z) dµ(z)

∣∣∣∣ ≤ C1

|k| (‖a‖p + 1) exp(C2‖a‖p)‖q‖W 1,p .

This gives (3.13).
Since

s2(k) = − 1

π

∫

�

e−k(z)e
−T a(z) (1 + m̃11(z)) dµ(z) ,

(3.14) follows from (3.4) and the same argument. This completes the proof.

4. Proof of Theorem 4

In this section we prove Theorem 4. We need the following lemma due to Sun
(Equation (3.44) in [8]).

Lemma 4.
If Ca1,q1 = Ca2,q2 , then ∂−1a1 = ∂−1a2 on ∂�.

Z. Sun proves this lemma under the assumption that the DN maps are the same.
However, exactly the same argument works with the assumption Ca1,q1 = Ca2,q2 . Also
Sun’s proof works under the weaker regularity assumptions assumed in this article. We
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also remark that the proof is similar to the one given in [12] for the case that the magnetic
potentials are zero to show that ∂−1q1 = ∂−1q2 on ∂�.

Lemma 5.
Suppose that Ca1,q1 = Ca2,q2 . If I − D−1

k Q(1) is invertible on L∞(�), so is I −
D−1

k Q(2).

Proof. Suppose that

(
I − D−1

k Q(2)
)

m(2) = 0 in � .

We then define ψ(2) by (2.8). Then, by Lemma 1, ψ
(2)
21 and ψ

(2)
22 are solutions of the

equation (∂ + ā2)(∂ − a2)u − q2u = 0 in � and there are fij ∈ H(C \ �) ∩ (C \ �)

with fij (z) = O(|z|−1) as |z| → ∞, i, j = 1, 2, satisfying (2.11) and (2.12). Since
Ca1,q1 = Ca2,q2 , there are solutions, say u1 and u2, of (∂ + ā1)(∂ − a1)u − q1u = 0 in �

such that




u1|∂� = e∂−1a2e−iz̄k̄ f̄21 ,

(∂ − a1)u1|∂� = e−∂
−1

ā2eizkf11 ,

and




u2|∂� = e∂−1a2e−iz̄kf̄22 ,

(∂ − a1)u2|∂� = e−∂
−1

ā2eizk̄f12 .

Define m(1) by

(
(∂ − a1)u1 (∂ − a1)u2

u1 u2

)
=

(
e−∂

−1
ā1 0

0 e∂−1a1

)
m(1)(z, k)

(
eizk 0

0 e−iz̄k

)
.

Since ∂−1a1 = ∂−1a2 on ∂� by Lemma 4, we have m
(1)
11 = f11, ekm

(1)
21 = f̄21, ẽ−km

(1)
12 =

f12, m
(1)
22 = f̄22 on ∂� and hence C(Ekm

(1)|∂�) = 0 in �. Therefore, by Lemma 1, we
have (

I − D−1
k Q(1)

)
m(1) = 0 in � .

Since I − D−1
k Q(1) is invertible, we have m(1) = 0 in �. Thus we conclude that fij = 0.

It then follows from (2.11) and (2.12) that ψ
(2)
2j = ∂ψ

(2)
2j = 0 on ∂�, j = 1, 2. We then

have from the unique continuation property of the Schrödinger equation with magnetic
potential [1] that ψ2j = 0 in �, and hence m(2) = 0. By the Fredholm alternative, we have
the invertability of I − D−1

k Q(2) on L∞(�). This completes the proof.

Lemma 6.
If Ca1,q1 = Ca2,q2 and I − D−1

k Q(1) is invertible on L∞(�), then the corresponding
scattering matrices coincide, i.e., S(1)(k) = S(2)(k) for all k ∈ C.
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Proof. Let m(j) = (I − D−1
k Q(j))−1(I ), j = 1, 2. Then the scattering matrix S(j)(k)

is given by

S(j)(k) = − 1

π
J

∫

�

EkQm(j) dµ(z)

= − 1

π
J

∫

�

DEkm
(j) dµ(z)

=



0

1

2πi

∫

∂�

ẽ−km
(j)

12 dz

− 1

2πi

∫

∂�

ekm
(j)

21 dz̄ 0



 .

Thus it suffices to prove that m(1) = m(2) on ∂�. This can be proved using (2.10). In fact,
define ψ(j), j = 1, 2, according to (2.8), namely,

ψ(j)(z, k) :=
(

e−∂
−1

āj 0

0 e∂−1aj

)
m(j)(z, k)

(
eizk 0

0 e−iz̄k

)
.

