M.L. Agranovsky and E.K. Narayanan

The Journal of Fourier Analysis and Applications

Volume 10, Issue 3, 2004

Lp-Integrability, Supports of Fourier Transforms and Uniqueness for Convolution Equations

M.L. Agranovsky and E.K. Narayanan

Communicated by Carlos Berenstein

ABSTRACT. It is proved that a nonzero function is not in $L^p(R^n)$ with $p \leq 2n/d$ if its Fourier *transform is supported by a d*− *dimensional submanifold. It is shown that the assertion fails for* $p > 2n/d$ *and* $d \ge n/2$ *. The result is applied for obtaining uniqueness theorems for convolution equations in Lp*−*spaces.*

1. Introduction

We will start with a motivation of the problems we are going to study. Let us consider the spherical means $f * \mu_r$ of a continuous function f on \mathbb{R}^n which are defined as

$$
f * \mu_r(x) = \int_{|x|=r} f(x-y) d\mu_r(y), \quad r > 0,
$$

where μ_r is the normalized surface measure on the sphere $\{x : |x| = r\}$. Note that the above expression is the average of *f* over a sphere of radius *r* centred at *x*.

One may ask whether *f* is uniquely determined by the above averages. In other words we are asking if the operator taking *f* into $f * \mu_r$ is injective. In general this is not true. A counterexample is provided by the Bessel functions. If

$$
\phi_{\lambda}(x) = c_n \frac{J_{\frac{n}{2}-1}(\lambda|x|)}{(\lambda|x|)^{\frac{n}{2}-1}},
$$

Math Subject Classifications. Primary: 42B10, 44A35; secondary: 46F12, 42B99.

Keywords and Phrases. Distributions, convolution equations, supports of Fourier transforms, injectivity, evolution equations.

Acknowledgements an Notes. The first author was paritally supported by the Israel Science Foundation, grant No. 279/02-01.

[©] 2004 Birkhäuser Boston. All rights reserved ISSN 1069-5869 DOI: 10.1007/s00041-004-0986-4

then it is well known that

$$
\phi_{\lambda} * \mu_r(x) = \phi_{\lambda}(r)\phi_{\lambda}(x) . \qquad (1.1)
$$

So it suffices to choose $r > 0$ such that $\phi_{\lambda}(r) = 0$. Here c_n is a constant such that $\phi_{\lambda}(0) =$ 1. Note that, from the asymptotics of the Bessel functions, it is easy to see that $\phi_{\lambda} \in L^p$ iff $p > 2n/(n-1)$. Hence injectivity fails for L^p , $p > 2n/(n-1)$.

Nevertheless, a *two radii* theorem holds. Namely, Zalcman proved [11] that two spherical averages $f * \mu_{r_1}$, $f * \mu_{r_2}$ uniquely determine a locally integrable function f if and only if r_1/r_2 is not a ratio of the zeros of a Bessel function.

However, if *f* decays at infinity faster than the Bessel function, more precisely, if $f \in L^p(\mathbb{R}^n)$ for $1 \leq p \leq 2n/(n-1)$, then a *one radius* theorem is true, i.e., for such functions *f* the condition $f * \mu_r = 0$ for some $r > 0$ implies $f = 0$. This result was obtained by Thangavelu [10].

In this article we look at the equations of the general form $f * T = 0$, where *f* belongs to some L^p class and *T* is a compactly supported distribution.

We obtain sharp estimates for the index of summability *p*, providing uniqueness of the solution in the space $L^p(\mathbb{R}^n)$. This critical index appears as $p \leq 2n/d$, where *d* is the dimension of the zero set of the Fourier transform *T*.

Thus, we show that the phenomenon of uniqueness is related only to the dimension *d* of zero set of the Fourier transform of the kernel *T* . In the particular case of spherical averages we have $d = n - 1$ and the result of [10] follows.

