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ABSTRACT. We consider Synthetic Aperture Radar (SAR) in which backscattered waves are
measured from locations along a single flight path of an aircraft. Emphasis is on the case where it
is not possible to form a beam with the radar. The article uses a scalar linearized mathematical
model of scattering, based on the wave equation. This leads to a forward (scattering) operator,
which maps singularities in the coefficient of the wave equation (viewed as a singular perturbation
about a constant coefficient) to singularities in the scattered wave field. The goal of SAR is to
recover a picture of the singular support of the coefficient, i.e., an a image of the underlying
terrain.

Traditionally, images are produced by “backprojecting the data.” This is done by applying
the adjoint of the scattering operator to the data. This backprojected image is equivalent to that
obtained by applying to the perturbed coefficient the composition of the scattering operator followed
by its adjoint. We analyze this composite operator, and show that it is a paired Lagrangian operator.
The properties of such operators explain the origin of certain artifacts in the backprojected image.

1. Introduction

In Synthetic Aperture Radar (SAR) imaging, a plane or satellite carrying an antenna
moves along a flight path. The antenna emits pulses of electromagnetic radiation, which
scatter off the terrain, and the scattered waves are detected with the same antenna. The
received signals are then used to produce an image of the terrain. (See Figure 1)

A similar procedure is used for Synthetic Aperture Sonar, using an array of transduc-
ers instead of an antenna; here the goal is to map the seafloor. Synthetic aperture focusing
techniques are also used in non-destructive evaluation [24] and geophysics [5, 4, 6, 31, 34].
In this article we discuss explicitly the radar case, but the analysis applies equally well to
sonar, ultrasound, and seismic imaging.
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c© 2004 Birkhäuser Boston. All rights reserved
ISSN 1069-5869



134 Clifford J. Nolan and Margaret Cheney

v

(s)γ

FIGURE 1 Acquisition geometry for SAR.

Most present SAR systems operate at microwave frequencies, where antennas of a
manageable size can form an illuminating beam and rapid Fourier-based imaging methods
can be used [14]. Microwave frequencies, however, do not penetrate well through foliage,
and there is much interest in developing lower-frequency SAR systems [25, 39] able to
image regions under a forest canopy. At these lower frequencies, antennas usually have
poor directivity, and the standard Fourier-based imaging methods are not useful.

If the antenna is modeled as an isotropically-radiating point source, the imaging
problem reduces to the inversion of a spherical Radon transform. For a flat earth, this
becomes the problem of reconstructing a function from its integrals over circles. For
this case, an inversion formula for reconstructing symmetric functions from straight flight
tracks was given in [13] and [1]; the case of reconstructing a function from its integrals over
circular arcs was analyzed in [35]. A uniqueness theorem for general flight paths having
non-vanishing curvature was proved in [2]. The problem of multiple flight passes and three-
dimensional imaging was considered in [27]; for this case an approximate reconstruction
formula for a non-ideal antenna was given in [32].

We consider the case in which a single pass is made over the scene, so that backscat-
tered data is known for positions that sample a curve of sensor positions. The data depend on
two variables, namely the (fast) time variable and the position on the flight track (changing
on slower time-scale). Here we are making what is known as the start-stop approximation,
in which we assume that the radar is stationary while the radio wave is transmitted and
received. This is a very accurate approximation [14] for typical SAR systems.

Because the data depend on two degrees of freedom, we expect to be able to reconstruct
a two-dimensional image of the scene.

We model the propagation of electromagnetic waves by the wave equation, which
involves a local speed of wave propagation. In free space, this speed is c0, the speed of light
in vacuum. We model scatterers as position-dependent perturbations of this wave speed
c(X), where X ∈ R3. Boundaries of scatterers (interfaces between objects with different
material properties) correspond, for example, to jumps in c(X). To image different objects
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we therefore want to estimate the singular components of c(X).
We use a weak-scattering approximation; this makes the forward scattering operator

(the operator that maps the unknown perturbation to the measured data) a linear one. In
particular, this operator maps singular components of the wave speed to singularities in the
measured data. We show that this operator is a Fourier Integral Operator (FIO) [10, 18, 38];
such operators map singular distributions to other singular distributions (on a different
domain in general). The relationship between the input and output singularities forms
what is called a canonical relation. Canonical relations associated to FIOs are Lagrangian
manifolds [10] and have a rich geometric structure. We study this in detail for the case of
radar.

