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ABSTRACT. It is proved that a nonzero function is not in LP (R™) with p < 2n/d if its Fourier
transform is supported by a d— dimensional submanifold. It is shown that the assertion fails for
p > 2n/d and d > n/2. The result is applied for obtaining uniqueness theorems for convolution
equations in LP —spaces.

1. Introduction

We will start with a motivation of the problems we are going to study. Let us consider
the spherical means f * p, of a continuous function f on R” which are defined as

f o (x) = /|| fx=y)du(y), r=>0,
x|=r
where w, is the normalized surface measure on the sphere {x : |x| = r}. Note that the
above expression is the average of f over a sphere of radius r centred at x.
One may ask whether f is uniquely determined by the above averages. In other words
we are asking if the operator taking f into f * p, is injective. In general this is not true. A
counterexample is provided by the Bessel functions. If

)

h(x) = ¢y Y )
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then it is well known that

¢ * o (x) = G (r) g (x) . (1.1)

So it suffices to choose r > 0 such that ¢, (r) = 0. Here ¢, is a constant such that ¢, (0) =
1. Note that, from the asymptotics of the Bessel functions, it is easy to see that ¢, € L? iff
p > 2n/(n — 1). Hence injectivity fails for L?, p > 2n/(n — 1).

Nevertheless, a two radii theorem holds. Namely, Zalcman proved [11] that two
spherical averages f * ,, f * i, uniquely determine a locally integrable function f if
and only if 1 /7, is not a ratio of the zeros of a Bessel function.

However, if f decays at infinity faster than the Bessel function, more precisely, if
f e LPR") forl < p < 2n/(n — 1), then a one radius theorem is true, i.e., for such
functions f the condition f % w, = 0 for some » > 0 implies f = 0. This result was
obtained by Thangavelu [10].

In this article we look at the equations of the general form f T = 0, where f belongs
to some L7 class and T is a compactly supported distribution.

We obtain sharp estimates for the index of summability p, providing uniqueness of
the solution in the space L? (R"). This critical index appears as p < 2n/d, where d is the
dimension of the zero set of the Fourier transform 7.

Thus, we show that the phenomenon of uniqueness is related only to the dimension
d of zero set of the Fourier transform of the kernel T. In the particular case of spherical
averages we have d = n — 1 and the result of [10] follows.

This article is organized as follows. In Section 2 we relate the membership of anonzero
function in the space L?(R") with the dimension d of the support of Fourier transform of
f and obtain corresponding estimates for p. We prove sharpness of the estimates under
the restriction 2d > n. In Section 3 we apply the obtained results to convolution equations
and prove uniqueness theorems. In Section 4 we give an application of our results to
characterization of stationary sets of evolution equations, namely we generalize the result
of [2] on closed stationary hypersurfaces, from the wave equation to a wider class of
equations.

2. LP-Integrability and Dimension of Supports of
Fourier Transforms

In this section we relate the dimension of the support of the Fourier transform of a
function with its membership in L?.

Theorem 1. .
If f € LP(R") and supp f is carried by a C! manifold M of dimension d < n then
f=0provided 1 < p <2n/dandd > 0. Ifd =0then f =0for1 < p < c0.

Proof. Denote k = n — d the codimension of the manifold M. For k = n the Fourier
transform of f is supported on a discrete set, which is not possible for f € L?, p < oo.

For k < n we will show that f vanishes identically by refining the proof of Theo-
rem 7.1.27 of [6].

First, note that by convolving f with a compactly supported smooth function we may
assume that f belongs to L?° where pg = 2n/(n — k).

Now choose an even function x € CZ°(R") with support in the unit ball and
fR,, x(x)dx = 1. Let xo(x) = e "x(x/¢e) and u, = u * y, where u = f Then by
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the Plancherel theorem

luel3 = /R 1F Q1P| E0] dx

00
— Z ; n 2 _o\k
=Ce ‘ 2 Sup |X()7)| <2 jS) ,/2/'<€x<2j+1 |f(x)|2 dx

j:—oo 2/§\x|§2/+1

o0
=Cek Z ajbj

j=—00

where ' 5
aj =2 sup |3y

2J <|x|<2/+!

and

. \k
b = (2—18) / | |F )2 dx .
2Je~1<|x|<2it+lg-!

