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ABSTRACT. It is proved that a nonzero function is not in Lp(Rn) with p ≤ 2n/d if its Fourier
transform is supported by a d− dimensional submanifold. It is shown that the assertion fails for
p > 2n/d and d ≥ n/2. The result is applied for obtaining uniqueness theorems for convolution
equations in Lp−spaces.

1. Introduction

We will start with a motivation of the problems we are going to study. Let us consider
the spherical means f ∗ µr of a continuous function f on R

n which are defined as

f ∗ µr(x) =
∫

|x|=r
f (x − y) dµr(y), r > 0 ,

where µr is the normalized surface measure on the sphere {x : |x| = r}. Note that the
above expression is the average of f over a sphere of radius r centred at x.

One may ask whether f is uniquely determined by the above averages. In other words
we are asking if the operator taking f into f ∗µr is injective. In general this is not true. A
counterexample is provided by the Bessel functions. If

φλ(x) = cn
Jn

2 −1(λ|x|)
(λ|x|) n2 −1

,
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then it is well known that

φλ ∗ µr(x) = φλ(r)φλ(x) . (1.1)

So it suffices to choose r > 0 such that φλ(r) = 0. Here cn is a constant such that φλ(0) =
1. Note that, from the asymptotics of the Bessel functions, it is easy to see that φλ ∈ Lp iff
p > 2n/(n− 1). Hence injectivity fails for Lp, p > 2n/(n− 1).

Nevertheless, a two radii theorem holds. Namely, Zalcman proved [11] that two
spherical averages f ∗ µr1 , f ∗ µr2 uniquely determine a locally integrable function f if
and only if r1/r2 is not a ratio of the zeros of a Bessel function.

However, if f decays at infinity faster than the Bessel function, more precisely, if
f ∈ Lp(Rn) for 1 ≤ p ≤ 2n/(n − 1), then a one radius theorem is true, i.e., for such
functions f the condition f ∗ µr = 0 for some r > 0 implies f = 0. This result was
obtained by Thangavelu [10].

In this article we look at the equations of the general form f ∗T = 0, where f belongs
to some Lp class and T is a compactly supported distribution.

We obtain sharp estimates for the index of summability p, providing uniqueness of
the solution in the space Lp(Rn). This critical index appears as p ≤ 2n/d, where d is the
dimension of the zero set of the Fourier transform T̂ .

Thus, we show that the phenomenon of uniqueness is related only to the dimension
d of zero set of the Fourier transform of the kernel T . In the particular case of spherical
averages we have d = n− 1 and the result of [10] follows.

This article is organized as follows. In Section 2 we relate the membership of a nonzero
function in the space Lp(Rn) with the dimension d of the support of Fourier transform of
f and obtain corresponding estimates for p. We prove sharpness of the estimates under
the restriction 2d ≥ n. In Section 3 we apply the obtained results to convolution equations
and prove uniqueness theorems. In Section 4 we give an application of our results to
characterization of stationary sets of evolution equations, namely we generalize the result
of [2] on closed stationary hypersurfaces, from the wave equation to a wider class of
equations.

2. Lp-Integrability and Dimension of Supports of
Fourier Transforms

In this section we relate the dimension of the support of the Fourier transform of a
function with its membership in Lp.

Theorem 1.
If f ∈ Lp(Rn) and supp f̂ is carried by a C1 manifold M of dimension d < n then

f = 0 provided 1 ≤ p ≤ 2n/d and d > 0. If d = 0 then f = 0 for 1 ≤ p < ∞.

Proof. Denote k = n − d the codimension of the manifold M . For k = n the Fourier
transform of f is supported on a discrete set, which is not possible for f ∈ Lp, p < ∞.

For k < n we will show that f vanishes identically by refining the proof of Theo-
rem 7.1.27 of [6].

First, note that by convolving f with a compactly supported smooth function we may
assume that f belongs to Lp0 where p0 = 2n/(n− k).

