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ABSTRACT. We study the multichannel deconvolution problem (MDP) in a discrete setting by
developing the theory for converting the method used in the continuous setting in [36]. We give a
method for solving the MDP when the convolvers are characteristic functions, derive the explicit
form of the linear system, and obtain an upper bound on the condition number of the system in a
particular case. We compare the Schiske reconstruction [28] to our solution in the discrete setting,
and give an explicit formula for the corresponding error. We then give the algorithm for solving
the general MDP and discuss in detail the local reconstruction aspects of the problem. Finally,
we describe a method for improving the reconstruction by regularization and give some explicit
estimates on error bounds in the presence of noise.

1. Introduction

In this article we study several aspects of the multichannel deconvolution problem
(MDP) in a discrete setting. This problem, also known in engineering as multichannel
restoration, multichannel equalization, or superresolution, belongs to a class of prob-
lems known as single-input multi-output (SIMO) deconvolution and multi-input multi-
output (MIMO) deconvolution. The problem of finding solutions with finite support is
known as restoration by FIR (finite impulse response) filters.

Deconvolution, that is, recovering f from s = f ∗ h when h is a given compactly
supported function, is a well known ill-posed inverse problem. The convolution operator
Ch(f ) = f ∗ h, viewed as a functional over C(R), fails to be injective. When the operator
is viewed as a functional over L2(R), the inverse operator is unbounded [13]. A successful
strategy to avoid these obstacles is to receive m (m ≥ 2) signals/images when the convolvers
h1, . . . , hm are chosen so that the information lost in one of the channels can be retrieved
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from the other channels. To the best of our knowledge, the idea of doing multichannel
deconvolution in the field of micro-electroscopy was first conceived by P. Schiske in [28]
and [29]. Recently, variations of Schiske’s ideas have been rediscovered [4, 34, 39] and
a new interest in multichannel deconvolution has re-emerged. For an overview of some
recent articles on the MDP, see [30].

One application of the MDP is the simultaneous exposure of a moving object by
a number of independent cameras [22]. Other applications include multiple images of
astronomical objects with varying focal settings, remote sensing through a time varying
atmosphere [35], and wide-band radar calibration [27].

Attempts to demonstrate the theory of multichannel deconvolution envisioned by
Berenstein and coauthors have not been very successful. In this work we study the MDP
in a discrete setting by converting the work done in the continuous setting in [13] and [36].
Finding and applying compactly supported or time-limited deconvolvers allows us to obtain
the true underlying signal or image without having to make any additional assumptions. We
derive computationally efficient formulas that can be calculated with the Fast Fourier Trans-
form which give a perfect reconstruction in the simulations carried out in [37]. Moreover,
we gain an extended boundary of the original image that other methods cannot provide.
We devise methods which allow us to demonstrate this theory in a digital setting for any
conceivable compactly supported convolver. Our technique to handle noise is based on
combining a regularization method with a de-noising routine. The results of this approach
seem very promising and further improvements are likely.

In Section 2, after giving the introductory definitions and notation, we formulate the
MDP in the discrete setting.

In Section 3, we discuss the solvability of the discrete MDP for characteristic con-
volvers (impulses) and give a discrete nonperiodic sampling theorem (Theorem 4) that
allows us to obtain formulas for the deconvolvers in the characteristic case (Theorem 5)
with certain restrictions. In Theorem 6 we extend Theorem 5 to the general case.

In Section 4 (Proposition 1 and in Theorem 7), we give a computational solution
to the general MDP and a particular solution to the characteristic MDP in matrix form.
In Theorem 8, we obtain an upper bound on the condition number of the system for the
characteristic MDP. In Theorem 10, we give the analogue of Theorem 6 for the m-channel
MDP. We compare Schiske’s solution [28] to ours in the two-channel case and give an
explicit formula for the corresponding error.

In Section 5, we give the algorithm for solving the general MDP, discuss issues about
the support of the deconvolvers, and analyze the local reconstruction aspects. We outline a
method for improving the reconstruction by regularization and give some explicit estimates
on error bounds in the presence of noise.

In Section 6, we provide the illustrations of Schiske’s reconstruction and ours and
show the extended boundary recovered using the local reconstruction.

Berenstein and coauthors [7, 10, 8], and for more references see [4] considered the
following MDP: Given a collection {hi}mi=1 of compactly supported distributions on R

d (or

convolvers), find a collection {h̃i}mi=1 of compactly supported distributions (or deconvolvers)
such that

m∑

i=1

hi ∗ h̃i = δ , (1.1)

where δ is a Dirac delta distribution.
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We are interested in finding compactly supported deconvolvers because they allow
for local reconstruction and for the recovery of an extended boundary of the original image,
as we shall see in Section 5.2.

In [37] progress was made in finding a computationally efficient solution to the MDP
for particular cases of impulse response functions, where the notation 1X is used for the
characteristic function of the set X.

Theorem 1 ([37]).
Let 0 < r1 < r2 be such that r1/r2 is poorly approximated by rationals, i.e., there

exist C, N > 0 such that |r1/r2 − (m/n)| ≥ C|n|−N , for all integers m, n, n �= 0. Given
ψ ∈ C∞

c (R) satisfying supp ψ ⊆ [−r1 − r2, r1 + r2], h1 = 1[−r1,r1] and h2 = 1[−r2,r2],
define

̂̃
h1,ψ

(
n

2r2

)
=

ψ̂
(

n
2r2

)

ĥ1

(
n

2r2

) if n �= 0,
̂̃
h1,ψ (0) = η

ψ̂(0)

ĥ1(0)
,

̂̃
h2,ψ

(
n

2r1

)
=

ψ̂
(

n
2r1

)

ĥ2

(
n

2r1

) if n �= 0,
̂̃
h2,ψ (0) = (1 − η)

ψ̂(0)

ĥ2(0)
,

for some η ∈ R. The functions defined by

h̃1,ψ (t) = 1

2r2

∞∑

n=−∞
̂̃
h1,ψ

(
n

2r2

)
e
π n

r2
t · 1[−r2,r2]

h̃2,ψ (t) = 1

2r1

∞∑

n=−∞
̂̃
h2,ψ

(
n

2r1

)
e
π n

r1
t · 1[−r1,r1]

are solutions to h1 ∗ h̃1,ψ + h2 ∗ h̃2,ψ = ψ satisfying the conditions

(a) supp h̃1,ψ ⊆ [−r2, r2], supp h̃2,ψ ⊆ [−r1, r1],
(b) h̃i,ψ ∈ L∞(R), i = 1, 2.

If r1/r2 = √
p where p is a positive integer which is not a perfect square, then r1/r2

is poorly approximated by rationals. The auxiliary function ψ is used in place of the δ

distribution in order for the series representation of the solutions to be convergent.
In Section 3 we shall derive an analogous solution to this problem in the digital setting.

2. Discrete Setting

A digital signal consists of a finite sequence of values, {f [n]}N−1
n=0 , where N ∈ N.

Identifying the domain with the cyclic group ZN , the signal f is then understood as a
periodic sequence with period N . The inner product of f, g : ZN → C is defined as
〈f, g〉 = ∑N−1

n=0 f [n]g[n]. The discrete Fourier transform (DFT) of f is

f̂ [k] = 1

N

N−1∑

n=0

f [n]e−2πink/N , for k = 0, · · · , N − 1 ,
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and its inverse is

f [n] =
N−1∑

k=0

f̂ [k]e2πink/N , for n = 0, · · · , N − 1 .

Let ωN = e2πi/N . If f and f̂ are the vector of input data (f [0], . . . , f [N − 1])T
and the vector of output values (f̂ [0], . . . , f̂ [N − 1])T , respectively, then the DFT can
be written as f̂ = Wf , where W is the N × N nonsingular matrix whose (j, k)-entry is
1
N

ω
−(j−1)(k−1)
N .

