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ABSTRACT. We develop a new approach of the Rudin–Shapiro polynomials. This enables us to
compute their moments of even order q for q � 32, and to check a conjecture on the asymptotic
behavior of these moments for q even and q � 52.

1. Introduction

The Rudin–Shapiro polynomials [6, 8] are polynomials of ±1 coefficients. They are
defined by the recurrence relation

{
Pn+1(z) = Pn(z) + z2n

Qn(z) ,

Qn+1(z) = Pn(z) − z2n
Qn(z) ,

(1.1)

and the first values P0(z) = Q0(z) = 1. One easily proves by induction that the degree
of Pn and Qn is 2n − 1. The moment of order q > 0 of a polynomial P is given by the
formula

Mq(P ) =
∫ 1

0

∣∣P (
e2iπθ

)∣∣q dθ .

Since Pn and Qn have ±1 coefficients, we obviously get M2(Pn) = M2(Qn) = 2n. In
1968 Littlewood [3] evaluated M4(Pn) = M4(Qn), a result which was found again by many
authors since. In 1980 Saffari [7] showed that the moments of order 4Q+2 may be computed
from the moments of order 4q with q � Q, and he proposed the following conjecture about
the asymptotic behavior of the moments of the Rudin–Shapiro polynomials.
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Conjecture 1.
For any even integer q we have

Mq(Pn) ∼ 2q/2(n+1)

q/2 + 1
·

In this article we show that the moments of order q satisfy a linear recurrence relation
in n, with constant coefficients. For q � 32, q ≡ 0 mod 2, we compute the minimal
recurrence relation and the first values of the moments, which enables us to check the
conjecture for these q’s. Our approach leads to a conjecture which implies Conjecture 1.
We check this new conjecture for q � 52, q ≡ 0 mod 4, thus, proving Conjecture 1 for
even q � 52.

In Section 2 we show the existence of a linear recurrence relation. In Section 3, we use
linear algebra tools to reduce Conjecture 1 to an eigenvalue problem, and we state another
stronger conjecture. Section 4 is devoted to the description of our experimental results.

2. Existence of a Recurrence Relation

Let q denote a fixed even integer. For any set of variables (a, a′, b, b′), let us introduce

Rn

(
z, a, a′, b, b′) =

((
aPn(z) + bQn(z)

)(
a′Pn

(
z−1) + b′Qn

(
z−1)))q/2

.

The expansion of Rn may be written as

Rn

(
z, a, a′, b, b′) =

q(2n−1)/2∑
k=−q(2n−1)/2

ck,n

(
a, a′, b, b′)zk .

We define the fundamental polynomial

Sn

(
z, a, a′, b, b′) =

q/2−1∑
k=−q/2+1

ck2n,n

(
a, a′, b, b′)zk = 1

2n

∑
y2n=z

Rn

(
y, a, a′, b, b′) .

Let us note that, for any pair of complex numbers (a, b), the moment of order q of
the polynomial aPn(z) + bQn(z) equals c0,n(a, ā, b, b̄), i.e., the constant term (in z) of the
polynomial Sn(z, a, ā, b, b̄). Thus, any linear recurrence relation satisfied by the polyno-
mial Sn(z, a, a′, b, b′) will also be satisfied by the moments of order q of the polynomial
aPn(z) + bQn(z), for any choice of (a, b). The Rudin–Shapiro polynomials correspond to
the special case (a, b) = (1, 0).

We start with a basic formula.

Lemma 1.
For every nonnegative integer n, we have

Sn+1
(
z, a, a′, b, b′) = 1

2

∑
y2=z

Sn

(
y, a + b, a′ + b′, (a − b)y,

(
a′ − b′)y−1

)
.

Proof. By definition, the polynomial Sn+1(z, a, a′, b, b′) equals

1

2n+1

∑
y2n+1=z

Rn+1
(
y, a, a′, b, b′) = 1

2

∑
y2

1=z

1

2n

∑
y2n

2 =y1

Rn+1
(
y2, a, a′, b, b′) .
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By (1.1), we have

aPn+1(z) + bQn+1(z) = (a + b)Pn(z) + (a − b)z2n

Qn(z) ,

a′Pn+1
(
z−1) + b′Qn+1

(
z−1) = (

a′ + b′)Pn

(
z−1) + (

a′ − b′)z−2n

Qn

(
z−1) ,

and therefore

Rn+1
(
z, a, a′, b, b′) = Rn

(
z, a + b, a′ + b′, (a − b)z2n

,
(
a′ − b′)z−2n

)
.