The conventional method for obtaining an image (a picture of the singular support of
the wave speed) is to “backproject” the data; this amounts to application of the adjoint of
the forward scattering operator to the data. We analyze this procedure for reconstructing
the singularities in the scene. We show that in general, this procedure produces artifacts.
Moreover, we are able to show that the strength of the artifacts are the same of as those of
true singularities; e.g., for every Heaviside jump discontinuity that appears in the image in
the correct position, one will also appear in the wrong position.

2. The Mathematical Model

For SAR, the correct model is of course Maxwell’s equations, but the simpler scalar
wave equation is commonly used:(

∇2 − 1

c2(X)
∂2
t

)
u(t, X) = 0 , (2.1)

where c is the wave propagation speed. Each component of the electric and magnetic fields
in free space satisfies (2.1); thus it is a good model for the propagation of electromagnetic
waves in dry air.

For sonar and ultrasound, (2.1) is a good model. For geophysics it is sometimes used
but the equations of linear elasticity are more appropriate.

We assume

Assumption 1. Locally, the earth’s surface X = {X = (x, 0) : x ∈ R2}) is flat; the
flight path is level and is well separated from the surface; and in the intervening region,
c(X) = c0.

For radar applications, c0 is the speed of light in vacuum.
Because electromagnetic waves are rapidly attenuated in the earth, we assume that

the scattering takes place in a thin region near the surface . In particular, we assume

Assumption 2. The perturbation in wave speed c is of the form c−2
0 − c−2(X) =

V (x)δ(x3).

Here V , the ground reflectivity function, is the distribution we wish to reconstruct and δ is
the Dirac distribution.

We denote the time-domain waveform sent to the antenna by P(t). We write P in
terms of its Fourier transform p:

P(t) =
∫

e−iωtp(ω) dω , (2.2)
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where ω denotes the angular frequency. In practice, the waveform P is such that only a
certain union of intervals [−ωmax, −ωmin]∪ [ωmin, ωmax] contributes significantly to (2.2);
we call this set the effective support of p. The difference (ωmax − ωmin) is the (angular-
frequency) bandwidth. The fact that P is band-limited means that ultimately we reconstruct
band-limited approximations to singular components of the coefficient c.

We show in the Appendix A that the received wave field at sensor location Y and time
t can be approximated by the expression

S(Y, t) =
∫

R×X
e−i2ω(t−2|(x,0)−Y |/c0) p(ω)

W(x, Y, t, ω)V (x) ω2 dω dx , (2.3)

where W can be obtained from (A.15). W contains geometrical factors such as the antenna
beam pattern and the attenuation from geometrical spreading of the wave.

In particular, we have assumed

Assumption 3. The data S is linearly related to the wave speed perturbation V , i.e., we
use a single-scattering (Born) approximation.

The idealized inverse problem is to determine V from knowledge of S for t ∈ (T1, T2)

and for Y on a curve. This curve we parametrize by

γ :=
{

γ (s) = (γ1(s), γ2(s), h) smin < s < smax
}

(2.4)

where h is the (constant) altitude at which the aircraft flies. We denote the (s, t) parameter
space by Y:

Y =
(
smin, smax

)
× (T1, T2) . (2.5)

A number of technical difficulties arise if we attempt to image points directly under-
neath the antenna. In particular, we will see that the technique of backprojection does not
apply to such data coming from locations directly underneath the current location of the
antenna. We therefore assume

Assumption 4. The height h of the flight track and the time T1 at which data recording
begins are related by T1 > T0 > 2h/c0 for some T0.

The abrupt ends of the flight track and the recording time interval cause artifacts in
the image; consequently it is useful to multiply the data by a smooth taper or mute function
m(s, t) which is zero outside Y .

We denote the map from scene V to data d = m · S by F , where

FV (s, t) =
∫

R×X
e−iω(t−2|R(x,s)|/c0)A(x, s, t, ω)V (x) dω dx , (2.6)

where R(x, s) = (x, 0) − γ (s),

A(x, s, t, ω) = m(s, t)ω2p(ω) W(x, γ (s), t, ω)

:= ω2p(ω)α(x, s, t, ω) . (2.7)

For a broadband antenna, α is approximately independent of ω. More specifically, we make
the following assumption. This assumption is needed in order to make various stationary
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phase approximations we make hold; in fact, as we will see, this assumption makes the
“forward” operator F a FIO.