Then, for k = 1, 2 and j = 1, 2, ψ
(j)

1k and ψ
(j)

2k satisfy

(
∂ + āj

) (
∂ − aj

)
ψ

(j)

2k − qjψ
(j)

2k = 0, in �

(∂ − aj )ψ
(j)

2k = ψ
(j)

1k .

Since Ca1,q1 = Ca2,q2 , there exist solutions, say u1 and u2, of the equation (∂ + ā2)(∂ −
a2)v − q2v = 0 in � such that

uk|∂� = ψ
(1)
2k |∂� ,

(∂ − a2)uk|∂� = ψ
(1)
1k |∂� .

Define m by

(
(∂ − a2)u1 (∂ − a2)u2

u1 u2

)
=

(
e−∂

−1
ā2 0

0 e∂−1a2

)
m(z, k)

(
eizk 0

0 e−iz̄k

)
.

Since ∂−1a1 = ∂−1a2 on ∂�, we have m(z, k) = m(1)(z, k) for all z ∈ ∂� and k ∈ C and
hence

E−1
k C(Ekm|∂�) = E−1

k C
(
Ekm

(1)
∣∣
∂�

)
= I in � .

It then follows from (2.10) that
(
I − D−1

k Q(2)
)

m = I =
(
I − D−1

k Q(2)
)

m(2) in � .

Since (I − D−1
k Q(2)) is invertible, we have m = m(2). In particular, m(1) = m(2) on ∂�.

This completes the proof.

We are now ready to prove Theorem 4.

Proof of Theorem 4. If ε is so small that C1 exp(C2M)ε < 1, then by Lemma 2,
(I − D−1

k Q(1)) is invertible on L∞(�). Then, (I − D−1
k Q(2)) is also invertible on L∞(�)

by Lemma 5. Define m(j), j = 1, 2, by
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(
I − D−1

k Q(j)
)

m(j) = I in � ,

and let S(j)(k) be the corresponding scattering matrix. Then by Lemma 6, we have S(1)(k) =
S(2)(k) for all k ∈ C. Put S(k) := S(1)(k) = S(2)(k) and m(z, k) := m(1)(z, k)−m(2)(z, k).
Then, by (3.3), m satisfies

∂

∂k̄
m(z, k) = m

(
z, k̄

)
�k(z)S(k), k ∈ C . (4.1)

Moreover, by (3.4) and (3.5), we have

‖m(·, k)‖∞ ≤ C

1 + |k| , k ∈ C . (4.2)

We now show that m ≡ 0. In view of (4.1), we obtain

∂

∂k̄
(m11 ± m21) = (

m12
(
z, k̄

) ± m22
(
z, k̄

))
e−ks2 ,

∂

∂k̄
(m12 ± m22) = (

m11
(
z, k̄

) ± m21
(
z, k̄

))
ẽks1 .

We then obtain using (4.2) that

m11 ± m21 = ∂
−1
k

((
m12

(
z, k̄

) ± m22
(
z, k̄

))
e−ks2

)
,

m12 ± m22 = ∂
−1
k

((
m11

(
z, k̄

) ± m21
(
z, k̄

))
ẽks1

)
.

Here ∂
−1
k is defined to be

∂
−1
k f (w) := − 1

π

∫

C

f (k)

k − w
dµ(k), w ∈ C ,

and ∂−1
k is defined likewise. It is well-known that ∂

−1 : L2−δ → L2−δ+1 is bounded where
L2

δ is the L2 space on C weighted by (1 + |k|2)δ . Thus it follows from (3.13) and (3.14)
that

‖m11 ± m21‖L2
δ

≤ C1(‖a‖p + 1) exp(C2‖a‖p)(‖q‖p + 1)‖m12 ± m22‖L2
δ
,

‖m12 ± m22‖L2
δ

≤ C1(‖a‖p + 1) exp(C2‖a‖p)‖q‖W 1,p‖m11 ± m21‖L2
δ
.

Here the L2
δ -norms are in the k-variable. Thus we have

‖m11 ± m21‖L2
δ

≤ C(M + 1)2eCMε‖m11 ± m21‖L2
δ

for some constant C. If ε is so small that C(M+1)2eCMε < 1, then we have m11±m21 = 0
and m12 ± m22 = 0. Hence m = 0, or m(1) = m(2). It then follows that Q(1) = Q(2) in �,
and hence eT a1 = eT a2 and q1 = q2 in �. This completes the proof.

Theorem 1 immediately follows from Theorem 4 once we observe that

−1

4

2∑

j=1

(
1

i

∂

∂xj

− Aj

)2

= (
∂ + ā

)
(∂ − a) + rot a

where a := 1
2 (A2 + iA1).
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