Applying Holder’s inequality,

N .\ —n(po—2)/p 2/po
b5 < C <2_]8) (2—18) oo </ | £ ()] PO dx)
2Je~l<|x|<2itlg-!

which goes to zero as ¢ — 0, for any fixed j, as k —n(po —2)/po = 0. Also note that we
have |b§| <CI|f ||1%,0 < oo for some constant C independent of ¢ and j. Let y € C°(R")
be arbitrary and denote by M, the set of points at a distance < ¢ from the intersection of
supp u, with supp ¥. Then, as supp u is carried by a C! manifold of codimension k it can
be easily proved by a change of variables that

s—k/ Weck/ WP &0,
M, supp u

where Cy is the volume of the unit ball in R*. Hence, by the Cauchy—Schwarz inequality

|<u,w>|2=nm|<us,w>|25c/
e—0

[¥|?dS lim K (¢)
supp u =0

where K (¢) = Z?‘;_w a;b. Since Z?Oz_oo |aj| is finite, by the dominated convergence
theorem, we have lim¢_,o K(¢) = 0. Hence < u,  >= 0 for any ¢ € C2°(R") which
implies that f = 0. L]

Remark. Related type results can be found in [1]. If u is a temperate solution of P(D)u =
0, where P (D) is adifferential operator with constant coefficients, then the Fourier transform
i is a density on the manifold of zeros of P. In [1] the authors prove that the L? norm of
this density can be exactly determined.

Now we will show that the estimate for the summability index p given by Theorem 1 is
sharp when the dimension d of the support of the Fourier transform satisfies n/2 < d < n:

Theorem 2.

For any n and d such thatd > n/2, there exists a smooth manifold M C R",dim M =
d, and a measure p supported on M such that the Fourier transform f = i € L?(R") for
all p > 2n/d.
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We will need the following elementary fact:

Lemma 1.
Let [ > m. Then one can choose [ vectors oy, op, -+ -+ a; in R™ such that any m of
them form a linearly independent set in R™.

Proof. 1If/ = m + 1, we choose {a1,az, - o, } to be a basis for R™ and define
Uil = Qi Q.

To prove the general case we use induction. Assume that we have a collection B =
{1, 00, ¢+ -+ a;} such that any m of them form a linearly independent set in R™. If F is
a subcollection of precisely m — 1 members of B, let V¢ denote the m — 1 dimensional
subspace spanned by the members of F. Choose a vector o1 which is not in the union
of the subspaces Vg where F runs over all the subsets of B with cardinality m — 1. It is
easy to see that the set {1, otp, -+ -« - aj, aj+1} has the required property. This finishes the
proof of lemma. L]

Proof of Theorem 2. When n = d the assertion is trivial. Hence assume that n/2 <
d < n.
Consider the measure p defined by,

d

d d

u(cp)=f v foty, ooty Yy MG Y AT Y AT - dy
[—1,1] — — —
j=1 j=1 j=1

for ¢ € C°(R"), where A’, are certain constants to be chosen later. Clearly u is supported
on a smooth d-dimensional manifold, which is the graph of the quadratic mapping

d
2.2 n—d 2
SRR BN
1 j=1

We shall show that the Fourier transform of x belongs to L? for all p > 2n/d. Denoting
by f we have

d

d
1.2
(11,12, -+ - 1a) — let‘,,
j=1 J

i(xitidL: ! 2
oo =T, /[ o e/ TR gy @.1)

where x' = (Xgg1----- Xx,) and

n—d
i=1

Note that the L; are linear forms in the last n — d variables and are determined by «; =

AL A"~4). We choose « ;j according to the conclusion of Lemma 1. Now it is well
known that (see [7] and [9])

1
‘/ ei()’11+y‘212) dt
-1

with a C independent of y; and y;. From (2.1) and (2.2) we have

N1
) . 2.3)

_1
i

<C (1 + 37+ y%) (2.2)

Ifol < i (1+X?+)LJ (x)
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We shall show that the above product belongs to L? for any p > 2n/d.
Let us start with a simple lemma.

Lemma 2.
Let g(a) = (1 +u® +a®) "% du a>0. Then

_(P_
lg(a@)| < C( + |a))~ 27D

with C independent of a, provided p > 2.