We then deduce that

Sn+1
(
z, a, a′, b, b′)

= 1

2

∑
y2

1=z

1

2n

∑
y2n

2 =y1

Rn

(
y2, a + b, a′ + b′, (a − b)y2n

2 ,
(
a′ − b′)y−2n

2

)

= 1

2

∑
y2

1=z

Sn

(
y1, a + b, a′ + b′, (a − b)y1,

(
a′ − b′)y−1

1

)
,

and the lemma follows.

We now look for a finite-dimensional vector space which contains the polynomials
Sn(z, a, a′, b, b′) and which is invariant under the transformation described in Lemma 1.

The polynomials Sn(z, a, a′, b, b′) are bihomogeneous in
(
(a, b), (a′, b′)

)
of bide-

gree (q/2, q/2), and their degree in z belongs to the set {−q/2 + 1, . . . , q/2 − 1}. Let us
introduce the new set of variables

u = aa′ + bb′, v = ab′ + a′b ,

w = aa′ − bb′, x = ab′ − a′b

so that u2 − v2 = w2 − x2 and

S0
(
z, a, a′, b, b′) = (u + v)q/2 .

Let E be the complex vector space of the polynomials in (z, z−1, u, v, w, x) which are
homogeneous in (u, v, w, x) of degree q/2, and whose degree in z belongs to {−q/2 +
1, . . . , q/2 − 1}. Let E0 be the subspace of E consisting of the elements of E which are
invariant under the conjugacy action (x, z) → (−x, z−1). Let F be the quotient space of
E0 by the principal ideal generated by the polynomial u2 − v2 − w2 + x2. We shall now
consider S0(z, a, a′, b, b′) as an element of F . Let us define on F a linear map T by

T
(
P

(
z, z−1, u, v, w, x

)) = 1

2

∑
y2=z

P
(
y, y−1, 2u, 2(cyw + syx), 2v, −2(syw + cyx)

)

where cy = (y + y−1)/2 and sy = (y − y−1)/2. One easily checks that T is well-defined
on F , and corresponds to the transformation given in Lemma 1:

Sn

(
z, a, a′, b, b′) = T n

(
S0

(
z, a, a′, b, b′)) .

Since F is finite-dimensional, the characteristic polynomial of T induces a linear recurrence
relation satisfied by Sn(z, a, a′, b, b′), with constant coefficients. It appears that the minimal
recurrence relation comes from the minimal polynomial of T , whose degree is smaller than
the dimension of F .
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3. Another Conjecture

It is obvious that uq/2 is an eigenvector of T , associated to the eigenvalue 2q/2. It
would be nice to prove that this eigenspace is of dimension one, to compute the projection
of S0(z, a, a′, b, b′) and to show that the other eigenvalues of T have a smaller modulus.
We shall give partial results in that direction, using smaller vector spaces.

An easy computation gives

T
(
S0

(
z, a, a′, b, b′)) = T

(
(u + v)q/2)

= 2q/2
∑

0�2k�q/2

(
q/2
2k

)
uq/2−2k (czw + szx)2k .

We define

S′
0

(
z, a, a′, b, b′) = S0

(
z, a, a′, b, b′) + S0

(
z, a, a′, −b, −b′)

2

=
∑

0�2k�q/2

(
q/2
2k

)
uq/2−2kv2k ,

so that T
(
S0(z, a, a′, b, b′)

) = T
(
S′

0(z, a, a′, b, b′)
)
. Let us study the subspace G ⊂ F

spanned by B1 ∪ B2 where

B1 =
q/2−1⋃
m=0

⋃
j,k,l�0

j+2k+l=q/2

{(
zm + z−m

)
ujv2kwl

}

and

B2 =
q/2−1⋃
m=1

⋃
j,k,l�0

j+2k+l=q/2−1

{(
zm − z−m

)
ujv2kwlx

}
.

Then S′
0(z, a, a′, b, b′) belongs to G and T (G) ⊂ G. Indeed, for every element (zm +

z−m)ujv2kwl of B1, we have T
(
(zm + z−m)ujv2kwl

) = 0 if m is odd and

T
((

zm + z−m
)
ujv2kwl

)
=2q/2(zm/2 + z−m/2)uj

(
cz + 1

2
w2 + cz − 1

2
x2 + szwx

)k

vl

if m is even. Similarly, for every element (zm − z−m)ujv2kwlx of B2, we have T
(
(zm −
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z−m)ujv2kwlx
) = 0 if m is even and

T
((

zm − z−m
)
ujv2kwlx

)