For M ∈ N, define the space of discrete band-limited signals of bandwidth M

by BM = {f ∈ �2(ZN)|f̂ [k] = 0 for k ≥ M}, and the space of time-limited signals of
duration M by TM = {f ∈ �2(ZN)|f [k] = 0 for k ≥ M}.

The discrete M-sinc function is defined by

sincM [t] =
{

sin(πMt/N)
M sin(πt/N)

e−πi(1−M)t/N , if t = 1, 2, . . . , N − 1 ,

1, if t = 0 .

Theorem 2 (Discrete Classical Sampling Formula. [15]).
Given f ∈ BM , if d is a positive integer which divides N such that d ≤ N/M and

r = (N/d) − 1, then

f [n] =
r∑

j=0

f [dj ]sincM [n − dj ] .

The discrete linear convolution of f, h ∈ �2(ZN) is defined as

f ∗ h[n] =
N−1∑

p=0

f [p]h[n − p] for n = 0, . . . , N − 1 .

To avoid the ill-posed nature of deconvolution we propose to solve the discrete MDP
below.

Discrete Multichannel Deconvolution Problem. Given time-limited functions {hi}mi=1,

find time-limited functions {h̃i}mi=1 such that

m∑

i=1

hi ∗ h̃i[k] = δ[k] ,

for all k ∈ Z, where δ[k] = δ0,k .
By choosing a positive integer N large enough we may think of hi and h̃i as functions

defined in ZN . Thus, the MDP can now be expressed as follows: Find time-limited functions
h̃1, . . . , h̃m such that

∑m
i=1 hi ∗ h̃i[k] = δN [k], (k ∈ ZN), where δN is the Kronecker delta

in ZN .
In this context, the discrete Schiske deconvolvers,

̂̃
hi[k] = 1

N2

ĥi[k]
∑m

j=1

∣∣ĥj [k]∣∣2
, k = 0, . . . , N − 1 , (2.1)

are candidates for solutions according to the Discrete Convolution Theorem [12], but they
are not time-limited, just as their continuous analogues are not compactly supported. We
shall show the boundary effects of Schiske’s reconstruction in Section 4.
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3. Solvability of the Discrete MDP

3.1 Discrete MDP for Characteristic Impulses

When a characteristic function is sampled, we get a sequence of 1’s with padded 0’s.
We denote by 1n the characteristic function of {0, . . . , n − 1}.

Given positive integers n and m, we wish to find solutions to the MDP problem where
the convolvers are given by h1 = 1n and h2 = 1m.

The z-transform of a doubly infinite sequence {an}∞n=−∞ is the complex function
defined by the Laurent expansion A(z) = ∑∞

n=−∞ anz
n. We only consider causal se-

quences, that is, infinite sequences {an}∞n=−∞ such that an = 0 for n < 0, in order for
the discrete convolution to satisfy the associative property (see p. 156 of [23]), which is
needed to do deconvolution. The z-transform of yn = ∑∞

m=0 xmbn−m is the product of the
z-transforms of {xn}∞n=0 and {bn}∞n=0. Thus, using the z-transform, the problem of finding
time-limited solutions h̃1 and h̃2 such that h1 ∗ h̃1 + h2 ∗ h̃2 = δ becomes the problem of
finding polynomials H̃1(z) and H̃2(z) such that

H1(z)H̃1(z) + H2(z)H̃2(z) = 1 . (3.1)

In the characteristic case, H1(z) = 1 + z + · · · + zn−1, H2(z) = 1 + z + · · · + zm−1. Thus,

H1(z) =
{

1−zn

1−z
if z �= 1 ,

n if z = 1,
and H2(z) =

{
1−zm

1−z
if z �= 1 ,

m if z = 1 .

For n, m nonzero integers, let (n, m) be the greatest common divisor of n and m.

Theorem 3.
For h1 = 1n and h2 = 1m, with (n, m) �= 1, the equation

h1 ∗ h̃1 + h2 ∗ h̃2 = δ

is unsolvable for time-limited functions h̃1 and h̃2.

Proof. If (n, m) = d �= 1, then there exist n1, m1 ∈ N such that n = n1d, m = m1d,
(n1, m1) = 1, so that for z �= 1, 1 − zn = (1 − zd)

∑n1−1
j=0 zdj and 1 − zm = (1 −

zd)
∑m1−1

j=0 zdj . Thus, 1−zd

1−z
is a nonconstant polynomial factor of both H1(z)H̃1(z) and

H2(z)H̃2(z), and hence, of 1, by (3.1).

In Theorem 5 we shall see that if (n, m) = 1, time-limited solutions h̃1 and h̃2 can
be constructed. Thus, (n, m) = 1 is a necessary and sufficient condition for the solvability
of the discrete MDP.

Using the z-transform, we obtain the following discrete version of the Paley–Weiner–
Schwartz Theorem: The z-transform of a finite causal sequence is a polynomial (entire
function) and, conversely, the inverse z-transform of a polynomial is a finite (causal) se-
quence.

Notice that given a(z) and b(z) polynomials with no common zeros, solutions to the
analytic Bezout equation a(z)p(z) + b(z)q(z) = 1 are the Schiske deconvolvers (in the
sense of the z-transform)

p(z) = a(z)

|a(z)|2 + |b(z)|2 , q(z) = b(z)

|a(z)|2 + |b(z)|2 .
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Since p(z) and q(z) are not polynomials, the inverse z-transforms of p(z) and q(z) are not
finite (causal) sequences. Thus, the z-transform analogues of the Schiske deconvolvers are
not of finite support. But, if we restrict the domain of the z-transform to be z = e2πik/N

for k ∈ ZN for some N large enough, these solutions become the Schiske deconvolvers
in (2.1).

3.2 Solving the MDP from the Discrete Fourier Axis

Using the geometric sum, the discrete Fourier transforms of h1 = 1n and h2 = 1m

become

ĥ1[k] = 1

N

n−1∑

p=0

e−2πipk/N =
{

1
N

1−e−2πink/N

1−e−2πik/N if k �= 0 ,

n
N

if k = 0 ,

ĥ2[k] =
{

1
N

1−e−2πimk/N

1−e−2πik/N if k �= 0 ,

m
N

if k = 0 ,

for k = 0, . . . , N −1. By Discrete Convolution Theorem, the discrete MDP on the discrete
Fourier axis can be formulated as

Nĥ1[k] ̂̃h1[k] + Nĥ2[k] ̂̃h2[k] = 1

N
, k = 0, 1, . . . , N − 1 , (3.2)

which can be written as the underdetermined system M
̂̃
h = 1

N
1N , where ̂̃h is the column

vector obtained by stacking the vectors ̂̃
h1 and ̂̃

h2 and M is the N × 2N matrix whose
N × N blocks are diagonal matrices with diagonal vectors Nĥ1 and Nĥ2.

When h1 = 1n and h2 = 1m, a possible method for finding the minimally supported
deconvolvers is based on looking at the points k such that ĥ1[k] = 0 or ĥ2[k] = 0,
since the values of the deconvolvers are known there. The zero sets of ĥ1 and ĥ2 are
Z1 = {k ∈ {1, . . . , N − 1} : nk

N
∈ Z}, and Z2 = {k ∈ {1, . . . , N − 1} : mk

N
∈ Z}. If

N = nm and (n, m) = 1, then |Z1| = n − 1, |Z2| = m − 1, and Z1 and Z2 are disjoint.
The following result is the discrete version of the classical Nonperiodic Sampling

Theorem [36].