Proof. The proof follows from the inequalities

[ele} _P
|g(a)|§/0 <1+u2> Y du < C < oo

and
& -3
12@)] < / (12 +a?) " du

7(371) o0 2 _g

< Ca ‘2 (l+s) ds

0
< Caf(gfl)
]

Applying Lemma 2 to the right hand side of (2.3) and taking into account that
p > 2n/d > 2 we have:

p

/Rd F)IP dx < C /R,,_d me_, (1 + )L,» (x')‘)f(rl) dx . 2.4)

G(Y) =G, y2. ynma) = T (1 + L))~

Define

We need to show that G is integrable on R”~“. Since G is a bounded function it is enough
to consider the integral over {|y| > 1}. Now

/ |G(y>|dys/ mé_ 1Ly~ ay
[yl=1 [yI=1

o0
<c f p—d5—Dtn—d-1 4, (f ntjl_’=1|Lj(9)|—(§—l) da(@)) .
1 Sn—d—l

The integral with respect to r is finite provided p > 2n/d. We shall show that the integral
over S"~4~1 too is finite which will complete the proof.

To this end note first that, not more than n — d — 1 linear forms can vanish simultane-
ously on the unit sphere. This is because, if L ;(x) = 0 for some x and n — d many forms
then x = 0 due to the linear independence of «;’s.

Let 6y be a point on the unit sphere where the function 1'[;4:1 [L;(©0)] ~(5=D vanishes.
For the sake of simplicity let us assume that L1(6g) = L>(6p) = ------ = L,(6y) = 0 for
somer <n—d.
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Let N(6p) be a small enough neighborhood of 6y on the unit sphere where the re-
maining linear forms are bounded away from zero. We first show that the above product is
integrable over this neighborhood. We have,

(2 (2
/1 ﬂJM@HZ”M@gc/1 _, L)~ 27V do(6) .
N(6) N(6o)

Since the L are linearly independent, shrinking N (6p) if necessary, we may transfer the
above integral to a small neighborhood of the origin in R"~¢~! via a diffeomorphism in
such a way that L ;(6) becomes x; for j =1,2,---r.

Since the Jacobian of the diffeomorphism is bounded above and below it suffices to
consider the integral f_, .. T1}_, Ix;1~(3 =D dx; which s finite provided p < 4.

Recall that p > 2n/d andn/2 < d < n. Hence for p € (2n/d, 4), we have proved
that the product H?zl [L;(©) |_(17_1) is integrable over the neighborhood N (6p). Arguing

similarly at the other points on the sphere where the function H?zl [L;(6)] ~(3=D vanishes
and using the compactness of the sphere we conclude that this product is integrable over
the whole sphere.

Hence the function f defined by (2.1) belongs to L? (R") for p € (%7”, 4). Since
f is clearly bounded we have that f € L? for all p > 2n/d which finishes the proof of
Theorem 2. L]

Remark. For large codimension k = n — d the estimate for p in Theorem 1 is not sharp.
For example, let y(¢) be a polynomial curve (codimension n — 1). Then it is known that
the Fourier transform of a measure supported on y can belong to L” only for p very large,
in fact p > O(nz) (see [7] and [9]), whereas Theorem 1 suggests the range p > 2n.

3. Convolution Equations in L?(R")

Theorem 1 implies the following uniqueness theorem for convolution equations:

Theorem 3.

Let T be a compactly supported distribution on R” and assume that the zero set of T
in R” is carried by a C! manifold of codimension k. If f € LP satisfies, f « T = 0 then
f vanishes identically provided 1 < p <2n/(n — k) and k < n. If k = n then f = 0 for
1<p<oo.

Proof. Since T is acompactly supported distribution, T is a smooth function of tempered
growth on R". Hence by taking Fourier transform on f'+7 = 0 we can easily conclude that
supp f is contained in the zero set of 7. Now the proof follows from Theorem 1. L]

Theorem 4.
Let T be a compactly supported distribution on R” and f € L?. If f « T = 0 then
f vanishes identically provided 1 < p <2n/(n — 1).

Proof. Asabove, the equation f*T = 0implies that the support of the Fourier transform
of f is contained in the zero set of the function 7'. The function 7" extends to the space C”
as an entire function whose zero set Z (f) is an analytic set in C".

This set admits a stratification (see [3], Chapter 1, p. 60]

Z =UM,
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into complex manifolds M;. The stratification is locally finite, the strata M are pairwise
disjoint and M; C Mj, dimM; <dimM; ifi < j and M; ﬂﬁj # 0.

For the zero set N = ZNR”" of the function 7' we have the corresponding stratification
N =UN;, Nj = M; NR" into real submanifolds of R".

Assume that f # 0 so that its support is nonempty. Let N, be the stratum of the
maximal dimension. The set V = N, \ U, - pﬁ jisopenin N, and therefore V.= U NN,
where U is an open subset of R” which can be chosen disjoint with all the sets N j» J <D

Choose a function 7 in the Schwartz class S(R") such that supp 7 C U and define

g=rxn.
Then § = 7 - f and therefore
suppchﬂsupprUﬂNCNp.