Now choose an even function χ ∈ C∞
c (R

n) with support in the unit ball and∫
Rn

χ(x) dx = 1. Let χε(x) = ε−nχ(x/ε) and uε = u ∗ χε where u = f̂ . Then by
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the Plancherel theorem

‖uε‖2
2 =

∫
Rn

|f (x)|2 ∣∣χ̂(εx)∣∣2 dx
≤ C ε−k

∞∑
j=−∞

2jk sup
2j≤|x|≤2j+1

∣∣χ̂(y)∣∣2 (
2−j ε

)k ∫
2j≤|εx|≤2j+1

|f (x)|2 dx

= C ε−k
∞∑

j=−∞
aj b

ε
j

where
aj = 2jk sup

2j≤|x|≤2j+1

∣∣χ̂(y)∣∣2
and

bεj =
(

2−j ε
)k ∫

2j ε−1≤|x|≤2j+1ε−1
|f (x)|2 dx .

Applying Holder’s inequality,

∣∣bεj ∣∣ ≤ C
(

2−j ε
)k (

2−j ε
)−n(p0−2)/p0

(∫
2j ε−1≤|x|≤2j+1ε−1

|f (x)|p0 dx

)2/p0

which goes to zero as ε → 0, for any fixed j , as k − n(p0 − 2)/p0 = 0. Also note that we
have |bεj | ≤ C ‖f ‖2

p0
< ∞ for some constantC independent of ε and j . Letψ ∈ C∞

c (R
n)

be arbitrary and denote by Mε the set of points at a distance < ε from the intersection of
supp uε with supp ψ . Then, as supp u is carried by a C1 manifold of codimension k it can
be easily proved by a change of variables that

ε−k
∫
Mε

|ψ |2 → Ck

∫
supp u

|ψ |2, ε → 0 ,

where Ck is the volume of the unit ball in R
k . Hence, by the Cauchy–Schwarz inequality

| < u,ψ > |2 = lim
ε→0

| < uε,ψ > |2 ≤ C

∫
supp u

|ψ |2dS lim
ε→0

K(ε)

whereK(ε) = ∑∞
j=−∞ ajb

ε
j . Since

∑∞
j=−∞ |aj | is finite, by the dominated convergence

theorem, we have limε→0K(ε) = 0. Hence < u,ψ >= 0 for any ψ ∈ C∞
c (R

n) which
implies that f = 0.

Remark. Related type results can be found in [1]. If u is a temperate solution ofP(D)u =
0, whereP(D) is a differential operator with constant coefficients, then the Fourier transform
û is a density on the manifold of zeros of P . In [1] the authors prove that the L2 norm of
this density can be exactly determined.

Now we will show that the estimate for the summability indexp given by Theorem 1 is
sharp when the dimension d of the support of the Fourier transform satisfies n/2 ≤ d ≤ n:

Theorem 2.
For any n and d such that d ≥ n/2, there exists a smooth manifoldM ⊂ R

n, dimM =
d, and a measure µ supported on M such that the Fourier transform f = µ̂ ∈ Lp(Rn) for
all p > 2n/d .
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We will need the following elementary fact:

Lemma 1.
Let l > m. Then one can choose l vectors α1, α2, · · · · · ·αl in R

m such that anym of
them form a linearly independent set in R

m.

Proof. If l = m + 1, we choose {α1, α2, · · · · · ·αm} to be a basis for R
m and define

αm+1 = ∑m
i=1 αi .

To prove the general case we use induction. Assume that we have a collection B =
{α1, α2, · · · · · ·αl} such that any m of them form a linearly independent set in R

m. If F is
a subcollection of precisely m − 1 members of B, let VF denote the m − 1 dimensional
subspace spanned by the members of F . Choose a vector αl+1 which is not in the union
of the subspaces VF where F runs over all the subsets of B with cardinality m − 1. It is
easy to see that the set {α1, α2, · · · · · ·αl, αl+1} has the required property. This finishes the
proof of lemma.