Theorem 4 (The Discrete Nonperiodic Sampling Theorem).
Suppose that (n, m) = 1, N ≥ mn, and ϕ ∈ Bm+n−1. If ϕ[kn] = 0 for k =

0, . . . , m − 1 and ϕ[km] = 0 for k = 0, . . . , n − 1, then ϕ[k] = 0 for all k ∈ {0, . . . , N−
1}.
Proof. Since ϕ[j ] = ∑m+n−2

k=0 ϕ̂[k]e2πijk/N , for each j ∈ {0, . . . , N − 1}, it suffices
to show that ϕ̂[k] = 0 for all k ∈ {0, . . . , m + n − 2}. Since (n, m) = 1, there are at least
n+m−1 distinct values of j for which ϕ[j ] = 0. The system

∑m+n−2
k=0 ϕ̂[k]e2πijk/N = ϕ[j ]

for j = dn, (0 ≤ d ≤ m − 1) or j = dm, (0 ≤ d ≤ n − 1) is homogeneous and the
coefficient matrix is a square matrix of full rank, since it is a Vandermonde matrix. Thus,
the system has only the trivial solution ϕ̂[k] = 0 for all k ∈ {0, . . . , m + n − 2}.
Theorem 5.

Given h1 = 1n and h2 = 1m with (n, m) = 1 and N = nm, the solutions of the
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equation h1 ∗ h̃1[k] + h2 ∗ h̃2[k] = δN [k] are given by

h̃1[s] =
[

a

mn
+ 1

m

m−1∑

k=1

(
sin(πk/m)

sin(πnk/m)
e−πik(1−n)/m

)
e2πisk/m

]
1m[s]

h̃2[s] =
[

1 − a

nm
+ 1

n

n−1∑

k=1

(
sin(πk/n)

sin(πmk/n)
e−πik(1−m)/n

)
e2πisk/n

]
1n[s]

for any a ∈ R.

Proof. Since Nĥ1[k] ̂̃h1[k] + Nĥ2[k] ̂̃h2[k] = 1
N

for k = 0, . . . , N − 1, and N = nm

with (n, m) = 1, nj ∈ Z2 (j = 1, . . . , m − 1) and mj ∈ Z1 (j = 1, . . . , n − 1). Thus,

̂̃
h1[nj ] = 1

N2ĥ1[nj ] , j = 1, . . . , m − 1,
̂̃
h2[mj ] = 1

N2ĥ2[mj ] , j = 1, . . . , n − 1 .

Given any a ∈ R, define ̂̃
h1[0] = a

N2n
and ̂̃

h2[0] = 1−a

N2m
. By Theorem 2, we have

̂̃
h1[k] =

m−1∑

j=0

̂̃
h1[nj ] sincm[k − nj ], ̂̃

h2[k] =
n−1∑

j=0

̂̃
h2[mj ] sincn[k − mj ] .

If we let ϕ[k] = Nĥ1[k] ̂̃h1[k]+Nĥ2[k] ̂̃h2[k]−1/N , we get ϕ[nj ] = 0 for j = 0, . . . , m−1
and ϕ[mj ] = 0 for j = 0, . . . , n − 1. By Theorem 4, ϕ[k] = 0 for all k ∈ {0, . . . , N − 1}
and thus, the interpolated functions ̂̃

h1 and ̂̃
h2 are solutions to the MDP when N = nm.

Now

h̃1[k] =
N−1∑

s=0

̂̃
h1[s]e2πiks/N =

N−1∑

s=0




m−1∑

j=0

̂̃
h1[nj ] sincm[s − nj ]



 e2πiks/N

= n

m−1∑

j=0

̂̃
h1[nj ]e2πik(nj)/N 1m[k] = n

m−1∑

j=0

̂̃
h1[nj ]e2πikj/m1m[k] .

Similarly h̃2[k] = m
n−1∑
j=0

̂̃
h2[mj ]e2πikj/n1n[k]. Furthermore, for k �= 0

ĥ1[k] = 1

N

sin(πkn/N)

sin(πk/N)
eπik(1−n)/N , ĥ2[k] = 1

N

sin(πkm/N)

sin(πk/N)
eπik(1−m)/N ,

and the final form of the solutions follows by substitution.

Remark 1. Theorem 5 can be adapted to include the case N = nmd, d ∈ N. In
Theorem 6, we shall see a method for solving the convolution equation of Theorem 5 for a
general N ∈ N.
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3.3 Discrete Fourier Series Solution to the MDP

Discrete convolution can be interpreted as a product of two polynomials (see [12]).
Thus, an alternative description of the MDP is the following: Given two convolvers repre-
sented by the polynomials a(x) and b(x) of degrees n and m, respectively, find polynomials
p(x) and q(x) that satisfy the algebraic Bezout equation

a(x)p(x) + b(x)q(x) = 1 . (3.3)

Berenstein and coauthors studied the problem of finding solutions q1, . . . , qm to the
algebraic Bezout equation p1q1 + · · · + pmqm = 1 (where p1, . . . , pm are polynomials
with no common zeros in C

n) and its connection to the MDP in [3, 5], and [6].
One approach to solving (3.3) is the following. Let ζ1, . . . , ζn and µ1, . . . , µm be

the roots of a(x) and b(x), respectively. Then q(ζj ) = 1/b(ζj ), j = 1, . . . , n, p(µj ) =
1/a(µj ), j = 1, . . . , m. The polynomials p(x) and q(x) can be determined by solving a
Vandermonde matrix equation. However, finding the roots of high degree polynomials can
be numerically ill-conditioned (see [38]). In addition, the speed of the algorithm depends
on the speed of finding the roots explicitly.

Although this procedure is not recommended for solving the MDP for general con-
volvers, it can be used effectively in the special case when the convolvers are discrete
characteristic impulses. The polynomials a(x) and b(x) which correspond to the discrete
characteristic impulses have roots ζk = e−2πki/n for k = 1, . . . , n − 1 and µk = e−2πki/m

for k = 1, . . . , m − 1, respectively. Therefore

p
(
e−2πki/m

) = 1

a
(
e−2πki/m

) = e−2πik/m − 1

e−2πink/m − 1
= sin(πk/m)

sin(πnk/m)
e−πi(1−n)k/m ,

q
(
e−2πki/n

) = 1

b
(
e−2πki/n

) = e−2πik/n − 1

e−2πimk/n − 1
= sin(πk/n)

sin(πmk/n)
e−πi(1−m)k/n .

For the root 1 we have np(1)+mq(1) = 1. Thus, we may choose p(1) = a
n

and q(1) = 1−a
m

for any a ∈ R.
The Vandermonde matrix equation for finding the coefficients of p(x) is





1 1 · · · 1

1 ω−1
m · · · ω

−(m−1)
m

...
...

. . .
...

1 ω
−(m−1)
m · · · ω

−(m−1)2

m




p =





a/n

sin(π1/m)
sin(πn/m)

e−πi(1−n)/m

...

sin(π(m−1)/m)
sin(πn(m−1)/m)

e−πi(1−n)(m−1)/m




,

where p = (p0, . . . , pm−1)
T . The m × m matrix on the left-hand side is the DFT matrix

after rescaling the system. Thus, the solution can be expressed as the product of the inverse
DFT matrix and the right-hand side.

Theorem 6.
Given h1 = 1n and h2 = 1m with (n, m) = 1 and p ∈ Zm+n, the solutions of
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h1 ∗ h̃1[k] + h2 ∗ h̃2[k] = δN [k − p], k = 0, . . . , N − 1, are given by

h̃1[s] =
[

a

nm
+ 1

m

m−1∑

k=1

(
sin(πk/m)

sin(πnk/m)
e−πik((1−n)+2p)/m

)
e2πisk/m

]
1m[s] ,

h̃2[s] =
[

1 − a

nm
+ 1

n

n−1∑

k=1

(
sin(πk/n)

sin(πmk/n)
e−πik((1−m)+2p)/n

)
e2πisk/n

]
1n[s] ,

for any a ∈ R.