Assumption 5. The amplitude A of (2.6) satisfies

sup
(s,t,x)∈K

∣∣ ∂α
ω∂β

s ∂δ
t ∂ρ

x A(x, s, t, ω)
∣∣ ≤ C

(
1 + ω2

)(2−|α|)/2
(2.8)

where K is any compact subset of Y × X , ρ = (ρ1, ρ2) is a multi-index and the constant
C depends on K, α, β, δ, ρ.

This assumption is valid for example when the source waveform P is approximately a delta
function and the antenna is sufficiently broadband.

Finally, we remark that the case when the scattering surface is non-planar and the
flight path is non-horizontal can be treated similarly [33].

3. Analysis of the Scattering Operator

The “forward” operator F (2.6) is an example of a Fourier Integral Operator (FIO) [10,
38, 18]. Standard theorems from FIO theory therefore give us information about how F

maps singularities in the scene to those in the data. How F maps singularities is deter-
mined [10] by its wavefront relation WF ′(F ), which is a subset of its (twisted) canonical
relation �′, which in turn is a subset of T ∗(Y ×X )\{0}, i.e., of the cotangent bundle Y ×X
with its zero section removed.

Definition 1. If the Fourier Integral Operator T : E ′(X ) → E ′(Y) is given by the
oscillatory integral

Tf (y) =
∫

eiφ(y,x,ω)a(y, x, ω) f (x) dω dx (3.1)

then its (twisted) canonical relation is the set

�′
T = {

((y, η), (x, ξ)) : Dωφ(y, x, ω) = 0 ,

η = Dyφ(y, x, ω), ξ = −Dxφ(y, x, ω), ξ, η �= 0
}

, (3.2)

where D denotes the gradient. The wavefront relation WF ′(T ) is the subset of points in
�′

T that are also in the essential support of the amplitude a, i.e., in the region outside of
which a and all its derivatives decrease faster than any negative power of ω, as |ω| → ∞.

The canonical relation �′
F = �′ for F is computed from the phase of (2.6):

�′ = {
((s, t, σ, τ ), (x, ξ)) : t = 2|R(x, s)|/c0 ,

σ = −2τ R̂(x, s) · γ̇ (s)/c0 , ξ = 2τ R̂(x, s)H /c0
}

(3.3)

where the subscript H denotes the horizontal component of a vector. This horizontal
component arises because we are identifying the scattering surface X with R2.

The wavefront relation WF ′(F ) is the set of points in �′ for which the antenna
beam pattern is nonzero and for which τ = ω is in the effective support of p (i.e., points
((s, t, σ, τ ), (x, ξ)) ∈ �′ such that the associated (x, s, t, τ ) belong to the essential support
of A).



138 Clifford J. Nolan and Margaret Cheney

Some more terminology [16, 17] we need is the following:

Definition 2. Suppose a mapping f : M → N between two manifolds has full rank
everywhere except on a submanifold � ⊂ M where it drops rank by one, and suppose the
determinant of the Jacobian of f vanishes to exactly first order on �. We say that f has
a simple fold singularity or drops rank simply along � if, on �, the dimension of the null
space of df is one, and if

Tl� ∩ ker(df (l)) = {0}, ∀l ∈ � , (3.4)

where df denotes the exterior derivative of f , i.e., a one-form. If, on the other hand, for
every l in � we have

Ker(df (l)) ⊂ Tl� , (3.5)

then we say that f has a blow-down singularity, and that � gets blown down by f . If the
condition (3.4) holds in a punctured neighborhood of a point l0, and at l0 we have ker(df )

is simply tangent to �, we say the map has a cusp singularity at l0.

Definition 3. If �′ ⊂ T ∗Y ×T ∗X is a canonical relation such that the only singularities
of the natural projections πL : �′ → T ∗Y and πR : �′ → T ∗X are simple folds along a
common codimension-one submanifold, called the ‘fold’ of �′, then we say [28] that �′ is
a folding canonical relation.

Definition 4. If the assumptions of Definition 3 hold for the maps πL, πR when restricted
to the wavefront relation WF ′(F ) ⊂ �′ of a Fourier integral operator F , we say that F has
a folding wavefront relation.