This article is organized as follows. In Section 2 we relate the membership of a nonzero function in the space $L^p(\mathbb{R}^n)$ with the dimension *d* of the support of Fourier transform of *f* and obtain corresponding estimates for *p*. We prove sharpness of the estimates under the restriction $2d \geq n$. In Section 3 we apply the obtained results to convolution equations and prove uniqueness theorems. In Section 4 we give an application of our results to characterization of stationary sets of evolution equations, namely we generalize the result of [2] on closed stationary hypersurfaces, from the wave equation to a wider class of equations.

2. *L^p*-**Integrability and Dimension of Supports of Fourier Transforms**

In this section we relate the dimension of the support of the Fourier transform of a function with its membership in L^p .

Theorem 1.

If $f \in L^p(\mathbb{R}^n)$ and supp \hat{f} is carried by a C^1 manifold *M* of dimension $d < n$ then *f* = 0 provided $1 \le p \le \frac{2n}{d}$ and $d > 0$. If $d = 0$ then $f = 0$ for $1 \le p < \infty$.

Proof. Denote $k = n - d$ the codimension of the manifold *M*. For $k = n$ the Fourier transform of *f* is supported on a discrete set, which is not possible for $f \in L^p$, $p < \infty$.

For $k < n$ we will show that f vanishes identically by refining the proof of Theorem 7.1.27 of [6].

First, note that by convolving *f* with a compactly supported smooth function we may assume that *f* belongs to L^{p_0} where $p_0 = \frac{2n}{n - k}$.

Now choose an even function $\chi \in C_c^{\infty}(\mathbb{R}^n)$ with support in the unit ball and $\int_{\mathbb{R}^n} \chi(x) dx = 1$. Let $\chi_{\varepsilon}(x) = \varepsilon^{-n} \chi(x/\varepsilon)$ and $u_{\varepsilon} = u * \chi_{\varepsilon}$ where $u = \hat{f}$. Then by the Plancherel theorem

$$
||u_{\varepsilon}||_{2}^{2} = \int_{\mathbb{R}^{n}} |f(x)|^{2} |\hat{\chi}(\varepsilon x)|^{2} dx
$$

\n
$$
\leq C \varepsilon^{-k} \sum_{j=-\infty}^{\infty} 2^{jk} \sup_{2^{j} \leq |x| \leq 2^{j+1}} |\hat{\chi}(y)|^{2} (2^{-j} \varepsilon)^{k} \int_{2^{j} \leq |\varepsilon x| \leq 2^{j+1}} |f(x)|^{2} dx
$$

\n
$$
= C \varepsilon^{-k} \sum_{j=-\infty}^{\infty} a_{j} b_{j}^{\varepsilon}
$$

where

$$
a_j = 2^{jk} \sup_{2^j \le |x| \le 2^{j+1}} |\hat{\chi}(y)|^2
$$

and

$$
b_j^{\varepsilon} = \left(2^{-j}\varepsilon\right)^k \int_{2^j \varepsilon^{-1} \leq |x| \leq 2^{j+1} \varepsilon^{-1}} |f(x)|^2 dx.
$$

Applying Holder's inequality,

$$
|b_j^{\varepsilon}| \le C \left(2^{-j}\varepsilon\right)^k \left(2^{-j}\varepsilon\right)^{-n(p_0-2)/p_0} \left(\int_{2^j\varepsilon^{-1} \le |x| \le 2^{j+1}\varepsilon^{-1}} |f(x)|^{p_0} dx\right)^{2/p_0}
$$

which goes to zero as $\varepsilon \to 0$, for any fixed *j*, as $k - n(p_0 - 2)/p_0 = 0$. Also note that we $|\phi_j^{\varepsilon}| \leq C \|f\|_{p_0}^2 < \infty$ for some constant *C* independent of ε and j . Let $\psi \in C_c^{\infty}(\mathbb{R}^n)$ be arbitrary and denote by M_{ε} the set of points at a distance $\langle \varepsilon \varepsilon \rangle$ from the intersection of supp u_{ε} with supp ψ . Then, as supp *u* is carried by a C^1 manifold of codimension *k* it can be easily proved by a change of variables that

$$
\varepsilon^{-k} \int_{M_{\varepsilon}} |\psi|^2 \to C_k \int_{\text{supp } u} |\psi|^2, \ \varepsilon \to 0 ,
$$