By condition, f € L?(R") for some p < 2n/(n — 1) and so g is of the same class.
Since 2n/(n —1) < 2n/dim N, and g is supported on the manifold N, Theorem 1 implies
g = 0. Due to the arbitrariness of choice of n we conclude that supp f NN, =40.

Now we can proceed with the next strata of less dimension and consequently sweep
out the support of the function f from all the strata N /’.s. Therefore f = 0.

Remark 1. The injectivity result of Thangavelu mentioned in the introduction easily
follows from Theorem 4.

Remark 2. 1) Since 7 is an entire function on C", its zero set Z (f") is of dimension
n — 1 as an analytic set in C". But Z(T) N R” can be of any dimension. For example one
may consider the distribution 7' given by

n—k 82(,0
T@@) =) —0).
j=1 9 J

Then 7 is given by the polynomial j":_lk sz. whose zero set has codimension k.

2) Theorem 3 may also be rephrased as a uniqueness result for a system of convolution
equations. More precisely if 7, j = 1,2, ---[ are compactly supported distributions on
R" and the intersection of the zero sets of f”j is carried by a C! manifold of codimension k,
then any solution in L? (IR") of the system f xT; =0, j = 1,2, ---[ vanishes identically,
provided p < 2n/(n — k).

3) Choosing the above distributions to be supported at origin one may interpret the above as
auniqueness result for a system of differential equations. We leave the details to the reader.

Remark 3. In the particular case when the codimension k of the support of the Fourier
transform divides n, the sharpness of the estimate for the index of summability p can be
shown much easier than in Theorem 2, just by considering the surface measure on a torus
and using the asymptotics of the Bessel functions.

Namely, for k = 1 we may use the example in (1.1). Now let n = kI for some positive
integer /. Write R” = Rl x ... .. x R! (k times). Let v be the normalized surface measure
on M =St x ... x S!=1, where S!~! is the sphere of radius r in R centred at the
origin. Note that M has codimension k. For x € R” write x = (x1,x2,...... , Xr) Where
each x; is in the j'th [ dimensional space. If

Jr_y(rlxi)) Ji_y (rlxe))
fx)= 2—-v—...... 2

L 1 L_q
(rlxil)2 (rlxkl)2



322 M.L. Agranovsky and E.K. Narayanan

then f € LP? for every p > 2I/(I — 1) = 2n/(n — k). Here C is a constant such that
f(0) = 1. Note that the Fourier transform of f is supported on M.
Now let ¥ > O be a zero of J%q (t). Then we have

Ji_ M\F
f*v(x):C(zl ) f(x)=0.

rz=1

Hence injectivity too fails for p > 2n/(n — k) which shows that Theorem 3 can not be
improved. L]

As another corollary to Theorem 1 we have the following Wiener—Tauberian type
theorem.

Corollary 1.

Let i be a compactly supported continuous function on R”. Then the linear span of
translates of & forms a dense subset of L”(R") aslong as 2n/(n + k) < p < oo where k is
the minimal codimension of the zero set of 4 in R”. In particular linear span of translates
of h span a dense susbet of L? for 2n/(n +1) < p < oo.

Proof. Suppose that a function f in the dual space annihilates all the translates of 1. We
need to show that f = 0. Since f is orthogonal to all the translates of # we have f xh = 0.
Taking Fourier transform we have supp f C{x: h(x) =0}. Now proceeding as in
Theorem 4 we finish the proof. L]

Remark. We remark that the above corollary answers a question posed by C.S. Herz in [5]
(see p. 727).

4. An Application: Stationary Sets of Evolution
Equations

In [2] the authors studied injectivity sets for the spherical means on R”. It was proved
that the boundary I" of any bounded domain £ C R" is a set of injectivity for the spherical
means operator in L” (R") as long as p < 2n/(n — 1). In other words if f * u,(x) = 0 for
all x e I'" and for all » > O then f = 0 provided p < 2n/(n — 1).

This result is equivalent to the nonexistence of closed stationary sets for the wave
equation when the initial velocity vanishes at infinity too fast, more precisely, belongs to
L? with p as above (Theorem 3 in [2]). The estimate for the index of summability p came
from the asymptotic of Bessel functions which are eigenfunctions of the Laplace operator.

Theorem 1 enables us to obtain similar result for evolution equation for more general
differential operators than Laplacian.