Proof. We derived the solution above for the case a(x)p(x) + b(x)q(x) = 1. As a
polynomial, the right-hand side of the Bezout equation has coefficient vector [1, 0, . . . , 0],
where 1 stands for the constant term. To solve the Bezout equation when the right-hand
side is δN [k − p] for p ∈ [0, n + m − 1], the corresponding polynomial equation is
a(x)p(x) + b(x)q(x) = xp. The conclusion follows at once.

4. Computational Solution to the General MDP

4.1 Closed-Form Solution

The discrete MDP can be written as a matrix based problem.

Proposition 1.
Given {h1[i]}n−1

i=0 and {h2[j ]}m−1
j=0 , let

h̃ =
[
h̃1[0] h̃1[1] · · · h̃1[m − 1] h̃2[0] h̃2[1] · · · h̃2[n − 1]

]T

.

Then the ith column of the (n+m−1)×(n+m) matrix M such that Mh̃ = h1 ∗ h̃1 +h2 ∗ h̃2
is given by

Mi =






[
0 · · · 0︸ ︷︷ ︸

i−1

h2[0] , h2[1] · · · h2[m − 1]︸ ︷︷ ︸
m

0 · · · 0︸ ︷︷ ︸
n−i

]T

if i = 0, · · · , n − 1 ,

[
0 · · · 0︸ ︷︷ ︸
i−n−1

h1[0] h1[1] · · · h1[n − 1]︸ ︷︷ ︸
n

0 · · · 0︸ ︷︷ ︸
m+n−i

]T

if i = n, · · · , n + m − 1 .

Proof. By definition of discrete convolution and using the fact that h1[i] = h̃2[i] = 0
for i /∈ {0, . . . , n − 1} and h2[j ] = h̃1[j ] = 0 for j /∈ {0, . . . , m − 1}, we have

Mh̃[k] =
n+m−1∑

i=0

(
h1[k + n − i]h̃1[n + i] + h2[k − i]h̃2[i]

)
,

for all k = 1, · · · , n + m − 1. Hence, the (i + 1)st column of M is

[
h2[−i] h2[1 − i] . . . h2[n + m − 1 − i]]T , if 0 ≤ i ≤ n − 1 ,

[
h1[n − i] h1[n + 1 − i] . . . h1[n + m − 1 − i]]T , if n ≤ i ≤ n + m − 1 ,
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proving the result.

Fixing t = 1, · · · , n + m − 1, the linear system Mh̃ = δt is underdetermined. The
addition of a row to M and an entry to the column vector δt fixes the degree of freedom:
we consider the system with augmented matrix

(
M1 . . . Mn+m−1 Mn+m δt

0 . . . 0 1 a

)

where a is a real parameter and Mi is the ith column of M , so that h̃2[n] = a.
Variations of this technique can be used to specify other coordinates of one of the

deconvolvers. This constraint guarantees the uniqueness of the solution.
Assume h1 = 1n and h2 = 1m, and let {ek}k=1,...,n+m−1 be the standard basis of

R
n+m−1 where m > n so that the first n equations of the system Mh̃ = ek form the

matrix equation
(
An An O

)
h̃ = ek , where An is a lower triangular matrix of order n

whose nonzero elements are all 1. If we subtract the ith row from the (i + 1)st row for
i = 1, . . . , n−1, we get

(
In In O

)
h̃ = Dn,k , where Dn,k is the kth column of the n×n

matrix Dn given by Dn(i, i) = 1 for i = 1, . . . , n, Dn(i +1, i) = −1 for i = 1, . . . , n−1.
For i = 1, . . . , n, we obtain

h̃1[i] + h̃2[i] =






ek[i] − ek+1[i] if k = 1, . . . , n − 1 ,

en[i] if k = n ,

0 if k > n .

In particular,

h̃1 = −h̃21n, for k > n . (4.1)

Notice that (4.1) can be visually observed in the plots of the deconvolvers shown in [37].
In the case h1 = 1n, h2 = 1m and a = 0, the augmented MDP matrix of order (n+m)

in Proposition 1 can be expressed as

Mn,m =
(

A1,1 A1,2

A2,1 A2,2

)

where A1,1, A2,2 are square matrices of order n and m, respectively. Observe that
(

I O

−A2,1A
−1
1,1 I

)(
A1,1 A1,2

A2,1 A2,2

)
=
(

A1,1 A1,2

O A2,2 − A2,1A
−1
1,1A1,2

)
.

The matrix A2,2 − A2,1A
−1
1,1A1,2 is known as the Schur complement of A1,1 in Mn,m. If

m > n, then A2,2 − A2,1A
−1
1,1A1,2 = Mn,m−nS

m
m−n, where Sm

m−n is the diagonal matrix
of order m whose first m − n diagonal entries are −1 and the remaining entries are 1. In
addition

−A2,1A
−1
1,1(i, j) =






−1 if 1 ≤ i ≤ m − 1, j = n ,

1 if i = j + n − m, m − n + 1 ≤ j ≤ n − 1 ,

0 otherwise .
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Theorem 7.
The ith column of the inverse of the MDP matrix Mn,n+1 is given by

(
M−1

n,n+1

)
i
=






[
0 · · · 0︸ ︷︷ ︸

i−1

1 0 · · · 0︸ ︷︷ ︸
n

−1 0 · · · 0︸ ︷︷ ︸
n−i+1

]T

for i = 1 . . . n − 1 ,

[
1 · · · 1︸ ︷︷ ︸

n

−1 · · · − 1︸ ︷︷ ︸
n

0

]T

for i = n ,

[
0 · · · 0︸ ︷︷ ︸
i−n−1

1 0 · · · 0︸ ︷︷ ︸
n

−1 0 · · · 0︸ ︷︷ ︸
i+1

]T

for i = n + 1, . . . , 2n ,

[
−1 · · · − 1︸ ︷︷ ︸

n

1 · · · 1︸ ︷︷ ︸
n+1

]T

for i = 2n + 1 .

Proof. We need to solve Mn,n+1h̃ = ek for k = 1, . . . , 2n + 1. Left multiplication by(
I O

−A2,1A
−1
1,1 I

)
yields

(
A1,1 A1,2

O Mn,1S
n+1
1

)(
h̃1

h̃2

)
=
(

I O

−A2,1A
−1
1,1 I

)
ek .

Because of (4.1), it suffices to solve for h̃2. Thus, for n < k ≤ 2n + 1, we need to solve
Mn,1S

n+1
1 h̃2 = en+1

k−n, where e
j
i denotes the j × 1 matrix whose only nonzero entry 1 is in

the ith row. Now (Mn,1S
n+1
1 )−1 = Sn+1

1 M−1
n,1, so

h̃2 =
{−Sn+1

1 M−1
n,1A2,1A

−1
1,1e

n+1
k for 1 ≤ k ≤ n ,

Sn+1
1 M−1

n,1e
n+1
k−n for n < k ≤ m + n .

Observe that M−1
n,1 is the upper triangular matrix with entries

αi,j =






1 if 1 ≤ i = j ≤ n + 1

−1 if 1 ≤ i ≤ n, j = n + 1

0 otherwise .

(4.2)

The result follows immediately by inspection for the various values of k.

4.2 Conditioning of the MDP for the Characteristic Case

Lemma 1.
Let h1 = 1n, h2 = 1m where n < m and (m, n) = 1. Then the entries of the vector

h̃ = (h̃1 h̃2)
T are in the set {−1, 0, 1}, where h̃1 and h̃2 are the solutions to the MDP

h1 ∗ h̃1 + h2 ∗ h̃2 = δn+m−1 found by the MDP matrix with h̃2[n] = 0.