where C_k is the volume of the unit ball in \mathbb{R}^k . Hence, by the Cauchy–Schwarz inequality

$$
| < u, \psi > |^2 = \lim_{\varepsilon \to 0} | < u_{\varepsilon}, \psi > |^2 \le C \int_{\text{supp } u} |\psi|^2 dS \lim_{\varepsilon \to 0} K(\varepsilon)
$$

where $K(\varepsilon) = \sum_{j=-\infty}^{\infty} a_j b_j^{\varepsilon}$. Since $\sum_{j=-\infty}^{\infty} |a_j|$ is finite, by the dominated convergence theorem, we have $\lim_{\epsilon \to 0} K(\epsilon) = 0$. Hence $\lt u, \psi \gt = 0$ for any $\psi \in C_c^{\infty}(\mathbb{R}^n)$ which implies that $f = 0$. \Box

Remark. Related type results can be found in [1]. If *u* is a temperate solution of $P(D)u =$ 0, where*P (D)*is a differential operator with constant coefficients, then the Fourier transform \hat{u} is a density on the manifold of zeros of *P*. In [1] the authors prove that the L^2 norm of this density can be exactly determined.

Now we will show that the estimate for the summability index *p* given by Theorem 1 is sharp when the dimension *d* of the support of the Fourier transform satisfies $n/2 \le d \le n$:

Theorem 2.

For any *n* and *d* such that $d \ge n/2$, there exists a smooth manifold $M \subset \mathbb{R}^n$, dim $M =$ *d*, and a measure μ supported on *M* such that the Fourier transform $f = \hat{\mu} \in L^p(\mathbb{R}^n)$ for all $p > 2n/d$.

We will need the following elementary fact:

Lemma 1.

Let $l > m$. Then one can choose *l* vectors $\alpha_1, \alpha_2, \cdots, \alpha_l$ in \mathbb{R}^m such that any *m* of them form a linearly independent set in R*m*.

Proof. If $l = m + 1$, we choose $\{\alpha_1, \alpha_2, \cdots, \alpha_m\}$ to be a basis for \mathbb{R}^m and define $\alpha_{m+1} = \sum_{i=1}^m \alpha_i$.

To prove the general case we use induction. Assume that we have a collection $B =$ $\{\alpha_1, \alpha_2, \cdots, \alpha_l\}$ such that any *m* of them form a linearly independent set in \mathbb{R}^m . If *F* is a subcollection of precisely $m - 1$ members of *B*, let V_F denote the $m - 1$ dimensional subspace spanned by the members of *F*. Choose a vector α_{l+1} which is not in the union of the subspaces V_F where *F* runs over all the subsets of *B* with cardinality $m - 1$. It is easy to see that the set { $\alpha_1, \alpha_2, \cdots \cdots \alpha_l, \alpha_{l+1}$ } has the required property. This finishes the proof of lemma. \Box

Proof of Theorem 2. When $n = d$ the assertion is trivial. Hence assume that $n/2 \le$ $d < n$.

Consider the measure μ defined by,

$$
\mu(\varphi) = \int_{[-1,1]^d} \varphi\left(t_1, t_2, \cdots, t_d, \sum_{j=1}^d \lambda_j^1 t_j^2, \sum_{j=1}^d \lambda_j^2 t_j^2, \cdots, \sum_{j=1}^d \lambda_j^{n-d} t_j^2\right) dt_1 \cdots dt_d
$$

for $\varphi \in C_c^{\infty}(\mathbb{R}^n)$, where λ_j^s are certain constants to be chosen later. Clearly μ is supported on a smooth *d*-dimensional manifold, which is the graph of the quadratic mapping

$$
(t_1, t_2, \cdots t_d) \rightarrow \left(\sum_{j=1}^d \lambda_j^1 t_j^2, \sum_{j=1}^d \lambda_j^2 t_j^2, \cdots \sum_{j=1}^d \lambda_j^{n-d} t_j^2\right).
$$