Proof of Theorem 2. When n = d the assertion is trivial. Hence assume that n/2 ≤
d < n.

Consider the measure µ defined by,

µ(ϕ) =
∫

[−1,1]d
ϕ


t1, t2, · · · , td , d∑

j=1

λ1
j t

2
j ,

d∑
j=1

λ2
j t

2
j , · · ·

d∑
j=1

λn−dj t2j


 dt1 · · · dtd

for ϕ ∈ C∞
c (R

n), where λsj are certain constants to be chosen later. Clearly µ is supported
on a smooth d-dimensional manifold, which is the graph of the quadratic mapping

(t1, t2, · · · td ) →

 d∑
j=1

λ1
j t

2
j ,

d∑
j=1

λ2
j t

2
j , · · ·

d∑
j=1

λn−dj t2j


 .

We shall show that the Fourier transform of µ belongs to Lp for all p > 2n/d. Denoting
µ̂ by f we have

f (x) = 	dj=1

∫
[−1,1]

e
i(xj tj+Lj (x′

)t2j ) dtj , (2.1)

where x
′ = (xd+1 · · · · · · xn) and

Lk

(
x

′) =
n−d∑
i=1

λik xd+i , k = 1, 2, · · · d .

Note that the Lj are linear forms in the last n − d variables and are determined by αj =
(λ1
j , · · · · · · λn−dj ). We choose αj according to the conclusion of Lemma 1. Now it is well

known that (see [7] and [9])∣∣∣∣∣
∫ 1

−1
ei(y1t+y2t

2) dt

∣∣∣∣∣ ≤ C
(

1 + y2
1 + y2

2

)− 1
4

(2.2)

with a C independent of y1 and y2. From (2.1) and (2.2) we have

|f (x)| ≤ C 	dj=1

(
1 + x2

j +
∣∣∣Lj (x ′)∣∣∣2)− 1

4

. (2.3)
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We shall show that the above product belongs to Lp for any p > 2n/d.
Let us start with a simple lemma.

Lemma 2.
Let g(a) = ∫ ∞

0 (1 + u2 + a2)−
p
4 du a ≥ 0. Then

|g(a)| ≤ C(1 + |a|)−( p2 −1)

with C independent of a, provided p > 2.

Proof. The proof follows from the inequalities

|g(a)| ≤
∫ ∞

0

(
1 + u2

)− p
4
du ≤ C < ∞

and

|g(a)| ≤
∫ ∞

0

(
u2 + a2

)− p
4
du

≤ C a−( p2 −1)
∫ ∞

0

(
1 + s2

)− p
4
ds

≤ C a−( p2 −1) .

Applying Lemma 2 to the right hand side of (2.3) and taking into account that
p > 2n/d > 2 we have:

∫
Rd

|f (x)|p dx ≤ C

∫
Rn−d

	dj=1

(
1 +

∣∣∣Lj (x ′)∣∣∣)−( p2 −1)
dx

′
. (2.4)

Define
G(y) = G(y1, y2, · · · yn−d) = 	dj=1(1 + |Lj (y)|)−( p2 −1) .

We need to show that G is integrable on R
n−d . Since G is a bounded function it is enough

to consider the integral over {|y| ≥ 1}. Now∫
|y|≥1

|G(y)| dy ≤
∫

|y|≥1
	dj=1|Lj (y)|−(

p
2 −1) dy

≤ C

∫ ∞

1
r−d(

p
2 −1)+n−d−1 dr

(∫
Sn−d−1

	dj=1|Lj (θ)|−(
p
2 −1) dσ (θ)

)
.

The integral with respect to r is finite provided p > 2n/d. We shall show that the integral
over Sn−d−1 too is finite which will complete the proof.