The proof is based on a recursive argument in the spirit of the Euclidean algorithm
and on the use of the Schur complement to turn the MDP into solving a matrix equation
involving only h̃2.
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Proof. Let q and r be the unique positive integers such that m = nq + r with r < n.
We wish to solve

Mn,mh̃ = en+m
n+m−1 , (4.3)

or, using the block matrix representation

Mn,m =
(

A1,1 A1,2

A2,1 A2,2

)

with A1,1 and A2,2 square matrices of order n and m, respectively,
(

A1,1 A1,2

O Mn,m−nS
m
m−n

)(
h̃1

h̃2

)
=
(

I O

−A2,1A
−1
1,1 I

)
en+m
n+m−1 ,

where, we recall, Sm
m−n is the m × m diagonal matrix where the first m − n entries are −1

and the remaining entries are 1.
In order to show that the entries of h̃ are in {−1, 0, 1}, it suffices to show that the

entries of h̃2 are 0 or ±1, since h̃1 and h̃2 are related by (4.1). Thus, the problem reduces to
solving the system Mn,m−nS

m
m−nh̃2 = em

m−1. Since multiplication by Sm
m−n only produces

a possible sign change, we may view the above as a matrix equation analogous to (4.3).
Letting h̃(2) = Sm

m−nh̃2 = (h̃
(2)
1 h̃

(2)
2 )T where h̃

(2)
2 has dimension m − n, we may repeat the

above procedure q times. Hence, the problem reduces to solving Mn,rS
n+r
r h̃

(q)

2 = en+r
n+r−1,

where, we recall, r < n. Swap the first n columns with the next r columns of Mn,r and
modify accordingly the order of the affected coordinates of the solution vector. The problem
can now be formulated as Mr,nS

n+r
r h̃′ = en+r

n+r−1, where h̃′ is the permuted solution vector
and (r, n) = 1. Reapply the Euclidean algorithm and the argument outlined above until the
MDP matrix has the form Mt,1 for some t > 1. Since the entries of M−1

t,1 are 0, 1, or −1,

so are the coordinates of h̃′, completing the proof.

Theorem 8.
Let h1 = 1n, h2 = 1m, where m and n are positive integers such that m > n and

(m, n) = 1. The problem of computing δn+m−1 from h1 ∗ h̃1 + h2 ∗ h̃2, with h̃j (j = 1, 2)
computed using the MDP matrix Mn,m with the constraint h̃2[n] = 0, has condition number
bounded by m(m + n) with respect to the norm defined by

‖A‖1 = max
1≤j≤|Row(A)|

‖aj‖1 ,

where aj is the j th column of A.

Thus, the problem is well-conditioned for small values of n and m.

Proof. Viewing the above as the problem of computing en+m−1 = Mn,mh̃ from

h̃ = (h̃1 h̃2)
T , the condition number is κ = ‖Mn,m‖1

‖h̃‖1‖en+m−1‖1
= ‖Mn,m‖1‖h̃‖1. From the

form of Mn,m we obtain

‖Mn,m‖1 = max
1≤j≤n+m

(
n+m−1∑

i=1

|mi,j |
)

= m ,

where mi,j is the (i, j)th entry of Mn,m. Since, by Lemma 1, h̃ is a column vector whose
entries are in {−1, 0, 1}, ‖h̃‖1 ≤ n + m. Thus, κ ≤ m(n + m).
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Remark 2. In the special case m = n + 1, Theorem 7 yields κ = (n + 1)(2n + 1).

4.3 The m-Channel MDP

We now solve the MDP when hk = 1nk
for nk ∈ N, following the procedure used

in the two-channel case. Suppose ak(x) = ∑nk−1
j=0 xj , k = 1, . . . , m, for some positive

integers n1, . . . , nk . We wish to find polynomials bk(x), k = 1, . . . , m, such that

m∑

k=1

ak(x)bk(x) = 1 .

Let us assume that each bk(x) is a polynomial of degree
∑

j �=k nj − m + 1, and that

bk(x) = ck(x)
∏

j �=k,σ (k)

aj (x) ,

where σ is a permutation of {1, . . . , m} such that σ(k) �= k for each k ∈ {1, . . . , m} and
each ck(x) is a polynomial of degree σ(k) − 1, k = 1, . . . , m. We need to solve for
c1(x), . . . , cm(x) the algebraic Bezout equation

m∑

k=1

ck(x)
∏

j �=σ(k)

aj (x) = 1 , (4.4)

which is solvable if no two polynomials among the ak(x) have a common factor.

Theorem 9.
Given hk = 1nk

for k = 1, . . . , m and a permutation σ of {1, . . . , m} such that
σ(k) �= k for all k ∈ {1, . . . , m}, if (nk, nj ) �= 1 for some k �= j , then the equation

m∑

k=1

hk ∗ ck ∗ hσ(k) = δ (4.5)

is unsolvable for time-limited functions c1, . . . , cm.

Proof. If (4.5) is solvable, then no two of the polynomials ak(x) = (1 − xnk )/(1 − x)

(k = 1, . . . , m) can have a common factor. Thus, the numbers n1, . . . , nm must be pairwise
relatively prime.

In Theorem 10 we shall see that the condition (nk, nj ) = 1 for all k �= j is necessary
and sufficient for the existence of time-limited solutions to (4.4).

Let µk,ν be the roots of ak(x), (ν ∈ {1, . . . , nk − 1}), for each k = 1, . . . , m. Then,
evaluating (4.4) at these roots yields

ck(µσ(k),ν) = 1
∏

j �=σ(k) aj

(
µσ(k),ν

) , for ν = 1, . . . , nσ(k) − 1 .

Furthermore,
m∑

k=1




∏

j �=σ(k)

nj



 ck(1) = 1 .
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Thus, we may define

ck(1) = tk∏
j �=σ(k) nj

, for k = 1, . . . , m ,

for any constants t1, . . . , tm such that
∑m

k=1 tk = 1. Calculations similar to those done in
the two-channel case yield

ak(µj,ν) = sin(πkν/σ(k))

sin(πν/σ(k))
eπiν(k−1)/σ (k) ,

for ν = 1, . . . , σ (k) − 1, k = 1, . . . , m. Setting up the Vandermonde matrix equations and
rescaling the equations yields the following DFT solutions.

Theorem 10.
Let n1, . . . , nm be pairwise relatively prime positive integers and set M = ∑m

k=1 nk ,
N = ∏m

k=1 nk , and Nk = N/nk for each k = 1, . . . , m. Given η ∈ ZM−1, and hk = 1nk
,

k = 1, . . . , m, the solutions h̃1, . . . , h̃m of the equation

m∑

k=1

hk ∗ h̃k[s] = δN [s − η], for s = 0, . . . , N − 1 ,

are given by

h̃k[s] = 1

Nk

Nk−1∑

j=1

∏

ν �=k

H̃k

(
j

nν

)
e2πisj/Nk · 1Nk

[s] ,

where

H̃k(ω) = sin(πω)

sin(πnkω)
e−πiω(1−nk+2η) ,

and H̃k(0) = tk
Nk

, with t1, . . . , tm arbitrarily chosen reals such that
∑m

k=1 tk = 1.

4.4 Boundary Effect of the Discrete Schiske Reconstruction

We compare the performance of the Schiske deconvolvers to the deconvolvers found
using the associated MDP matrix.

Assume the original signal f we wish to simulate using the multi-channel deconvo-
lution procedure is an array of length L, and the impulse responses h1 and h2 are arrays
of lengths n and m, respectively, with m > n. If we take as our data s1 = h1 ∗ f and
s2 = h2 ∗ f considered as arrays of lengths L + n − 1 and L + m − 1, respectively, the
Schiske deconvolution procedure will yield a perfect reconstruction for f within machine
precision, because s1 and s2 can be considered as periodic signals of some length greater
than L + m − 1 by padding s1 and s2 appropriately with zeros.
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Let h be a vector of length n and consider h∗f as a matrix multiplication Hf , that is

h ∗ f =





h[1]
h[2] h[1]

... h[2] . . .

h[n] ... h[1]
h[n] h[2]

. . .
...

h[n]









f1

f2

...

fL




,

where H has dimension (n + L − 1) × L and all unmarked entries are zero. If we pad the
vector f with n − 1 trailing 0’s, we may replace H by a (L + n − 1) × (L + n − 1) cyclic
extension which is diagonalizable by the DFT matrix.