We shall show that the Fourier transform of μ belongs to L^p for all $p > 2n/d$. Denoting $\hat{\mu}$ by f we have

$$
f(x) = \Pi_{j=1}^{d} \int_{[-1,1]} e^{i(x_j t_j + L_j(x')t_j^2)} dt_j ,
$$
 (2.1)

where $x' = (x_{d+1} \cdot \cdots \cdot x_n)$ and

$$
L_k(x') = \sum_{i=1}^{n-d} \lambda_k^i x_{d+i}, \ \ k = 1, 2, \cdots d.
$$

Note that the L_j are linear forms in the last $n - d$ variables and are determined by $\alpha_j =$ $(\lambda_j^1, \dots, \lambda_j^{n-\tilde{d}})$. We choose α_j according to the conclusion of Lemma 1. Now it is well known that (see [7] and [9])

$$
\left| \int_{-1}^{1} e^{i(y_1 t + y_2 t^2)} dt \right| \le C \left(1 + y_1^2 + y_2^2 \right)^{-\frac{1}{4}} \tag{2.2}
$$

with a *C* independent of y_1 and y_2 . From (2.1) and (2.2) we have

$$
|f(x)| \le C \prod_{j=1}^{d} \left(1 + x_j^2 + \left| L_j \left(x' \right) \right|^2 \right)^{-\frac{1}{4}}.
$$
 (2.3)

We shall show that the above product belongs to L^p for any $p > 2n/d$.

Let us start with a simple lemma.

Lemma 2.

Let
$$
g(a) = \int_0^\infty (1 + u^2 + a^2)^{-\frac{p}{4}} du \quad a \ge 0
$$
. Then

$$
|g(a)|\leq C(1+|a|)^{-(\frac{p}{2}-1)}
$$

with *C* independent of *a*, provided $p > 2$.

Proof. The proof follows from the inequalities

$$
|g(a)| \leq \int_0^\infty \left(1 + u^2\right)^{-\frac{p}{4}} du \leq C < \infty
$$

and

$$
|g(a)| \le \int_0^\infty (u^2 + a^2)^{-\frac{p}{4}} du
$$

\n
$$
\le C a^{-(\frac{p}{2}-1)} \int_0^\infty (1 + s^2)^{-\frac{p}{4}} ds
$$

\n
$$
\le C a^{-(\frac{p}{2}-1)}.
$$

Applying Lemma 2 to the right hand side of (2.3) and taking into account that $p > 2n/d > 2$ we have:

$$
\int_{\mathbb{R}^d} |f(x)|^p \, dx \le C \int_{\mathbb{R}^{n-d}} \Pi_{j=1}^d \left(1 + \left| L_j \left(x' \right) \right| \right)^{-(\frac{p}{2}-1)} \, dx' \,. \tag{2.4}
$$

Define

$$
G(y) = G(y_1, y_2, \cdots y_{n-d}) = \Pi_{j=1}^d (1 + |L_j(y)|)^{-(\frac{p}{2}-1)}.
$$

We need to show that *G* is integrable on \mathbb{R}^{n-d} . Since *G* is a bounded function it is enough to consider the integral over $\{|y| \ge 1\}$. Now

$$
\int_{|y|\geq 1} |G(y)| dy \leq \int_{|y|\geq 1} \Pi_{j=1}^d |L_j(y)|^{-(\frac{p}{2}-1)} dy
$$

\n
$$
\leq C \int_1^\infty r^{-d(\frac{p}{2}-1)+n-d-1} dr \left(\int_{S^{n-d-1}} \Pi_{j=1}^d |L_j(\theta)|^{-(\frac{p}{2}-1)} d\sigma(\theta) \right).
$$

The integral with respect to *r* is finite provided $p > 2n/d$. We shall show that the integral over S^{n-d-1} too is finite which will complete the proof.

To this end note first that, not more than $n - d - 1$ linear forms can vanish simultaneously on the unit sphere. This is because, if $L_i(x) = 0$ for some x and $n - d$ many forms then $x = 0$ due to the linear independence of α_j 's.