Lemma 1.
The natural projection �′ → T ∗Y has a simple fold along the submanifold � given

by

� := {
((s, t, σ, τ ), (x, ξ)) ∈ �′ ∣∣ γ̇ (s) is co-linear with RH (x, s)

}
(3.6)

Proof. One may easily verify that {(s, x, τ ) ∈ R4} constitutes a global coordinate
system for �′. We use this coordinate system to express (local representatives of) the
natural projection πL : �′ → T ∗Y:

πL(s, x, τ ) = (s, t, σ, τ )

=
(

s,
2

c0
|R(x, s)| ,

2τ

c0

(
R̂(x, s)

)
· γ̇ (s) , τ

)
,

where R(x, s) is defined below (2.6).
Let π denote the operator of horizontal projection (projection onto first two compo-

nents) of a vector. The action of π ′
L (the derivative of πL) is given by




δs

δt

δσ

δτ


 = π ′

L


 δs

δx

δτ


 =




1 0 0

L1
2
c0

R̂(x, s)TH 0

L2 − 2τ
c0

γ̇ · P R
H L3

0 0 1





 δs

δx

δτ


 (3.7)
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where the superscript T denotes transpose, where L1, L2, L3 are linear operators whose
specific form is immaterial, and where for arbitrary 3-vectors X, Y ,

XH = πX = (x1, x2, 0) = (x, 0)

P Y X =
X −

(
Ŷ · X

)
Ŷ

|Y |
P Y

H X = πP Y X (3.8)

We note that P Y projects the vector X onto the plane perpendicular to Y .

First, we show that π ′
L has full rank everywhere except on the critical submani-

fold (3.6) of �′ where its rank drops by one. To see this, we note that the determinant of
the matrix in (3.7) is equal to a non-zero multiple of the determinant J of the matrix formed
by the two vectors R̂H and P R

H · γ̇ , which can be written

J =

∣∣∣∣∣∣∣∣

R̂1
(
P Rγ̇

)
1 0

R̂2
(
P Rγ̇

)
2 0

R̂3
(
P Rγ̇

)
3 1

∣∣∣∣∣∣∣∣
= R̂ ×

(
P Rγ̇

)
· ê3 (3.9)

The vectors R̂ and P Rγ̇ are orthogonal. Since, R �= 0, the scalar-triple product of (3.9)
is zero only when either (i) P Rγ̇ = 0, or (ii) when the plane formed by R̂ and P Rγ̇ is
vertical. Condition (i) or (ii) holds precisely when R̂H (x, s) is co-linear with γ̇ (s), i.e.,
when ((s, t, σ, τ ), (x, ξ)) ∈ �. Therefore, the rank of π ′

L drops (by one) only at points on
�.

Next we show that the determinant of π ′
L vanishes to precisely first order on �. For

this we need only exhibit a direction in which the derivative of J is non-zero. We choose
a direction δX = (δx, 0) = (δx1, δx2, 0) such that γ̇ · δX = 0, which, on �, is the same
condition as R̂ · δX = 0. In this case, the derivative of the first member of the right-hand
side of (3.9) acts as

(
DxR̂δX

)
= P R

H δX = δX/|R| . (3.10)

Under the same conditions, the derivative of P Rγ̇ [the second factor of (3.9)] acts as

Dx

(
P Rγ̇

)
δX = −


Dx

(
R̂ · γ̇

)
R̂

|R| +
(
R̂ · γ̇

)
DxR̂

|R| −
(
R̂ · γ̇

)
R̂Dx |R|

|R|2


 · δX

= −
(

P Rγ̇

|R| R̂ · δX + R̂ · γ̇
(
P RδX

)
|R| − (R̂ · γ̂ )R̂(R̂ · δX)

|R|

)

= −
(

0 + δX

|R|
R̂ · γ̇

|R| + 0

)
, (3.11)

where in the second line we used (3.10) and Dx |R| · δX = R̂ · δX. We thus find the
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x-directional derivative of J is given by

DxJ · δX = δX

|R| ×
(
P Rγ̇

)
· ê3 − R̂ × δX

|R|
R̂ · γ̇

|R| · ê3

= δX

|R| × γ̇ − R̂R̂ · γ̇

|R| · ê3 − R̂ × δX

|R|
R̂ · γ̇

|R| · ê3

= δX × γ̇ · ê3

|R|2 − δX

|R| × R̂
R̂ · γ̇

|R| · ê3 − R̂ × δX

|R|
R̂ · γ̇

|R| · ê3

= δX × γ̇ · ê3

|R|2 , (3.12)

which is nonzero because {δX, γ̇ , e3} is an orthogonal triad.
To check condition (3.4), we need to calculate the tangent space of � at a typical

point l0. In terms of the coordinates on �′, points in � can be written in the form

σ0 = (s0, x0 = γ (s0) + β0γ̇ (s0), τ0) . (3.13)

In terms of the coordinates on �′, the tangent space Tl0� is spanned by the following three
vectors:

(
0, 0, τ ′(0)