To this end note first that, not more than n− d− 1 linear forms can vanish simultane-
ously on the unit sphere. This is because, if Lj (x) = 0 for some x and n− d many forms
then x = 0 due to the linear independence of αj ’s.

Let θ0 be a point on the unit sphere where the function	dj=1|Lj (θ)|−(
p
2 −1) vanishes.

For the sake of simplicity let us assume that L1(θ0) = L2(θ0) = · · · · · · = Lr(θ0) = 0 for
some r < n− d .
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Let N(θ0) be a small enough neighborhood of θ0 on the unit sphere where the re-
maining linear forms are bounded away from zero. We first show that the above product is
integrable over this neighborhood. We have,∫

N(θ0)

	dj=1|Lj (θ)|−(
p
2 −1) dσ (θ) ≤ C

∫
N(θ0)

	rj=1|Lj (θ)|−(
p
2 −1) dσ (θ) .

Since the Lj are linearly independent, shrinking N(θ0) if necessary, we may transfer the
above integral to a small neighborhood of the origin in Rn−d−1 via a diffeomorphism in
such a way that Lj (θ) becomes xj for j = 1, 2, · · · r .

Since the Jacobian of the diffeomorphism is bounded above and below it suffices to
consider the integral

∫
(−ε,ε)r 	

r
j=1|xj |−(

p
2 −1) dxj which is finite provided p < 4.

Recall that p > 2n/d and n/2 < d < n. Hence for p ∈ (2n/d, 4), we have proved
that the product 	dj=1|Lj (θ)|−(

p
2 −1) is integrable over the neighborhood N(θ0). Arguing

similarly at the other points on the sphere where the function	dj=1|Lj (θ)|−(
p
2 −1) vanishes

and using the compactness of the sphere we conclude that this product is integrable over
the whole sphere.

Hence the function f defined by (2.1) belongs to Lp(Rn) for p ∈ ( 2n
d
, 4). Since

f is clearly bounded we have that f ∈ Lp for all p > 2n/d which finishes the proof of
Theorem 2.

Remark. For large codimension k = n− d the estimate for p in Theorem 1 is not sharp.
For example, let γ (t) be a polynomial curve (codimension n − 1). Then it is known that
the Fourier transform of a measure supported on γ can belong to Lp only for p very large,
in fact p > O(n2) (see [7] and [9]), whereas Theorem 1 suggests the range p > 2n.

3. Convolution Equations in Lp(Rn)

Theorem 1 implies the following uniqueness theorem for convolution equations:

Theorem 3.
Let T be a compactly supported distribution on R

n and assume that the zero set of T̂
in R

n is carried by a C1 manifold of codimension k. If f ∈ Lp satisfies, f ∗ T = 0 then
f vanishes identically provided 1 ≤ p ≤ 2n/(n− k) and k < n. If k = n then f = 0 for
1 ≤ p < ∞.

Proof. SinceT is a compactly supported distribution, T̂ is a smooth function of tempered
growth on R

n. Hence by taking Fourier transform on f ∗T = 0 we can easily conclude that
supp f̂ is contained in the zero set of T̂ . Now the proof follows from Theorem 1.

Theorem 4.
Let T be a compactly supported distribution on R

n and f ∈ Lp. If f ∗ T = 0 then
f vanishes identically provided 1 ≤ p ≤ 2n/(n− 1).

Proof. As above, the equation f ∗T = 0 implies that the support of the Fourier transform
of f is contained in the zero set of the function T̂ . The function T̂ extends to the space C

n

as an entire function whose zero set Z(T̂ ) is an analytic set in C
n.

This set admits a stratification (see [3], Chapter 1, p. 60]

Z = ∪Mj
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into complex manifolds Mj . The stratification is locally finite, the strata Mj are pairwise
disjoint and Mi ⊂ Mj, dimMi < dimMj if i < j and Mi ∩Mj �= ∅.