= 2q/2(z(m−1)/2 + z−(m−1)/2)uj

(
cz + 1

2
w2 + cz − 1

2
x2 + szwx

)k

vlw

− 2q/2(z(m+1)/2 + z−(m+1)/2)uj

(
cz + 1

2
w2 + cz − 1

2
x2 + szwx

)k

vlw

− 2q/2(z(m−1)/2 − z−(m−1)/2)uj

(
cz + 1

2
w2 + cz − 1

2
x2 + szwx

)k

vlx

− 2q/2(z(m+1)/2 − z−(m+1)/2)uj

(
cz + 1

2
w2 + cz − 1

2
x2 + szwx

)k

vlx

if m is odd. We then use hyperbolic trigonometry formulas to express these images as a
linear combination of elements of B1 ∪ B2.

Let

B0 =
{
uq/2−2kv2k : 0 � k � q/2

}
,

B′
0 =

{
uq/2

}
∪

⋃
k,l�0

0<k+l�q/4

{
uq/2−2k−2lv2kw2l − (2k)!(k + l)!(2l)!

k!l!(2k + 2l)!
uq/2

2k + 2l + 1

}

B′
1 =

⋃
j,k,l�0

j+2k+2l+1=q/2

{
ujv2kw2l+1

}
,

B′′
1 =

q/2−1⋃
m=1

⋃
j,k,l�0

j+2k+l=q/2

{(
zm + z−m

)
ujv2kwl

}
.

Put B = B′
0 ∪ B′

1 ∪ B′′
1 ∪ B2; it is still a basis of G. Let G0 denote the subspace

spanned by uq/2 and let G1 be the subspace of G spanned by the elements of B distinct
from uq/2. This choice of basis is motivated by the following lemma.

Lemma 2.
T (G1) ⊂ G1.

Proof. Let π denote the projection on the subspace spanned by B0. For every element
(zm + z−m)ujv2kwl of B1, we find

π

(
T

((
zm + z−m

)
ujv2kwl

))
=

{
0 if m > 0 ,

0 if m = 0 and l ≡ 1 mod 2 .

When m = 0 and l ≡ 0 mod 2, we obtain

π
(
T

(
ujv2kwl

)) = 2q/2−2k

(
2k

k

)
uj

(
u2 − v2)k

vl .

Moreover, for every element (zm − z−m)ujv2kwlx of B2, we have

π
(
T

((
zm − z−m

)
ujv2kwlx

))
= 0 .
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Let us take a vector uq/2−2k−2lv2kw2l , with k, l � 0 and k + l � q/4, and let us
decompose its image by π ◦ T in the basis B′

0. We obtain

π

(
T

(
uq/2−2k−2lv2kw2l

))

= 2q/2−2k

(
2k

k

) k∑
i=0

(−1)i
(

k

i

) (
uq/2−2i−2lv2i+2l − uq/2

2i + 2l + 1

)
+ Ck,lu

q/2,

with

Ck,l = 2q/2−2k

(
2k

k

) k∑
i=0

(−1)i
(

k

i

)
1

2i + 2l + 1

= 2q/2−2k

(
2k

k

) k∑
i=0

(−1)i
(

k

i

) ∫ 1

0
t2i+2l dt

= 2q/2−2k

(
2k

k

) ∫ 1

0
t2l

(
1 − t2)k dt

= (2k)!(k + l)!(2l)!
k!l!(2k + 2l)!

2q/2

2k + 2l + 1
.

Therefore we always get

π

(
T

(
ujv2kw2l − (2k)!(k + l)!(2l)!

k!l!(2k + 2l)!
uq/2

2k + 2l + 1

))
∈ G1 .

Let us now compute the projection of S′
0(z, a, a′, b, b′) on G0.

Lemma 3.
S′

0(z, a, a′, b, b′) − (2u)q/2/(q/2 + 1) ∈ G1.

Proof. We have

S′
0

(
z, a, a′, b, b′) =

∑
0�2k�q/2

(
q/2
2k

)
uq/2−2kv2k

=
∑

0�2k�q/2

(
q/2
2k

) (
uq/2−2kv2k − uq/2

2k + 1

)
+ Cuq/2 .

This shows that S′
0(z, a, a′, b, b′) − Cuq/2 ∈ G1 with

C =
∑

0�2k�q/2

(
q/2
2k

)
1

2k + 1
= 1

2

∑
0�k�q/2

(
q/2
k

) ∫ 1

−1
tk dt

= 1

2

∫ 1

−1
(1 + t)q/2 dt = 2q/2

q/2 + 1
,

and the lemma is proved.