) = d

dα

∣∣∣∣
α=0

(s0, x0, τ (α))

(
s′(0),

[
γ̇ (s0) + β0γ̈ (s0)

]
s′(0), 0

) = d

dα

∣∣∣∣
α=0

(s(α), γ (s(α)) + β0γ̇ (s(α)), τ0)

(
0, γ̇ (s0)β

′(0), 0
) = d

dα

∣∣∣∣
α=0

(s0, γ (s0) + β(α)γ̇ (s0), τ0) (3.14)

Here τ(·), s(·), and β(·) are smooth functions whose values at 0 are τ0, s0, and β0, respec-
tively. The three vectors of (3.14) can be regarded as tangent vectors of the ambient space
Tl0�

′ and can be written in the form: (0, 0, δτ ), (δs, δx = [
γ̇ (s0) + β0γ̈ (s0)

]
δs, 0), and

(0, δx = γ̇ (s0)δβ, 0), respectively, where δs, δτ , and δβ are arbitrary scalars.
To check the transversality condition (3.4), we compute the kernel of dπL|� . We see

from (3.7) that in order to have (δs, δx, δτ ) belonging to the kernel ker(dπL(s0, x0, τ0)),
we need the following two sets of conditions to hold:

δτ = δs = 0, R̂H · δx = 0 (3.15)

γ̇ (s0) · P R
H δx = 0 . (3.16)

To determine whether such a vector of ker(dπL(l0)) can belong to Tl0�, we attempt
to write the tangent vectors satisfying (3.15), (3.16) as linear combinations of the vectors
spanning Tl0�:

(0, δx, 0) = a(0, 0, δτ ) + b(δs, Zδs, 0) + c (0, γ̇ (s0)H δβ, 0) , (3.17)

where Z = γ̇ (s0)+β0γ̈ (s0). We see immediately that the first two summands must vanish,
otherwise either the first or third component of the right side would be non-zero, which is
incompatible with the left hand side. Equation (3.17) thus reduces to δx = cγ̇ (s0)H δβ.
This implies that cδβ must be zero because, on �, a δx proportional to γ̇ (s0) cannot be
orthogonal to RH (x0, s0) as required by (3.15).
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Lemma 2.
If γ̈ (s) �= 0, ∀s ∈ (smin, smax), then the natural projection πR : WF ′(F ) → T ∗X

has a simple fold singularity. At points s where γ̈ (s) = 0, (3.5) holds; thus if γ̈ = 0 for all
s, πR has a blow-down singularity; if γ̈ (s) has only simple zeros (e.g., a ‘snaking’ flight
track, with simple inflection points), then πR has only cusp singularities.

Remark. Notice that the domain of πR in the lemma is the wavefront relation WF ′(F )

⊂ �′, rather than the canonical relation �′. This is because the transversality condition (3.4)
breaks down for points on the ground located directly underneath the antenna. This can be
observed in the proof below, where ker(dπR) and T � have non-trivial tangent vectors in
common; namely (δs = 0, δx = 0, δτ �= 0).

Proof. In the coordinates (s, x, τ ) of �′, πR : WF ′(F ) → T ∗X can be written

πR(s, x, τ ) = (x, ξ) =
(

x,
2τ

c0
R̂H (x, s)

)
. (3.18)

The action of its derivative π ′
R is given by

(
δx

δξ

)
=

 0 I 0

− 2τ
c0

· P R
H γ̇ L4

2
c0

R̂H (x, s)






δs

δx

δτ




where L4 is a 2 × 2 matrix whose particular form is unimportant.
First, we note that π ′

R has full rank everywhere except on the critical submanifold (3.6)
of �′ where its rank drops by one. This is because the determinant of π ′

R happens to be a
non-zero multiple of |π ′

L|, so the arguments of Lemma 1 apply. Moreover, the arguments
of Lemma 1 show |π ′

R| vanishes to order one on �.
To check the transversality condition (3.4), we calculate the kernel of dπR . The

condition for (δs, δx, δτ ) to be in ker(dπR(s0, x0, τ0)) amounts to

δx = 0,
(
−τ0P

R
H γ̇ (s0)

)
δs +

(
R̂H

)
δτ = 0 . (3.19)

To determine whether Tl0� contains the vector (δs, 0, δτ ) of ker(dπR), we attempt
to write it as a linear combination of the vectors spanning Tl0�:

(δs, 0, δτ ) = a(0, 0, δτ ) + b
(
δs,

[
γ̇ (s0) + β0γ̈ (s0)

]
δs, 0

)+ c (0, γ̇ (s0)δβ, 0) . (3.20)

Given that we only consider the restriction of πR to WF ′(F ), we must have β0 �= 0. We see
immediately that the latter pair of summands must vanish by linear independence of γ̇ (s0)

and γ̈ (s0). This means that δs = 0 and hence, since R̂H �= 0 in (3.19), δτ = 0.