For the zero setN = Z∩R
n of the function T̂ we have the corresponding stratification

N = ∪Nj , Nj = Mj ∩ R
n into real submanifolds of R

n.
Assume that f �= 0 so that its support is nonempty. Let Np be the stratum of the

maximal dimension. The set V = Np \ ∪j<pNj is open in Np and therefore V = U ∩Np
where U is an open subset of R

n which can be chosen disjoint with all the setsNj , j < p.
Choose a function η in the Schwartz class S(Rn) such that supp η̂ ⊂ U and define

g = f ∗ η .
Then ĝ = η̂ · f̂ and therefore

supp ĝ ⊂ U ∩ supp f̂ ⊂ U ∩N ⊂ Np .

By condition, f ∈ Lp(Rn) for some p ≤ 2n/(n − 1) and so g is of the same class.
Since 2n/(n−1) ≤ 2n/ dimNp and ĝ is supported on the manifoldNp, Theorem 1 implies
g = 0. Due to the arbitrariness of choice of η we conclude that supp f̂ ∩Np = ∅.

Now we can proceed with the next strata of less dimension and consequently sweep
out the support of the function f̂ from all the strata N ′

j s. Therefore f = 0.

Remark 1. The injectivity result of Thangavelu mentioned in the introduction easily
follows from Theorem 4.

Remark 2. 1) Since T̂ is an entire function on C
n, its zero set Z(T̂ ) is of dimension

n− 1 as an analytic set in C
n. But Z(T̂ ) ∩ R

n can be of any dimension. For example one
may consider the distribution T given by

T (ϕ) =
n−k∑
j=1

∂2ϕ

∂x2
j

(0) .

Then T̂ is given by the polynomial
∑ n−k
j=1 x2

j whose zero set has codimension k.
2) Theorem 3 may also be rephrased as a uniqueness result for a system of convolution
equations. More precisely if Tj , j = 1, 2, · · · l are compactly supported distributions on
R
n and the intersection of the zero sets of T̂j is carried by a C1 manifold of codimension k,

then any solution in Lp(Rn) of the system f ∗ Tj = 0, j = 1, 2, · · · l vanishes identically,
provided p ≤ 2n/(n− k).
3) Choosing the above distributions to be supported at origin one may interpret the above as
a uniqueness result for a system of differential equations. We leave the details to the reader.

Remark 3. In the particular case when the codimension k of the support of the Fourier
transform divides n, the sharpness of the estimate for the index of summability p can be
shown much easier than in Theorem 2, just by considering the surface measure on a torus
and using the asymptotics of the Bessel functions.

Namely, for k = 1 we may use the example in (1.1). Now let n = kl for some positive
integer l. Write R

n = R
l ×· · · · · ·×R

l (k times). Let ν be the normalized surface measure
on M = Sl−1

r × · · · · · · × Sl−1
r , where Sl−1

r is the sphere of radius r in R
l centred at the

origin. Note that M has codimension k. For x ∈ R
n write x = (x1, x2, . . . . . . , xk) where

each xj is in the j ′th l dimensional space. If

f (x) =
J l

2 −1(r|x1|)
(r|x1|) l2 −1

· · · · · ·
J l

2 −1(r|xk|)
(r|xk|) l2 −1
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then f ∈ Lp for every p > 2l/(l − 1) = 2n/(n − k). Here C is a constant such that
f (0) = 1. Note that the Fourier transform of f is supported on M .

Now let r > 0 be a zero of J l
2 −1(t). Then we have

f ∗ ν(x) = C

(
J l

2 −1(r)

r
l
2 −1

)k
f (x) = 0 .

Hence injectivity too fails for p > 2n/(n − k) which shows that Theorem 3 can not be
improved.

As another corollary to Theorem 1 we have the following Wiener–Tauberian type
theorem.