In order to diagonalize the matrices associated with h1 ∗ f and h2 ∗ f , we pad f

with at least m − 1 zeros and then view the corresponding matrices as cyclic convolution
matrices, which are thus, diagonalizable by the DFT matrices. In this case, the Schiske
deconvolvers are clearly solutions, and, of course, they would still be solutions if s1 = h1∗f

and s2 = h2 ∗ f were computed by cyclic convolution, with h1, h2 and f viewed as
periodic functions of length L. Thus, to demonstrate the effectiveness of the time-limited
deconvolvers compared to the Schiske deconvolvers, we truncate s1 and s2 to be of sizes
smaller than L + n − 1.

To gain a little insight about the boundary effects that arise, let us analyze the case
when the inverse filtering method is used. Let us solve for f the equation Hf = s, where
H is a truncated convolution matrix assumed to be invertible. Embed H into a larger
cyclic convolution matrix Hc, pad s with trailing zeros, and call the extended vector sc. Our

estimated solution f̃ can now be expressed as the truncation of the vector
(

f̃

f̃e

)
= H−1

c sc,

where H−1
c is found by means of a DFT matrix. We can then write the system as

(
H H12

H21 H22

)(
f̃

f̃e

)
=
(

s

0

)
.

The inverse of Hc is given by the Schur–Banachiewicz inverse formula

H−1
c =

(
H−1 + H−1H12S

−1H21H
−1 −H−1H12S

−1

−S−1H21H
−1 S−1

)
,

where S = H22 −H21H
−1H12. This implies that f̃ = f +H−1H12S

−1H21f and that the
boundary effects are caused by the term H−1H12S

−1H21f .
We now carry out the analysis of the type of procedure used to implement the Schiske

deconvolvers in the two-channel case. As for the case of the inverse filtering method, in
the formula that yields the estimated solution there is a nontrivial term added to the original
signal which is responsible for the boundary effects.

Given H 1f = s1, H 2f = s2, and proceeding as in the one-channel case, we embed
H 1 and H 2 into cyclic matrices, thus obtaining the two matrix equations

(
Hj H

j

12

H
j

21 H
j

22

)(
f̃ j

f̃
j
e

)
=

(
sj

0

)
, j = 1, 2 , (4.6)
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where the vectors f̃ j and f̃
j
e are the approximate modifications of f and corresponding

errors due to the padding necessary in order to get cyclic matrices. From the one channel-
case, letting Sj = H

j

22 − H
j

21(H
j )−1H

j

12 (j = 1, 2), we obtain

f̃ j = f + (
Hj

)−1
H

j

12

(
Sj
)−1

H
j

21f, f̃
j
e = −(

Sj
)−1

H
j

21f . (4.7)

We may write the left-hand side of (4.6) as

(
Hj H

j

12

H
j

21 H
j

22

)
WT

N WN

(
f̃ j

f̃
j
e

)
, (4.8)

where N is the order of the cyclic matrix and WN is the N × N DFT matrix. Let hj be
the first column of the cyclic matrix containing Hj , j = 1, 2. Taking the DFT of (4.8) by
multiplying by WN , and using (4.7) we get

Diag
(
ĥj
)
WN

[(
f

0

)
+
(

f
j
e

f̃
j
e

)]
, (4.9)

where Diag(ĥj ) is the diagonal matrix with diagonal entries ĥj [1], . . . , ĥj [N ].
Let V j (j = 1, 2) be the N × N Schiske diagonal matrices with diagonal entries

ĥj [i]/∑2
k=1 |ĥk[i]|2. Left multiplying (4.9) by V j , j = 1, 2, and adding the two expres-

sions yields

[
V 1Diag

(
ĥ1
) + V 2Diag

(
ĥ2
)]

WN

(
f

0

)
+

2∑

j=1

V j Diag
(
ĥj
)
WN

(
f

j
e

f̃
j
e

)

= WN

(
f

0

)
+

2∑

j=1

V j Diag
(
ĥj
)
WN

(
f

j
e

f̃
j
e

)
.

After left multiplying by WT
N , we get

(
f

0

)
+

2∑

j=1

WT
N V j Diag

(
ĥj
)
WN

(
f

j
e

f̃
j
e

)
. (4.10)

Let L be the length of f , and denote by [A]L the first L rows of a matrix A. Then
the first L rows of (4.10) yield the expression for the errors involved when carrying out the
Schiske reconstruction method in the discrete setting when the convolution matrices are not
cyclic:

f +
2∑

j=1

[
WT

N V j Diag
(
ĥj
)
WN

( (
Hj

)−1
H

j

12

(
Sj
)−1

H21j f

−(
Sj
)−1H

j

21f

)]

L

.
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5. Algorithms for Solving the MDP and Local
Deconvolution

5.1 Algorithms for Solving the MDP in Dimensions 1 and 2

For p ∈ N, let δp be the infinite vector whose only non-zero entry is 1 at the pth
entry. The discrete MDP in the one-dimensional setting can be formulated as H1[h̃1]T +
H2[h̃2]T + · · · + Hm[h̃m]T = δp, where Hi[h̃i]T = hi ∗ h̃i for i = 1, . . . , m.

In the two-dimensional case, the matrix h̃i is turned into a lexicographically ordered
column vector by stacking the columns. Specifically, if hi is an ni ×mi matrix with columns
h1

i h2
i . . . h

mi

i and h̃i is an ñi × m̃i matrix, then hi ∗ h̃i can be written as Hi[h̃i], where Hi

is the Toeplitz-block-Toeplitz matrix of size (ni + ñi − 1)(mi + m̃i − 1)× ñim̃i defined by

Hi =





H 1
i

H 2
i H 1

i

... H 2
i

. . .

H
mi

i

... H 1
i

H
mi

i H 2
i

. . .
...

H
mi

i





.

Here H
j
i is the one-dimensional convolution matrix of the column vector h

j
i and [h̃i] is the

vector formed by concatenating the columns of h̃i . We then consider the linear system

(
H1 H2 . . . Hm

)





[
h̃1
]T

[
h̃2
]T

...
[
h̃m

]T




= δp .

Remove all entries not included in the intended support of the deconvolvers, the correspond-
ing elements of ( H1 H2 . . . Hm) and rows of δp. Denote this new system by Hh̃ = δ′

p,
where H is an l × k matrix of rank l. Of course, we are assuming that the convolvers
hi are chosen so that this matrix system is consistent with a coefficient matrix of rank l.
For instance, when choosing characteristic functions as convolvers (i.e., square matrices of
1’s where the trailing zeros are ignored), a sufficient condition is that the orders of these
matrices be pairwise relatively prime by Theorem 10 for the three-channel case. This is
due to the fact that one can derive the two-dimensional solution from the three-channel case
(see [37]).