Theorem 1.
Under Assumptions 1, 4, and 5, F is a FIO of order 3/2. If, in addition, γ̈H (s) �=

0, ∀s ∈ (smin, smax), then F has a folding wavefront relation.

Proof. The map F (2.6) is a FIO because a simple calculation shows that the phase
function φ(s, t, x, ω) = ω(t − 2|R(x, s)|/c0) is homogeneous of degree one and non-
degenerate [10], as ∇ωφ never vanishes. From the definition of the order [10] of a FIO, it
now follows that F has order 2 + 1/2 − 4/4 = 3/2.

Lemmas 1 and 2 show that WF ′(F ) is a folding wavefront relation.
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4. Imaging

We form an image by applying the backprojection operator F ∗ to the data:

I (z) := (
F ∗d

)
(z) =

∫
eiω(t−2R(z,s)/c0)A(z, s, t, ω) d(s, t) dω ds dt . (4.1)

Next we determine the degree to which the image I faithfully reproduces features of
the ground reflectivity function V . Using d = FV in (4.1) results in

I (z) = F ∗FV (z) =
∫

eiω(t−2R(z,s)/c0)e−iω̃(t−2R(x,s)/c0)

A (z, s, t, ω̃)A (x, s, t, ω̃) V (x) dω̃ dω d2x ds dt . (4.2)

We will show that F ∗F falls into a class of operators associated with a pair of cleanly
intersecting Lagrangian manifolds [10, 38] �1, �2 ⊂ T ∗(X × X ).

Definition 5. A pair of manifolds (M1, M2) is said to be cleanly intersecting if M1
⋂

M2
is a manifold and

TmM1

⋂
TmM2 = Tm(M1 ∩ M2), ∀m ∈ M1 ∩ M2 .

Definition 6. For a pair of cleanly intersecting Lagrangian manifolds �1, �2, we define
the paired Lagrangian distributions L(�1, �2; Z) to be those distributions whose wavefront
set is a subset of the union of the cleanly intersecting Lagrangian submanifolds �1, �2 of
a manifold Z.

Remark 1. We remark that L(�1, �2; Z) are invariantly defined since pairs of cleanly in-
tersecting Lagrangian manifolds are invariantly defined [29]. We also remark that
L(�1, �2; Z) contains the important subclass of distributions I (p,l) (�1, �2; Z) intro-
duced and studied in [20, 21, 22, 29]. We recall the definition of these distributions next.

Definition 7. Let X be a C∞-manifold with cleanly intersecting Lagrangian submani-
folds �1, �2. We admit the distribution u to

⋃
p,q∈R Ip,q(�1, �2; X ), iff

a) u ∈ Hs
loc(X ) for some s and

b) if P1, . . . , PM are first order pseudodifferential operators on X , which are all character-
istic on �1 ∪ �2 (i.e. their principal symbols vanish on the union of �1 and �2), then

P1 . . . PNu ∈ Hs
loc(X ) , ∀ N = 1, 2, . . . (4.3)

Definition 8. We use the term paired Lagrangian operator for a bounded linear operator
Q : E ′(X ) → E ′(Y) whose the Schwartz distribution kernel KQ of Q is a paired Lagrangian
distribution on T ∗(Y × X ).

A consequence [21] of Definition 7 is: If A and B are pseudodifferential operators
on X × X whose wavefront relations are contained in

{
( (x, ξ), (x, ξ) ) : (x, ξ) ∈ �0 \ �1

}
,{

( (x, ξ), (x, ξ) ) : (x, ξ) ∈ �1 \ �0
}

,

respectively, and u is in
⋃

p,q∈R Ip,q(�1, �2; X ), then (automatically) Au and Bu can
be identified as kernels of FIOs whose canonical relations are contained in �0 \ �1 and
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�1 \ �0, respectively. If the orders of the operators associated to Au and Bu are p + l and
p, respectively, then we admit u to the class Ip,l(�0, �1; T ∗(X × X)).