We can now state a conjecture which implies Conjecture 1.
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Conjecture 2.
The eigenvalues of the restriction of T to G1 have a modulus smaller than 2q/2.

Let us now give a few applications of this conjecture. By Lemmas 2 and 3, we have
the following result.

Theorem 1.
Assume Conjecture 2 is true. For (a, a′, b, b′) ∈ C

4, we then have

Sn

(
z, a, a′, b, b′) ∼ 2q/2

q/2 + 1

(
2q/2(aa′ + bb′))n

when n goes to infinity.

Considering the constant term of Sn(a, ā, b, b̄) leads to the following corollary.

Corollary 1.
Assume Conjecture 2 is true. For (a, b) ∈ C

2, the moment of order q of aPn(z) +
bQn(z) is equivalent to

2q/2

q/2 + 1

(
2q/2(|a|2 + |b|2))n

,

when n goes to infinity.

The case (a, b) = (1, 0) gives the asymptotic behavior of the moments of order q of
the Rudin–Shapiro polynomials.

4. Experimental Results

We get an exact formula for the moments of order q of the Rudin–Shapiro polynomials
as soon as we find a recurrence formula they satisfy, and the first values of the moments
(at least up to the order of the recurrence). We compute these first moments using the
polynomials Sn(z, a, a′, b, b′). We determine them by induction with Lemma 1. At each
step we save the constant term of Sn(z, 1, 1, 0, 0), which is the moment of order q of Pn(z).

We compute the minimal recurrence relation Rq studying the corresponding operator
Tq . For q ≡ 0 mod 4, q � 32, we get the characteristic polynomial of Tq using the
command charpoly of PARI [5]. For q = 28 and 32, the computations are first made
modulo large primes and the Chinese Remainder Theorem allows to find the requested
polynomial. We then test all the divisors of this characteristic polynomial on the first
moments to obtain the minimal recurrence relation.

Obviously R2(X) = X − 2 and it is known that R4(X) = X2 − 2X − 8. We find

R8(X) = X12 − 16X11 − 212X10 + 4416X9 + 3904X8 − 474112X7

+ 1339392X6 + 23461888X5 − 47185920X4 − 469762048X3

− 6811549696X2 − 22548578304X + 180388626432 .

Now it is not hard to ensure that Rq(X) splits into Rq−2(X/2) (up to a suitable power of 2 to
make it monic) times a new factor Fq(X). This relies on the fact that T2(u) = 2u. So when
λ is an eigenvalue of Tq associated with the eigenvector Vλ, then 2λ is an eigenvalue of Tq+2
with the eigenvector uVλ. Each new recurrence relation is thus obtained by multiplying a
new factor Fq to a known one.
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Let σ(Fq) be the maximal modulus of the roots of Fq . We observe on the computed
examples that σ(Fq) < 2q/2 for all even q less than 32 so that 2q/2 is the largest root of
Rq in modulus and that it is simple. Further details on the recurrences can be found in
Table 4.1.

TABLE 4.1

q deg Rq deg Fq σ(Fq)/2q/2 cq

4 2 1 0.50 4/3
8 12 10 0.69 16/5
12 36 24 0.74 64/7
16 78 42 0.76 256/9
20 144 66 0.75 1024/11
24 240 96 0.72 4096/13
28 369 129 0.73 16384/15
32 536 167 0.75 65536/17

This implies that the moment of order q of Pn(z) is equivalent to cq2nq/2. Consid-
ering the sequence of linear combinations of the moments associated to the polynomial
Rq(X)/(X − 2q/2), we obtain a geometric sequence with ratio 2q/2, whose first term is
known. This enables us to compute cq and to check Conjecture 1 directly for q � 32.

Nevertheless, in order to prove Conjecture 2 it is enough to study the spectral radius
of the restriction of Tq to G1. This is how we show Conjecture 1 for 36 � q � 52, q ≡ 0
mod 4. More precisely, let N1 be the matrix of Tq in the basis B \ {uq/2}. Let ‖N‖2 denote
the �2 norm of the matrix N and let ρ(N) be the spectral radius of N . It is known [4] that
ρ(N) � ‖Nk‖1/k

2 for every positive integer k. We computed ‖Nk
1 ‖1/k

2 for small values of
k and checked Conjecture 2 in this way. Thus, Conjecture 1 is also true for these values of
q, even though we do not know the corresponding recurrence relations.

Some of these results have been recently extended to generalized Rudin–Shapiro
polynomials [1] and a fast program to compute the exact value of the moments of these
polynomials is available at [2]. It includes all the corresponding minimal recurrences as
well as the initial moments.
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