Let θ_0 be a point on the unit sphere where the function $\prod_{j=1}^d |L_j(\theta)|^{-(\frac{p}{2}-1)}$ vanishes. For the sake of simplicity let us assume that $L_1(\theta_0) = L_2(\theta_0) = \cdots = L_r(\theta_0) = 0$ for some $r < n - d$.

Let $N(\theta_0)$ be a small enough neighborhood of θ_0 on the unit sphere where the remaining linear forms are bounded away from zero. We first show that the above product is integrable over this neighborhood. We have,

$$
\int_{N(\theta_0)} \Pi_{j=1}^d |L_j(\theta)|^{-(\frac{p}{2}-1)} d\sigma(\theta) \leq C \int_{N(\theta_0)} \Pi_{j=1}^r |L_j(\theta)|^{-(\frac{p}{2}-1)} d\sigma(\theta).
$$

Since the L_j are linearly independent, shrinking $N(\theta_0)$ if necessary, we may transfer the above integral to a small neighborhood of the origin in *Rn*−*d*−¹ via a diffeomorphism in such a way that $L_j(\theta)$ becomes x_j for $j = 1, 2, \dots r$.

Since the Jacobian of the diffeomorphism is bounded above and below it suffices to consider the integral $\int_{(-\varepsilon,\varepsilon)^r} \prod_{j=1}^r |x_j|^{-\frac{(\frac{\tilde{p}}{2}-1)}{2}} dx_j$ which is finite provided $p < 4$.

Recall that $p > 2n/d$ and $n/2 < d < n$. Hence for $p \in (2n/d, 4)$, we have proved that the product $\prod_{j=1}^{d} |L_j(\theta)|^{-(\frac{p}{2}-1)}$ is integrable over the neighborhood $N(\theta_0)$. Arguing similarly at the other points on the sphere where the function $\prod_{j=1}^{d} |L_j(\theta)|^{-(\frac{p}{2}-1)}$ vanishes and using the compactness of the sphere we conclude that this product is integrable over the whole sphere.

Hence the function *f* defined by (2.1) belongs to $L^p(\mathbb{R}^n)$ for $p \in (\frac{2n}{d}, 4)$. Since *f* is clearly bounded we have that $f \in L^p$ for all $p > \frac{2n}{d}$ which finishes the proof of Theorem 2. \Box

Remark. For large codimension $k = n - d$ the estimate for p in Theorem 1 is not sharp. For example, let $\gamma(t)$ be a polynomial curve (codimension $n-1$). Then it is known that the Fourier transform of a measure supported on γ can belong to L^p only for *p* very large, in fact $p > O(n^2)$ (see [7] and [9]), whereas Theorem 1 suggests the range $p > 2n$.

3. Convolution Equations in $L^p(\mathbb{R}^n)$

Theorem 1 implies the following uniqueness theorem for convolution equations:

Theorem 3.

Let *T* be a compactly supported distribution on \mathbb{R}^n and assume that the zero set of \hat{T} in \mathbb{R}^n is carried by a C^1 manifold of codimension k. If $f \in L^p$ satisfies, $f * T = 0$ then *f* vanishes identically provided $1 \le p \le \frac{2n}{n-k}$ and $k < n$. If $k = n$ then $f = 0$ for $1 \leq p < \infty$.

Proof. Since *T* is a compactly supported distribution, \hat{T} is a smooth function of tempered growth on \mathbb{R}^n . Hence by taking Fourier transform on $f * T = 0$ we can easily conclude that supp \hat{f} is contained in the zero set of \hat{T} . Now the proof follows from Theorem 1. \Box

Theorem 4.

Let *T* be a compactly supported distribution on \mathbb{R}^n and $f \in L^p$. If $f * T = 0$ then *f* vanishes identically provided $1 \le p \le \frac{2n}{n-1}$.

Proof. As above, the equation $f * T = 0$ implies that the support of the Fourier transform of *f* is contained in the zero set of the function \hat{T} . The function \hat{T} extends to the space \mathbb{C}^n as an entire function whose zero set $Z(\hat{T})$ is an analytic set in \mathbb{C}^n .