Corollary 1.
If the flight track is straight, then the wavefront relation of F has natural projections

to T ∗X and T ∗Y which are a blow-down and a fold, respectively, as we saw from Lemma 2.
We can then use the results of ([23], p. 185–186) and [19] to conclude F ∗F ∈ L(
, �; T ∗
(X × X ) and FF ∗ ∈ I (3,0)(
, �; T ∗(Y × Y)), respectively. Here, 
, � are identity
relation and a Lagrangian submanifold of T ∗(X × X ) and T ∗(Y × Y), respectively.

Corollary 2.
If the curvature of the flight track γ̈ is never zero, then F ∗F ∈ L(
, �; T ∗(X ×X )).

Proof. It was shown in Theorem 4.3 of [31] that when F is a FIO with folding wavefront
relation and order 3/2, then there is a folding wavefront relation � on T ∗(X ×X ) such that
F ∗F is in the class L(
, �; T ∗(X × X )). Furthermore, it follows from the results of [31]
that the order of F ∗F is 3 away from the intersection of 
 and �.

We also remark that condition b) of Definition 7 was not explicitly checked in [31],
and we thank Raluca Felea for checking that his condition does indeed hold.

5. Implications of the Analysis

From the point of view of reconstructing singularities, Corollary 2 is a negative result.
The implication of Corollary 2 is that when one backprojects the data, singularities will be
reconstructed in their correct locations (explained by the relation �) along with artifacts
(explained by the relation �). Moreover, the strength of these singularities will be equal
in the sense that F ∗F behaves as pseudodifferential operator of order three on 
 \ � and
as a FIO of order three on � \ 
. Moreover, the relations 
 \ � and � \ 
 are local
canonical graphs, which means that the action of F ∗F on singularities can be calculated in
a straightforward way.

To the authors’ knowledge, no parametrix (asymptotic inverse) is available for F ∗F
in such a situation. In fact, operators such as F ∗F with the same structure have turned up
in other applications, such as acoustical imaging when the background medium produces
fold caustics in the incident field [31]. However, in practice one can attempt to minimize
the relative strength of the artifacts; this is discussed in [33].

A. Appendix: The Mathematical Model

The model we use for wave propagation is (2.1). We also model the field emanating
from the antenna and its scattering.

A.1 A Model for the Field from an Antenna

In free space, the field G0(t, X) at time t and position X ∈ R3 due to a delta function
point source at the origin at time 0 is given by [37]

G0(t, X) = δ(t − |X|/c0)

4π |X| , (A.1)
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which satisfies (
∇2 − c−2

0 ∂2
t

)
G0(t, X) = −δ(t)δ(X) .

The antenna (or transducer array), however, is not a point source [40] δ(X), and the
signal sent to the antenna is not a delta function δ(t). Therefore we replace δ(X) by Js(X)

and δ(t) by the waveform P(t). In the radar case, Js corresponds to a scalar analog of the
time derivative of the current distribution over the antenna, and P(t) is the waveform sent
to the antenna.

The field Uin emanating from the antenna then satisfies

(
∇2 − c−2

0 ∂2
t

)
Uin(t, X) = −P(t)Js(X) (A.2)

so that

Uin(t, X) = G0 ∗ (PJs)

=
∫

P(t − |X − Y |/c0)

4π |X − Y | Js(Y ) d3Y (A.3)

where the star denotes convolution in t and X. The waveform P(t) can be of almost any
shape, but commonly a chirp of the form P(t) = rect(t) exp(iαt2) is used.

We denote the Fourier transform (2.2) of P by p.
With the notation (2.2), (A.3) becomes

Uin(t, X) = ∫
e−iω(t−|X−Y |/c0)

4π |X−Y | p(ω)Js(Y ) dω d3Y . (A.4)

Next we assume that the antenna is small compared with the distance to the scatterers.
We denote the center of the antenna by Y 0; thus a point on the antenna can be written
Y = Y 0 + Q, where Q is a vector from the center of the antenna to a point on the antenna.
In this notation, the assumption that the scattering location X is far from the antenna can
be expressed |Q| << |X − Y 0|. For such X, we can write

|X − Y | = ∣∣X − Y 0
∣∣− (

X̂ − Y 0
)

· Q + O
(
|Q|2/∣∣X − Y 0

∣∣) , (A.5)

where ŷ denotes a unit vector in the same direction as y.
We use the expansion (A.5) in (A.4) to obtain

Uin(t, X) ≈
∫

e−iω(t−|X−Y 0|/c0)

4π
∣∣X − Y 0

∣∣ e−iω(X̂−Y 0)·Qp(ω)Js

(
Y 0 + Q

)
dω d3Q

≈
∫

e−iω(t−|X−Y 0|/c0)