Corollary 1.
Let h be a compactly supported continuous function on R

n. Then the linear span of
translates of h forms a dense subset of Lp(Rn) as long as 2n/(n+ k) ≤ p < ∞ where k is
the minimal codimension of the zero set of ĥ in R

n. In particular linear span of translates
of h span a dense susbet of Lp for 2n/(n+ 1) ≤ p < ∞.

Proof. Suppose that a function f in the dual space annihilates all the translates of h. We
need to show that f = 0. Since f is orthogonal to all the translates of hwe have f ∗h = 0.
Taking Fourier transform we have supp f̂ ⊂ {x : ĥ(x) = 0 }. Now proceeding as in
Theorem 4 we finish the proof.

Remark. We remark that the above corollary answers a question posed by C.S. Herz in [5]
(see p. 727).

4. An Application: Stationary Sets of Evolution
Equations

In [2] the authors studied injectivity sets for the spherical means on R
n. It was proved

that the boundary � of any bounded domain� ⊂ R
n is a set of injectivity for the spherical

means operator in Lp(Rn) as long as p ≤ 2n/(n− 1). In other words if f ∗µr(x) = 0 for
all x ∈ � and for all r > 0 then f = 0 provided p ≤ 2n/(n− 1).

This result is equivalent to the nonexistence of closed stationary sets for the wave
equation when the initial velocity vanishes at infinity too fast, more precisely, belongs to
Lp with p as above (Theorem 3 in [2]). The estimate for the index of summability p came
from the asymptotic of Bessel functions which are eigenfunctions of the Laplace operator.

Theorem 1 enables us to obtain similar result for evolution equation for more general
differential operators than Laplacian.

Let P(D) be a second order elliptic partial differential operator with constant coef-
ficients which has a non negative self adjoint extension to L2(Rn). Assume that the level
sets P(x) = λ, λ ∈ R are smooth manifolds and the minimal codimension of the level sets
is k.

Consider the associated wave equation

utt + P(D)u = 0, u(x, 0) = 0, ut (x, 0) = f (x) , (4.1)
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with the initial velocity f ∈ Lp(Rn) for some p. We may extend the solution uniquely to
the whole time axis by assuming that u(x,−t) = −u(x, t) for all t ∈ R.

Corollary 2.
Let� be the boundary of any bounded domain in R

n, n ≥ 2. Suppose that the solution
u(x, t) of the Cauchy problem (4.1) with the initial data f ∈ Lp(Rn) satisfies the condition

u(x, t) = 0 for all x ∈ � at any time t > 0 .

Then u = 0 as long as p ≤ 2n/(n− k) for k < n and 1 ≤ p < ∞ for k = n where k is the
minimal codimension of the the level sets of P .

The result of [2] corresponds to the case when the differential operator P(D) is the
Laplace operator, the level sets P(D) = λ are spheres in R

n and k = 1.

Proof. Denote by� the domain bounded by �. Since the operator P(D) with Dirichlet
boundary condition is self-adjoint, there exists an orthonormal basis {ψl}∞l=0 in L2(�)

consisting of Dirichlet eigenfunctions of P(D), P(D)ψl = λlψl, λl > 0.
Now we can verbatim follow the arguments in [2]. Namely, using convolution in

t−variable one reduces the problem to the case of separable solution

u(x, t) = cl sin t
√
λl ψl(x) (4.2)

with u(., t) ∈ Lp(Rn). The eigenfunctions ψl are built from a global solution u(x, t)
to (4.1) and this allows to extend ψl to R

n as a global eigenfunction of P(D) with the
eigenvalue λl .

Then the Fourier transform of ψl is supported on the level set P = λl which has
codimension greater than k by assumption. Since ψl ∈ Lp(Rn) and p ≤ 2n/(n− k) it now
follows from Theorem 1 that the constant cl appearing in (4.2) is zero, which finishes the
proof.

Remark. The above corollary can be formulated for a higher order elliptic partial differ-
ential operator with an appropriate Cauchy problem instead of (4.1).
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