This set admits a stratification (see [3], Chapter 1, p. 60]

 $Z = \cup M_i$

into complex manifolds M_j . The stratification is locally finite, the strata M_j are pairwise disjoint and $M_i \subset \overline{M}_i$, dim $M_i <$ dim M_j if $i < j$ and $M_i \cap \overline{M}_j \neq \emptyset$.

For the zero set $N = Z \cap \mathbb{R}^n$ of the function \hat{T} we have the corresponding stratification $N = \cup N_j$, $N_j = M_j \cap \mathbb{R}^n$ into real submanifolds of \mathbb{R}^n .

Assume that $f \neq 0$ so that its support is nonempty. Let N_p be the stratum of the maximal dimension. The set $V = N_p \setminus \bigcup_{j < p} \overline{N}_j$ is open in N_p and therefore $V = U \cap N_p$ where *U* is an open subset of \mathbb{R}^n which can be chosen disjoint with all the sets \overline{N}_j , $j < p$.

Choose a function *η* in the Schwartz class $S(\mathbb{R}^n)$ such that supp $\hat{\eta} \subset U$ and define

$$
g = f * \eta .
$$

Then $\hat{g} = \hat{\eta} \cdot \hat{f}$ and therefore

$$
\text{supp }\hat{g} \subset U \cap \text{supp }\hat{f} \subset U \cap N \subset N_p .
$$

By condition, $f \in L^p(\mathbb{R}^n)$ for some $p \leq 2n/(n-1)$ and so g is of the same class. Since $2n/(n-1)$ ≤ $2n/\dim N_p$ and \hat{g} is supported on the manifold N_p , Theorem 1 implies *g* = 0. Due to the arbitrariness of choice of *η* we conclude that supp $\hat{f} \cap N_p = \emptyset$.

Now we can proceed with the next strata of less dimension and consequently sweep out the support of the function \hat{f} from all the strata $N'_j s$. Therefore $f = 0$.

Remark 1. The injectivity result of Thangavelu mentioned in the introduction easily follows from Theorem 4.

Remark 2. 1) Since \hat{T} is an entire function on \mathbb{C}^n , its zero set $Z(\hat{T})$ is of dimension *n* − 1 as an analytic set in \mathbb{C}^n . But $Z(T) \cap \mathbb{R}^n$ can be of any dimension. For example one may consider the distribution *T* given by

$$
T(\varphi) = \sum_{j=1}^{n-k} \frac{\partial^2 \varphi}{\partial x_j^2}(0) .
$$

Then \hat{T} is given by the polynomial $\sum_{j=1}^{n-k} x_j^2$ whose zero set has codimension *k*.

2) Theorem 3 may also be rephrased as a uniqueness result for a system of convolution equations. More precisely if T_j , $j = 1, 2, \cdots l$ are compactly supported distributions on \mathbb{R}^n and the intersection of the zero sets of \hat{T}_j is carried by a C^1 manifold of codimension *k*, then any solution in $L^p(\mathbb{R}^n)$ of the system $f * T_j = 0$, $j = 1, 2, \dots l$ vanishes identically, provided $p \leq 2n/(n-k)$.

3) Choosing the above distributions to be supported at origin one may interpret the above as a uniqueness result for a system of differential equations. We leave the details to the reader.

Remark 3. In the particular case when the codimension *k* of the support of the Fourier transform divides n , the sharpness of the estimate for the index of summability p can be shown much easier than in Theorem 2, just by considering the surface measure on a torus and using the asymptotics of the Bessel functions.

Namely, for $k = 1$ we may use the example in (1.1). Now let $n = kl$ for some positive integer *l*. Write $\mathbb{R}^n = \mathbb{R}^l \times \cdots \times \mathbb{R}^l$ (*k* times). Let *v* be the normalized surface measure on $\tilde{M} = S_r^{l-1} \times \cdots \times S_r^{l-1}$, where S_r^{l-1} is the sphere of radius *r* in \mathbb{R}^l centred at the origin. Note that *M* has codimension *k*. For $x \in \mathbb{R}^n$ write $x = (x_1, x_2, \ldots, x_k)$ where each x_j is in the j' th *l* dimensional space. If

$$
f(x) = \frac{J_{\frac{l}{2}-1}(r|x_1|)}{(r|x_1|)^{\frac{l}{2}-1}} \cdots \cdots \frac{J_{\frac{l}{2}-1}(r|x_k|)}{(r|x_k|)^{\frac{l}{2}-1}}
$$

then $f \in L^p$ for every $p > 2l/(l-1) = 2n/(n-k)$. Here C is a constant such that $f(0) = 1$. Note that the Fourier transform of *f* is supported on *M*.