Note that this finite realization puts a constraint on the location of the non-zero entry
of δp because we cannot allow δ′

p to be the zero vector. We now solve for h̃ by means of the

pseudoinverse of H , i.e., h̃ = HT (HHT )−1δ′
p, and extract the deconvolvers incorporated

in h̃.
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To be more specific about the matrix formulation in the two-dimensional case, let
us consider the case of three channels. Let hi , 1 ≤ i ≤ 3, be described by an ni × ni

matrix and let s ∈ Z, be such that s > 1 − n1 − n2 − n3. Then h̃1, h̃2, and h̃3 are square
matrices of order (n2 + n3 + s), (n1 + n3 + s), and (n1 + n2 + s), respectively. H1 is
the convolution matrix of h1 to be convolved with a square matrix of order (n2 + n3 + s).
The matrices H2 and H3 are formed similarly. So H = ( H1 H2 H3) and δ

′
p is a column

vector of length (n1 + n2 + n3 + s − 1)2 containing only one nonzero entry. h̃1 is formed
by taking rows 1 through (n2 + n3 + s)2 and the resulting vector is reshaped into a square
matrix of order (n2 + n3 + s). h̃2 is formed by taking rows (n2 + n3 + s)2 + 1 through
(n2 +n3 + s)2 + (n1 +n3 + s)2 and the resulting vector is reshaped into a square matrix of
order (n1 +n3 +s). Finally, h̃3 is formed by taking rows (n2 +n3 +s)2 +(n1 +n3 +s)2 +1
through (n2 +n3 +s)2 +(n1 +n3 +s)2 +(n1 +n2 +s)2 and the resulting vector is reshaped
into a square matrix of order (n1 + n2 + s). The parameter s indicates the amount of extra
length that can be added to the smallest possible lengths of the deconvolvers.

The solution h̃ found by the pseudoinverse of H is the solution of smallest �2-
norm [11].

To understand the reason we are interested in finding the solution with smallest �2-
norm, let us recall the reconstruction method. For the two-channel case, we are given
s1 = H1f + ε1 and s2 = H2f + ε2, where ε1 and ε2 are white Gaussian noise vectors.
Thus, (

s1

s2

)
=
(

H1

H2

)
f + ε ,

where ε = (ε1 ε2)
T . Form the matrix (H̃1 H̃2), where the convolution matrices H̃1 and H̃2,

are formed from h̃1 and h̃2, respectively. So

(
H̃1 H̃2

)
(

s1

s2

)
= f + (

H̃1 H̃2
)
ε .

The expectation of the error in the reconstruction is E[‖(H̃1 H̃2)ε‖2
2] =

trace((H̃1 H̃2) (H̃1 H̃2)
T ). If the lengths of f , h1, and h2 are L, n, and m, respectively,

then

E
[∥∥(H̃1 H̃2

)
ε
∥∥2

2

]
= (

n + L − 1
)2∥∥h̃1

∥∥2
2 + (

m + L − 1
)2∥∥h̃2

∥∥2
2 .

This means that the deconvolvers that are optimal in terms of noise performance are the
solutions h̃1 and h̃2 with smallest �2-norm. But this objective is achieved by finding the
solution h̃ = (h̃1h̃2)

T of smallest �2-norm since ‖h̃‖2
2 = ‖h̃1‖2

2 + ‖h̃2‖2
2.

If we express H in terms of its singular value decomposition, H = U�V T , then the
pseudoinverse of H is H+ = V �−1UT . This formulation has numerical advantages when
the conditioning of the matrix involved is large because it avoids having to find the inverse
of HHT , whose conditioning is κ(HHT ) = κ(H)2.

Remark 3. In the continuous case for the characteristic convolvers, the supports of the
deconvolvers were determined by the only sampling rates that were possible on the Fourier
transform axis [36]. The same principle was used in the case of the discrete characteristic
convolvers. Since the support of a convolution of two finitely supported functions is the
sum of the supports, one possible choice for the support of the deconvolvers is the choice
that yields equal support lengths for all convolution terms. As in the characteristic case, in



The Multichannel Deconvolution Problem: A Discrete Analysis 369

the general convolver case we chose the supports of each expected deconvolver h̃i to be the
sum of the supports of all the convolvers hj for j �= i.

There are cases when the support length is smaller than the length we chose. For
instance, if the convolvers {hi}pi=1, have the same support length L, then there exist {h̃i}pi=1
of support length greater than or equal to the ceiling of L−1

p−1 (cf. [21]).

There is an upper bound to the lengths of the supports by the following result.

Theorem 11 ([3] and [9]).
Let {fi}pi=1 ∈ C [x1, . . . , xn] with no common zeros. Then there exist polynomials

g1, . . . , gp such that
∑p

i=1 figi = 1 and deg(gi) ≤ 2(2d)2n−1
, where d = max

1≤i≤p
deg(fi).

5.2 Local Deconvolution

We wish to clarify an aspect in the discrete setting that allows us to recover lost
segments, a phenomenon that is not possible by traditional reconstruction methods.

Consider the case when the discrete convolutions are truncated. Assume the length
of f is N and that only N values of {si}i are known. (We can also consider the number
of known values of si to be smaller than N and recover the values of f by our method).
Thus, si = Hi,Nf , where Hi,N is the convolution matrix of hi to be multiplied by a vector
of length N . The superscript (ai, bi) means that rows ai through bi are taken from Hi,N ,
where the number of rows from ai to bi is N .

Consider the two-channel problem where h1 has length n, h2 has length m, and
n < m. Set a1 = 1 + �(n − 1)/2�, b1 = N + n − �(n − 1)/2�, a2 = 1 + �(m − 1)/2�, and
b2 = N + m − �(m − 1)/2�, where �x� and �x� are the ceiling and floor of x, respectively.
Form truncated convolver matrices H̃

(ci ,di )
i,N from h̃i with c1 = 1 + �(m − 1)/ 2�, d1 =

N+m−�(m−1)/2�, c2 = 1+�(n−1)/2�, andd2 = N+n−�(n−1)/2�. The reconstruction
is carried out by taking H̃

(c1,d1)
1,N s1 + H̃

(c2,d2)
2,N s2. To determine what coordinates of f are

recovered, we analyze H̃
(c1,d1)
1,N H

(a1,b1)
1,N + H̃

(c2,d2)
2,N H

(a2,b2)
2,N . Recalling that the deconvolvers

depend on the value of k corresponding to the position of the 1 in δk , the resulting matrix
�k is a banded matrix of the form





d1,1 . . . d1,p δk[1]
... δk[2] δk[1]

dp,1 δk[2] . . .

δk[L] . . . δk[1]
δk[L] δk[2] dN−p,N

. . .
...

δk[L] dN,N−p . . . dN,N





,

where L = n+m−1, p = �(m−1)/2�+1, and di,j ∈ R. The result of the reconstruction
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is �kf . For example, if f (i) = i for i = 1, . . . , 6, h1 = 15, h2 = 13, then

�1 =





−1 − 3
8 0 1 0 0

3
8 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 − 5
8

0 0 0 0 − 3
8 0





.

The row containing the ith entry 1 and all other entries 0 allows us to recover f (i).
Thus, f (6) = 6 is recovered in the reconstruction from �1. Changing the values of k, we
can recover the other coordinates of f . Eventually, we find

�7 =





0 − 3
8 0 0 0 0

− 5
8 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 3
8

0 0 1 0 − 3
8 −1





which yields f (1) = 1.
It is still possible to recover all the coordinates of f if the convolution matrices

are truncated further. If we remove the first row from all the convolver and deconvolver
matrices in the above example, the resulting matrix is the old �k with the first row removed.
In this case, s1 and s2 are vectors of length 5 and, by changing values of k, we can still
recover f , a vector of length 6. Thus, this reconstruction method allows us to recover
segments that could not be recovered by other traditional methods. For instance, if the

system

(
s1
s2

)
=
(

H
(a1,b1)
1,6

H
(a2,b2)
2,6

)
f is solved by the pseudoinverse solution, only 5 approximate

coordinates of f can be recovered.

5.3 Regularized Local Multichannel Deconvolution

We expect to use a de-noising routine directly after the reconstruction by the local
deconvolvers in order to improve performance of the reconstruction method. If the noise
level of the blurred images is very high, however, the reconstruction tends to also have a
high level of noise. A better approach is to perturb the deconvolvers at a cost of slightly
approximating the original image to improve noise performance and then apply a good
de-noising routine. Noting the shortcomings in the deconvolution techniques suggested
in [14] and [20], Neelamini, Choi, and Baraniuk in [25] suggested a type of hybridization
consisting of applying first a Wiener filter with a moderate bias and then a wavelet-based de-
noising routine. Because of practical constraints such as analog and digital approximation
and computation time, the MDP was slightly modified by Berenstein and coauthors in [1].
Instead of trying to solve for deconvolvers that would yield an ideal reconstruction, their
aim was to solve

h1 ∗ h̃1 + · · · + hm ∗ h̃m = ψ , (5.1)
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where ψ ∈ C∞
c (R). The function ψ was then modified, for example by dilation, so that

ψ → δ, as supp ψ → {0}. In this case, the reconstructed signal f ∗ ψ is an arbitrarily
close approximation of f .