Let P(D) be a second order elliptic partial differential operator with constant coef-
ficients which has a non negative self adjoint extension to L2(R"). Assume that the level
sets P(x) = A, A € R are smooth manifolds and the minimal codimension of the level sets
is k.

Consider the associated wave equation

Uy + P(D)u =0, u(x,0) =0, u;(x,0) = f(x), “.1)



LP-Integrability, Supports of Fourier Transforms and Uniqueness for Convolution Equations 323

with the initial velocity f € L?(R") for some p. We may extend the solution uniquely to
the whole time axis by assuming that u(x, —t) = —u(x, ) forallt € R.

Corollary 2.
Let I" be the boundary of any bounded domainin R”, n > 2. Suppose that the solution
u(x, t) of the Cauchy problem (4.1) with the initial data f € L (R") satisfies the condition

u(x,t) =0forallx € I" atany timet > 0.

Thenu = 0Oaslongas p <2n/(n—k)fork <nand1 < p < oo for k = n where k is the
minimal codimension of the the level sets of P.

The result of [2] corresponds to the case when the differential operator P (D) is the
Laplace operator, the level sets P(D) = A are spheres in R” and k = 1.

Proof. Denote by 2 the domain bounded by I". Since the operator P (D) with Dirichlet
boundary condition is self-adjoint, there exists an orthonormal basis {y;}72, in L%(2)
consisting of Dirichlet eigenfunctions of P (D), P(D)Y¥; = My, A > 0.

Now we can verbatim follow the arguments in [2]. Namely, using convolution in
t—variable one reduces the problem to the case of separable solution

u(x, 1) = ¢ sinty/a Y (x) 4.2)

with u(.,) € LP(R"). The eigenfunctions ; are built from a global solution u(x, )
to (4.1) and this allows to extend v; to R" as a global eigenfunction of P(D) with the
eigenvalue A;.

Then the Fourier transform of y; is supported on the level set P = A; which has
codimension greater than k by assumption. Since y; € LP(R") and p < 2n/(n — k) it now
follows from Theorem 1 that the constant ¢; appearing in (4.2) is zero, which finishes the
proof. L]

Remark. The above corollary can be formulated for a higher order elliptic partial differ-
ential operator with an appropriate Cauchy problem instead of (4.1).

Acknowledgments

We thank R. Strichartz for pointing us out the article [1]. This work was done when
the second author was a post-doc at the Department of Mathematics and Statistics of Bar-
Ilan University, Israel. He wishes to thank the University for the offer and the hospitality
during the stay.

References

[1] Agmon, S. and Hormander, L. (1976). Asymptotic properties of solutions of differential equations with
simple characteristics, J. Analyse Math., 30, 1-38.

[2] Agranovsky, M.L., Berenstein, C.A., and Kuchment, P. (1996). Approximation by spherical waves in L”
spaces, J. Geom. Anal., 6(3), 365-383.

[3] Chirka, EM. Complex Analytic Sets, Kluwer Ac. Publ., Vol. 46, 989.

[4] Helgason, S. (1987). Groups and Geometric Analysis, Academic Press, Orlando, FL.



324

[3]
(6]
(7]
(8]
[9]

[10]

[11]

M.L. Agranovsky and E.K. Narayanan

Herz, C.S. (1957). A note on the span of translations in L?, Proc. Am. Math. Soc., 8, 724-7217.
Hormander, L. (1983). The Analysis of Linear Partial Differential Operators, Vol. 1. Springer-Verlag, Berlin.

Kaijser, S. (1981). Uniform estimate for Fourier transforms of measures on polynomial curves in R”,
Monatsh. Math., 92(4), 299-303.

Rawat, R. and Sitaram, A. (1995). The injectivity of the Pompeiu transform and L”-analogues of the
Wiener—Tauberian theorem, Israel J. Math., 91(1-3), 307-316.

Stein, E.M. and Wainger, S. (1970). The estimation of an integral arising in multiplier transformations,
Stud. Math., 35, 101-104.

Thangavelu, S. (1994). Spherical means and CR functions on the Heisenberg group, J. Analyse Math., 63,
255-286.

Zalcman, L. (1980). Oftbeat integral geometry, Am. Math. Monthly, 87, 161-175.

Received December 11, 2002
Mathematics Department Bar-Ilan University 52900, Ramat-Gan Israel
e-mail: agranovs@macs.biu.ac.il

Harish-Chandra Research Institute, Chhatnag Road, Jhusi Allahabad, 211019, India
e-mail: naru@mri.ernet.in