Now let *r* > 0 be a zero of $J_{\frac{l}{2}-1}(t)$. Then we have

$$
f * \nu(x) = C \left(\frac{J_{\frac{1}{2}-1}(r)}{r^{\frac{1}{2}-1}} \right)^k f(x) = 0.
$$

Hence injectivity too fails for $p > 2n/(n - k)$ which shows that Theorem 3 can not be improved. \Box

As another corollary to Theorem 1 we have the following Wiener–Tauberian type theorem.

Corollary 1.

Let *h* be a compactly supported continuous function on \mathbb{R}^n . Then the linear span of translates of *h* forms a dense subset of $L^p(\mathbb{R}^n)$ as long as $2n/(n+k) \leq p < \infty$ where *k* is the minimal codimension of the zero set of \hat{h} in \mathbb{R}^n . In particular linear span of translates of *h* span a dense susbet of L^p for $2n/(n+1) \leq p < \infty$.

Proof. Suppose that a function *f* in the dual space annihilates all the translates of *h*. We need to show that $f = 0$. Since f is orthogonal to all the translates of h we have $f * h = 0$. Taking Fourier transform we have supp $\hat{f} \subset \{x : \hat{h}(x) = 0\}$. Now proceeding as in Theorem 4 we finish the proof.

Remark. We remark that the above corollary answers a question posed by C.S. Herz in [5] (see p. 727).

4. An Application: Stationary Sets of Evolution Equations

In [2] the authors studied injectivity sets for the spherical means on \mathbb{R}^n . It was proved that the boundary Γ of any bounded domain $\Omega \subset \mathbb{R}^n$ is a set of injectivity for the spherical means operator in $L^p(\mathbb{R}^n)$ as long as $p \leq 2n/(n-1)$. In other words if $f * \mu_r(x) = 0$ for all $x \in \Gamma$ and for all $r > 0$ then $f = 0$ provided $p \leq 2n/(n-1)$.

This result is equivalent to the nonexistence of closed stationary sets for the wave equation when the initial velocity vanishes at infinity too fast, more precisely, belongs to L^p with *p* as above (Theorem 3 in [2]). The estimate for the index of summability *p* came from the asymptotic of Bessel functions which are eigenfunctions of the Laplace operator.

Theorem 1 enables us to obtain similar result for evolution equation for more general differential operators than Laplacian.

Let $P(D)$ be a second order elliptic partial differential operator with constant coefficients which has a non negative self adjoint extension to $L^2(\mathbb{R}^n)$. Assume that the level sets $P(x) = \lambda$, $\lambda \in R$ are smooth manifolds and the minimal codimension of the level sets is *k*.

Consider the associated wave equation

$$
u_{tt} + P(D)u = 0, \ u(x,0) = 0, \ u_t(x,0) = f(x), \tag{4.1}
$$

with the initial velocity $f \in L^p(\mathbb{R}^n)$ for some p. We may extend the solution uniquely to the whole time axis by assuming that $u(x, -t) = -u(x, t)$ for all $t \in \mathbb{R}$.

Corollary 2.

Let Γ be the boundary of any bounded domain in \mathbb{R}^n , $n \geq 2$. Suppose that the solution $u(x, t)$ of the Cauchy problem (4.1) with the initial data $f \in L^p(\mathbb{R}^n)$ satisfies the condition

 $u(x, t) = 0$ for all $x \in \Gamma$ at any time $t > 0$.

Then $u = 0$ as long as $p \leq 2n/(n - k)$ for $k < n$ and $1 \leq p < \infty$ for $k = n$ where k is the minimal codimension of the the level sets of *P*.