One of the advantages of modifying the problem in this way is that the deconvolvers
are now functions (as opposed to distributions) and hence, numerically likely to be smoother.
For example, if the hi are integrable functions, then the h̃i cannot be integrable functions,
otherwise

∑m
i=1 hi ∗ h̃i would be an integrable function, and thus, not a δ distribution.

But when the sampling rate is such that the deconvolvers have relatively small support
lengths, a sampled version of ψ is inadequate. Instead we use a computational trick for
deriving an appropriate δ approximation. We found that if H is the MDP matrix, then for
some λ ≥ 0, h̃ = HT (HHT + λI)−1δk are in a sense solutions to (5.1).

The matrix regularized solution can be viewed as a solution to the least-squares
formulation for an underdetermined system, i.e., find h̃ that minimizes λ−1‖Hh̃ − δk‖2

2 +
‖Lh̃‖2

2, where L is a regularized operator that represents constraints on the solution h̃. Let
us consider the case when L = I . Differentiating with respect to h̃ and setting the derivative
equal to zero yields the standard least squares solution h̃ = (HT H + λI)−1HT δk . Using
I − HT (HHT + λI)−1H = λ(HT H + λT )−1, we obtain

h̃ = λ−1
(
I − HT

(
HHT + λI

)−1
H
)
HT δk

= λ−1HT
(
I − (

HHT + λI
)−1

HHT
)
δk

= λ−1HT
(
I − (

HHT + λI
)−1(

HHT + λI
) + (

HHT + λI
)−1

λI
)
δk

= HT
(
HHT + λI

)−1
δk .

This method, called Tikhonov regularization, is known to be the stochastically optimal
regularization method if the solution is reasonably bounded [26] and is equivalent to filtering
the singular values 1/σi in the pseudoinverse solution by multiplying them by σ 2

i /(σ 2
i +λ).

If the noise level is unknown, there is a simple method for estimating the best value
for λ. Typical methods for estimating the regularization parameter λ are either generalized
cross validation or by means of the L-curve (see [26] for further details and references).
Since the method of reconstruction we consider is local in nature, we can find out how
well the regularization works by considering how it performs on a more global scale. To be
specific, let fλ be the regularized reconstruction of the underlying image. Since s1 = h1∗f ,
the regularized solution h̃ is best when ‖fλ ∗h1 −s1‖ is minimized. Additional information
from the other channels could be used when trying to find the best value of λ, yet we found
no numerical difference.

6. Numerical Results and Illustrations

We use as our discrete point spread function the n × n matrix �1n whose entries are
all 1/n2. This is commonly used to model out-of-focus blur [17].

The power of an m × n image matrix I is given by

P(I) =
m∑

i=1

n∑

j=1

(
Ii,j − µI

)2
,

where µI is the mean of all pixel values.
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Let N be the additive Gaussian noise with zero mean and standard deviation σnoise.
Denote by Snoise = S +N the received blurred image, where S is the blurred image without
noise. The blurred signal-to-noise ratio (BSNR) of Snoise in decibels (dB) is defined by
BSNR = 10 log10

P(S)
P (N)

.
Let O be the original image and let Ores be the restored image from Snoise. To

analyze the performance of the method we shall use the peak signal-to-noise ratio (PSNR)
in decibels (dB):

PSNR = 20 log10
(
255

√
nm/‖O − Ores‖F

)
,

where ‖ · ‖F is the Frobenius norm.
In Figure 1, we demonstrate the two-dimensional local deconvolution algorithm and

how we can gain an extended boundary. All three blurred images were truncated to be the
same size after convolution with the respective point spread functions. We reconstructed the
upper left-hand portion of the blurred image by applying the deconvolvers that were found
by carrying out the above algorithm for the appropriately chosen value p of δ′

p. Recall that
δ′
p represents, a lexicographically ordered delta matrix ordered by stacking either the rows

or columns so that the chosen value of p corresponds to the nonzero point of the delta matrix
in the lower right-hand corner of the matrix. By changing the value of p we can reconstruct
other parts of the original image, as shown. By assembling the parts together we obtain
an image that is larger in size than the blurred images. If the sizes of the convolvers are
n1 × n1, n2 × n2, n3 × n3, with n1 < n2 < n3 and the blurred images are all of size n × n,
then the reconstructed image will be of size (n + n1 − 1) × (n + n1 − 1), independent of
the support parameter. For this particular demonstration, we took the convolvers to be �19,
�111, and �113 (so that n1 − 1 = 8). If we reconstruct this extended boundary by applying
Schiske’s method, we get the result presented at the bottom right of Figure 1.

In Figure 2, we demonstrate the performance of the reconstruction method when
noise is incorporated. We can see a large improvement in noise performance when the
regularization method proposed earlier is used with the estimated value for λ found by our
estimation procedure. We then apply a translation invariant, or equivalently, an undecimated
wavelet de-noising routine to the regularized reconstructed image shown at the bottom right
of Figure 2 (see [24] for details and http://www-dsp.rice.edu/software/rwt.
shtml for available software that does this type of denoising).

Table 2.1 gives the numerical data on the experimental results of the above recon-
struction for the image of “Lena” and two other well-known images of “Cameraman” and
“Barbara.” In our experiments we obtained the following BSNR levels in dB. We used as
convolvers �15, �17, and �19.

TABLE 2.1

BSNR BSNR BSNR
Lena 25.89 25.59 25.30

Cameraman 28.28 28.09 27.92
Barbara 25.65 25.45 25.27

The following are the numerical results of the reconstructions in terms of their peak
signal to noise ratios.



The Multichannel Deconvolution Problem: A Discrete Analysis 373

FIGURE 1 On top are the blurred images used for the reconstruction. The center images are the partial
reconstructions. At the bottom left is the total reconstructed image. At the bottom right is the reconstructed image
from Schiske’s method.

λ = 0 λ = 0.0045 UWT denoised Schiske
Lena 3.41 26.45 29.42 10.53

Cameraman 2.19 24.96 28.47 8.90
Barbara 2.25 23.55 24.55 8.92

Finally, we wish to point out some similarities between our algorithm and the al-
gorithm presented in [18]. Ours was inspired by the solutions found for the case of the
characteristic convolvers. The algorithm presented in [18] assumes that all convolvers can
be embedded into a larger vector or matrix. The authors assume the convolvers of equal
support length, since the main interest in the algorithm is for the blind MDP. We found,
however, that when we assume that the characteristic convolvers are represented as matrices
of equal support size, the matrix equation involved becomes singular. Ordinarily, one would
expect an improvement in noise performance when the support length of the deconvolvers
(i.e., the value of s) is increased. Yet, the level of improvement is not at all comparable to
how well the regularization technique works. In fact, we found that if we choose different
values of s and find the best value for λ in all cases when s �= 0 using the noisy blurred
images of Lena mentioned above, we get the following results.
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FIGURE 2 On top are the blurred noisy images. At the center left is the image derived from the local reconstruc-
tion without regularization. At the center right is the image from the regularized reconstruction. At the bottom left
is the denoised regularized reconstructed image. At the bottom right is the reconstructed image from Schiske’s
method.

s = −2 s = 0 s = 2 s=5 s=8
PSNR 23.66 29.44 16.41 19.62 17.89

Thus, the best performance occurs when s = 0.
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