4π
∣∣X − Y 0

∣∣ p(ω)js

(
ω
(
X̂ − Y 0

)
, Y 0

)
dω (A.6)

where we have written

js

(
ω
(
X̂ − Y 0

)
, Y 0

)
=
∫

e−iω(X̂−Y 0)·QJs

(
Y 0 + Q

)
d3Q . (A.7)

This Fourier transform of Js gives an approximate model for the antenna beam pattern
in the far-field at each fixed frequency. Generally the antenna beam pattern is nearly
independent of frequency over the effective support of p(ω); indeed, a great deal of work
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goes into designing antennas for which this is the case. Antennas whose beam patterns are
nearly constant over a wide frequency band are called broadband antennas.

We see from (A.6) that the field emanating from the antenna is a superposition of fixed-
frequency point sources that are each shaped by the antenna beam pattern. The field (A.6)
clearly depends on Y 0, the location of the center of the antenna; consequently we write Uin

Y 0

to indicate this dependence.

A.2 A Linearized Scattering Model

Our scalar governing equation is(
∇2 − c−2(X)∂2

t

)
U(t, X) = −P(t)Js(X) . (A.8)

We write U = Uin + Usc in (A.8) and use (A.2) to obtain(
∇2 − c−2

0 ∂2
t

)
Usc(t, X) = −Ṽ (X)∂2

t U(t, X) , (A.9)

where

Ṽ (X) = c−2
0 − c−2(X) . (A.10)

We make the assumption that Ṽ (X) = V (x)δ(x3), where X = (x, x3). The reflectivity
function V contains all the information about how the medium differs from free space. It
is V , or at least its discontinuities and other singularities, that we want to recover.

We can write (A.9) as an integral equation

Usc(t, X) =
∫

G0(t − τ, X − (z, 0))V (z)∂2
τ U(τ, (z, 0)) dτ dz . (A.11)

A commonly used approximation [26, 24], often called the Born approximation or
the single scattering approximation, is to replace the full field U on the right side of (A.11)
and (A.9) by the incident field Uin, which converts (A.11) to

Usc(t, X) ≈
∫

G0(t − τ, X − (z, 0))V (z)∂2
τ Uin(τ, (z, 0)) dτ dz

=
∫

V (z)

4π |X − (z, 0)|∂
2
t U in(t − |X − (z, 0)|/c0, z) dz . (A.12)

The value of this approximation is that it removes the nonlinearity in the inverse problem:
it replaces the product of two unknowns (V and U ) by a single unknown (V ) multiplied by
the known incident field.

The Born approximation makes the problem simpler, but it is not necessarily a good
approximation. Another linearizing approximation that can be used for reflection from
smooth surfaces is the Kirchhoff approximation, in which the scattered field is replaced by
its geometrical optics approximation [6, 26]. Here, however, we consider only the Born
approximation.

For the incident field (A.6), (A.12) becomes

Usc
Y 0(t, X) ≈

∫
e−iω((t−(|X−(z,0)|+|(z,0)−Y 0|)/c0)

(4π)2|X − (z, 0)|∣∣(z, 0) − Y 0
∣∣

ω2p(ω)js

(
ω
(

̂(z, 0) − Y 0
)

, Y 0
)

V (z) dω dz . (A.13)
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At the center X = Y0 of the antenna,

Usc
Y 0

(
t, Y 0)≈

∫
e−iω(t−2|(z,0)−Y 0|/c0)

(4π)2
∣∣(z, 0) − Y 0

∣∣2 ω2p(ω)js

(
ω
(

̂(z, 0) − Y 0
)
, Y 0

)
V (z) dω dz. (A.14)

In practice, the field is measured not at the center of the antenna but is integrated over the
whole antenna. The resulting signal can be calculated with the help of (A.5) and involves

a beam pattern for reception jr (ω( ̂(z, 0) − Y 0), Y 0). (Normally, when the same antenna is
used for transmission and reception, jr = js .) Thus an expression for the signal measured
at antenna location Y is

S(t, Y ) =
∫

antenna
Usc

Y (t, X) dX

≈
∫

e−iω(t−2|(z,0)−Y |/c0)

(4π)2|(z, 0) − Y |2 ω2p(ω)js

(
ω
(

̂(z, 0) − Y
)

, Y
)

jr

(
ω
(

̂(z, 0) − Y
)

, Y
)

V (z) dω dz . (A.15)
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