The result of $[2]$ corresponds to the case when the differential operator $P(D)$ is the Laplace operator, the level sets $P(D) = \lambda$ are spheres in \mathbb{R}^n and $k = 1$.

Proof. Denote by Ω the domain bounded by Γ . Since the operator $P(D)$ with Dirichlet boundary condition is self-adjoint, there exists an orthonormal basis $\{\psi_l\}_{l=0}^{\infty}$ in $L^2(\Omega)$ consisting of Dirichlet eigenfunctions of $P(D)$, $P(D)\psi_l = \lambda_l \psi_l$, $\lambda_l > 0$.

Now we can *verbatim* follow the arguments in [2]. Namely, using convolution in *t*−variable one reduces the problem to the case of separable solution

$$
u(x, t) = c_l \sin t \sqrt{\lambda_l} \psi_l(x) \tag{4.2}
$$

with $u(., t) \in L^p(\mathbb{R}^n)$. The eigenfunctions ψ_l are built from a global solution $u(x, t)$ to (4.1) and this allows to extend ψ_l to \mathbb{R}^n as a global eigenfunction of $P(D)$ with the eigenvalue *λl*.

Then the Fourier transform of ψ_l is supported on the level set $P = \lambda_l$ which has codimension greater than *k* by assumption. Since $\psi_l \in L^p(\mathbb{R}^n)$ and $p \leq 2n/(n-k)$ it now follows from Theorem 1 that the constant c_l appearing in (4.2) is zero, which finishes the proof. \Box

Remark. The above corollary can be formulated for a higher order elliptic partial differential operator with an appropriate Cauchy problem instead of (4.1).

Acknowledgments

We thank R. Strichartz for pointing us out the article [1]. This work was done when the second author was a post-doc at the Department of Mathematics and Statistics of Bar-Ilan University, Israel. He wishes to thank the University for the offer and the hospitality during the stay.

References

- [1] Agmon, S. and Hormander, L. (1976). Asymptotic properties of solutions of differential equations with simple characteristics, *J. Analyse Math.,* **30**, 1–38.
- [2] Agranovsky, M.L., Berenstein, C.A., and Kuchment, P. (1996). Approximation by spherical waves in *L^p* spaces, *J. Geom. Anal.,* **6**(3), 365–383.
- [3] Chirka, E.M. *Complex Analytic Sets,* Kluwer Ac. Publ., Vol. 46, 989.
- [4] Helgason, S. (1987). *Groups and Geometric Analysis,* Academic Press, Orlando, FL.

324 *M.L. Agranovsky and E.K. Narayanan*

- [5] Herz, C.S. (1957). A note on the span of translations in *Lp*, *Proc. Am. Math. Soc.,* **8**, 724–727.
- [6] Hormander, L. (1983). *The Analysis of Linear Partial Differential Operators,* Vol. I. Springer-Verlag, Berlin. [7] Kaijser, S. (1981). Uniform estimate for Fourier transforms of measures on polynomial curves in R*n*,
- *Monatsh. Math.,* **92**(4), 299–303.
- [8] Rawat, R. and Sitaram, A. (1995). The injectivity of the Pompeiu transform and *Lp*-analogues of the Wiener–Tauberian theorem, *Israel J. Math.,* **91**(1-3), 307–316.
- [9] Stein, E.M. and Wainger, S. (1970). The estimation of an integral arising in multiplier transformations, *Stud. Math.,* **35**, 101–104.
- [10] Thangavelu, S. (1994). Spherical means and CR functions on the Heisenberg group, *J. Analyse Math.,* **63**, 255–286.
- [11] Zalcman, L. (1980). Offbeat integral geometry, *Am. Math. Monthly,* **87**, 161–175.

Received December 11, 2002

Mathematics Department Bar-Ilan University 52900, Ramat-Gan Israel e-mail: agranovs@macs.biu.ac.il

Harish-Chandra Research Institute, Chhatnag Road, Jhusi Allahabad, 211019, India e-mail: naru@mri.ernet.in